
Effects of Data Reduction on the Generalization Ability of
Parallel Distributed Genetic Fuzzy Rule Selection

Yusuke Nojima
Graduate School of Engineering

Osaka Prefecture University
Sakai, Osaka, Japan

E-mail: nojima@cs.osakafu-u.ac.jp

Hisao Ishibuchi
Graduate School of Engineering

Osaka Prefecture University
Sakai, Osaka, Japan

E-mail: hisaoi@cs.osakafu-u.ac.jp

Abstract— Genetic fuzzy rule selection has been successfully
used to design accurate and interpretable fuzzy classifiers from
numerical data. In our former study, we proposed its parallel
distributed implementation which can drastically decrease the
computational time by dividing both a population and a
training data set into sub-groups. In this paper, we examine
the effect of data reduction on the generalization ability of
fuzzy rule-based classifiers designed by our parallel distributed
approach. Through computational experiments, we show that
data reduction can be realized without severe deterioration in
the generalization ability of the designed fuzzy classifiers.

Keywords-Genetic fuzzy rule selection, parallel distributed
implementation, pattern classification, data reduction.

I. INTRODUCTION

Genetic algorithms have been frequently used for the
design of fuzzy rule-based systems under the name of
genetic fuzzy systems (GFSs) [5,7]. One of the most
important research issues is their scalability improvement to
large data sets [8]. When we use GFSs for large data sets, the
evaluation of each individual needs long computational time.
There exist two well-known approaches to the decrease in
computational costs for the handling of large data sets. One
approach is data reduction, which includes feature selection
and instance selection [11,12]. The other approach is parallel
implementation of genetic algorithms, which is usually based
on spatial structures of populations such as island and
cellular models [1,4].

In our former study [13-15], we proposed a parallel
distributed genetic fuzzy rule selection based on the data
subdivision and the parallelization of genetic fuzzy rule
selection [10]. The idea is to divide not only a population but
also the training data set into sub-groups. A training data
subset and a sub-population are assigned to each processing
node (e.g., CPU core). In order to avoid the over-fitting of
each sub-population to a specific training data subset,
training data subset re-assignment is periodically performed
(e.g., every 10 generations). In [14], we used a workstation
with four CPU cores (a CPU core was used as a server, and
the others were used as clients). The experimental results
showed that we can reduce the computational time to 1/9
with no deterioration of the test data accuracy.

In our former study, we used all the available training
data after dividing them into a number of subsets, each of
which was assigned to a CPU core. It has been pointed out in
the literature [2,3,11] that all patterns are not always
necessary in the learning of classifiers. This means that we
may eliminate a part of training patterns without losing their
important characteristics. In this paper, we examine the
effect of data reduction on the generalization ability of fuzzy
classifiers. As a preliminary study, we apply three random
sampling methods to our parallel distributed genetic fuzzy
rule selection.

This paper is organized as follows. First we explain
genetic fuzzy rule selection for designing fuzzy classifiers
and its parallel distributed implementation in Section II. In
Section III, we examine the effect of data reduction. Finally
we conclude this paper in Section IV.

II. PARALLEL DISTRIBUTED CLASSIFIER DESIGN

A. Fuzzy Rules for Pattern Classificaiton

Let us assume that we have m training (i.e., labeled)
patterns xp = (xp1, …, xpn), p = 1, 2, …, m from M classes in
the n-dimensional continuous pattern space where xpi is the
attribute value of the p-th training pattern for the i-th
attribute (i = 1, 2, ..., n). For simplicity of explanation, we
assume that all the attribute values have already been
normalized into real numbers in [0, 1].

For our n-dimensional pattern classification problem, we
use fuzzy rules of the following type:

Rule Rq: If x1 is Aq1 and ... and xn is Aqn

 then Class Cq with CFq, (1)

where Rq is the label of the q-th fuzzy rule, x = (x1, …, xn) is
an n-dimensional pattern vector, Aqi is an antecedent fuzzy
set (i = 1, 2, …, n), Cq is a class label, and CFq is a rule
weight (i.e., certainty grade).

We simultaneously use multiple fuzzy partitions with
different granularities in fuzzy rule generation. In this paper,
we use four homogeneous fuzzy partitions in Fig. 1 (i.e., 14
triangular fuzzy sets in Fig. 1). We also use the domain
interval [0,1] as an antecedent fuzzy set in order to represent

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.228

96

a don’t care condition. That is, we use the 15 antecedent
fuzzy sets in total.

Attribute value

1

0 1

1

0 1

1

0 1

1

0 1

M
em

be
rs

hi
p

M
em

be
rs

hi
p

M
em

be
rs

hi
p

M
em

be
rs

hi
p

Attribute value

Attribute value

Attribute value

Figure 1. Four fuzzy partitions used in our computation experiments.

The consequent class Cq and the rule weight CFq of each

fuzzy rule Rq can be specified in a heuristic manner by
compatible training patterns (by their compatibility grades)
with the antecedent part of Rq. For details, see [9,13-15].

B. Fuzzy Rule Generation

Since we use the 15 antecedent fuzzy sets for each
attribute of our n-dimensional pattern classification problem,
the total number of possible fuzzy rules is 15n. For high-
dimensional data sets, the total number of possible fuzzy
rules becomes quite large. Moreover, it is very difficult to
intuitively understand long fuzzy rules with many antecedent
conditions. Thus, we only generate short fuzzy rules with
only a small number of antecedent conditions. In this paper,
we examine only short fuzzy rules of length Lmax or less (e.g.,
Lmax = 3) in order to generate understandable fuzzy rules as
candidates in fuzzy rule selection. It should be noted that the
length of a fuzzy rule is defined by the number of its
antecedent conditions excluding don’t care.

We generate a prespecified number of promising fuzzy
rules as candidate rules in fuzzy rule selection. We use the
product value of the confidence and the support of each
fuzzy rule as a rule pre-screening criterion. That is, a
prespecified number of fuzzy rules with the higher product
values are used as candidates.

The confidence of a fuzzy rule “If Aq then Class h” is
calculated for each class (h = 1, 2, …, M) as










m

p
p

h
p

q

q

p
q

hc

1

Class

)(

)(

)Class(
x

x

A

A

x
A





  

where)(pq
xA is the compatibility grade of xp with the

antecedent part Aq, which is calculated by the product

operation. On the other hand, the support of the fuzzy rule is
calculated as follows:

m
hs

h
p

q
p

q



Class

)(

)Class(
x

A x

A



  

C. Parallel Distributed Implementation

Figure 2 shows the basic framework of our parallel
distributed implementation of genetic fuzzy rule selection.
To handle a large data set, we use a cluster computer system
composed of a server CPU and a number of client CPUs. We
can easily set up this type of systems by using some
independent desktop computers or a single computer with
multi-core CPUs.

Data SetServer

Client 1

Genetic Rule
Selection

Genetic Rule
Selection

Genetic Rule
Selection

Rule Generation

D1 D2 D3

Client 2 Client 3

R

(R, P1, D1) (R, P2, D2) (R, P3, D3)

DTestDTrain

SBest

Figure 2. Parallel distributed genetic fuzzy rule selection.

Our parallel distributed genetic fuzzy rule selection is

executed in the following manner.

[Parallel Distributed Genetic Fuzzy Rule Selection]

Step 1: Generate a number of promising rules R (i.e., N
rules) from the whole training patterns.

Step 2: Randomly generate Npop binary strings of length N
as an initial population.

Step 3: Randomly divide the current population P and the
training patterns D into sub-populations {P1, P2, …}
and sub-groups {D1, D2, …}, respectively.

Step 4: Send the sub-populations and the sub-groups of the
training patterns to client CPUs.

Step 5: Iterate genetic rule selection for a prespecified
number of generations in each client CPU.

Step 6: Systematically change the sub-groups of the
training patterns to optimize each subpopulation for
a different sub-group of the training patterns.

Step 7: If a prespecified termination condition is not
satisfied, return to Step 5. Otherwise go to Step 8.

97

Step 8: Choose the best fuzzy classifier Sbest from the whole
population and examine the generalization ability
for test patterns.

In Step 2, each binary string of length N is represented as

NssssS  321 where si = 1 and si = 0 mean that the i-th
candidate rule is included in and excluded from the rule set S,
respectively.

In Step 5, we use tournament selection, uniform
crossover, biased mutation to generate an offspring
population. The biased mutation changes 0 to 1 with a small
probability and 1 to 0 with a large probability to decrease the
number of 1’s in the offspring.

We use the following three objectives to find an accurate
and compact fuzzy classifier S:

f1(S): The number of correctly classified training patterns in

the training data sub-group Dj by S,

f2(S): The number of selected fuzzy rules in S,

f3(S): The total number of antecedent conditions in S.

These three objectives are combined into the following

weighted sum fitness function:

)()()()(332211 SfwSfwSfwSfitness   

where w1, w2 and w3 are non-negative weights. This fitness
function is maximized in genetic fuzzy rule selection. As a
result, the accuracy is maximized while the complexity is
minimized.

The first objective is calculated by classifying training
patterns xp. We use a single winner-based (i.e., winner-take-
all) classification method. A single winner rule is identified
using the product of the compatibility grade and the rule
weight of each fuzzy rule.

Since we use a single winner-based classification method,
some rules may be used for the classification of no training
patterns. Whereas the existence of such an unnecessary rule
in the rule set S has no effect on the first objective of the
weighted sum fitness function, it deteriorates the second and
third objectives. Thus we remove all the unnecessary rules
responsible for the classification of no training patterns
before calculating the second and third objectives.

D. Data Reduction

We examine three types of data reduction methods. One
is random sampling. This method randomly eliminates a
prespecified number of the training patterns from each sub-
group of the training patterns.

Another type is random sampling with 1-NN. In this
method, first each training pattern is classified by the other
patterns using the nearest neighbor method. Then correctly
classified patterns (e.g., a1, a2, a3, b1, b2, b3, b5 in Fig. 3) are
randomly eliminated.

The other is random sampling with rank. A rank of a
pattern is the number of attributes on which that pattern and

its adjacent two neighbors are from the same class. For
example, b5 in Fig. 3 is Rank 0 whereas b2 is Rank 2 (only b2
is Rank 2). Rank 1 patterns in Fig. 3 are a1, a5 and b1. A
prespecified number of patterns with the highest ranks are
eliminated. When we remove three patterns from Fig. 3, first
b2 is removed. Then two of a1, a5, b1 are randomly removed.

The second and third methods are similar to the
Condensed Nearest Neighbor Rule [6] which tries to
maintain the decision boundary.

a1

a2

a3

a5

a4

b1 b2

b3

b5

b4

a1

a2

a3

a5

a4

b2

b1

b3

b5

b4

a1a2 a3a5 a4b1 b2 b3b5b4

x1

x2

Class 1

Class 2

Figure 3. An example of a training data set.

III. COMPUTATIONAL EXPEIRMENTS

Through computational experiments on four benchmark
data sets in Table I which are available from the UCI
machine learning repository, we examined the effects of data
reduction in our parallel distributed genetic fuzzy rule
selection. We evaluated the generalization ability of the
obtained fuzzy rule-based classifiers by iterating the ten-fold
cross validation procedure two times (i.e., 2 x 10 CV). That
is, each result is the average over 20 runs. We used a
workstation with two Xeon 3.0 GHz dual processors (i.e.,
four CPU cores, in total). We used one of the four CPU cores
as a server CPU. The other three were used as client CPUs.

TABLE I. DATA SETS USED IN OUR COMPUTATIONAL EXPERIMENTS.

Data set Attributes Patterns Classes

Yeast 8 1484 10

Page-Blocks 10 5473 5

Satimage 36 6435 6

Pendig 16 10992 10

At first, we generated 300 fuzzy rules for each class by

using the product criterion of confidence and support. The
maximum rule length of each fuzzy rule was specified as 2
for the satimage data set, and 3 for the other three data sets.

In genetic fuzzy rule selection, we specified the
population size as 300 (i.e., the size of each sub-population
was 100). The total number of evaluated strings was
specified as 300300. This is equal to the number of strings in

98

initial population with 300 strings and 1,000 generations in
the case of genetic fuzzy rule selection. The weight vector in
the fitness function in (4) was specified as w = (100, 1, 1).

We examined the following five implementations.

Type 0: Only the server performs rule extraction and genetic
fuzzy rule selection. No subdivision is used in this
case. Thus, this type is the same as the original non-
parallel algorithm.

Type 1: Three clients perform genetic fuzzy rule selection.
But the sub-groups of the training patterns are never
changed during the execution.

Type 2: Three clients perform genetic fuzzy rule selection.
The sub-groups are changed every 100 generations.

Type 3: Three clients perform genetic fuzzy rule selection.
The sub-groups are changed every 10 generations.

Type 4: Three clients perform genetic fuzzy rule selection.
The sub-groups are changed every generation.

Tables II-XVII show the average training data accuracy,

the average test data accuracy, the average number of
selected fuzzy rules, the average total rule length, and the
average CPU time (in second) for each type. We performed
statistical tests for examining the statistical significance of
the difference between the original non-parallel algorithm
(i.e., Type 0) and our parallel distributed algorithm (i.e.,
Types 1-4) in the test data accuracy. We used a paired
student’s t-test when the distribution of experimental results
can be regarded as a normal distribution. Otherwise, we used
a Wilcoxon signed-ranks test [16]. The results were shown in
bold face when the results are not significantly different from
the results by the non-parallel algorithm (i.e., Type 0). We
specified the significance level  as 0.05.

A. Results on the Yeast Data Set

From Table II, we can see that there is no statistical
difference between Type 0 and all the others. That is, we can
drastically reduce the computational time without the
deterioration in the test data accuracy. The best setting was
Type 3 in terms of the test data accuracy. The computation
was about nine times faster than that of Type 0. It should be
noted that the number of fuzzy rules in the classifier obtained
by Type 3 was also smaller than that by Type 0. This may be
a positive effect of data subdivision on avoiding the over-
fitting to the training patterns. It should be also noted that the
result by Type 1 was not statistically different from that by
Type 0. This means that we do not need to use all the
training patterns intrinsically, because each client CPU in
Type 1 always used the same training data sub-group without
the systematical re-assignment like Types 2-4.

Tables III-V show the results by data reduction from 10%
to 50%. We can see that we can eliminate 40% of the
training patterns by random sampling without the
deterioration in the test data accuracy. Comparing with Type
0 with all the training patterns, we can reduce the
computational time to more than 1/14. An interesting

observation is that the number of fuzzy rules in the classifier
obtained by using data reduction was also decreased as the
reduction rate increases.

TABLE II. RESULTS ON THE YEAST DATA SET. TYPE 0 IS A NON-
PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES.

Type Train Test Rules Length Time (s)

0 61.35 57.84 23.1 63.4 2047.5

1 59.59 57.32 18.5 50.6 231.1

2 59.96 57.35 17.1 47.4 221.4

3 60.63 57.51 16.9 48.2 228.9

4 60.20 57.44 16.9 48.6 421.0

TABLE III. RESULTS OF TYPE 3 ON THE YEAST DATA SET BY
RANDOM SAMPLING.

Rate Train Test Rules Length Time (s)

10% 60.43 57.83 16.0 45.6 206.5

20% 60.29 57.92 15.8 44.5 184.2

30% 60.05 57.41 15.2 43.3 162.7

40% 59.70 57.09 14.4 41.0 141.9

50% 59.24 57.03 14.0 39.7 120.4

TABLE IV. RESULTS OF TYPE 3 ON THE YEAST DATA SET BY
RANDOM SAMPLING WITH 1-NN.

Rate Train Test Rules Length Time (s)

10% 60.67 57.04 17.2 49.5 206.0

20% 60.44 56.94 16.8 47.0 184.1

30% 59.89 57.30 15.7 44.5 160.4

40% 59.15 56.39 14.8 42.7 150.8

50% 58.38 55.52 14.2 41.0 138.6

TABLE V. RESULTS OF TYPE 3 ON THE YEAST DATA SET BY
RANDOM SAMPLING WITH RANK.

Rate Train Test Rules Length Time (s)

10% 60.63 57.96 17.3 48.8 207.4

20% 60.35 57.15 16.5 46.9 185.0

30% 60.08 57.16 16.5 46.9 162.6

40% 59.63 56.71 15.7 44.6 142.9

50% 59.40 56.86 15.5 44.5 131.1

B. Results on the Page-Blocks Data Set

Table VI shows that the results by Type 2 and Type 4
were not significantly different from that by Type 0. The
computation by Type 2 was about nine times faster than that
of Type 0. Since Type 2 was faster than Type 4, we used
Type 2 to examine the data reduction effects.

99

TABLE VI. RESULTS ON THE PAGE-BLOCKS DATA SET. TYPE 0 IS A
NON-PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES.

Type Train Test Rules Length Time (s)

0 90.38 90.24 7.6 15.1 3301.8

1 90.30 90.16 5.7 11.6 362.4

2 90.30 90.20 5.9 12.6 364.1

3 90.31 90.16 5.9 13.2 366.6

4 90.23 90.17 4.3 9.7 712.4

From Tables VII-IX, we can see that only random

sampling with rank could reduce the training data set without
the deterioration in the test data accuracy. The computation
of Type 2 by random sampling with rank can be more than
13 times faster than that of Type 0. Since the page-blocks
data set is highly imbalanced, patterns from minority classes
might be removed by random sampling and random
sampling with 1-NN.

TABLE VII. RESULTS OF TYPE 2 ON THE PAGE-BLOCKS DATA SET BY
RANDOM SAMPLING.

Rate Train Test Rules Length Time (s)

10% 90.30 90.18 5.7 12.1 325.3

20% 90.27 90.14 5.1 10.2 288.1

30% 90.26 90.14 5.2 10.4 252.1

40% 90.25 90.18 5.0 10.6 216.2

50% 90.23 90.09 4.6 9.5 179.9

TABLE VIII. RESULTS OF TYPE 2 ON THE PAGE-BLOCKS DATA SET BY
RANDOM SAMPLING WITH 1-NN.

Rate Train Test Rules Length Time (s)

10% 90.29 90.13 5.6 11.6 323.0

20% 90.30 90.12 5.9 12.2 288.0

30% 90.25 90.07 5.1 10.3 252.9

40% 90.25 90.07 5.1 10.1 216.8

50% 90.22 90.09 4.6 9.0 181.6

TABLE IX. RESULTS OF TYPE 2 ON THE PAGE-BLOCKS DATA SET BY
RANDOM SAMPLING WITH RANK.

Rate Train Test Rules Length Time (s)

10% 90.31 90.18 6.1 13.2 323.0

20% 90.32 90.17 6.2 13.4 288.0

30% 90.31 90.20 5.9 13.4 252.9

40% 90.31 90.19 5.9 12.4 216.8

50% 90.31 90.18 5.6 12.1 181.6

C. Results on the Satimage Data Set

Table X shows that we can reduce the computational
time by Types 1-4. We employed Type 3 for data reduction
because of the highest test data accuracy.

From Tables XI-XIII, the best reduction rate was
obtained from random sampling with rank. Its computational
time was more than 22 times shorter than that of Type 0. It
may be possible to reduce more patterns by this method.

TABLE X. RESULTS ON THE SATIMAGE DATA SET. TYPE 0 IS A NON-
PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES.

Type Train Test Rules Length Time (s)

0 83.45 82.11 33.7 67.3 10968.7

1 82.65 81.82 25.3 50.1 1161.2

2 82.83 81.97 21.1 42.0 1035.6

3 83.22 82.15 22.0 43.8 1036.3

4 83.04 81.74 22.3 43.5 1449.6

TABLE XI. RESULTS OF TYPE 3 ON THE SATIMAGE DATA SET BY
RANDOM SAMPLING.

Rate Train Test Rules Length Time (s)

10% 83.16 82.08 20.8 41.2 911.9

20% 83.07 82.14 20.6 40.8 799.8

30% 82.95 81.91 19.5 38.9 692.7

40% 82.89 81.89 18.3 36.4 570.7

50% 82.76 81.63 17.5 34.6 471.5

TABLE XII. RESULTS OF TYPE 3 ON THE SATIMAGE DATA SET BY
RANDOM SAMPLING WITH 1-NN.

Rate Train Test Rules Length Time (s)

10% 83.19 81.90 21.2 42.2 905.1

20% 83.11 81.70 21.2 42.0 797.7

30% 83.02 81.94 19.6 38.7 685.1

40% 82.95 82.07 19.0 37.6 574.9

50% 82.79 81.81 18.0 35.4 468.0

TABLE XIII. RESULTS OF TYPE 3 ON THE SATIMAGE DATA SET BY
RANDOM SAMPLING WITH RANK.

Rate Train Test Rules Length Time (s)

10% 83.22 82.07 21.4 42.2 908.2

20% 83.18 82.09 20.6 40.8 792.8

30% 83.14 82.02 20.4 40.4 694.5

40% 83.12 82.00 20.5 40.5 624.8

50% 82.98 81.94 19.8 39.0 490.9

100

D. Results on the Pendig Data Set

From Table XIV, we can see that the test data accuracy
by Type 2 was not statistically different from that by Type 0.
We used Type 2 for data reduction.

In Tables XV-XVII, we can remove 40% of the training
patterns without the deterioration of the test data accuracy by
random sampling with rank. But, when the rate was 30%,
there was a statistical difference. This may mean that we
need a more careful data reduction method. The computation
by random sampling with rank (40%) was more than 17
times faster than that of Type 0.

TABLE XIV. RESULTS ON THE PENDIG DATA SET. TYPE 0 IS A NON-
PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES.

Type Train Test Rules Length Time (s)

0 89.50 88.73 52.4 156.2 30187.5

1 88.85 88.24 39.4 116.5 3101.5

2 89.29 88.61 34.3 102.1 2941.1

3 89.19 88.47 38.9 115.3 3031.6

4 89.01 88.38 41.5 123.4 3636.5

TABLE XV. RESULTS OF TYPE 2 ON THE PENDIG DATA SET BY
RANDOM SAMPLING.

Rate Train Test Rules Length Time (s)

10% 89.23 88.67 32.9 97.6 2575.1

20% 89.14 88.51 33.1 98.2 2286.3

30% 89.09 88.58 32.8 97.6 1980.4

40% 88.93 88.38 32.1 95.4 1673.8

50% 88.78 88.39 32.1 95.6 1381.3

TABLE XVI. RESULTS OF TYPE 2 ON THE PENDIG DATA SET BY
RANDOM SAMPLING WITH 1-NN.

Rate Train Test Rules Length Time (s)

10% 89.26 88.72 34.1 100.9 2590.2

20% 89.09 88.52 33.9 100.5 2287.2

30% 89.05 88.38 33.9 101.0 1992.8

40% 89.02 88.20 32.5 96.7 1694.0

50% 88.82 88.35 30.5 90.6 1391.5

TABLE XVII. RESULTS OF TYPE 2 ON THE PENDIG DATA SET BY
RANDOM SAMPLING WITH RANK.

Rate Train Test Rules Length Time (s)

10% 89.26 88.63 34.2 101.9 2590.0

20% 89.23 88.61 34.0 101.0 2296.0

30% 89.16 88.36 32.8 97.9 2004.7

40% 89.11 88.54 32.0 95.0 1698.9

50% 88.95 88.40 30.7 91.4 1388.4

IV. CONCLUDING REMARKS

In this paper, we examined the effects of data reduction
in our parallel distributed genetic fuzzy rule selection. We
used three random sampling methods for data reduction.
Through computational experiments with large data sets, we
showed that the computation time can be further reduced by
using data reduction. We also showed that the obtained
classifiers has a smaller number of fuzzy rules when we used
our parallel distributed implementation and data reduction

The best data reduction method and its reduction rate
depend on the data set. We may need deeper understanding
of data complexity for the design of appropriate data
reduction methods. We should also discuss the results using
other performance measures like AUC, Cohen’s Kappa,
Geometric Mean from the viewpoint of the analysis on
imbalanced data sets.

[1] E. Alba and M. Tomassini, “Parallelism and evolutionary
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 6,
no. 5, pp. 443-462, 2002.

[2] J. R. Cano, F. Herrera, and M. Lozano, “Stratification for scaling up
evolutionary prototype selection,” Pattern Recognition Letters, vol.
26, no. 7, pp. 953-963, 2005.

[3] J. R. Cano, F. Herrera, and M. Lozano, “On the combination of
evolutionary algorithms and stratified strategies for training set
selection in data mining,” Applied Soft Computing, vol. 6, no. 3, pp.
323-332, 2006.

[4] E. Cantu-Paz, “A survey of parallel genetic algorithms,” IlliGAL
Report No. 95003, 1997.

[5] O. Cordon, F. Herrera, F. Hoffman, and L. Magdalena, Genetic Fuzzy
Systems, World Scientific, 2001.

[6] P. E. Hart, “The condensed nearest neighbor rule,” IEEE Trans. on
Information Theory, vol. 14, no. 5, pp. 515-516, 1968.

[7] F. Herrera, “Genetic fuzzy systems: Taxonomy, current research
trends and prospects,” Evolutionary Intelligence, vol. 1, pp. 27-46,
2008.

[8] H. Ishibuchi, “Multiobjective genetic fuzzy systems: Review and
future research directions,” Proc. of 2007 IEEE International
Conference on Fuzzy Systems, pp. 923-918, 2007.

[9] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling
with Linguistic Information Granules: Advanced Approaches to
Linguistic Data Mining, Springer, Berlin, 2004.

[10] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting
fuzzy if-then rules for classification problems using genetic
algorithms,” IEEE Trans. on Fuzzy Systems, vol. 3, no. 3, pp. 260-270,
1995.

[11] H. Liu and H. Motoda, Instance Selection and Construction for Data
Mining, Kluwer, 1998.

[12] H. Liu and H. Motoda, Feature Selection for Knowledge Discovery
and Data Mining, Kluwer, 1998.

[13] Y. Nojima and H. Ishibuchi, “Computational efficiency of parallel
distributed genetic fuzzy rule selection for large data sets,” Proc. of
Information Processing and Management of Uncertainty in
Knowledge-based Systems, pp. 1137-1142, 2008.

[14] Y. Nojima, H. Ishibuchi, and I. Kuwajima, “Parallel distributed
genetic fuzzy rule selection,” Soft Computing, vol. 13, no. 5, pp. 511-
519, 2009.

[15] Y. Nojima, I. Kuwajima, and H. Ishibuchi, “Data set subdivision for
parallel distributed implementation of genetic fuzzy rule selection,”
Proc. of 2007 IEEE International Conference on Fuzzy Systems, pp.
2006-2011, 2007.

[16] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures (4th ed.), Chapman & Hall, 2007.

101

