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Abstract

A preliminary study combining two choices of a diver-
sity measure with an accuracy measure in two bicriteria fit-
ness functions to genetically select fuzzy rule-based multi-
classification systems is conducted in this paper. The fuzzy
rule-based classification system ensembles are generated
by means of bagging and mutual information-based feature
selection. Several experiments were developed using four
popular UCI datasets with different dimensionality in or-
der to analyze the accuracy-complexity trade-off obtained
by a genetic algorithm considering the two fitness functions.
Comparison are made with the initial fuzzy ensemble and a
single fuzzy classifier.

1. Introduction

Multiclassification systems (MCSs') are very promising
tools to obtain better performance than a single classifier
dealing with complex classification problems, especially
when the number of dimensions or the size of the data are
really large [13]. The most common base classifiers are de-
cision trees [11], neural networks [18], and more recently
fuzzy classifiers [3, 20].

In previous studies [5, 6], we described a methodology
in which classical MCS design approaches such as bagging
[2], random subspace [11], and mutual information-based
feature selection [1] are used to generate fuzzy rule-based
multiclassification systems (FRBMCSs). The approach is
based on a basic heuristic fuzzy classification rule genera-
tion method [12] and a classifier selection technique based
on a genetic algorithm (GA) driven by a multicriteria fitness
function.

We concluded that a feature and an instance selec-
tion procedure combined with a simple grid partitioning
fuzzy rule-based classification system (FRBCS) to form

!n the following we will use MCS and ensemble as synonyms.
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FRBMCS is a good approach to overcome the curse of di-
mensionality in large datasets. Nevertheless, once a set of
classifiers has been trained, we still need to deal with the
high number of rules and the correlations between individ-
ual classifiers. This is why a selection of the classifiers is
so crucial. As said, we already proposed a multicriteria
GA guided by several fitness functions, based on the like-
lihood [5], the training error [6], or the Out-Of-Bag error
[4]. This methodology, quite novel in this topic, lead us to
the generation of different compact sets of individual classi-
fiers, while still preserving its accuracy, in a single GA run.
However, the experimentations carried suggested the choice
of the fitness function is very dependent of the problem be-
ing solved. For instance, when using the training error, the
accuracy of two FRBMCSs can be similar or even perfect,
making difficult for the GA to discriminate between them in
order to improve the generalization ability. On the contrary,
only using the likelihood seems to give bad results on many
datasets. This suggested us to combine different kinds of
error-based criteria to overcome this issue, producing better
results than any single criterion in isolation [24].

The aim of the current contribution is to take a step ahead
in the latter approach by analyzing the influence of diver-
sity measures, which aim to maximize the instability of the
individual classifiers composing the MCS to obtain perfor-
mance improvement. To do so, we propose to combine two
diversity measures with the training error to define two dif-
ferent bicriteria fitness functions. As in our previous pub-
lication [24] we combine them using the two most simple
ways: weighted average and lexicographic order (i.e. con-
sidering the optimization of a single criterion, and using the
second in case of a tie). We aim to check if two fitness
functions using diversity measures (DIVs) [14] will perform
better in terms of accuracy than a fitness function using the
training error in isolation.

A preliminary study will be conducted on small and
medium size datasets from the UCI machine learning repos-
itory to test the two different fitness functions, each one us-
ing a different DIV, in comparison to a single classifier, the
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original FRBMCS, and the GA-selected FRBMCSs using
a training error-based fitness function. Several parameter
settings for the global approach (e.g. different granularity
levels as well as different feature selection methods) will be
tested and compared regarding the accuracy and the size of
the rule base obtained by a single classifier and the original
FRBCS ensemble.

This paper is set up as follows. In the next section, some
of the existing GA-based methods to select MCSs are re-
viewed as well as a brief overview on the use of diversity
measures is shown. Sec. 3 recalls our approach for design-
ing FRBMCSs considering bagging and feature selection.
Sec. 4 describes the proposed multicriteria GA for compo-
nent classifier selection with the two new fitness functions
based on the use of the two selected DIVs. The experiments
developed and their analysis are shown in Sec. 5. Finally,
Sec. 6 collects some concluding remarks and future research
lines.

2 Background and Related work
2.1 Genetic selection of MCSs

In general, the selection of a subset of classifiers is done
using the overproduce-and-choose strategy (OCS) [19], in
which a large set of classifiers is produced and then selected
to extract the best performing subset. GAs are a popu-
lar technique within this strategy. In the literature, perfor-
mance, complexity and DIV measures are usually consid-
ered as search criteria. Complexity measures are employed
to increase the interpretability of the system whereas DIVs
are used to avoid overfitting.

Among the different genetic OCS proposals, we can re-
mark the following ones. In [17], a hierarchical multi-
objective GA (MOGA) algorithm, performing feature se-
lection at the first level and classifier selection at the second
level, is presented which outperforms classical methods for
two handwritten recognition problems. The MOGA allows
both performance and diversity to be considered for MCS
selection. In [10], a GA is used to select from seven diver-
sity heuristics for k-means cluster-based ensembles and the
ensemble size is also encoded in the genome. In the study
of Martinez-Muiioz et al. [15], a GA is compared to five
other techniques for ensemble selection. Even if the perfor-
mance of the GA was the worst obtained, they showed that
while selecting a small subset of classifiers, the generaliza-
tion error was significantly decreased. In [9], the authors
developed a multidimensional GA to optimize two weight-
based models, in which the weights are assigned to each
classifier or to each class. They applied their system to six
different classifiers (only linear and quadratic classifiers are
explored), but on only two small datasets and without com-
paring to the results obtained on a single classifier. Finally,
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our own previous studies [5, 6] also consider a multicriteria
GA for the ensemble selection in an OCS fashion, with per-
formance (training error) and complexity as criteria to guide
the GA. The performance obtained with the initial MCS is
outperformed by the ensemble selected by the GA, while
the system is simplified. In our current contribution, we
will confirm this conclusion by the study of two improved
fitness functions mixing the two most used criteria: the ac-
curacy and the complexity of the classifiers. The fitness
function will directly incorporate either one accuracy cri-
teria (the training error) or one accuracy criteria combined
with a DIV, while the MCS complexity will be implicitly
optimized by the considered coding scheme (see Sec. 4).

2.2 Diversity measures

In general, it seems that obtaining a high diversity be-
tween classifiers is the aim to be reached, when aiming to
achieve performance improvement of MCSs. In the last few
years, a group of researchers devoted their attention to the
DIVs [14, 21, 22, 23, 25], as they could improve the insta-
bility of classifiers. Several DIVs were proposed, however
all of them demonstrated similar characteristics.

In Kuncheva et al. [14] ten different DIVs were pro-
posed to investigate their influence on the ensemble accu-
racy when being considered as the only optimization cri-
terion. The Q-statistic was the most interesting one, as it
showed a correlation between the accuracy and the diver-
sity.

In Ruta et al. [21], classifiers were generated using a sin-
gle measure, either the diversity, including sixteen different
DIVs, or the ensemble error. The best results were obtained
with the error and DIVs correlated with the error. The ex-
periment indicated that, out of the whole DIVs selected, the
correlation coefficient and the Q-statistic provided the worst
results.

Although both authors substituted accuracy by diversity,
Tsymbal et al. [25] combined these two measures for fea-
ture selection in MCSs and conducted experiments over five
different DIVs.

In Dos Santos et al. [22], an experimentation concern-
ing twelve different DIVs used with a single and a multi-
objective GA were conducted. Moreover, in [23], four se-
lected DIVs were used to justify a dynamic OCS strategy
for the selection of clasifier ensembles. The two best mea-
sures introduced in [22, 23] were the double fault and the
difficulty.

All the previous authors agreed that DIVs are not useful
to substitute the ensemble error, as the correlations depend
on the dataset. However, combining a DIV with an error
measure is still an open issue, since the use of the latter in
isolation seems to be better in most of the cases. This idea
led us to include two DIVs into the bicriteria fitness function



of our genetic MCS selection method, in combination with
the selected ensemble training error.

3 Bagging and feature selection-based

FRBMCSs

In this section we will both detail how the individual
classifiers and the FRBMCSs are designed. A normalized
dataset is split into two parts, a training set and a test set.
The training set is submitted to an instance selection and
a feature selection procedure in order to provide individual
training sets (the so-called bags) to train simple FRBCSs
(through the method described in Sec. 3.1). The instance se-
lection and the feature selection procedures are described in
Sec. 3.2. After performing the training stage on all the bags,
we got an initial FRBMCS, which is validated using the
training and the test errors as well as a measure of complex-
ity based on the total number of rules in the FRBCSs. This
ensemble is selected using a multicriteria GA (described
in Sec. 4) guided by accuracy- and diversity-based fitness
functions. The final FRBMCS is validated using different
accuracy (training error, test error) and complexity (number
of classifiers, total number of rules) measures.

3.1 Individual FRBCS design method

The FRBCSs considered in the ensemble will be based
on fuzzy rules R; with a class C; and a certainty degree
C'Fj in the consequent: If 1 is A;; and ... and z,, is A,
then Class C; with CF;, j = 1,2,..., N. They will take
their decisions by means of the single-winner method [12].

To derive the fuzzy knowledge bases, one of the heuris-
tic methods proposed by Ishibuchi et al. in [12] is con-
sidered. The consequent class C; and certainty degree
CF} are statistically computed from all the examples lo-
cated in a specific fuzzy subspace D(A;). C; is computed
as the class h with maximum confidence according to the
rule compatible training examples D(A;) = {z1,...,Zm }:
c(A; = Class h) = |D(A;)(D(Class h)|/|D(A;)|.
C'F} is obtained as the difference between the confidence
of the consequent class and the sum of the confidences of
the remainder (called CF" in [12]).

3.2 FRBMCS design approaches

The generation of the FRBMCSs is performed by means
of a bagging approach combined with a feature selection
method [6]. Three different feature selection methods, ran-
dom subspace [11] and two variants of Battiti’s MIFS [1]
(greedy and GRASP [8]), are considered.

Random subspace is a method in which we select ran-
domly a set of features from the original dataset. The Bat-
titi’s MIFS method is based on a forward greedy search
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using the Mutual Information measure, with regard to the
class. This method selects the set S of the most informative
features about the output class which cannot be predicted
with the already selected features. It uses a coefficient, 3,
to set up the penalization on the information brought by the
already selected features.

The MIFS-GRASP variant is an approach where the set
is generated by iteratively adding features randomly chosen
from a Restricted Candidate List composed of the best 7
percent decisions according to the Battiti’s quality measure.
Parameter 7 is used to control the amount of randomness
injected in the MIFS selection. With 7 = 0.5, we get an
average amount of randomness, while still preserving the
quality-based ordering of the features.

For the bagging approach, the bags are generated with
the same size as the original training set, as commonly done.
In every case, all the classifiers will consider the same fixed
number of features.

Finally, no weights will be considered to combine
the outputs of the component classifiers to take the final
FRBMCS decision, but a pure voting approach will be ap-
plied: the ensemble class prediction will directly be the
most voted class in the component classifiers output set.
The lowest-order class would be taken in the case of a tie.

4 A multicriteria GA-based MCS selection
method

In this section we will report the foundations of the mul-
ticriteria genetic selection process. Then, we will introduce
the used evaluation criteria and the two new bicriteria fitness
functions.

4.1 Multicriteria genetic optimization

The GA searches for an optimal sequence of the clas-
sifiers, in the way that the most significant classifiers have
the lowest indexes, while those redundant members, which
can be safely excluded, are in the last positions. The cod-
ing scheme is thus based on an order-based representation,
a permutation IT = {jy, j2, ..., ji} of the [ originally gen-
erated individual classifiers. In this way, each chromosome
encodes [ different solutions to the problem, based on con-
sidering a “basic” MCS comprised by a single classifier, that
one stored in the first gene, then another one composed of
two classifiers, those in the first and the second genes, and
SO on.

So, the computation of the evaluation criteria for the
whole ensemble is obtained in a cumulative way, defined
as a vector containing the measured values of the first clas-
sifier; the subset formed by the first and the second; and
so on. The fitness function is thus using the values of a



multicriteria vector, being composed of an array of [ val-
ues, Lt = L’{ Jrideri}? corresponding to the cumulative
measure-value of the [ mentioned MCS designs. The two
different vectors corresponding to two different chromo-
somes are compared by the highest values of one of the
selected criteria (see Sec. 4.2).

At the end of the GA run, the best chromosome is that
member in the population overcoming the others using the
considered criterion. Then, the final design encoded in this
chromosome is the MCS comprising the classifiers from the
first to the one having the the best cumulative measured
value. Nevertheless, any other design not having the opti-
mal accuracy but, for example, showing a lowest complex-
ity can also be directly extracted. In this way, an implicit
use of a complexity criterion is also made.

To increase its convergencerate, the GA works following
a steady-state approach. The initial population is composed
of randomly generated permutations. In each generation,
a tournament selection of size 3 is performed, and the two
winners are crossed over to obtain a single offspring that di-
rectly substitutes the loser. In this study, we have considered
OX crossover and the usual exchange mutation [16].

4.2 The three used evaluation criteria

An exhaustive study using DIVs was conducted in [22,
23]. Two measures can be highlighted from it: the difficulty
(0) and the double fault (). In this contribution we have
chosen these two DIVs to perform our preliminary study.
Apart from 6 and §, we use the Training Error (TE) as the
evaluation criteria for the definition of the fitness functions.

The TE is computed as follows. Let hy (x), . .., h;(x) be
the outputs of the component classifiers of the selected en-
semble E for an input value x = (z1,...,x,). For a given
sample {(x*, C*)}re(1...m}, the TE of that MCS is:

ey

TE = = #{k | C* # arg max h;(x")}
m je{1..|E|}

with | E| being the number of classifiers in the selected en-

semble.

Fitness evaluation using TE alone was already studied in
one of our previous publications [6]. We will call it Training
Error-based Fitness Function (TEFF).

The difficulty measure 6 is computed as follows. Let
X ={i/|E|}icqo,...E|y and X € X be the proportions of
classifiers classifying correctly the instance xx. Then, 6 is
equal to Var({X1,..., X, .., X;m })-

The pairwise measure § for two classifiers h; and h; is
computed as follows:

00
Ny

0;j = —"—
S Hsamples

2
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with N7 being the number of examples missclassified by
both h; and h;. The global value of the measure for the
whole selected ensemble is computed as follows:

L—1 L
oD i

i=1 j=i+1

2
Savg = 3
9 L(L-1) ®)
with L being the number of component classifiers in the en-
semble.

4.3 The two bicriteria fitness functions

As said, we propose two approaches for the fitness func-
tion combining one of the selected DIVs (6, d4.,4) With the
TE measure, using the Lexicographical Order-based Fit-
ness Function (LOFF) or the Weighted Combination Fitness
Function (WCFF).

Notice that, working in this way, we introduce a second
multicriteria optimization level in our algorithm. On the one
hand, a multicriteria optimization is made by means of the
considered coding scheme and the cumulative evaluation of
the possible MCS designs (see Sec. 4.1). On the other hand,
a higher level is added when evaluating the latter possible
designs by means of a bicriteria fitness function.

In the first one, the LOFF, we use the lexicographical or-
der to deal with the multicriteria optimization. When com-
paring two chromosomes, one is better than the other if it
takes a better (lower) minimum value of the TE. In case of
a tie, the DIV measure is considered. The ordering scheme
gives priority to TE, as it provided better results in our pre-
vious studies, while taking the DIV only as a last resort in
the case of the frequent ties encountered by the system.

In the second approach, the WCFF, we propose objective
function scalarization by a weighted combination of both
measures:

WC = factorgxaxTE+ (1—«a)« DIV (4)

where « is a weightin [0,1] and factorg = DIV, /T Epis a
first evaluation-based normalization using DIV} and T Ey,
the DIV and the TE values obtained by the evaluation of the
initial FRBMCS. The fitness function has to be minimized.

5 Experiments and analysis of results

To evaluate the performance of the generated FRBMCSs,
we have selected four datasets from the UCI machine learn-
ing repository (see Table 1). In order to compare the ac-
curacy of the considered classifiers, we used Dietterich’s
5 x2-fold cross-validation (5 x2-cv), which is considered to
be superior to paired k-fold cross validation in classification
problems [7].

Three different granularities, 3, 5 and 7, are tested for the
single FRBCS derivation method, for feature sets of size 5



Table 1. Data sets considered

Table 3. Results for the FRBCS ensembles se-

[ Dataset [ #atr. | #examples | #classes | lected by the GA using the LOFF with ¢
Pima 8 768 2
Glass 9 214 7 GRASP 7 = 0.50 + Random Sub
. gging + GRASP 7 = 0.5 andom Subspace
Vehicle 18 846 4 c | Sonar |["Pima | Glass | Vehicle | Sonar || Pima [ Glass | Vehicle [ Sonar
0.235 0251 [0.362] 0.443 0232 . 0.210
Sonar 60 208 2 3 labels 94 1.0 \T‘ 118 14.0 21.9
5 attr. 1430.1 6954 11567  1799.0 22569 3645.8
151.4 172.8 124.8 154.1 160.3 166.9
170.28 || 55446 20446 67280 17403 175.71
39 0246|0244 03068  0.403 230 0220
5 labels : 17.1 15 138 139 204
5 attr. r 20500 61201 92246 || 70746  3690.2  8023.7 102002 12668.2
avg. #rules 2608 4841 5302 || G087 2708 5912 7258 6235
3 197.21  GI881 16385 || 54670  197.72 64961 64624 16198
0390 0.369 0258 || 0252 039  0.362 0.334] 0263
7 labels 93 142 153 115 150 204 132
ces 5 attr. 36088 158751 202837 || 201833 44536 201834 188494 319145 147952
. 3065 3905 11267 9984 || 13269 3995 13670 10854 15857 11240
SeleCted by means Of three approaCheS' the greedy Battltl S 54056 18489 63621 16139 || 53819  185.20 57 159.79 || 54776 15637 63156 16352

MIFS filter feature selection method, the Battiti’s method
with GRASP (with 7 equal to 0.5, see Sec. 3.2), and ran-
dom subspace. Battiti’s method has been run by consider-
ing a discretization of the real-valued attribute domains in
ten parts and setting the (3 coefficient to 0.1.

Table 4. Results for the FRBCS ensembles se-
lected by the GA using the WCFF with 6

Bagging + Greedy Bagging + GRASP 7 = 050 Bagging + Random Subspace

Pima_| Glass | Vehicle | Sonar Pima_| Glass | Vehicle | Sonar Pima_ | Glass | Vehicle | Sonar

P . Sx2cv | 0252 [0369] 0510 0247 || 0248 0404 0488 0250 || 0263 0420 0455 0242

The FRBMCSS generated are lnltlally COmprlsed by 50 3 labels | #classifiers | 5.0 147 175 158 19 138 36.2 204 32 199 432 36.0

5 aur. 848.8 18724 24728 23940 || 3220 17952 53595 32964 || 5159 22429 69165 5799.7

: : : 1680 1209 1397 1524 || 1688 1262 1481 1649 || 1650 1158  160.1 1621

classifiers. The GA for the component classifier selection Sow ivvas 1m0 i7esy || S0 a7 1sses 10 || sise 20572 i1es thess

k . h 1 t f 5 0 . d . d 1 d d 0383 0400 0249 0242 0385 0.39% 0.258 0405 0387 0.238

- 5 labels | #classifiers 201 175 372 159 232 238 235 247 307 290

works with a popu auon o Individuals and runs dur 5 attr. #rules 51889 7464.0 197302 || 91947 6086.1 12194.1 20080.3 || 128335 60129 19284.6 18306.0

. . . 1 . avg. #irules 2662 4717 5338 5839 2680 5345 597.1 549.9 2469  669.6 628.3

ing 50 generations. The mutation probability considered 9755 1651 igide | 6675 196G 105 10195 || S0 20396 173174 163
. . 5x2-cv 0.398 0.374 0.269 0.254 0.422 0.357 0.257 0.267 0.407
‘N( 7 labels | #classifiers 10.0 224 305 238 14.5 17.4 227 22.1 264

18 005 The Welghts Of CFF were set to 08 for TE and Saur | #rules 37234 236983 306094 || 311227 57989 20570.0 24987.1 || 26650.0 96510 461749 163765

. . avg. firules 3842 10473 9996 || 13313 4215 12220 10928 || 12178 3709 14182 11386

02 for DIV as our aim was to allOW a Smal] ]nﬂuence ()f time 18542 1607.06 16142 || 567.65 18655 1637.21 160.15 || 574.78 18683 1644.03 16152

the DIV in the cases in which the TE gives similar values.
The other tested values for the weights did not improve the
results significantly.

The statistics (5 x2-cv error, number of classifiers, num-

Table 5. Results for the FRBCS ensembles se-
lected by the GA using the WCFF with o

£ . . £ Bagging + Greedy Bagging + GRASP 7 = 0.50 Bagging + Random Subspace
Sonar Pima_| Glass | Vehicle | Sonar Pima_ | Glass | Vehicle | Sonar
ber o rlﬂes’ and run time reqlnred or each runm, expressed : 0237 || 0260 lo.m ‘ 0T ‘ 0299 |[ 0268 0411 0450 0233
. . 3 labels ers 197 83 157 221 384 69 187 406 377
mn SeCOHdS) for the genetlcally selected FRBCS ensembles Satr | #ules 20424 || 14360 20058 32933 61022 || 10799 21322 64753 61212
ave. #rules 11 (| 1764 1241 1500 1587 || 1572 175 1598 1626
1 3 Wi 3 time. 172.12 || 1218.58 20623 1757.07 171.14 || 1287.95 208.39 1777.99 174.37
using LOFF with 6 and 6’ CFF with 6 and 6, and TEFF Sxaev | 0 0237 || 0237 0383 0395 [0217 0361] 0382 0220
. 5 labels | #classifiers | 27.5 33 414 || 298 288 22 400 256 397 288
are collected in Tables 2 and 3, Tables 4 and 5., and Ta- Saw | fmles | 163778 72300 147897 222509 || 177607 77150 111157 240513 6361 24772 180508
’ ’ avg drules | 5914 2584 4487 5354 || 5995 2774 5173 6018 202 6163 245
: : tme | 121926 19794 163061 16487 | 122892 197.85 1680.90 16592 1650
ble 6 respectively. The results of the single FRBCSs are RN = T T e 0268
7 labels | #classifiers | 331 304 270 2 265 240 48 202 || 264 B8 40 132
resented in Table 7 Whlle those Of the Ori inal FRBMCSS St | s | 420359 115678 263088 25271 || 347995 90254 279671 21980, 318981 121955 63657.6 147952
p g avg drules | 12919 3728 9912 9915 || 13227 3792 11SL5 10870 || 12061 3660 13539 11240
tme | 120292 18515 160929 16142 || 120879 18500 163983 16178 || 124555 18550 164618 16123

are included in Table 8. There are three subtables for each
of the feature selection method considered. The best results
for a given feature selection methods are shown in bold and
the best values overall are outlined.

All the experiments have been run in a linux cluster at

Table 6. Results for the FRBCS ensembles se-
lected by the GA using the TEFF

Bagging +Greedy Bagging+GRASP 7 = 0.50 Bagging + Random Subspace
. . . . Pima_| Glass | Vehicle | Sonar Pima_| Glass | Vehicle | Sonar Pima_| Glass | Vehicle | Sonar
the University of Granada on Intel quadri-core Pentium 2.4 0257 [o3e0] odel 0235 |[ 025 0372 0439 0237 | 0256 o3t 04x [0216
3 labels 41 73 103 123 144 102 129 139 42 137 134 201
H 5 atr 6965 9043 14310 18421 || 7630 13179 19916 22526 || 7034 15460 22395 33767
GHz nodes with 2 GByteS of memory. avg #rules | 1715 1254 1383 1483 || 1743 1260 1559 1617 || 1es.1 1131 1689 1683
time 9406 2635 10326 2532 || 9 2649 10209 2518 || 9277 2639 10324 25.08
Sx2ov | 0242 0383 0392 0247 0363 0399 0252 || 0263 0392 0378 0249
5 labels | #classifiers | 115 159 155 104 109 147 120 718 19 137 130 94
5 atr drules | 67449 42330 73384  STST7 || 64974 39867 72273 48939 || 6680.0 33122 94559 620838
avg firules | 5928 268.7 4819 567.0 || 5935 2820 6113 6300 || 5558 2450 7343 6688
time 9348 2610 10348 2517 || 9258  26.16 10375 2486 || 9147 2618 10481 2483
Sx2ov | 0258 0393 0374 0258 || 0256 0395 0356 0257 || 0265 0393 [0337] 0267
7 labels | #classifiers | 127 8.9 146 63 164 103 132 67 170 155 175 6.4
Saw. | frules | 166143 35243 161023 6427.0 || 21836.6 41406 182962 77678 || 212895 $980.6 288542 76552
Table 2_ Results for the FRBCS ensembles se- avg. #rules | 13139 4045 11157 10409 || 13462 4019 13865 11487 || 112484 3862 16802 12037
time 9287 2650 10290 2485 || 9249 2618 10293 2531 || 9231 2608 10352  25.19

lected by the GA using the LOFF with ¢

Bagging + Greedy Bagging + GRASP 1 = 0.50 Bagging + Random Subspace 7 t t . .t
Pima_| Glass | Vehicle | Sonar Pima | G [ Vehicle |~ Sonar Pima_| Glass a T bl R I f h gl FRBCS A\l h
Sx2cv | 0252 [0.362] 0465  0.235 || 0.251 0446 0232 || 0.256 0370 able 7. esults ror € single S !
3 labels | #classifiers 10.1 9.4 4.0 9.1 11.3 14.0 4.2 11.9 H
Satn o | et s e o : feature selection
avg. # 139.9 151.4 172.8 124.8 153.7 160.3
2066.12  384.18 154023 397.09  1248.16  394.00 J
5x2-cv .2 368 0. .2 2
5 labels /!:\fi‘m-y\ Ulf? 3% ,‘M u;a;o 2 Greedy GRASP 7 = 0.50 Random Subspace
5 attr #rules | 70766 295 70746 15862.8 10200.2 12668.2 Pima_| Glass [ Vehicle [ Sonar || Pima [ Glass | Vehicle [ Sonar | Pima | Glass | Vehicle | Sonar
avg. #rules | 5945 269.8 608.6 601.1 7258 6235 3labels | 5x2-cv | 0266 0446  0.549 0267 0447 0.546 0316 |[70265 0457 0512 0319
1540.64  381.62 1548.99 362.66 208741 369.85 atr. | #rules | 178.50 13530 13640 146.60 || 179.50 137.00 13580 169.00 || 161.80 109.50 154.50 174.50
025 0.390 0.240 0.335  0.263 time 0.08 004 012 0.08 0.09 0.04 0.2 009 007 003 012 0.08
LT 174 o s 04 1'3‘5‘, S labels | 5x2-cv | |0.246] 0376 0430 0287 || [0.246] [0375] 0425 0314 |[ 0262 0435 0460 0329
o 17875 36088 ISRIO.L || 201240 2760 SOLLS LiTe2 Saur. | #rules | 68270 29100 437.60 61520 || 68270 29350 41890 75270 || 60420 259.60 587.80 773.60
g #rules | 1306.5 390.5 1085.4 1225.5 386.5 1585.7 1124.0 3039 0.26 0.63 0.17 0.36 0.24 0.67 0.17
time | 152391 30180 348.18 || 1561.90 41157 2000.05  351.93 time | 042 025 065 016 || g - - = -
7labels | 5x2-cv | 0262 0414 0402 0291 0266 0423 [0.399] 0317 || 0276 0418 0415 0340
Satr. | #rles | 1600 43120 1021 1218 1599 43720 90750 1470 1432 41090 1266 1536
time 175 132 327 052 171 134 325 055 166 132 337 063
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Results for the FRBCS ensembles

Bagging+Greedy Bagging+GRASP 7 = 0.50 Bagging + Random Subspace
[ Pima | Glass | Vehicle | Sonar || Pima | Glass | Vehicle | Sonar ||  Pima | Glass | Vehicle | Sonar
0261 0463 0525 0255 |[ 0262 0464 0494 0246 || 0299 0450 0453 0250
8578 6208 6843 7282 || 8609 6289 7362 7951 || 7936 5671 8008 8174
17155 12416 136,87 14565 || 17218 12577 14724 15903 || 15871 11342 160.16 163.47
343 151 487 252
0235 [0.396] 0400 0240
20405 12877 22177 26769
588.11 25754 44355 53537
1793 1201 3121 666
0430
18633
372.66
6736

Tabl¢=T 8.

SxZev
irules
ave. #rules
time

3 labels
5 attr.
334 149 506
0260 0430 0378
27199 11998 30799
54397 23996 61597
17.64 1194 3391
0.402  |0.330
17999 67936
359.98 1359
66.06

2.58
0.221
31824
636.47
7.13

345
0.234
29748
594.95
18.05

1.53
0.405
13302

266.04
12.23
0247 0425
65802 19272
1316 38545
8527  68.27

4.91
0.399
25578
511.56
3279

257
0.220
30068

601.36

6.96

5x2-cv
#rules

avg. #rules
time

5 labels
5 attr.

0375

48479
969.58
166.51

0.263
59824
1196
82.12

0.241
57298
1146
25.57

Sx2-ov
Hrules
avg. #ules
time

0243
64891
11298
84.70

0262
49587
991.74
24.72

0.353

54721
1094

170.48

0.242
54684
1094
25.49

7 labels
5 attr.

17424

5.1 Comparison of the diversity measures
for the LOFF approach

Comparing the two diversity measures, we can see how
they achieve very similar results both in terms of accuracy
and complexity:

e while 6 is able to outperform § considering the individ-
ual test error 4 times, the latter measure outperforms
the former other 4 times, although with less significant

differences,
we should remark the large number of draws (32),

the best individual improvement was observed on the
vehicle dataset: -10% with GRASP and 7 labels,

the best overall result was obtained on the sonar dataset
with Random and 3 labels (draw with ) and on the
vehicle dataset with GRASP and 7 labels,

concerning the number of selected classifiers, 6
achieves a lower value in 5 of the 36 cases, showing
the same result in the reminder 31.

Thus, we choose 6 as a LOFF representant in the following
comparisons (referred simply as the selected LOFF).

5.2 Comparison of the diversity measures
for the WCFF approach

Comparing the two diversity measures, we can see how 6
was outperformed by d considering the individual test error
25 times (2 draws). However, it achieves lower complex-
ity levels in 27 of the 36 cases. The best individual error
improvement was observed on the glass dataset -11% with
Random and 5 labels. The best overall result was obtained
on the pima dataset with Greedy and 5 labels. Thus, we
choose & as a WCFF representant in the following compar-
isons (referred simply as the selected WCFF).

5.3 Comparison of the three fitness func-
tions

The major observations based on the results are:
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comparing the three fitness functions, we can see how
the selected WCFF approach is able to outperform the
TEFF and the selected LOFF considering the individ-
ual test error 8 times (there were also 3 draws),

the best overall result was obtained on the sonar dataset
with Random and 3 labels and on the vehicle dataset
with GRASP and 7 labels,

however, the FRBMCSs based on the selected LOFF
are better than those generated with the TEFF and the
selected WCFF in 13 of the 36 cases (apart from 4
draws),

the best overall result was obtained on the pima dataset
with Greedy and 5 labels,

the TEFF-based FRBMCSs outperform the LOFF and
the WCFF considering individual test error for 11 of
the 36 times (1 draw). The best overall result was ob-
tained on the glass dataset with Greedy and 3 labels,

concerning the complexity reduction, TEFF achieves
the lowest number of classifiers in 18 of the 36 cases
while the selected LOFF does so in the other 16 (apart
from 2 draws between them). The selected WCFF al-
ways generates the most complex FRBMCSs.

We may conclude that the selected LOFF and WCFF are
competitive with TEFF:

e In the direct comparison, the use of the selected LOFF
improves the single TEFF performance in 22 out of 36
cases (apart from 2 draws),

the WCFF improves the single TEFF performance in
16 out of 36 cases,

which indicates that the joint combination of the TE
and a diversity measure actually allows us to improve
the performance of the generated FRBMCS in our ex-
perimentation.

5.4 Genetically selected FRBMCSs vs.
single FRBCS/original FRBMCSs

In all the 36 cases, the generated FRBMCSs improve the
performance of the single FRBCS. Besides, although the
main goal of the genetic selection is to reduce the complex-
ity of the generated FRBMCS, the accuracy results obtained
from that process are also improved in most of the cases,
showing the potential of the approach. In only 6 of the 36
cases (apart from 2 draws) the original FRBMCS outper-
forms the best genetically designed one in terms of accu-
racy. Comparing the best overall TE values of the geneti-
cally selected FRBMCSs with those of the original FRBM-
CSs, the GA improves the results on three of the consid-
ered datasets: vehicle (-1.5% regarding the selected LOFF),



glass (-9% regarding the TEFF), and sonar (-4.5% regard-
ing the LOFF with both 6 and 9), only giving an equal result
in the case of pima.

6 Conclusions and future works

In this study, we extended our previously developed
methodology in which a bagging approach together with
a feature selection technique are used to train FRBMCSs,
which are selected by a multicriteria GA at a later stage.
Three fitness functions were tested, the TEFF, the LOFF,
and the WCEFF, respectively based on a single accuracy cri-
terion and on its combination with a DIV (0, §). The se-
lected FRBCS ensembles obtained performed correctly on
classification problems with a significant number of fea-
tures. By using the said techniques, we would like to obtain
FRCMCSs dealing with high dimensional data.

One of the next steps we will consider is the design of
a generic framework to define the multicriteria fitness func-
tion. At least two different information levels will be stud-
ied: the chromosome and the objective level. Furthermore,
we would like to extend this study on larger data sets (more
than 1,000 examples), to study the influence of other pa-
rameters (the GA parameters, etc.), and to design more ad-
vanced genetic MCS selection techniques (e.g. the use of
Pareto-based algorithms). Analysis of other fuzzy rule gen-
eration techniques and different diversity criteria in the al-
gorithm are other important points for future research.
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