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Abstract— The problem of object/scene image 
classification has gained increasing attention from many 
researchers in computer vision.  In this paper we 
investigate a number of early fusion methods using a 
novel approach to combine image colour information and 
the bag of visual patches (BOP) for recognizing natural 
scene image categories.  We propose keypoints density-
based weighting method (KDW) for merging colour 
moments and the BOP on a spatial pyramid layout. We 
found that the density of keypoints located in each image 
sub-region at specific granularity has noticeable impacts 
on deciding the importance of colour moments on that 
image sub-region. We demonstrate the validity of our 
approach on a six categories dataset of natural scene 
images. Experimental results have proved the 
effectiveness of our proposed approach. 

Keywords-scene image classification; features fusion; 
semantic modelling 

I. INTRODUCTION 
The availability of low-cost image capturing 

devices, wide use of the Internet and popularity of 
photo-sharing websites such as Flicker and Facebook 
hosting hundreds of millions of pictures has led to an 
increase in size of image collections. For efficient use 
of such large image collections, image categorization, 
searching, browsing and retrieval techniques are 
required for users from different domains [1, 2, 3]. 
Much research has been done on scene classification 
recently. Moreover, scene image classification is 
considered an important task in computer vision 
community which helps to provide contextual 
information to guide other vision tasks such as object 
recognition for organizing personal and professional 
images and videos [4].  

Early work in scene image classification was based 
on low-level image features, like colour and texture, 
extracted automatically from the whole image or from 
image regions [2, 6, 7]. Methods that are based on 
global image features failed to represent the high level 
semantic of user perception which is recognised as a 
semantic gap in content based image retrieval (CBIR) 
systems [2].  

Semantic modelling refers to the intermediate 
semantic level representation between low-level image 
features and image classification to narrow the semantic 
gap between low-level features and high-level semantic 
concepts [8, 9]. The simplest way to represent semantic 

concept is to partition an image into blocks and then to 
label them manually by human subjects into semantic 
concepts [8, 10]. Such systems, though, need time and 
human work which is time consuming and monetarily 
expensive.  

In recent years, local invariant features or local 
semantic concepts [11] and the bag of visual patches 
(BOP)  became very popular in computer vision field 
and have shown impressive levels of performance in 
scene image classification task [4,5,9, 12-15].   

Spatial pyramid matching was proposed by 
Lazebnik et al [14] as an extension to the orderless 
BOP. Most work that used BOP and spatial pyramid 
matching focussed mainly on texture analysis but 
discount image colour information, which we believe 
has an equal significant importance in recognizing 
natural scene image categories.   

In this paper we propose a simple yet effective 
weighting method, namely keypoints density-based 
weighting (KDW) method, which is based on the 
density of quantized local invariant image features over 
all images sub-regions, to control the fusion of image 
colour information (colour moments) and BOP 
histograms on a spatial pyramid layout. Moreover, we 
use a number of baseline methods (colour histogram, 
colour moments and the BOP) to represent image 
content separately. A linear combination of these 
baseline methods is also conducted to compare their 
results to our proposed approach.  

The rest of this paper is organized as follows: the 
next section discusses three main steps needed to 
represent image contents. The spatial pyramid layout 
and our proposed approach for merging colour 
information with BOP are explained in section III. The 
experiments and results are listed in section IV and we 
conclude the paper in section V. 

II. LOCAL IMAGE SEMANTIC REPRESENTATION 
In this section we briefly explain the main steps 

needed to construct the BOP.  

A. Local invariant points detection and description 
In this work we chose to use the Difference of 

Gaussian (DOG) point detectors and SIFT (Scale 
Invariant Feature Transform) descriptors [12] to catch 
and describe local interest points or patches from 
images. They showed good performance compared to 
other methods in the literature [16]. The DOG detector 
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Figure 1. Sample image with circles around interest 
points. Sky and water contain little information of 

interest. 

has properties of invariance to translation, rotation, 
scale and constant illumination changes. Once local 
invariant points are defined, we need to describe them 
to discriminate their characteristics.  SIFT descriptors 
capture the structure of the local image patches and are 
defined as local histograms of edge directions 
computed over different parts of the patch. Each patch 
is partitioned into 4x4 parts and each part is represented 
by a histogram of 8 orientation (bins) that gives a 
feature vector of size 128-D [12]. In this paper we use 
the binaries provided at [18] to detect DOG local points 
and to compute the 128-D real valued SIFT descriptors 
from them. 

B. Summarizing image content (BOP) 
Bag of visual patches provides a summary of image 

contents. To build the BOP histogram, the first step is 
to construct the vocabulary of visual patches from SIFT 
descriptors of training images. The vector quantization 
is carried out by k-means clustering algorithm. The 
result of the quantization process is a set of clusters that 
constitute the vocabulary of visual patches. Each image 
SIFT descriptor is assigned to the index of nearest 
cluster in the vocabulary. The visual patches in the 
context of this paper refer to the cluster centers 
produced from k-means clustering algorithm. Let V  
denote the set of all visual patches (vocabulary) 
produced from the clustering step over a set of local 
point descriptors { }VivV i ,..,1== , where iv  is the i-th 

visual patch (or cluster) and V  is the size of the 
vocabulary. We select to use a vocabulary of size 200 
since there have not been observed improvements in 
performance beyond 200 [14]. The set of all SIFT 
descriptors for each image d is mapped into a histogram 
of visual patches ( )dh  at image-level, such that:  

( ) ∑
=

==
dN

j

i
dji Vifdh

1

)( ,..,1,   (1) 

 

⎩
⎨
⎧ ≠=−≤−=

otherwise,0
 and ,..,1,  u  u,1 jj)( liVlvvf lii
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where: 
 ( )dhi is the number of descriptors in image d having 
the closest distance to the i-th visual word iv and dN is 
the number of descriptor in image d . 
 )(i

djf is equal to one if the  j-th descriptor ju in image 
d is closest to visual word iv among other visual words 
in the vocabulary V . 

III. SPATIAL PYRAMID LAYOUT 
In this section we briefly review the idea of spatial 

pyramid matching followed by a description of our 
proposed approach.  

A. Spatial pyramid matching 
Despite the fact that the orderless bag of visual 

words approach is widely used and has made a notable 
performance in object/scene image modelling it 
overpasses the spatial information and context needed 
to improve recognize image visual information Spatial 
pyramid matching [14] works by repeatedly 
subdividing an image into increasingly coarser sub-
regions and then computing histograms of local patches 
found inside each sub-region An image is represented 
as a concatenation of weighted histograms at all levels 
of divisions. Based on this approach, three different 
hierarchical subdivisions on image regions were 
recently proposed for recognizing scene categories [17]. 
In this paper, spatial pyramid layout refers to represent 
images by placing a sequence of increasingly coarser 
grids over an image. Here we didn’t penalize local 
histograms of BOP as described in [14, 17] since it 
decreases the performance of our system. 

B. Proposed approach 
In this section, we describe the proposed approach 

for modelling image semantic information based on 
merging BOP and colour moments on spatial pyramid 
layout.. The motivation of our approach is that most 
techniques that use BOP rely only on intensity 
information extracted from local invariant points and 
neglect colour information which indeed helps in the 
performance of recognizing scene image categories. We 
can see in (Fig. 1) an image with circles around interest 
points detected densely by DOG detectors. What is 
interesting is that local patches do not cover the 
complete image, but they seize salient regions in the 
scene. In natural scene images, colour information has a 
significant effect in discriminating image areas such as 
sky, water and sand. Subsequently, we believe that 
merging colour information and the BOP will be 
significant in modelling image visual content.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fusion of colour and intensity information on 

the BOP paradigm is proposed by Quelhas et al. [15].  
Quantized colour information and the BOP are 
computed over local interest regions. Although this 
approach has shown an improvement on the 
classification performance, it has two main limitations: 

141



1) Colour information is computed over interest regions 
only 2) No spatial information is implemented. 

Motivated by these facts we adopt the spatial 
pyramid matching [14] and propose keypoint density-
based weighting method KDW for merging colour 
information and BOP over image sub-regions at all 
granularities on spatial pyramid layout. The KDW 
method aims to regulate how important colour 
information is in each image sub-region before fusing it 
with BOP. The spatial pyramid layout (Fig. 2) works by 
splitting an image into increasingly coarser grids over 
spatial locations of image local points. That is an image 
with L=2, will have three different representations with 

an overall of 21 sub-regions ( ( )∑
=

+
L

l

l

1

20 22 ) where the 

first sub-region is the whole image area. Each image 
sub-region is represented by a combination of BOP and 
weighted colour moments vector of size 6 on the HSV 
colour space (2 for hue, 2 for saturation and 2 for 
value). Both colour moments and BOP histogram are 
normalized to unit vector before the merging process. 
An image with L=2 and visual vocabulary of size 200 
will produce 4326-D vector.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To formulate our proposed approach we introduce 

the problem formulation followed by a description of 
KDW method: 

Let L denote the number of levels, Ll ,..,1,0= , 
needed to represent an image d on the spatial pyramid 
layout, i.e., an image d will have a sequence of L grids 
of increasingly finer granularity. Let )(

ir
l dh  and 

)(
ir

l dc  denote a histogram vector of BOP computed 
using equation (1) and colour moments vector 
respectively. Both are computed from an image d at 
level l and sub-region ir , ( )22 li = .  

 
The concept of Keypoint Density-based Weight 

(KDW): Colour moment vector )(
ir

l dc is assigned a 
high weight on image sub-regions that have a number 
of local interest points (keypoints density) below 
threshold l

ri
T . Furthermore, colour information will be 

less important in image sub-regions with high number 
of local interest points. The threshold T is a real valued 
vector. Each component represents the average density 
of keypoints (number of keypoints) at specific image 
sub-region over all training images. We propose the 
keypoint density-based weight as: 
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m
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j
r
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where m is the number of images in the training 
image dataset. The components of the threshold vector, 
which is the average keypoints density of all images at 
specific sub-regions and granularity, help in making a 
decision about the importance of color information at 
specific image sub-region. The unified feature vector 

)(dH  for image d  is a concatenation of weighted 
colour moments and BOP at all levels and over all 
granularities: 
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We should notice that the values of weights w  are 

a non-negative numbers in the range (0 to 1) to indicate 
the importance of colour information.   We aim to force 
images from the same category to be close, and images 
from different categories to be far away in the new 
image representation. Weight values have been 
obtained empirically during learning the SVM 
classifiers. In section IV (Fig. 4) shows parts of our 
experiments to choose the best weighting values. We 
should notice that weight values are highly dependent 
on the threshold vector obtained from equation (3). We 
use the proposed weighted colour moments with the 
BOP to improve the performance of BOP on spatial 

Figure 2. Features fusion model on spatial pyramid layout 
(L=2). The left column represents histograms of BOP. The 

right column represents colour moments for the HSV colour 
space bands. The middle column represents an image at 

different levels overlaid with circles around interest points. 
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pyramid layout. We applied the idea to recognize 
natural scene image categories, and the results are 
presented in section IV. 

IV. EXPERIMENTS AND RESULTS 
The first part of this section presents the SVM 

classifier. Next, we demonstrate the dataset we use in 
our experiments. We also implemented a number of 
baseline image representations and their early fusion in 
different ways. We use the confusion matrix to assess 
the performance of all experiments.  

A. Scene classifier 
Multi-class classification is done using the support 

vector machine (SVM) with a RBF kernel. We use 
SVMs in our study as they have been empirically 
proved to yield higher classification accuracy in scene 
and text classification [4, 7, 8]. All experiments have 
been validated using 10-fold cross validation. That is 
90% of all images are selected randomly for learning 
the SVM and the remaining 10% are used for testing. 
The procedure is repeated 10 times such that all images 
are actually tested by the SVM classifier. Our six 
categories classification problem therefore requires 15 
classifiers. To implement the SVM method we used the 
publicly available LIBSVM software [19] where all 
parameters are selected based on 10-fold cross 
validation on each training fold. 

B. Image dataset 
There are many image datasets available in 

computer vision literature but most of them are 
dedicated for object image detection and categorization. 
Recently, Vogel [8] has built a dataset of 700 natural 
scene images constituted of six diverse categories. The 
categories and number of images used are: coasts, 142; 
rivers/lakes, 111; forests, 103; plains, 131; mountains, 
179; sky/clouds, 34.  One challenge in this image 
dataset is the ambiguity and diversity of inter-class and 
intra-class which makes the classification task more 
challenging.  

For baseline methods, we use colour histogram, the 
first and second colour moments and the BOP to 
represent local image contents on gridded and spatial 
pyramid layout separately. Next, we use baseline 
methods to get novel fused features which help us to 
compare and find the best configuration for our 
proposed KDW approach. All experiments are 
conducted using 10-fold cross validation and the SVM 
classifier. For the BOP implementation, we built ten 
different vocabularies, one for each of the ten training 
folds. 

C. Single and fused features baseline methods 
We extract image colour information in the HSV 

colour space since it is quite similar to the way which 
humans perceive colour [8]. In this paper we are not 
quantizing colour information as proposed in [15]. 
Specifically, we use three types of features to represent 

image visual content: colour histogram, the first and 
second moments of each colour channel of an image 
and the BOP. These features are extracted on gridded 
and spatial pyramid layout. Each feature type is used 
separately to represent images and we fuse them in 
different ways to find suitable features for our proposed 
approach. The performance of baseline methods is 
reported in Table I. 

Gridded Colour Moments (GCM): the local 
image colour information is extracted from a regular 
grid of 10x10 regions as proposed in Vogel [8]. The 
first two moments of colour for each channel are 
computed in each region. An image is represented as a 
normalized colour moments vector (600-D) over all 
image regions. This GCM method has reported 57% 
classification accuracy. 

Pyramid Colour Moments (PCM): instead of 
using regular grid, we extract colour moments on 
spatial pyramid layout at two different levels (L=1 and 
L=2). An image at level L would be represented by a 

feature vector of size ( ) 6*2
2

0
∑

=

=
L

l

lS . We achieved an 

average classification performance of 57% using L=2. 
We can observe from previous experiment that the 
PCM achieved equal results to the GCM despite that 
the GCM representation needs 600-D vector whereas in 
PCM representation we need only 126-D vector for 
L=2. 

Pyramid Colour Histogram (PCH): we use the 
traditional colour histogram to represent images on 
spatial pyramid layout. We also experimented with two 
different levels (L=1 and L=2). We use 32-bins, 16-bins 
and 8-bins for the hue, saturation and value 
respectively. The histograms are then concatenated and 
normalized to unit vector of size 56-D. This is repeated 
for all parts of an image and at all granularities. The 
overall classification performance achieved at L=2 is 
59% which is better than the result achieved using 
PCM.  

Bag Of visual Patches (BOP): We use a 
vocabulary of 200 (as suggested by Lazebnik [14]) and 
L=1 and L=2. The BOP has an overall accuracy of 58% 
which is a bit lower than the PCH as well as a bit higher 
than GCM and PCM (1%).  This give us an indication 
that bag of visual patches model alone is not suitable to 
represent local image contents. 

Pyramid Bag of Visual Patches (PBOP): in this 
representation, BOP is modelled on a spatial pyramid 
layout. An improvement (3%) is achieved compared 
with the BOP. We can conclude from this experiment 
that spatial pyramid is indeed helpful to incorporate 
spatial information and increase classification 
performance. To make our proposed approach rational, 
we conduct another set of experiments based on direct 
fusion of previous implementations (BOP+GCM, 
BOP+PCM, PBOP+GCM, PBOP+PCM). The direct 
merging has produced higher classification than using 
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single features alone. This indicates the importance of 
adding colour information to the BOP model. 

D. Proposed approach 
In this section we demonstrate the experimental 

results of our KDW approach to fuse image colour 
moments and the BOP. It worth mentioning here that 
this is the first paper that addresses the importance of 
the density of keypoints in image sub-regions, as well 
as providing empirical evidence that giving more or less 
importance to image colour information before the 
features fusion process can improve classification 
accuracy. We compare our performance with the 
methods proposed by Vogel et al. [8] and Quelhas et al. 
[15] since they used the same dataset.  The resulting 
confusion matrix and the comparison methods results 
are shown in Table II. When fusing colour information 
and the BOP without the weighting scheme, for 
example PBOP+PCM approach, we clearly notice 
improvements in the classification accuracy for some 
image classes (such as forest class) and decreasing in 
other classes (such as sky/clouds class). Looking at Fig. 
3, we observe that our proposed approach behaved 

constantly in improving classification performance over 
most image categories compared with other proposed 
fusion approaches. We reported a classification 
performance of 69.3% which outperforms approaches 
proposed in [8, 15]. This suggests that there is the 
potential for significant improvements in classification 
accuracy using keypoints density to decide on the 
importance of colour information. 

V. CONCLUSION 
We have presented a number of simple yet effective 

approaches for merging image colour information with 
the bag of visual patches. Our proposed KDW approach 
relies on the idea that image colour information should 
have an increasing importance in image sub-regions 
where keypoints density is below the average. Also, the 
colour information has low importance in image sub-
regions with keypoints density above the average. 
Results of our experiments showed an improvement on 
classification performance applied to a well known 
benchmark dataset.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE I. CONFUSION MATRIX SUMMARY OF THE EXPERIMENTS COMPARING SIMPLE BASELINE METHODS (THE FIRST 8 COLUMNS) AND 
THE RESULTS FROM THE FUSION PROCESS WE PROPOSE (THE LAST 4 COLUMNS). THE COLUMNS ARE THE DIAGONAL ENTITIES 

OF THE CONFUSION MATRIX CORRESPONDING TO A GIVEN EXPERIMENT. 

 GCM 
 

PCM 
L=1 

PCM 
L=2 

PCH 
L=1 

PCH 
L=2 

BOP 
 

PBOP 
L=1 

PBOP 
L=2 

BOP 
 + 
GCM 

BOP 
 + 
PCM 

PBOP 
 + 
GCM 

PBOP 
+ 
PCM 

coasts 0.61 0.53 0.61 0.58 0.64 0.57 0.54 0.54 0.66 0.64 0.66 0.68 
river/lakes 0.39 0.46 0.39 0.42 0.41 0.26 0.33 0.34 0.40 0.34 0.41 0.43 
forests 0.75 0.70 0.75 0.74 0.73 0.79 0.82 0.78 0.83 0.82 0.86 0.85 
plains 0.53 0.48 0.50 0.47 0.48 0.56 0.50 0.55 0.56 0.57 0.59 0.59 
mountains 0.58 0.60 0.61 0.68 0.68 0.65 0.77 0.74 0.74 0.76 0.77 0.77 
sky/clouds 0.62 0.38 0.50 0.44 0.41 0.71 0.76 0.71 0.68 0.65 0.74 0.71 
Average Accuracy 0.57 0.54 0.57 0.57 0.59 0.58 0.61 0.61 0.65 0.64 0.67 0.67 

TABLE II. THE FIRST PART OF THIS TABLE SHOWS THE CONFUSION MATRIX OF OUR PROPOSED APPROACH. THE DIAGONAL 
BOLD VALUES ARE THE AVERAGE CLASSIFICATION RATE OF EACH IMAGE CATEGORY. THE OVERALL SYSTEM 

ACCURACY IS 69.3% AND IS CLEARLY OUTPERFORMS THE WORK OF VOGEL [8] AND QUELHAS [15]. 

 
Classified as 

 c r f p m s Recall Vogel Quelhas 

C
or

re
ct

  c
la

ss
 coasts 0.70 0.11 0.01 0.03 0.14 0.01 0.704 0.599 0.690 

river/lakes 0.23 0.43 0.09 0.08 0.16 0.01 0.432 0.416 0.288 
forests 0.03 0.04 0.86 0.04 0.03 0.00 0.864 0.941 0.854 
plains 0.11 0.06 0.08 0.60 0.15 0.01 0.600 0.438 0.626 

mountains 0.07 0.05 0.03 0.05 0.79 0.01 0.793 0.843 0.777 
sky/clouds 0.03 0.03 0.00 0.12 0.00 0.82 0.824 1.000 0.765 

Overall performance 69.3% 67.2% 66.7% 
    

144



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 VI. ACKNOWLEDGEMENTS 

The first author acknowledges the financial 
support received from the Applied Science University 
in Jordan. The authors would like to thank Dr. Julia 
Vogel for providing us access to the natural scene 
image dataset and for valuable discussion. 

REFERENCES 
 [1] Rui, Yong and Huang, Thomas S.  “Image retrieval: 
Current techniques, promising directions and open 
issues”, Journal of Visual Communication and Image 
Representation, 1999. 
 [2] Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying 
Ma, “A survey of content-based image retrieval with high-
level semantics”, Pattern Recognition 40(1): pp. 262-282, 
2007. 
[3] Ritendra Datta , Dhiraj Joshi , Jia Li , James Z. Wang, 
“Image retrieval: Ideas, influences, and trends of the new 
age”, ACM Computing Surveys, v.40 n.2, p.1-60, 2008. 
[4] Pedro Quelhas, Florent Monay, Jean-Marc Odobez, 
Daniel Gatica-Perez, Tinne Tuytelaars, "A Thousand 
Words in a Scene," IEEE Transactions on PAMI, vol. 29, 
no. 9, pp. 1575-1589, 2007. 
[5] Gokalp, D.; Aksoy, S., "Scene Classification Using 
Bag-of-Regions Representations," Computer Vision and 
Pattern Recognition, CVPR, IEEE Conference on, pp.1-8, 
2007. 
[6] J. Z. Wang, J. Li, and G. Wiederhold, “SIMPLIcity: 
Semantics-sensitive integrated matching for picture 
libraries”, IEEE Transactions on PAMI, 23(9):947-963, 
2001. 
[7] A. Vailaya, A. Figueiredo, A. Jain, H. Zhang, “Image 
classification for content-based indexing”, IEEE 
Transactions on Image Processing 10, pp. 117–129, 2001. 
[8] J. Vogel and B. Schiele, “Natural Scene Retrieval Based 
on a Semantic Modeling Step”, Proc. Int'l Conf. Image and 
Video Retrieval, July 2004. 

[9] Fei-Fei, L.; Perona, P., "A Bayesian hierarchical model 
for learning natural scene categories," Computer Vision 
and Pattern Recognition, CVPR. IEEE Computer Society 
Conference on, vol.2, pp. 524-531, 2005. 
[10] A. Bosch., X. Munoz, A. Oliver, and R. Marti, “Object 
and Scene Classification: what does a Supervised Provide 
us?”,  In ICPR, 2006. 
[11] Bosch, A., Munoz, X., and Marti, R, “A Review: 
Which is the best way to organize/classify images by 
content?”, Image and Vision Computing, vol. 25 no. 6. pp. 
778-791, June 2007. 
[12] Lowe, D. G., “Distinctive Image Features from Scale-
Invariant Keypoints”, Int. J. Computer Vision, pp. 91-110, 
2004. 
[13] E. Nowak et al., “sampling strategies for bag-of-
features image classification”, In ECCV, 2006. 
[14] Lazebnik, S.; Schmid, C.; Ponce, J., "Beyond Bags of 
Features: Spatial Pyramid Matching for Recognizing 
Natural Scene Categories", CVPR, vol.2, no., pp. 2169-
2178, 2006. 
[15] Quelhas P. and Odobez, J., “Natural Scene Image 
Modeling Using Color and Texture Visterms”, Proc. Int'l 
Conf. Image and Video Retrieval, pp. 411-421, 2006. 
[16] Mikolajczyk, K.; Schmid, C., "A performance 
evaluation of local descriptors", IEEE Transactions on 
PAMI, vol.27, no.10, pp.1615-1630, 2005. 
[17] Battiato, S., Farinella, G. M., Gallo, G., and Ravì, D., 
“Spatial Hierarchy of Textons Distributions for Scene 
Classification”, In Proceedings of the 15th international 
Multimedia Modeling Conference on Advances in 
Multimedia Modeling, pp. 333-343, 2009. 
[18] http://lear.inrialpes.fr/people/mikolajczyk/ 
[19]http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

Figure 3. A comparison of the average performance accuracy of different 
baseline methods and the proposed approach. It is clear that our proposed 

approach outperforms different baseline methods in most image categories. Each 
line represents the performance of different methods on a specific image 

category. 

Figure 4. Weights selection experiments. In the first 
experiment set we used different weights for the high 

importance with fixed weight (w=0.5) for low importance. 
In the second experiment, we conducted different weights 
for the low importance with fixed weight (w=1) for high 

importance. 
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