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Abstract—Linguistic fuzzy modeling in high dimensional re-
gression problems is a challenging topic since conventional
linguistic fuzzy rule-based systems suffer from exponential rule
explosion when the number of variables and/or data examples
becomes high. A good way to face this problem is by searching
for a good and simple global structure within the same process,
in order to consider the relationships among the different
components defining the final linguistic model.

In this contribution, we propose an effective multi-objective
evolutionary algorithm that based on the data base learning
a priori (involved variables, granularities and slight uniform
displacements of the fuzzy partitions) allows a fast derivation of
simple and quite accurate linguistic models, making use of some
effective mechanisms in order to ensure a fast convergence. The
good results obtained in several large-scale regression problems
demonstrate the effectiveness of the proposed approach.

Index Terms—High-dimensional regression problems; linguis-
tic fuzzy modeling; complexity reduction; multi-objective genetic
fuzzy systems;

I. INTRODUCTION

Linguistic fuzzy modeling in high dimensional regression
problems is a challenging topic since conventional linguistic
Fuzzy Rule-Based Systems (FRBSs) suffer from exponential
rule explosion when the number of variables and/or data
examples becomes high [1]. A good way to face this problem
is by searching for a good and simple global structure within
the same process, in order to consider the relationships among
the different components defining the Knowledge Base (KB)
of the obtained linguistic models (selection of important
variables, determination of a good number of linguistic terms
or granularities per variable, parametric definition of the
Membership Functions (MFs) and associated set of rules). It
is, by learning the KB main components, a Data Base (DB)
containing the definitions of the linguistic fuzzy partitions
and a Rule Base (RB) containing the associated set of rules,
together.

An efficient way to obtain the whole KB of FRBSs consists
of obtaining the DB and the RB within the same process but
separately, based on the evolutionary learning of the DB a
priori [2], [3], [4]. This allows learning the most adequate
context [2] for each fuzzy partition, which strongly affects the

final model complexity. However, this approach can not face
itself the following contradictory requirements:

• The obtained linguistic models should be simple and
transparent enough, but also competitive in terms of the
generalization error (the derivation of more specific or
less specific models [5] easily affects the final perfor-
mance).

• The evolutionary learning algorithm should be effective,
but also scalable in terms of the time and memory
consumed in order to be useful for a wide range of high
dimensional or large-scale problems.

In this work, we propose a convenient reduction of the
search space for learning the DB a priori (variable selection,
granularities and MF parameters) and an effective and efficient
Multi-Objective Evolutionary Algorithm (MOEA) that makes
use of some effective mechanisms in order to ensure a fast
convergence. In order to reduce the search space [6], we
propose to perform a slight lateral displacement of fuzzy
partitions by applying a common displacement parameter to
all the MFs at each linguistic variable. This allows a simple
pre-screening on promising granularities, which avoids the
derivation of very specific systems, presenting overfitting, and
preserves equidistributed strong fuzzy partitions. On the other
hand, the proposed MOEA includes such concepts as incest
prevention and restarting in order to improve the algorithm
convergence [7], together with some mechanisms to step up
the learning process (such as a rule cropping criterion in the
RB generation process). The results obtained in several large-
scale regression problems demonstrates the effectiveness of
this method in terms of simplicity, generalization ability and
scalability.

This contribution is arranged as follows. Section II proposes
the lateral displacement of fuzzy partitions. In Section III,
we present an effective MOEA to learn FRBSs in high di-
mensional problems. Section IV shows an experimental study
of the proposed method. Finally, Section V points out some
conclusions.
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II. LATERAL DISPLACEMENT OF FUZZY PARTITIONS

In [6], a new model for the tuning of FRBSs (post-
processing) was proposed considering the linguistic 2-tuples
representation scheme, which allows the lateral displacement
of the support of a MF considering only one parameter per
MF. This displacement parameter is a number in [-0.5, 0.5),
expressing this interval the domain of a MF when it is moving
between its two adjacent lateral MFs. In this way, the lateral
tuning of MFs allows a fine adaptation of each MF comprising
the DB.

Our main aim in this work is to learn a good, simple
and general KB in a fast way. Learning all the components
of the KB together represents a huge search space when
highly dimensional problems are considered. Moreover, to
perform a fine adaptation of the parameters while learning
the system structure could lead to very complex systems since
it is difficult to obtain the best parameters for each concrete
system structure. Once relatively good parameters are obtained
for a system structure, convergence starts in this zone and
it is difficult to explore other good configurations (with a
similar or near accuracy) that could represent more simple
and interesting systems.

To solve this problem, we propose to perform a single lateral
displacement of fuzzy partitions by applying a common dis-
placement parameter to all the MFs at each linguistic variable,
i.e., all the MFs are uniformly displaced depending on the
displacement parameter associated to each fuzzy partition. In
order to avoid very specific parameters and to preserve as
much as possible the original meanings of the MFs we propose
a short variation interval for these displacements. In this way,
we can represent the translation of a linguistic partition S by
the 2-tuple notation as,

(S, α), α ∈ [−0.1, 0.1)⇒ (si, α), ∀si ∈ S.

with si being the i-th MF in S. Figure 1 shows the lateral
displacement of a linguistic partition S for a concrete α value.
Some interesting characteristics following this approach are:
• The search space is reduced providing a fast convergence.

This makes easier to explore different granularities that
can represent promising linguistic partitions.

• The constrained variation interval avoids a fine adaptation
of the MFs just allowing a simple pre-screening on
promising granularities, which avoids the derivation of
very specific systems presenting overfitting.

All that eases a fast derivation of promising models based
on equidistributed strong fuzzy partitions. Once these models
are obtained, a fine tuning [8], [9] (post processing) could be
easily applied depending on the user preferences. We do not
consider this possibility in this contribution by focusing only
on the learning stage.

III. AN EFFECTIVE MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM

As said, the proposed algorithm is based on the DB learning
a priori [2], [3], [4]. Following this approach, the learning

Fig. 1. Lateral displacement in [-0.1, 0.1] of the whole linguistic partition
S = {s0, s1, s2}. All the MFs are uniformly displaced.
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Fig. 2. Learning scheme considered for obtaining complete KBs.

scheme considered to obtain complete KBs is comprised of
two main components: DB evolutionary learning and fast
ad-hoc RB learning process (see Figure 2). However, some
problems arise when high dimensional datasets are considered.
The two main problems are:

1) The large number of evaluations needed to reach conver-
gence. We solve this problem into two ways. By learning
together the number of labels and the single partition
displacement parameters (reduced search space); and, by
developing an advanced MOEA that based on the well
known SPEA2 ensures an effective trade-off between
exploration and exploitation, thus avoiding not needed
evaluations.

2) Too much time is required to generate the RB. Each
evaluation requires the generation of a concrete RB
based on the coded DB. The rule generation method
can take a significant time in high dimensional problems.
Due to the required number of evaluations, it represents a
problem. We solve this problem by including a cropping
criterion in the RB generation method. Additionally,
we allow to remove the unnecessary variables while
evolving, thus leading to DBs that do not provoke an
excessive number of rules when the RB generation
process is applied.

In this way, the proposed algorithm is comprised of these
two main components:
• An efficient MOEA based on SPEA2 [10] with two

minimization objectives (system error and number of
rules) in order to learn promising DBs. This allows to
define:

– The number of labels for each variable, which de-
termine the corresponding equidistributed strong lin-
guistic partitions (including granularity 1 to express
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that the corresponding variable is not used).
– The single lateral displacements for each linguistic

fuzzy partition.
• A quick Ad-hoc data-driven method to derive a RB from

each DB definition generated by the evolutionary process.
The Wang and Mendel algorithm [11] (WM) will be
considered for this task by adding a cropping criterion
for effectiveness.

As said, the proposed MOEA is based on the well-known
SPEA2 [10] algorithm. However, in order to improve its
search ability, this algorithm also implements such concepts
as incest prevention and restarting [7]. In the following, the
components needed to design this algorithm are explained.
They are: DB codification, objectives, WM cropping criterion,
initial gene pool, crossover and mutation, incest prevention,
restarting and stopping condition.

A. DB Codification

A double coding scheme (C = C1 + C2) is considered for
both parts, granularity and translation parameters:
• Number of labels (C1): This part is a vector of integer

numbers with size N (representing N the number of
linguistic variables) in which the granularities of the
different variables are coded,

C1 = (L1, . . . , LN ) .

Each gene Li represents the number of labels used by
the i-th variable and takes values in the set {2, . . . , 7}.
Additionally, in the case of input variables, it can take
a value equal to 1 determining that the corresponding
system variable is not used.

• Lateral displacements (C2): This part is a vector with N
real numbers in which the displacements of the different
variables are coded. The C2 part has the following
structure (where each gene is the displacement value of
the fuzzy partition of the corresponding linguistic variable
an takes values in [−0.1, 0.1]),

C2 = (α1, . . . , αN ) .

B. Objectives and WM Cropping

Once a complete KB is obtained the following two ob-
jectives are minimized for this problem: the number of rules
(simplicity) and the Mean Squared Error (accuracy),

MSE =
1

2 · |E|

|E|∑
l=1

(F (xl)− yl)2,

with |E| being the data set size, F (xl) being the output
obtained from the FRBS decoded a given chromosome when
the l-th example is considered and yl being the known desired
output. The fuzzy inference system considered to obtain F (xl)
is the center of gravity weighted by the matching strategy as
defuzzification operator and the minimum t-norm as implica-
tion and conjunctive operators.

As said, in order to obtain a complete KB from a given
chromosome, we will apply WM on the DB coded by such

chromosome. Since in high dimensional problems WM can
take a long time deriving even thousands of rules, a cropping
criterion has been added to this method. In this way, WM
stops if the RB reach a maximum of 50 rules and mark the
RB as not complete in order to penalize its objective values.
This value (50 rules) was fixed thinking on readability and
based on experimental results, since the models obtained do
not present significant differences in the obtained errors by
allowing a higher number of rules. In order to penalize such
solutions (that should disappear when good complete solutions
arise from the evolution), we estimate the number of rules as
the product of the number of labels of the input variables in
the DB decoded (this is a pessimist proportional estimation).
In the case of the MSE, it is penalized multiplying it per 2.0
(if an example is not covered by the incomplete RB, the mid
of the output domain is given as the estimated output).

C. Initial Gene Pool

The initial population will be comprised of two different
subsets of individuals:
• In the first subset, each chromosome has the same number

of labels for all the system input variables. In order to
provide diversity in the C1 part, these solutions has been
generated by considering all the possible combinations
in the antecedent part, i.e., from 2 labels to 7 labels in
all the input variables (6 combinations). For each of these
combinations, all the possible combinations are generated
in the consequent part (6 combinations per each input
combination). Additionally two copies are included for
each of the previous combinations. The first one with
random values in [−0.1, 0] in the C2 part, and the second
one with random values in [0, 0.1]. Thus, a total of 72
(6 ∗ 6 ∗ 2) different solutions are generated.

• In the second subset, we generate random solutions in or-
der to completely fill the population (values in {2, . . . , 7}
for C1 and values in [−0.1, 0.1] for C2).

Finally, except in the case of problems with less than three
input variables, an input variable v is removed at random,
Lv = 1, in the first individual. This action is repeated until
no more than 10 variables remains in this individual. This
process is applied to all the individuals in the population
in order to avoid the generation of solutions that has no
sense (because of their exorbitant number of rules), therefore
helping to increase the convergence of the algorithm without
significantly affecting the final results.

D. Crossover and Mutation Operators

The crossover operator depends on the chromosome part
where it is applied: A crossover point is randomly generated
and the classical crossover operator is applied on this point
for the C1 part. On the other hand, the Parent Centric BLX
(PCBLX) operator [12], which is based on the BLX-α, is
applied for the C2 part. PCBLX is described as follows.
Let us assume that X = (x1 · · ·xn) and Y = (y1 · · · yn),
(xi, yi ∈ [ai, bi] ⊂ <, i = 1 · · ·n), are two real-coded
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chromosomes that are going to be crossed. The PCBLX
operator generates the following two offspring:
• O1 = (o11 · · · o1n), where o1i is a randomly (uni-

formly) chosen number from the interval [l1i , u
1
i ], with

l1i = max{ai, xi − Ii}, u1
i = min{bi, xi + Ii}, and

Ii =| xi − yi | ·α. In our case, α has been fixed to
0.3.

• O2 = (o21 · · · o2n), where o2i is a randomly (uniformly)
chosen number from the interval [l2i , u

2
i ], with l2i =

max{ai, yi − Ii} and u2
i = min{bi, yi + Ii}.

Four offspring are generated by combining the two parts
generated from C1 with the two parts generated from C2. Once
each offspring is generated the mutation operator in applied
with probability Pm. The mutation operator decreases by 1 the
granularity in a gene g selected at random (Lg = Lg − 1) or
randomly determines a higher granularity in {Lg + 1, . . . , 7}
with the same probability. No decreasing is performed when it
provokes DBs with only one input variable. Besides, the same
gene is changed at random in C2. Finally, after considering
mutation, only the two most accurate offspring are taken as
descendant.

E. Incest Prevention

An incest prevention mechanism has been included for the
C2 part following the concepts of CHC [7]. Following the
original CHC scheme (for binary coding), two parents are
crossed if their hamming distance divided by 2 is over a
predetermined threshold, L. Since C2 makes use of a real
coding scheme, we have to transform each gene considering a
Gray Code (binary code) with a fixed number of bits per gene
(BITSGENE), that is determined by the system expert. In
this way, the threshold value is initialized as:

L = (#GenesC2 ·BITSGENE)/4.0.

Typically, L is decremented by one when there are no new
individuals in the next generation. In order to step up the
convergence, in our case, L will be decremented by two at each
generation. Incest prevention represents a way to provide a
good trade-off between exploration and exploitation, avoiding
unnecessary crosses of very similar solutions at the earlier
stages of the algorithm.

F. Restarting and Stopping Condition

In order to get away from local optima a restarting mecha-
nism [7] (external population is forced to be empty) is applied
by including the most accurate individual as a part of the
new population and by generating the remaining individuals at
random (taking values between 1 and the granularity coded in
the most accurate individual for each gene of the C1 part). This
mechanism is applied when the threshold value L is below
zero (L is set to its initial value).

The algorithm ends when a maximum number of evaluations
are reached or when L is below zero for a second time. It is,
only two exploration/exploitation stages are needed to reach
convergence.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS

In order to evaluate the usefulness of the proposed approach,
namely SPEA2-FL, in high dimensional problems, we have
used five real-world problems with different number of vari-
ables and cases. Table I summarizes their main characteristics
and shows the link to the KEEL software tool webpage [13]
from which they can be downloaded.

TABLE I
DATA SETS CONSIDERED

Problem Abbr. Variables Cases
Analcat ANA 7 4052
Weather-Ankara WAN 9 1609
MV Artificial Domain MV 10 40768
Baseball BAS 16 337
Computer-Activity CA 21 8192

Available at http://www.keel.es/

Two single objective-based methods to obtain complete
KBs are considered for comparisons, GR-MF [3] (learning
Granularities and the three MF parameters) and GA-WM [2]
(learning Granularities, scaling factors and domains). They are
also based on the DB learning a priori. WM [11] is also
considered as a reference since the proposed algorithm and
the algorithms considered for comparisons are based on it.
We will refer to this method as WM(L), with L being the
number of labels used in the initial DB.

The input parameters considered for these algorithms are:
the set {2, . . . , 7} as possible numbers of labels in all the
system variables, population size of 61 (external population
and standard population sizes of 61 and 200 in the case of
SPEA2-FL), 100,000 evaluations, 0.6 as crossover probability
(originally SPEA2 has not crossover probability) and 0.2 as
mutation probability per chromosome. Further, SPEA2-FL
uses 30 bits per gene for the Gray coding.

In all the experiments, we adopted a 5-fold cross-validation
model, i.e., we randomly split the data set into 5 folds, each
containing the 20% of the patterns of the data set, and used
four folds for training and one for testing 1. For each of the five
partitions, we executed six trials of the algorithms (6 different
seeds). For each data set, we therefore consider the average
results of 30 runs. In the case of SPEA2-FL, the averaged
values are calculated considering the most accurate solution
from each obtained Pareto front.

The results obtained by the considered methods are shown
in Table II. This table is grouped in columns by algorithms and
it shows the average of the results obtained by each algorithm
in all the studied datasets. For each one, the first column shows
the average number of rules and used variables (R/V). The
second and third columns show the average accuracy (MSE) in
training and test data (Tra./Tst.) with their respective standard
deviations (SDs).

1The corresponding data partitions (5-fold) for these
datasets are available at the KEEL project webpage [13]:
http://sci2s.ugr.es/keel/datasets.php
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TABLE II
AVERAGE RESULTS OF THE DIFFERENT ALGORITHMS. RESULTS IN THIS TABLE (TRA./TST. AND SD) SHOULD BE MULTIPLIED BY 105 IN THE CASE OF
BAS. GR-MF AND GA-WM WERE NOT APPLICABLE TO MV AND CA BECAUSE OF THE LARGE NUMBER OF VARIABLES AND CASES PROVOKED MEMORY

OVER FLOW ERRORS.

Data set Measure WM(3) WM(5) WM(7) GR-MF GA-WM SPEA2-FL

NAME(V/Size) R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst. R/V Tra. Tst.

ANA(7/4052) Mean 72/8 0.187 0.189 124/8 0.027 0.030 171/8 0.012 0.017 148/8 0.005 0.017 150/8 0.003 0.008 25/3 0.006 0.006
SD 0.001 0.005 0.000 0.002 0.000 0.003 0.001 0.008 0.001 0.005 0.000 0.001

WAN(9/1609) Mean 156/10 16.063 16.393 457/10 4.878 6.305 853/10 2.692 6.538 397/10 1.406 7.381 279/10 1.522 2.820 12/2 1.810 1.823
SD 0.961 1.700 0.405 1.052 0.110 2.101 0.067 5.404 0.065 2.825 0.060 0.143

BAS(16/337) Mean 181/17 1.921 3.695 253/17 0.782 6.198 264/17 0.316 10.598 262/17 0.255 12.439 262/17 0.202 11.706 33/6 1.673 2.575
SD 0.109 0.739 0.047 0.686 0.006 1.339 0.020 2.177 0.031 2.562 0.103 0.521

MV(10/40768) Mean 3812/11 12.404 12.620 24472/11 4.031 5.019 30616/11 1.963 24.831 - - - - - - 20/3 0.531 0.531
SD 0.245 0.228 0.027 0.0756 0.002 1.352 0.060 0.062

CA(21/8192) Mean 425/22 40.384 40.956 1539/22 8.449 12.440 2774/22 5.327 19.143 - - - - - - 28/5 6.046 6.135
SD 3.115 4.637 0.351 1.148 0.060 2.807 0.456 0.474

Analyzing the results shown in Table II we can highlight
that SPEA2-FL obtained so simple and accurate solutions
without significant overfitting, i.e., highly correlated values in
training and test with respect to the other approaches. Another
interesting aspect is the number of variables it is keeping in the
different datasets. Thus, SPEA2-FL seems good even in the
case that variables without interesting additional information
are initially included in the datasets. That property makes the
method scalable for high dimensional problems, in which it is
still able to obtain good solutions from the point of view of the
accuracy-interpretability trade-off (quite simple models with
equidistributed strong fuzzy partitions). On the contrary, no
values were obtained by GR-MF and GA-WM in MV and CA
because of the large number of variables and cases provoked
memory over flow errors after a large number of hours running
without finishing the evaluation of the initial population.

With respect to the scalability it is very important to analyze
the running times of the different methods (these times were
obtained in an Intel Core 2 Quad Q9550 2.83GHz, 8 GB RAM
by only using one of the four cores). Table III shows the
running times of the fast WM algorithm (Ad-Hoc method)
and the evolutionary-based approaches. Of course WM is
practically instantaneous in some of the datasets. However,
it is very interesting to see that, in the case of CA and
MV, a run of this simple method can take about 1/2 and 6
minutes, respectively. It is why the cropping strategy included
in SPEA2-FL is actually needed. Except for CA and MV, the
proposed method is able to obtain solutions taking only some
seconds. The times for CA and MV are also very good taking
into account the kinds of problems they represent and the
evolutionary nature of this algorithm.

In order to show the behavior of the Pareto fronts provided
by SPEA2-FL, in Figure 3 we show a representative Pareto
front (the results of a single trial) on CA. This figure shows
the very high correlation among the values in training and
test, which represents an interesting property of the proposed
method.

TABLE III
AVERAGE TIMES OF A RUN — HOURS, MINUTES AND SECONDS (H:M:S)

Method ANA WAN BAS MV CA

WM(3) 0 aprox. 0 aprox. 0 aprox. 0:00:47 0:00:18
WM(5) 0 aprox. 0 aprox. 0 aprox. 0:05:10 0:00:19
WM(7) 0 aprox. 0 aprox. 0 aprox. 0:06:12 0:00:35
GR-MF 2:58:27 1:19:12 0:13:29 - -
GA-WM 1:46:41 1:16:59 0:16:46 - -
FS-MGFS 0:00:50 0:00:33 0:00:22 0:17:31 0:08:28

Fig. 3. Pareto front example in CA.

V. CONCLUSIONS

In this work, we have proposed an effective MOEA for
the learning of linguistic KBs in high dimensional regression
problems, namely SPEA2-FL. This method, based on the DB
learning a priori, allows a slight uniform displacement of
the linguistic fuzzy partitions and includes some effective
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mechanisms in order to make able the derivation of simple
and accurate linguistic FRBSs, in problems that are difficult
to be solved by standard evolutionary methods.

We have shown that SPEA2-FL is able to obtain promising
linguistic models, avoiding overfitting and keeping equidis-
tributed strong fuzzy partitions. The scalability of SPEA2-FL
is also an interesting characteristic of this method, that is able
to solve problems with more than 40,000 cases or more than
20 variables in a very fast way.
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