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Abstract—In the last few years a number of studies have
focused on the design of fuzzy rule-based systems which are
interpretable (i.e. simple and easy to read), while maintaining
quite a high level of accuracy. Therefore, a new tendency in
the fuzzy modeling that looks for a good balance between
interpretability and accuracy is increasing in importance. In
fact, recently multi-objective evolutionary algorithms have been
applied to improve the difficult trade-off between interpretability
and accuracy. In this paper, we focus both on rule learning
and fuzzy memberships tuning proposing a technique based on
a multi-objective genetic algorithm (MOGA) to design deep-
tuned Fuzzy Rule Based Classifier Systems (FRBCSs) from
examples. Our technique generates a FRBCS which includes
certain operators (known as linguistic hedges or modifiers) able
to improve accuracy without losses in interpretability. In our
proposal the MOGA is used to learn the FRBCS and to set
the operators in order to optimize both model accuracy and
metrics of interpretability, compactness and transparency in a
single algorithm. The resulting Multi-Objective Genetic Fuzzy
System (MOGFS) is evaluated through comparative examples
based on well-known data sets in the pattern classification field.

I. INTRODUCTION

The design of fuzzy rule-based systems comes with two
contradictory requirements in the obtained model [1]: the
interpretability, i.e. the capability to understand the behavior
of the real system, and the accuracy, i.e. the capability to
faithfully represent the real system. These objectives are con-
flicting, which means that improving one of them will probably
worsen the other. Such problems are known as multi-criteria
optimization problems and their optimal solutions are usually
sub-optimal for each objective. For an overview see [2], [3].

Whereas the definition of accuracy in a certain application
is straightforward, the definition of interpretability is rather
problematic. Most researchers and practitioners would agree
in interpretability involving the following aspects [4]:

• The number of rules is enough to be comprehensible.
• The rule premises should be easy in structure and contain

only a few input variables.
• The linguistic terms should be intuitively comprehensible.
• The inference mechanism should produce technically and

intuitively correct results.

Generally speaking, two techniques can be used to build
a fuzzy system. The first consists of extracting the necessary
knowledge directly from experts; this approach usually gen-
erates easily understandable fuzzy systems, but it is not easy
and often not applicable. Another technique is to acquire the
knowledge automatically from numerical data, that represent
samples or examples of the problem. At present a vast number
of algorithms exist for automatic data-based fuzzy modeling;
popular approaches belonging to EA family are the Genetic
Fuzzy Systems (GFSs) [5], which has become an important
research area during the last fifteen years. GFS have proved to
be capable of building compact and transparent fuzzy models
while maintaining a very good level of accuracy [6], [7].

Obtaining high degrees of interpretability and accuracy is
a contradictory purpose, and, in practice, one of the two
properties prevails over the other. Nevertheless, a new trend in
the fuzzy modeling scientific community, that looks for a good
balance between interpretability and accuracy is increasing in
importance. In situations where the best solution corresponds
to a trade-off between the different objectives only a multi-
objective algorithm will be able to find it. Multi-Objective
Genetic Algorithms are an important research line within
GAs due to the fact that to population-based algorithms are
capable of capturing a set of non-dominated solutions in a
single run of the algorithm. With MOGAs the framework of
Pareto optimality is embraced, where the algorithm gives a
set of trade-off solutions, called Pareto set, among which it is
possible to choose the one that is suitable for a specific task.
The use of MOGAs allows both model accuracy and metrics
of interpretability to be included.

In this paper we propose a Multi-Objective Genetic Fuzzy
System (MOGFS) which is able to learn a fuzzy rule-based
classifier system (FRBCS) from a database of numerical ex-
amples, optimizing the feature weights, number of fuzzy sets,
linguistic hedges, and rule weights. Summarizing, there are
four objectives: model accuracy, comprehensibility, complex-
ity, and transparency. To evaluate these objectives we use the
number of misclassification, the number of rules, the number
of features, and the number of the linguistic hedges. Details
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of the evaluation measures used are given in Section V-B.
This contribution is structured as follows. Section II dis-

cusses similar works. Section III describes the MOGA algo-
rithm we used. Section IV introduces linguistic hedges and
the operators we used. Section V introduces our MOGFS ap-
proach. Section VI shows some experimental results obtained.
Finally, Section VII concludes the paper.

II. SIMILAR WORKS

Improvement of the interpretability of rule-based systems
is a central issue in recent GFS research, where not only
accuracy is receiving attention but also the compactness and
interpretability of the rules obtained. In [8], the use of MOGAs
was considered one of the most promising future directions
of GFSs. In [9] an overview of the GFS field (a taxonomy,
current research trends and prospects) is given. In [10] were
presented and analyzed six different MOGAs to obtain simpler
and still accurate linguistic fuzzy models by performing rule
selection and a tuning of the membership functions. Recently,
MOGAs have been used in new GFS models and applications.
Among others we recall in [11] a Pareto-based approach to
the identification of Mamdani fuzzy systems is presented.
The approach uses an appropriate implementation of the well-
known (2+2)PAES to generate a Pareto set of Mamdani fuzzy
systems from numerical data. The solutions are characterized
by a high accuracy and a good comprehensibility.

Ishibuchi and Yamamoto, in [12], proposed the idea of
using three-objective genetic local search algorithms and rule
evaluation measures as rule selection criteria for prescreening
candidate fuzzy if-then rules used in rule selection. Their
strategy operates in two distinct phases. The first phase
generates candidate rules through rule evaluation measures
whereas the second step selects rules via multi-objective
evolutionary algorithms. The three objectives involved are the
classification error to measure accuracy, the number of rules
and the conditions within the fuzzy classification rule system
to measure its comprehensibility or complexity, respectively.
All the objectives have to be minimized.

In [13] Wang et al. proposed a new scheme based on a
multi-objective hierarchical genetic algorithm (MOHGA) to
extract interpretable rule-based knowledge from data. The
approach is derived from the use of MOGA, where the
genes of the chromosome are arranged into control genes and
parameter genes. These genes are in a hierarchical form so
that the control genes can manipulate the parameter genes in
a more effective manner. The effectiveness of this chromosome
formulation enables the fuzzy sets and rules to be optimally
reduced. In order to remove the redundancy of the rule base
proactively, the authors further apply an interpretability-driven
simplification method to newborn individuals. In the Wang et
al. approach, fuzzy clustering is applied first to generate an
initial rule-based model. Then the multi-objective hierarchical
genetic algorithm and the recursive least square method are
used to obtain the optimized fuzzy models.

In former works [14], [15], we demonstrated that good ways
to improve accuracy without losses in interpretability are an

appropriate assignment of feature weights and the use of lin-
guistic hedges. Feature weight assignment can be regarded as a
generalization of feature selection, which is useful to prune the
useless features in order to reduce system complexity. Using
this technique a real number w in the range [0, 1] is assigned
to each feature indicating the importance of the feature. When
wi = 0 the i-th feature has no importance and it can be erased
from the system without performance losses. A linguistic
hedge (also known as linguistic modifier [16]) is an operator
modifying the shape of membership functions. The linguistic
operators we used in this work are detailed in section IV. Rule
weights, i.e. numbers that describe the certainty of the rules,
also proved to be useful to improve system performance, while
maintaining its interpretability [17], [12].

III. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM

For this work we chose SPEA2 [18], which is very effective
in sampling from along the entire Pareto-optimal front and
distributing the solutions generated over the trade-off surface.
SPEA2 is an elitist multiobjective evolutionary algorithm
which incorporates a fine-grained fitness assignment strategy,
a density estimation technique, and an enhanced archive trun-
cation method.

A. Crossover operator with variable-length chromosome

Crossover operator should be compatible with variable
lengths of pair of parent chromosomes, and maintains integrity
of their offspring. We apply the modulo crossover operator
[19] in our implementation of SPEA2. Consider two chro-
mosomes of length (in bits) l1 and l2, where both l1 and l2
are integer multiples of the length of a single cluster center.
Let r > 0 be an integer drawn from a uniformly random
distribution. If c1 = (r mod l1) and c2 = (r mod l2) are taken
as crossover points for two individuals, crossover results in
two offspring and the sum of whose lengths remains (l1 + l2).
Each offspring is then guaranteed to be legal representation of
fuzzy classifier system solution.

IV. FUZZY SETS WITH LINGUISTIC HEDGES

In this paper, we focus on mining fuzzy rules of the
following schema:
IF xi is Gr THEN xi is Cj with bij .
Here, xi is a d-dimensional real vector of useful information

about the i-th pattern. Gr is a d-dimensional fuzzy relation.
C is a set of possible classes that the i-th pattern could
belong with bi possibility (possibility like probability is a value
between 0 and 1, but the sum of possibility vector bi need not
be 1). Fuzzy sets, according with their significance, could be
associated with linguistic labels, for example we could have
the following rule:

IF weather is cold THEN
season is winter with 0.8

(1)

Certain operators may be included to slightly change the
meaning of the linguistic labels involved in a specific linguistic
fuzzy rule. As Zadeh highlighted in [16], a way to do so
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with a minor description loss is to use linguistic hedges.
A linguistic hedge (also known as linguistic modifier) is
an operator modifying the shape of membership functions.
Linguistic hedge operations are classified into three categories:
concentration, dilation, and contrast intensification [16]. In this
paper only the concentration type and the dilation type hedge
operations are employed.

Concentration - Applying a concentration operator to a
fuzzy set A results in the reduction in the magnitude of the
grade of membership of x in A which is relatively small for
those x with a high grade of membership in A and relatively
large for those x with a high grade of membership in A
and relatively large for those x with low membership. The
linguistic-hedge operation of ”concentration x” defined by
Zadeh [16] is :

CON(x) Δ= xα; α > 1 (2)

Based on the above definition, a few related linguistic-hedge
operations such as absolutely, very, much more, more and plus
[20] can be defined by specifying the values of α in (2) as 5,
4, 3, 2 and 1.5, respectively.

Dilation - In contrast, the effect of dilation is opposite to that
of concentration. The linguistic-hedge operation of ”dilation
x” defined by Zadeh [16] is

DIL(x) Δ= xα; 0 < α < 1 (3)

Similarly, some related linguistic-hedge operations such as
minus, more or less and slightly [20] are defined by spec-
ifying the values of alpha in (3) as 0.75, 0.5, and 0.25,
respectively. Take the fuzzy set cold as an example. Fig-
ure 1 shows the membership functions μcold(t), μverycold(t)

and μmoreorlesscold(t). Of course, the fact of using linguistic

Figure 1. Effects of the fuzzy linguistic hedge very and more or less.

hedges will have a significant influence in the fuzzy rule based
system performance since the matching degree of the rule
antecedents as well as the output fuzzy set obtained when
applying the implication in the inference process will vary. For
some proposals that perform this kind of tuning with linguistic
hedges, the interested reader can refer to [21] and [22].

V. PROPOSED APPROACH

The proposed approach, named MOGFS, is divided into
two straightforward stages. The flowchart of the MOGFS is

Figure 2. Flowchart of the proposed approach

illustrated in 2. The first stage is the pruning process, in
which a reduced set R of the best representative samples is
extracted from a set A of numerical data. The second stage is
composed of two processes, the generation process, in which
candidate FRBCS are learned with different parameters from
the reduced set R using the extension of the Wang and Mendel
generating method [23] to classification problem [24], while in
the optimization process the candidate systems are optimized
by means of the SPEA2. The two processes in the second
stage are iterated until the stop condition occurs (e.g. until
a predefined number of iterations of the SPEA2 is reached).
The FRBCS generating method is detailed in Section V-A.
System parameters to be optimized are: the feature weights,
the rule weights, the number of fuzzy sets for each feature,
if linguistic hedges are to be applied or not, and eventually
the type of the hedges. These parameters are encoded into
the genes of the chromosome, that represent an individual
of the population of the SPEA2. Due to the fact that the
number of fuzzy sets is a parameter of the system, and that the
number of linguistic hedges depends on it, the chromosome
length is variable. For this reason we use the variable length
crossover operator described in Section III-A. Table I details
the chromosome. Note that the total number of fuzzy sets S
is the sum of the number of fuzzy sets for each feature (i.e.
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the sum of each value of the parameter s for the D features).

Table I
THE CHROMOSOME. D IS THE NUMBER OF FEATURES, R THE NUMBER OF

MAXIMUM ALLOWABLE RULES AND S THE TOTAL NUMBER OF FUZZY

SETS.

Parameter No. of Genes Parameter Space Type

Feature weights (w) D [0,1] real
Rule weights (r) R [0,1] real

No. of fuzzy sets (s) D 2, 3, 5 integer
Linguistic hedges (α) D × R × S 0.25, 0.50, 0.75 integer

1, 1.5, 2, 3, 4, 5

We have forced the probabilities p(w = 0) and p(r = 0) to
be equal to 50% in order to have the same chances either to
select or to erase a feature and a rule. α = 1 means that the
hedge is not applied.

The proposed approach is a GFS belonging to the Pittsburgh
family [8], in which each individual represents a rule set.
The use of the Wang and Mendel generating method implies
that the larger is the set of samples the higher will be the
number of possible rules and, consequently, the longer will be
the chromosome length. The convergence speed of the GA is
influenced by the chromosome length, in fact the longer is the
chromosome the slower is the convergence. For this reason, to
speed up the convergence, we introduced the pruning process
to reduce the number of samples before the execution of the
SPEA2. This choice does not affect the overall quality of
the solution found as will be shown in Section VI. However,
one drawback of the weight specification scheme is that the
inherited weights from parents are not always appropriate for
their offspring.

The method applied to extract the subset R of the best
representative samples is based on fuzzy clustering. The Fuzzy
C-Means algorithm [25] is used to partition the whole set
into a predefined number of clusters. The subset R is build
selecting the patterns which have the highest fuzzy degree
of truth with each cluster. Note that there is not a magic
number of predefined clusters that is good for all problems,
it depends on the characteristics of the problem. In this work
it was chosen after a cluster analysis. The optimization phase
involves four objectives: model accuracy, comprehensibility,
complexity, and transparency. To evaluate these objectives we
use the number of misclassifications, the number of rules, the
number of features, and the number of the linguistic hedges.
Details of the evaluation measures are given in Section V-B.
The output of the proposed approach will be a Pareto-set of
trade-off FRBCSs.

A. Fuzzy rule based classifier system generating method

The objective of the generating method is to generate from
the training data a set of fuzzy rules that describes the relation-
ship between the system and determines a mapping between
the feature space and the class set. The generating method
used in this work is an extension of Wang and Mendel’s rule
generation algorithm [23] to the classification problem [24]. It
consists of five steps:

• Step 1 Divides the input space of the given numerical data
into fuzzy regions. A membership function is adopted for
each fuzzy region. In our experiments we use equidistant
membership functions with triangular shapes.

• Step 2 Generates fuzzy rules from the given data: for each
of the D inputs (xi) the fuzzy set Si with the highest
degree of truth out of those belonging to the term set
of the i-th input is selected. After constructing the set
of antecedents the consequent is the class to which the
pattern belongs.

• Step 3 Assigns to each of the generated rules a degree
equal to the product of the D highest degrees of truth
associated with the fuzzy sets chosen Si.

• Step 4 Creates a combined fuzzy rule base. In case of
conflicts (i.e. repeated rules) they are solved according to
rule degrees. More specifically, if the rule base contains
two rules with the same antecedents, the degrees associ-
ated with the rules are compared and the one with the
highest degree wins.

Note that the output space is represented by the class set. This
method does not repeat the fuzzy rules. Steps 1 to 4 are iterated
with the SPEA2.

When the FRBCS is used to predict the class of an unseen
pattern the following straightforward procedure is applied.
First it is calculated the degree of truth of the pattern with the
R rules. The degree of truth Wj with the j-th rule is defined
as the weighted average of the membership degrees (mi) :

Wj =

D∑

i=1

mi × wi

D
(4)

where wi are the feature weights. Then the degree of truth of
the pattern with the h-th class Ch is calculated as the weighted
average of Wj :

Ch =

R∑

j=1

Wj × rj

Rh
(5)

where rj are the rule weights (and Rh are the number of
rules which have the h-th class as consequent. Finally the
pattern is assigned to the class with the highest degree of
truth.

B. Evaluation measures

In previous work [12] three objectives are used. The three
objectives involved are the classification performance (to be
maximized) to measure accuracy, the number of rules and
conditions (i.e. fuzzy sets) within the fuzzy classification
rule system to measure its comprehensibility and complexity,
respectively. Both the last two objectives have to be min-
imized. In order to compare our experimental results with
[12] we chose the same measures used in the previous work
to measure accuracy, comprehensibility and complexity. To
measure the fourth objective, transparency, we add a new
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measure: the number of linguistic hedges. Summarizing the
following measures are used in our MOGFS:

• Number of misclassification, it is used to measure the
accuracy of the classification. It is defined as the number
of patterns that are in a class different than the one in
the reference classification. It ranges from 0 to the total
number of patterns.

• Number of rules, it counts the fuzzy rules present in the
system. It is a measure of the comprehensibility of the
system. It can take values from the number of classes to
the maximum allowable number of rules (R).

• Average rule length, it is the average number of con-
ditions (i.e. fuzzy sets) in the rules. It is a measure of
the complexity of the system. Its value depends on the
number of selected features (Ds) that is a variable of the
system. It can vary from 1 to Ds.

• Number of linguistic hedges, it is used to measure trans-
parency of the fuzzy sets. It is defined as the number of
linguistic hedges applied to the fuzzy sets of the system.
It ranges from 0 to the total number of fuzzy sets S which
are present in the fuzzy system.

All the measures used are to be minimized and they are
integer numbers. Note that when the number of rules is lower
than the number of classes the system has a poor accuracy,
because in our model there is a one to one correspondence
between rules and classes. For this reason we do not allow to
have the number of rules lower than the number of classes.

VI. PERFORMANCE EVALUATION AND APPLICATIONS

In this section we will evaluate the performance of the
proposed method on some problems in the University of
California machine-learning repository [26]. We considered
four well known data sets: the two most popular data sets (the
Iris and the Wine data sets) to benchmark the performance of
the proposed method.To avoid over-fitting, the leave-one-out
procedure was used. The SPEA2 was run ten times and tables
show the average performance on the test sets. The population
for the genetic algorithm was set as 500 individuals, using a
crossover probability of 0.8 and a mutation probability of 0.1.
The stop criterion used for SPEA2 it was 1000 generations.
After a cluster analysis we chose 19 and 31 as the number
of samples in R in the case of Iris data and Wine data,
respectively.

A. Iris data set

The most classical data set used to compare classification
methods is the Iris data set. The data set comprises 150
flowers belonging to 3 subspecies of Iris: setosa, versicolor
and virginica. For each subspecies the data set contains 50
observations of four main features: Sepal Length (SL), Sepal
Width (SW), Petal Length (PL) and Petal Width (PW).

Results on the iris data set are summarized in Table II,
which reports the set of non-dominated FRBCS with differ-
ent complexity and accuracy obtained by our MOGFS. The
FRBCS are described by their values on the measures of the
four objectives. Table II shown also the rule set obtained by

Table II
COMPARATIVE STUDY ON IRIS DATA. ERROR RATE IS ON TEST DATA

(LEAVE-ONE-OUT PROCEDURE WAS USED)

No. of rules Avg rule length Error rate (%) No. of Hedges

Proposed MOGFS

9 2.00 2.0 16
4 2.00 3.4 8
4 2.00 4.0 6
3 1.00 4.6 2

MOGLS - results from [12]

3 2.00 3.6 0
3 1.66 5.1 0
3 1.33 5.5 0
3 1.00 6.1 0

Wang & Mendel - triangular sets

43 4.0 3.3 0
15 4.0 6.1 0
8 4.0 16.7 0

MOGLS [12]. The accuracy achieved by the best FRBCS
found by our MOGFS is better than the one obtained by
MOGLS, and it is as good as one of the best found in literature
[27] for FRBCS. It should be stated that the rules of MOGFS
with higher classification ability are longer and more complex
than those of MOGLS. However the smallest FRBCS found by
our MOGFS is as simple as the smallest found by MOGLS, but
our FRBCS has higher accuracy. This result is due to the use
of two linguistic hedges, which are able to improve accuracy
without significant losses in interpretability.

B. Wine data set

These data are the results of a chemical analysis of 178
wines grown in the same region in Italy but derived from three
different cultivars. The analysis determined the quantities of
13 constituents found in each of the three types of wines.
These constituents are the attributes of data set, they are all
continuous. The number of patterns in three classes are 59, 71
and 48 respectively. The number of samples in R is 31.

Results on the wine data are summarized in Table III in the
same manner as Table II in the previous subsection. That is,
a tradeoff between accuracy and interpretability of FRBCS is
clearly shown by obtained rule sets. As shown in Table III the
non-dominated FRBCS obtained by our MOGFS outperform
the rule set obtained with MOGLS both in maximum accuracy
and interpretability. Here again it should be stated that the
rules of MOGFS with higher classification ability are longer
and more complex than those of MOGLS. This is due to the
fact that MOGLS is a local search algorithm, that found only
trade-off classifiers with three rules. It should be noted that,
differently from other approaches, our MOGFS does not use
the don’t care condition, which can help to reduce the number
of fuzzy sets in the system. Our FRBCS with maximum
accuracy is very close to the best one reported in literature [7],
where an error rate of 1.1% was obtained with 5 rules and 13
Gaussian-shaped fuzzy sets. The good performance obtained
with this data set suggest that the proposed approach has the
potential to perform well even with high dimensionality.
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Table III
COMPARATIVE STUDY ON WINE DATA. ERROR RATE IS ON TEST DATA

(LEAVE-ONE-OUT PROCEDURE WAS USED)

No. of rules Avg rule length Error rate (%) No. of Hedges

Proposed MOGFS

5 6.00 1.7 44
5 5.00 3.3 35
5 4.00 4.5 24
4 4.00 5.6 10
3 3.00 6.7 8
3 2.00 7.3 5
3 1.00 10.1 2

MOGLS - results from [12]

3 2.66 2.8 0
3 2.33 3.9 0
3 2.00 6.1 0
3 1.66 7.2 0
3 1.33 9.9 0
3 1.00 13.7 0

Wang & Mendel

177 14.0 6.7 0
138 14.0 8.4 0
124 14.0 9.0 0

VII. CONCLUSION

The algorithms proposed in the literature to construct fuzzy
systems from examples usually refine a single model itera-
tively until a compromise between its complexity and its ap-
proximation error is found, but we can conclude that this is not
an adequate approach because there may exist more than one
alternative optimal solution. In this paper, we proposed an idea
of using the SPEA2 for the design of fuzzy systems which are
interpretable (i.e. simple and easy to read), while maintaining
quite a high level of accuracy. Our MOGFS is able to learn
FRBCS from a database of numerical examples, optimizing
the feature weights, the linguistic hedges, and the rule weights.
The output of our MOGFS is a non-dominated set of trade-off
solutions among which it is possible to choose the one that is
suitable for a specific task. We compared our approach with
others to be found in literature in empirical tests on two data
sets that summarize the main problems encountered. The tests
showed that the proposed approach provides a set of FRBCS
that outperform other existing methods. In fact our MOGFS
approach leads to FRBCS with a small number of transparent,
readable rules, which are less complex than those reported in
the literature with comparable or better accuracy.
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