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Abstract

Combining descent algorithms and a coevolutionary
scheme, we have defined a new procedure that is able to
obtain rule-based models from datasets with censored or
interval-valued data, and can also identify the conflictive
instances in the training set: those that contribute the most
to the indetermination in the likelihood of the model.

1 Introduction

When statistical classifiers and fuzzy rule-based classi-
fiers are compared, we often do not know to what extent the
difference in performance is intrinsic to the dataset (because
the decision surface is too complex for being representable
by a compact set of rules [5]) or the learning algorithm is
accountable because it has not found the best knowledge
base (KB). To help with this decision, in former works we
have proposed a random sets rule based system (RSRBS)
that, under certain conditions, is numerically equivalent to
a fuzzy rule based system (FRBS) [18, 19]. RSRBSs can be
estimated from data with deterministic descent algorithms.
Comparing its performance to a GFS, we can find those
cases where a GFS has not properly converged to the best
KB.

In this paper we have extended RSRBSs to interval data.
The new method can be used to learn fuzzy classifiers from
data, however its primary purpose will be to establish a
threshold in the performance of FRBS from imprecise data
as we did with crisp datasets in [19].

There are, however, numerical difficulties when obtain-
ing a RSRBS from interval data, because the objective func-
tion is not completely known [17]. In previous works we
have proposed evolutionary schemes guided to obtain non-
dominated sets of bounds of the objective function [20, 21],
that could be used to solve this problem. In this work, how-
ever, we propose a different coevolutionary scheme [15]
that is able to produce not only a nondominated linguisti-
cally understandable classifier, but also the list of the in-
stances of the training set that contribute the most to the

lack of knowledge about the fitness of the classifier.
This paper is structured as follows: in Section 2 we re-

call and update the definition of RSRBS introduced in [19],
and its similarities with a FRBS. In Section 3 we state the
maximum likelihood estimate of a RSRBS from crisp data,
and discuss how to extend the problem to imprecise data.
In Section 4, we discuss a coevolutionary genetic algorithm
that solves the problem, and in Section 5 we provide com-
pared numerical results. The paper finishes with the con-
cluding remarks in Section 6.

2 A random-set based linguistically under-
standable classifier

Let C ∈ {1, . . . , Nc} be the class labels, x =
(x1, . . . , xn), the features with which we perceive an ob-
ject, and letX be the input space, x ∈ X = X1× . . .×Xn.
Lastly, let the Bayes minimum error classifier be

class(x0) = arg max
i
P (c = i | x = x0). (1)

We will consider that a rule-based classifier is a parametric
model of P (c | x) which has a specific human-readable
form. In this section we will develop a statistical model
that relates that linguistically understandable form, based
on fuzzy logic, to abstract concepts of classification theory.

2.1 Crisp sets-based model

Let us define first a crisp parametric model as a partition
{A1, . . . , AN} of the input space X and a matrix

M =

 p11 . . . p1Nc
...

. . .
...

pM1 . . . pMNc

 (2)

where

pic = P (c | Ai). (3)
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Given the matrix M and an input x0, we can compute

P (c = C0 | x) = (4)

=
N∑
i=1

P (c = C0 | Ai)P (Ai | x) (5)

=
N∑
i=1

piC0IAi(x) (6)

where IAi(x) is either 1 or 0 if x ∈ Ai or x 6∈ Ai, respec-
tively.

In addition, if we impose that each element of this last
partition is decomposable,

Ai = A1
i × . . .×Ani , Aji ⊂ X

j (7)

then the model is linguistically understandable, because to
each element of M can be assigned a linguistic rule, as fol-
lows:

if x1 is A1
i and . . . and xn is An

i then class Ci with pi. (8)

For example, let X1 = [0, 1] be the domain of the
weights of a collection of objects, and X2 = [1, 2] the
domain of their lengths, thus X = [0, 1] × [1, 2]. Let
{SMALL,LARGE} with SMALL= [0, 0.5], LARGE=
[0.5, 1] a linguistic partition of X1, and {SHORT,LONG}
with SHORT= [1, 1.5], LONG= [1.5, 2] a linguistic parti-
tion of X2. Lastly, consider the rule that follows:

if x1 is SMALL and x2 is SHORT then class 2 with 0.8. (9)

The information provided by this rule is

P (c = 2 | x ∈ [0, 0.5]× [1, 1.5]) = 0.8 (10)

2.2 Random sets-based model

We will define a random sets rule-based system
(RSRBS) by means of a family of crisp models, indexed
by a parameter θ ∈ Θ, and a probability distribution in Θ.
Each model in this family shares the same matrix M and
depends on a partition {Aθ1, . . . , AθN} of the input space X .
To classify an input value x, we average the outputs of all
the crisp models in the family:

P (c = C0 | x) =
∫

Θ

(
N∑
i=1

piC0IAθi (x)

)
dPθ (11)

=
N∑
i=1

piC0

∫
Θ

IAθi (x)dPθ (12)

=
N∑
i=1

piC0Φi(x) (13)

where Φi(·) is the one point coverage function of the ran-
dom set Aθi , i.e. Φi(x) = P (x ∈ Aθi ).

Let Aθi = A1θ
i × . . .×Anθi ; in case the random variables

IAjθi
(x) are independent, then

Φi(x) =
n∏
j=1

Φji (xj) (14)

where

Φji (xj) =
∫

Θ

Ij
Aθi

(x)dPθ (15)

are one point coverage functions of random sets defined on
the variables Xj .

2.3 Relationship between the random set-
based model and a FRBS

According to [2], the one point coverage function of a
random set can be understood as a fuzzy membership fun-
cion. If the functions Φi are regarded as membership func-
tions,

M∑
i=1

Φi(x) =
M∑
i=1

∫
Θ

IAθi (x)dPθ

=
∫

Θ

(
M∑
i=1

IAθi (x)

)
dPθ

=
∫

Θ

dPθ = 1 (16)

thus they form a Ruspini’s fuzzy partition of X [16]. That
is to say, the linguistic information of a random sets-based
model is compatible with that of a fuzzy model. The in-
ference procedure is similar, too. The inference in a FRBS
comprising rules “if Ãk then Ck with wk” is:

class(x) = arg max
c

 ∨
i:Ci=c

∧
j

Ãji (x) ∧ wi

 (17)

and the same process in a RSRBS composed by the same
linguistic rules (i.e. Φ(x) = Ã(x)) produces

class(x) = arg max
c

 ∑
i:Ci=c

∏
j

Φji (x) · wi

 (18)

that is to say, the RSRBS is a particular case of fuzzy clas-
sifier where

∑
Ã(x) = 1 for any x, and voting-based infer-

ence [8] and product t-norm are used. In the remainder of
this paper we will use the type-III fuzzy rules; each group
of Nc random set-based rules like
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if Φk then C1 with wk1
...

if Φk then CNc with wkNc
will be written

“if Ãk then C1 with wk1 and . . . and CNc with wkNc”.

3 Estimation of a RSRBS from data: opti-
mality conditions

Assuming the linguistic partitions are predetermined,
learning a RSRBS from data consists in infering the matrix
M from a sample. In this section we will define a set of nec-
essary conditions, that the weights of the rules in RSRBS
must fulfill after the training process.

Lemma 3.1. Let a RSRBS comprising N linguistic rules

“if Ãk then C1 with wk1 and . . . and CNc with wkNc”.

Given a sample of data {(xs, cs)}s=1,...,Ns , the best assign-
ment of weights fulfills that∑
s:cs=a

Ãi(xs)∑N
k=1 Ãk(xs)wkcs

=
∑
s:cs=b

Ãi(xs)∑N
k=1 Ãk(xs)wkcs

for all a, b ∈ {1, . . . , Nc}, i = 1, . . . , N
(19)

Proof. The likelihood of the RSRBS is

L(M) =
Ns∑
s=1

log
N∑
i=1

Φi(xs)pics (20)

and there are N constraints
Nc∑
c=1

pic = 1. (21)

We convert the constrained problem into an unconstrained
one with the help of N Lagrange multipliers,

L′(M) =
Ns∑
s=1

log
N∑
i=1

Φi(xs)pics

+
N∑
i=1

λi(1−
Nc∑
c=1

pic). (22)

Taking derivatives with respect to pic and λi, we obtain the
following conditions∑

s:cs=c

Φi(xs)∑N
k=1 Φk(xs)pkcs

= λi (23)

for i = 1, . . . , N ; c = 1, . . . , Nc
Nc∑
c=1

pic = 1, for i = 1, . . . , N (24)

thus eq. 19 fulfills.

normalize(X ∈ RN×Nc)
if (Xic < 0) Xic = 0
Xic = Xic/

PNc
d=1 Xid

end of normalize

minimize(M ∈ RN×Nc, selected ∈ {0, 1}N)
λ,D ∈ RN×Nc, α ∈ R, c ∈ 1 . . . Nc, i ∈ 1 . . . N
Mic = 1/Nc

repeat
λic =

P
s:cs=c Φi(xs)/

PN
k=1 Φk(xs)Mkcs

if selected[i] then Dic = λic −N−1
c

PNc
c=1 λic

else Dic = 0
Brent search of α that minimizes

L(normalize(M + α ·D))
M = normalize(M + α ·D)

until α||D|| < ε
end of minimize

Figure 1. Pseudocode of the numerical algo-
rithm used to solve the set of equations (24).

In Figure 1 we propose to use a deterministic algorithm
for obtaining an approximated solution, that combines solv-
ing theseN(Nc+1) nonlinear equations with a descent step
based on a Brent linear search [12], combined with a pro-
jection of the search direction in the feasible space. The
parameter called “selected” in this function allows us to se-
lect which rows of M intervene in the optimization prob-
lem. The unselected rows will end up with weights equal to
1/Nc for all classes, thus the corresponding rules vote the
same for all classes and can be removed. This parameter
allows us to guide the search of a compact rulebase with a
genetic algorithm, as we will show later.

3.1 Interval data

Let us assume that the input data cannot be precisely ob-
served, but we perceive intervals that contain them. This
include, for instance, inexact measurements, censored data
and missing values. In the most general case, we have a
sample {(Γs, cs)}s=1,...,Ns where Γs = [x−1s, x

+
1s] × . . . ×

[x−ns, x
+
ns] is an interval of Rn.

The likelihood of the RSRBS is, in this case, the set

[L−(M), L+(M)] ={
Ns∑
s=1

log
N∑
i=1

Φi(gs)pics | gs ∈ Γs

}
(25)

with the same N constraints as before. However, the opti-
mization problem is considerably more complex, as we can
no longer determine an unique set of weights which is the
best for the whole range of the inputs. We can, at the most,
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Figure 2. Interval optimization

find the smallest set of nondominated matrices that contains
the solution:

{M | @M′ s.t. L+(M′) ≤ L−(M)}. (26)

3.1.1 Genetic algorithms and interval-valued opti-
mization

Genetic algorithms are one of the best suited numerical
methods for this kind of search, that is closely related to
multicriteria optimization [10]. Let us clarify, with the help
of an example, the genetic problem we need to solve: in Fig-
ure 2 we depict a case where we want to find the minimum
x0 of a partially known function f , that lies between f−

and f+. We know that the value of the objective function
in the minimum, f(x0), is in the segment we have labelled
“Pareto front in the fitness landscape”. In turn, x0 in the
area marked “Pareto front in Genotype Space”.

In previous works, we have designed multicriteria ge-
netic algorithms whose fitness function is an interval or
fuzzy. Those algorithms produce sets of individuals con-
tained in the Pareto front in the genotype space [20]. How-
ever, in this paper we will follow a new, different approach.
We want to identify those ”max-min” and ”min-min” indi-
viduals in Figure 2. In particular, we want to identify two
crisp samples {xlow

s , cs} and {xhigh
s , cs}, with xlow

s , xhigh
s ∈

Γs, such that the models obtained from these two samples
(by applying the algorithm introduced in the preceding sec-
tion) score both extrema L− and L+ of the Pareto front in
the Fitness Landscape. In the next section we propose a co-
evolutionary Genetic Algorithm that provides a solution to
this problem.

4 A proposal of coevolutionary learning of
RSRBS from vague data

The algorithm that we propose depends on three popu-
lations. The first one contains different model candidates
M (each individual represents a model, Pitts style [9]), and
the other two codify the crisp samples {xlow

s } and {xhigh
s }

mentioned in the preceding section. In these two last popu-
lations, each individual represents one point in the sample,
and the whole population is the solution (cooperative ap-
proach [7]). These three populations coevolve to find the
best RSRBS and the extrema {xlow

s }, {x
high
s }, as described

in this section.

4.1 Representation of an individual

Each model in the first population can be univocally rep-
resented with a binary vector, that was called “selected” in
Figure 1. This vector stores the set of rows of the matrix
M whose terms are different from 1/Nc; in other words, if
a bit is set to 1 then we emit the rule whose antecedent is
associated to the position of the bit. Observe that this vector
can have a significant size, therefore we codify it as a sparse
vector, an ordered list of the indices of the non zeros.

The elements of the second and third populations are
points of the intervals Γs that form the input part of the
training set. Each element xs will be codified as a pair (s, δ),
where δ(xs) = (xs − x−s )/(x+

s − x−s ). For instance, if we
are given a sample of two imprecise values {(x1 = [0, 3]×
[1, 2]×[3, 4], class = 1), (x2 = [3, 4]×[1, 1]×[3, 3], class =
2)}, the list {1, (0.5, 1, 0.25)} is a valid individual, and it
represents a point (1.5, 2, 3.25) ∈ [0, 3]× [1, 2]× [3, 4] .

4.2 Fitness value

The fitness value of a model is an interval of values of
likelihood (see Eq. 20). Hence, for computing the fitness of
a model we need two crisp training sets. In this algorithm,
these sets are obtained from the second and third popula-
tions.

The fitness value of an individual in these last two pop-
ulations is, respectively, the gain or loss in the lower and
upper bounds of the likelihood of the model, when the point
contained in the individual is replaced by the middlepoint of
Γs (where s is the index codified in the individual, as men-
tioned). This way, the sum of the fitness values of all the
individuals in the population equals the difference between
the likelihood of the sample comprising the midpoints of the
interval-valued training set and the likelihood of the sample
codified by the whole population. The genetic evolution
tends, therefore, to produce sets of values with respectively
lower and higher likelihoods.
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It is remarked that, in case that an index appears more
than once, the fitness values of all the individuals but the
best one must be set to zero, or else the sum of the fitness
values is no longer the mentioned difference.

4.3 Coevolutionary scheme

The coevolutionary scheme is as follows:

1. All populations (models, xlow and xhigh) are initialized with
random values.

2. Repeat steps 3 to 9, G1 times:
3. Each model in the first population is optimized (see
Figure 1) for a sample comprising the semi-sum of the
values encoded in the populations xlow and xhigh.
4. This first population is ranked by means of a precedence
operator between intervals [11]. The elite is copied apart.
Tournament selection, crossover and mutation are
performed in this population, and the offspring is inserted
in place of the worst individuals in the tournament.

5. Repeat steps 6 to 9, G2 times:

6. The first element of the second population (xlow) is
temporarily replaced by the midpoint of its
corresponding interval Γs in the training set. The
likelihood of the elite model is reevaluated. The gain
with respect to the lower bound of the likelihood of the
elite, is the fitness of this first element. Changes are
reverted, and this procedure is repeated for all the
elements in this population.
7. The first element of the third population is replaced
by the midpoint of its corresponding interval Γs in the
training set, and the process described in the preceding
step is repeated, now for the higher bound of the
likelihood.
8. For the two last populations, if an element of the
sample appears more than once, the fitness of all the
instances of the element but the best one are assigned a
value 0.
9. Crossover and mutation are performed in these last
two populations, and the offspring is inserted back in
place (steady state).

4.4 Genetic operators

All algorithms are steady state and based in a tourna-
ment selection. The offspring of the winners of the tourna-
ment replace the last two elements of the tournament, whose
length is used to control the selective pressure.

Standard two-point crossover and mutation are used
in the first population, which is binary encoded. The
other populations need custom operators. Two individuals
(s1, δ1) and (s2, δ2) are crossed as follows:

• If s1 = s2, we do an arithmetic crossover between δ1
and δ2 [13].

• If s1 6= s2, we insert a copy of the best individual and
randomly generate the other.

5 Numerical results

This section contains the initial results of the algorithm,
when applied to synthetic problems. There are two cate-
gories of datasets that should be suitable for a method like
this:

1. Data for which the classification rules can be expressed
with a compact rulebase: low to moderate number of
features, not too complex decision surface.

2. Low quality data: censoring, interval valued and miss-
ing features in the data.

To comply with our first requirement, we have built a
RSRBS comprising 9 rules in a problem with two inputs be-
tween 0 and 1, and two classes. This RSRBS is a model of a
joint probability of the input features and the class (Section
2). Since we know the distribution of the population, we
have generated datasets whose Bayes error is also known,
and for which there exists a RSRBS which is the optimal
solution. Two datasets of sizes 100 and 1000 were gener-
ated.

The second requirement has been fulfilled by adding im-
precision to these datasets. We have considered three dif-
ferent categories of imprecision:

1. Censoring: in the 50% of cases, the training data xs is
replaced by the interval [0, xs]. The other cases were
replaced by the interval [xs, 1].

2. Interval valued data: each training data is replaced by
the interval [xs, xs + 0.4]. or [xs, 1] if xs + 0.4 > 1

3. Missing values: 40% of the points in the training set
had one of their features replaced by the interval [0, 1].

These three additions were performed for both datasets,
giving the six problems we will use in this section. Other
details of the experimental setup are: each experiment has
been repeated 10 times, with a 5x2cv experimental design.
The size of the first genetic population is 25. Second and
third populations are of sizes 100 or 1000, depending on
the dataset. The number of generations G1 is 50 and G2 is
5 (see Section 4.3). The probabilities of crossover and mu-
tation in the first population are 0.7 and 0.1, and the prob-
ability of crossover in the second and third populations are
equal to 0.9. The tournament size is 5.

For crisp algorithms (LDA and QDA discriminant anal-
ysis [3], multilayer perceptron [4], KNN classifier, Chi [1],
Ishibuchi [6], Pal-Mandal [14] and RSRBS [19]) , we re-
placed each interval by its midpoint. We expect that our ap-
proach performs the best in all the cases we selected, and
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Crisp Interval
Linear Quadratic Neural KNN WM ISH PM RSRBS RSRBS

censored - 100 0.492 0.478 0.460 0.448 0.448 0.488 0.478 0.478 0.424
censored - 1000 0.421 0.414 0.424 0.437 0.409 0.413 0.474 0.403 0.402

interval - 100 0.554 0.478 0.490 0.506 0.460 0.478 0.458 0.442 0.432
interval - 1000 0.394 0.397 0.402 0.416 0.450 0.393 0.424 0.351 0.346
missing - 100 0.408 0.372 0.426 0.376 0.364 0.328 0.518 0.330 0.372
missing - 1000 0.416 0.445 0.412 0.461 0.470 0.426 0.456 0.415 0.401

Table 1. Numerical results: Crisp algorithms (LDA and QDA discriminant analysis [3], multilayer
perceptron [4], KNN classifier, Chi [1], Ishibuchi [6], Pal-Mandal [14] and RSRBS [19] were compared
to Interval-RSRBS. The best test results are boldfaced.
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Figure 3. Boxplots showing the dispersion of the results in Figure 1. Censored data, sizes 100 (a)
and 1000 (b). Interval valued data, sizes 100 (c) and 1000 (d). Missing data, sizes (e) and 1000 (f). The
algorithms being compared are in the same order as they appear in Figure 1.
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also that the final populations xlow and xhigh contain the
most conflictive points for the classifier (i.e., those points
that, if removed, reduce the most the width of the interval
of likelihoods of the model).

The mean value of the test results are shown in Table 1,
and the boxplots depicting the relevance of the differences
are displayed in Figure 3. We have obtained the expected
results in all cases but one (40% of missing data, datasets
of size 100), where the crisp version of the same algorithm
improved the results. At the sight of these preliminary re-
sults, we think that this algorithm is a promising new tech-
nique for exploiting interval data in rule-based classification
problems.

6 Concluding remarks

In this paper we have tried a different approach for
obtaining linguistically understandable classifiers from
interval-valued data. We have defined a particular case of
FRBS and its optimal assignment of weights. Then we
have combined a descent algorithm with a coevolutionary
scheme and searched in parallel for the best set of rules, and
for the two selections of the training set where the lowest
and highest likelihood are reached. These two bounds are
used to find a model which is not dominated by other mod-
els, and that results in a robust estimation under vague input
data. We have checked, with an ad-hoc dataset, that this ap-
proach is able to obtain better models than some statistical
and fuzzy classifiers, if the conditions are appropriate.
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