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Abstract— In this paper, we introduce a new index for 
evaluating the interpretability of Mamdani fuzzy rule-based 
systems (MFRBSs). The index takes both the rule base 
complexity and the data base integrity into account. We discuss 
the use of this index in the multi-objective evolutionary 
generation of MFRBSs with different trade-offs between 
accuracy and interpretability. The rule base and the 
membership function parameters of the MFRBSs are learnt 
concurrently by exploiting an appropriate chromosome coding 
and purposely-defined genetic operators. Results on a real-
world regression problem are shown and discussed. 

Keywords- Mamdani Fuzzy Rule-based Systems; Multi-
objective Evolutionary Algorithms; Interpretability Index; 
Accuracy-Interpretability trade-off; Piecewise Linear 
Transformation. 

I.  INTRODUCTION  
Interpretability of Mamdani fuzzy rule-based systems 

(MFRBSs) is still an open issue in the fuzzy modeling 
community. As discussed in [1][2], there is no general 
agreement on a formal definition of interpretability and 
therefore there exists a real difficulty in formulating a 
measure of interpretability of an MFRBS. In general, 
intuitively and informally, we can state that an MFRBS is 
interpretable when we are able to understand how it manages 
to exploit the knowledge contained both in the rule base 
(RB) and in the data base (DB), to infer conclusions from 
facts.  

A common approach is to distinguish between 
interpretability of the RB, also known as complexity, and 
interpretability of fuzzy partitions, also known as integrity of 
the DB [3]. Complexity is usually defined in terms of simple 
measures, such as number of rules in the RB and number of 
linguistic terms in the antecedent of rules [4]-[6]. On the 
other hand, integrity depends on some properties of the fuzzy 
partitions, such as coverage, distinguishability and normality, 
which may be difficult to measure [3]. 

Recently, some interpretability indices have been 
proposed in the specialized literature. For example, in [1] a 
set of heuristics for assessing the interpretability of MFRBSs 
are implemented in a fuzzy rule-based system, while in [2] a 
partition integrity index for context adaptation applications is 
proposed. 

Preserving a high interpretability while increasing the 
accuracy of MFRBSs is not an easy task: indeed, these two 
features are in conflict between them. In the last years, multi-

objective evolutionary algorithms (MOEAs) have been 
widely used to generate sets of MFRBSs with different trade-
offs between accuracy and interpretability [7]. 

Several approaches have been proposed to learn the RB 
using a predefined DB [5][8]. Further, in [9] and [10] the RB 
is learnt concurrently with the membership function (MF) 
parameters and the partition granularities, respectively. 
MOEAs have been also exploited in [6][11] to perform 
concurrently rule selection and tuning of the DB and in [2] to 
adapt the DB to a specific context. Finally, in [12][13], 
authors propose two approaches to perform a tuning of the 
MFs while evolving the antecedents of the initial RB. 
However, none of these approaches takes RB and DB 
interpretability into account at the same time.  

In this paper, we introduce a novel and simple 
interpretability index which takes both the partition integrity 
and the RB complexity into consideration. We exploit this 
index in a multi-objective evolutionary framework to learn 
concurrently the RB and the membership function (MF) 
parameters of MFRBSs. MF parameter learning is performed 
by using a piecewise linear transformation [14] which allows 
us to obtain a high modeling capability with a limited 
number of parameters.  

Results of the application of our approach to a real world 
regression problem are shown and discussed. In particular, 
we highlight how our approach on average generates Pareto 
fronts with solutions characterized by good trade-offs 
between accuracy, RB complexity and DB integrity. We 
have also performed simulations exploiting the same MOEA 
to learn concurrently the RB and the MF parameters of 
MFRBSs, minimizing only the complexity without 
considering the partition integrity. Pareto fronts obtained 
with the two approaches are almost similar in terms of 
accuracy, but solutions generated by our approach are 
characterized on average by a higher partition integrity and 
lower complexity. 

The paper is organized as follows: in Section II we 
briefly describe the MFRBSs. Section III introduces the 
technique to perform the learning of the MF parameters. In 
Section IV, we define our interpretability index. Section V 
describes the multi-objective evolutionary approach, 
including the chromosome coding, the fitness function and 
the genetic operators, used to generate the MFRBSs. Finally, 
Section VI shows the experimental results and Section VII 
draws some final conclusions. 
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II. MAMDANI FUZZY RULE-BASED SYSTEMS 
Let 1{ ,..., ,..., }f FX X X=X  be the set of input variables 

and 1FX +  be the output variable. Let fU , with 

1,..., 1f F= + , be the universe of the thf  variable. Let 

{ },1 ,,...,
ff f f TP A A=  be a fuzzy partition of fT  fuzzy sets on 

variable fX . An MFRBS is composed of M rules expressed 
as: 

mR : IF 
,11 1, mj

X Ais AND … AND 
,, m FF F jX Ais  

THEN 
, 11 1, m FF F jX A

++ +is    (1) 

where , [1, ]m f fj T∈  identifies the index of the fuzzy set 
(among the fT  fuzzy sets of partition fP ), which has been 
selected for fX  in rule mR . 

We adopt triangular fuzzy sets ,f jA  defined by the tuple 
( , , ,, ,f j f j f ja b c ), where ,f ja  and ,f jc  correspond to the left 
and right extremes of the support of ,f jA , and ,f jb  to the 
core. Further, we assume that ,1 ,1f fa b= , , ,f ff T f Tb c= , and 
for j = 2… 1fT − , , , 1f j f jb c −=  and , , 1f j f jb a += .  

To take the “don’t care” condition into account, a new 
fuzzy set ,0fA  ( 1,..., )f F=  is added to all the F input 
partitions fP . This fuzzy set is characterized by a 
membership function equal to 1 on the overall universe [15].  

The terms ,0fA  allow generating rules which contain 
only a subset of the input variables. It follows that 

, [0, ]m f fj T∈ , 1,...,f F= , and , 1 1[1, ]m F Fj T+ +∈ . Thus, an 
MFRBS can be completely described by a matrix 

( 1)M FJ × +∈N  [5], where the generic element ( , )m f  indicates 
that fuzzy set 

,, m ff jA  has been selected for variable fX  in 
rule mR . We adopt the product and the weighted average 
method as AND logical operator and defuzzification method, 
respectively. 

Given a set of N input observations ,1 ,[ ,..., ]n n n Fx x=x , 
with ,n fx ∈ℜ , and the set of the corresponding outputs 

, 1n Fx + ∈ℜ , 1,...,n N= , we apply an MOEA which 
generates a set of MFRBSs with different trade-offs among 
accuracy, complexity and integrity by learning 
simultaneously the RB and the MF parameters. 

III. MF PARAMETERS LEARNING 
We approach the problem of learning the MF parameters 

by using a piecewise linear transformation [14]. The 
transformation is described in Fig. 1 for a generic variable 

fX . In the following, we assume that the interval ranges of 
the original and transformed variables are identical. Further, 
we consider each variable normalised in [0,1].  

Let ( )ft x  be the piecewise linear transformation. We 

have that ( ) ( )( ) ( ), , ,f j f f j f f j fA x A t x A x= = , where ,f jA  

and ,f jA  are two generic fuzzy sets from the uniform and 
non-uniform fuzzy partitions, respectively. In those regions 
where ( )ft x  has a high value of the derivative (high slope 
of the lines), the fuzzy sets ,f jA  are narrower; otherwise, the 
fuzzy sets ,f jA  are wider. To preserve the shape of the MFs, 

we force the change of slopes in ( )ft x  to coincide with the 
cores of the fuzzy sets in the partitions. 

Let ,1 ,,...,
ff f Tb b  and ,1 ,,...,

ff f Tb b  be the cores of 

,1 ,,...,
ff f TA A  and ,1 ,,...,

ff f TA A , respectively. Transformation 

( )ft x  can be defined for j = 2… fT  as: 

( ) ( ), , 1
, 1 , 1

, , 1

f j f j
f f f j f j

f j f j

b b
t x x b b

b b
−

− −
−

−
= − +

−
 , 1 ,f j f f jb x b− ≤ < . 

The cores ,1 ,,...,
ff f Tb b  are fixed and therefore known. 

Further, ,1fb  and , ff Tb  coincide with the extremes of the 

universe Uf of Xf. Thus, ( )ft x  depends on 2fT −  

parameters, that is, ( ),2 , 1; ,...,
ff f f Tt x b b − . Once fixed 

,2 , 1,...,
ff f Tb b − , the partition { },1 ,,...,

ff f f TP A A=  can be 
obtained simply by transforming the three points 
( , , ,, ,f j f j f ja b c ), which describe the generic fuzzy set ,f jA  

into ( , , ,, ,f j f j f ja b c ) applying ( )1
ft x− . 

 
 

,3fa ,3fb ,3fc

,3fc

,3fb

,3fa

,1fA ,2fA  ,3fA  ,4fA ,5fA

,1fA

,2fA

,3fA

,4fA

,5fA

fX

fX

( )ft X

 
Figure 1. An example of piecewise linear transformation. 
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IV. THE NEW INTERPRETABILITY INDEX 

The interpretability of an MFRBS relies mainly on the 
simplicity of the fuzzy RB and on the integrity of the fuzzy 
partitions [15]. 

To ensure the RB simplicity, both the number of fuzzy 
rules and the number of antecedent conditions should be 
maintained low. To this aim, in [5][8]-[10], authors have 
used a complexity measure defined as the total sum of the 
conditions in the antecedent of the rules during the 
evolutionary approach.  

Further, as discussed in [3], the partition integrity 
depends on some properties of the fuzzy partitions such as 
granularity (i.e., the number of fuzzy sets), normality, 
coverage, distinguishability and ordering. 

According to psychologists, the granularity of each 
linguistic variable should not be higher than 9 due to a limit 
of human information processing capability [1]. In the 
experiments, we choose to evaluate the performance of our 
approach setting granularity 5fT T= = .  

We start from uniform partitions composed of normal 
triangular fuzzy sets. We observe that the piecewise linear 
transformation preserves the normality. Finally, 
distinguishability and coverage are fully satisfied when 
partitions are uniform. On the other hand, the piecewise 
linear transformation tends to increase accuracy by adapting 
the MFs to the specific application context. Often, the MF 
adaptation process generates partitions which are quite far 
from being uniform, thus loosing in interpretability: the more 
the partition is different from a uniform partition, the less the 
partition is interpretable.  

To control the partition distinguishability in the 
evolutionary learning of the MF parameters, we introduce, 
for each variable fX , the following dissimilarity measure 

1

, ,
2

T

f f j f j
j

d b b
−

=

= −∑ . Since the piecewise linear 

transformation only moves the cores and the extremes of the 
fuzzy sets without deforming their shapes, fd  can be 
considered a suitable measure for evaluating how much a 
partition generated by the MF parameter learning is different 
from the uniform partition.  

In order to take both the DB integrity and the RB 
complexity into account, we define the following index: 

1

,(1 ) ( )
M F

f m f
m f

I d u j
+

= + ⋅∑∑  (2) 

where 
,

,
,

1    > 0 
( )

0   = 0
m f

m f
m f

if j
u j

if j
⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. 

The value of this index increases with the increasing of 
the number of rules and the number of antecedent conditions 
in the rules, and with the increasing of the values of 
dissimilarity fd  between the actual and the uniform 
partitions for each linguistic variable fX . Thus, the higher 
the value of the index, the lower the MFRBS interpretability. 

If each linguistic variable is uniformly partitioned, then the 
values of all the dissimilarity measures fd  are equal to zero 
and therefore the value of the index coincides with the sum 
of the number of rules and of the complexity index defined 
in [5].  

We note that, since the RB cannot be composed by rules 
with no condition in the antecedents, index I can never be 
equal to zero. From simple mathematical considerations, we 

derive that min max
12 ( 1) [1 ( 2)]
2

M I M F T≤ ≤ + ⋅ + − , where 

minM  and maxM  are the possible minimum and maximum 
numbers of rules. Based on index I, we introduce the 
following index μ  (interpretability index) to globally 
evaluate the interpretability of a knowledge base of an 
MFRBS: 

min

max min

2
1

1( 1) [1 ( 2)] 2
2

I M

M F T M
μ −

= −
+ ⋅ + − −

. 

Index μ  varies from 0 (minimum level of 
interpretability) to 1 (maximum level of interpretability). The 
maximum value corresponds to an RB composed by the 
minimum number of rules with only one condition in the 
antecedent and to a DB with uniform partitions for each 
linguistic variable.  

To increase interpretability, that is, to enhance partition 
integrity and to reduce complexity, and to increase accuracy 
are often conflicting objectives. Thus, we approach the 
generation of MFRBSs by using a two-objective 
evolutionary algorithm, where the two objectives are the 
MSE computed as in [10] and the interpretability index μ  
defined in (2), respectively. 

V. THE MULTI-OBJECTIVE EVOLUTIONARY APPROACH 

We adopt the (2+2)M-PAES proposed in [5]. Each 
solution is codified by a chromosome C composed of two 
parts 1 2( , )C C , which define the RB and the piecewise linear 
transformations of all the variables, respectively. 1C  codifies 
matrix J described in [5] and is composed of ( 1)M F⋅ +  
natural numbers where M is the number of rules currently 
present in the RB. 2C  is a vector containing 1F +  vectors of 

2T −  real numbers: the thf  vector contains the 

,2 , 1,...,
ff f Tb b −

⎡ ⎤
⎣ ⎦  points which define the piecewise linear 

transformation for the linguistic variable fX .  
In order to generate the offspring populations, we exploit 

both crossover and mutation. We apply the one-point 
crossover defined in [5] to 1C  and the BLX-α crossover, 
with α = 0.5, to 2C . Possibly, we reorder the cores so as to 
preserve the label ordering. To constrain the search space, 
we fix minM  and maxM  to 5 and 50, respectively. The 
crossover is applied with probability 0.5.  
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As regards mutation, we apply for 1C  the two mutation 
operators described in [5]. If the crossover is not applied, the 
mutation is always applied to 1C ; otherwise the mutation is 
applied with probability 0.2. The two mutation operators are 
applied with probabilities 0.55 and 0.45, respectively. The 
mutation applied to 2C  first chooses randomly a variable 

[1, 1]f F∈ + , then extracts a random value [2, 1]fj T∈ −  
and changes the value of ,f jb  to a random value in the 

interval , 1 , 1,f j f jb b− +⎡ ⎤⎣ ⎦ . The probability of applying the 
mutation to 2C  is 0.2. 

VI. EXPERIMENTAL RESULTS 

We tested our approach on the real world regression 
problem described in [16] that consists of estimating the 
maintenance costs of medium voltage lines in a town. The 
data set contains 1059 patterns (4 input and 1 output 
variables). In order to assess the reliability of our approach, 
we performed a five-fold cross-validation, using each fold 
six times with different seeds for the random function 
generator (thirty trials in total). We fixed the archive size and 
the maximum number of iterations to 64 and 300,000, 
respectively. 

Fig. 2 shows an example of the Pareto fronts achieved by 
the algorithm on the training and test sets, respectively. As 
expected, we can observe that, when the accuracy increases, 
our interpretability index decreases (indeed, the complexity 
of the rule base and the dissimilarities fd  increase). 

To assess the advantages of exploiting our interpretability 
index, we compared the results achieved by our approach 
with the results obtained by applying the (2+2)M-PAES to 
minimize only the RB complexity, together with the MSE, 
without considering the partition integrity. We denote these 
two approaches as PAES-SFI and PAES-SF, respectively.  

To perform the comparison statistically and not on a 
single trial, we exploit the idea of average Pareto fronts. 
These fronts are obtained as follows. First, the solutions in 
the Pareto front approximations produced on the training set 
in each of the thirty trials are ordered for increasing MSE 
values. Then, the corresponding solutions are averaged on 
the thirty Pareto front approximations. 

We plot for both PAES-SFI and PAES-SF the twenty 
solutions with the lowest MSEs (the choice of considering 
only the twenty solutions with the lowest MSEs was 
motivated by the observation that the other solutions are in 
general characterized by quite high MSEs which make these 
solutions impractical).  

Figure 3 shows the average Pareto fronts achieved by the 
two algorithms, on the training and test sets, in the 
complexity-MSE plane. The complexity is measured as in 
[5]. We can observe that the average Pareto fronts generated 
by PAES-SFI dominate the average Pareto fronts generated 
by PAES-SF, both on training and test sets.  

In Table I we show the average MSEs corresponding to 
three representative points of the average Pareto fronts: the 
first (the most accurate), the median and the last (the least 

complex) point. We refer to these average values as First, 
Median and Last, respectively. 
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Figure 2. An example of Pareto fronts obtained in the training  and test 
sets. 

 
TABLE I. AVERAGE MSES ON TRAINING AND TEST SETS 

 MSETR t-tTR MSETS t-tTS

First     

PAES-SF 13345±4221 = 16180±6614 = 

PAES-SFI 13282±2593 * 15484±4248 * 

Median     

PAES-SF 14072±4716 = 16991±7015 = 

PAES-SFI 13813±2702 * 16081±4434 * 

Last     

PAES-SF 18266±13853 = 20972±16939 = 

PAES-SFI 16290±4423 * 18178±5187 * 
 
We verified that the MSE distributions generated with 

the thirty trials, both on training and test sets, can be 
considered as normal distributions. On the basis of this 
assumption, in order to assess whether the differences 
between the solutions are statistically significant, we applied 
the t-student test with 95% confidence (column t-tTR and t-tTS 
for the training and test sets, respectively).  
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The interpretation of the t-t columns is the following: 
* represents the best result; 
+ means that the best result has better performance 

than that of the corresponding row; 
= means that the best result has performance 

comparable to that of the corresponding row. 
 

Training set 

25 30 35 40 45 50 55 60 65 70
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

4

Complexity

M
S

E

 

 

PAES-SFI

PAES-SF

Test set 

25 30 35 40 45 50 55 60 65 70
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

4

Complexity

M
S

E

 

 

PAES-SFI

PAES-SF

Figure 3. Average Pareto fronts in the Complexity-MSE plane on 
training and test sets. 

 
Analyzing the results of the t-student test performed on 

the three representative points of the average Pareto fronts, 
we can affirm that the MFRBSs generated by both 
approaches are statistically equivalent in terms of MSE, even 
though the average Pareto fronts provided by PAES-SFI lie 
in a region characterized by a lower complexity.  

In order to discuss the interpretability of the MFRBSs 
generated by the two approaches, we report in Table II the 
average values of complexity, number of rules and average 
dissimilarity D, for the first, median and last solutions. The 

average dissimilarity is defined as 
1

1

1
1

F

f
f

D d
F

+

=

=
+ ∑ . This 

dissimilarity expresses how much on average the partitions 
generated by the MF parameter learning are different from 
the uniform partitions. The higher the value of D, the lower 
the partition integrity.  

We can observe that the MFRBSs generated by PAES-
SFI are characterized on average by lower values of D, thus 
confirming the validity of exploiting the proposed 
interpretability index rather than using only the complexity 
as an objective to be optimised together with the MSE. 

Figures 4 and 5 show two examples of fuzzy partitions 
for the most accurate MFRBSs generated on a representative 
fold by PAES-SFI and PAES-SF. We represent the uniform 
and the transformed partitions with dashed and continuous 
lines, respectively.  

 
TABLE II: AVERAGE INTERPRETABILITY VALUES  

 Complexity # Rules D 

First    

PAES-SF 69.2±22.4 29.2±8.2 0.58±0.10 

PAES-SFI 55.5±19.3 24.3±6.9 0.24±0.07 

Median    

PAES-SF 48.1±16.6 22.8±6.6 0.58±0.10 

PAES-SFI 44.1±16.6 20.8±6.1 0.24±0.07 

Last    

PAES-SF 34.0±15.2 18.0±6.4 0.59±0.10 

PAES-SFI 28.7±11.4 15.3±4.8 0.25±0.07 
 
We observe that, for each linguistic variable, all the 

partitions generated by PAES-SF are very far from being 
uniform and result to be very hard to interpret. On the other 
hand, the fuzzy partitions generated by PAES-SFI preserve a 
high interpretability level. In particular the first, the third and 
the output partitions are very close to a uniform partition.  

 

 
  X1                                             X2 

      

X3                                           X4 

 
X5 

Figure 4. An example of fuzzy partitions generated by PAES-SFI on a 
representative fold. 
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VII. CONCLUSIONS 

In this paper we have proposed a new MFRBS 
interpretability index, which takes both the rule base 
complexity and the partition integrity into account. This 
index and accuracy have been used as objectives in a multi-
objective evolutionary learning of rules and MF parameters 
of MFRBSs. To this aim, we have adopted a modified 
version of the well-known (2+2)PAES and a chromosome 
consisting of two parts which codify, respectively, the RB, 
and, for each variable, the parameters of a piecewise linear 
transformation of the membership functions. This approach 
has proved to be very efficient and effective, allowing both a 
good exploitation of the solutions and an accurate 
exploration of the search space.  

The algorithm has been tested on a real world regression 
problem and compared with a similar (2+2)PAES-based 
approach which uses the RB complexity and the accuracy as 
objectives.  

On average, the solutions generated by the two 
approaches have proved to be statistically equivalent in terms 
of accuracy. On the other hand, the set of MFRBSs obtained 
by exploiting the proposed interpretability index have shown 
a higher partition integrity level. 

 
  

 
                      X1                                             X2 

  

 
                                            X3                                             X4 

 

 
 X5                                           

Figure 5. An Example of fuzzy partitions generated by PAES-SF on a 
representative fold. 
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