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Abstract— Genetic fuzzy rule selection has been successfully 
used to design accurate and interpretable fuzzy classifiers from 
numerical data. In our former study, we proposed its parallel 
distributed implementation which can drastically decrease the 
computational time by dividing both a population and a 
training data set into sub-groups. In this paper, we examine 
the effect of data reduction on the generalization ability of 
fuzzy rule-based classifiers designed by our parallel distributed 
approach. Through computational experiments, we show that 
data reduction can be realized without severe deterioration in 
the generalization ability of the designed fuzzy classifiers. 

Keywords-Genetic fuzzy rule selection, parallel distributed 
implementation, pattern classification, data reduction. 

I.  INTRODUCTION 

Genetic algorithms have been frequently used for the 
design of fuzzy rule-based systems under the name of 
genetic fuzzy systems (GFSs) [5,7]. One of the most 
important research issues is their scalability improvement to 
large data sets [8]. When we use GFSs for large data sets, the 
evaluation of each individual needs long computational time. 
There exist two well-known approaches to the decrease in 
computational costs for the handling of large data sets. One 
approach is data reduction, which includes feature selection 
and instance selection [11,12]. The other approach is parallel 
implementation of genetic algorithms, which is usually based 
on spatial structures of populations such as island and 
cellular models [1,4]. 

In our former study [13-15], we proposed a parallel 
distributed genetic fuzzy rule selection based on the data 
subdivision and the parallelization of genetic fuzzy rule 
selection [10]. The idea is to divide not only a population but 
also the training data set into sub-groups. A training data 
subset and a sub-population are assigned to each processing 
node (e.g., CPU core). In order to avoid the over-fitting of 
each sub-population to a specific training data subset, 
training data subset re-assignment is periodically performed 
(e.g., every 10 generations). In [14], we used a workstation 
with four CPU cores (a CPU core was used as a server, and 
the others were used as clients). The experimental results 
showed that we can reduce the computational time to 1/9 
with no deterioration of the test data accuracy. 

In our former study, we used all the available training 
data after dividing them into a number of subsets, each of 
which was assigned to a CPU core. It has been pointed out in 
the literature [2,3,11] that all patterns are not always 
necessary in the learning of classifiers. This means that we 
may eliminate a part of training patterns without losing their 
important characteristics. In this paper, we examine the 
effect of data reduction on the generalization ability of fuzzy 
classifiers. As a preliminary study, we apply three random 
sampling methods to our parallel distributed genetic fuzzy 
rule selection. 

This paper is organized as follows. First we explain 
genetic fuzzy rule selection for designing fuzzy classifiers 
and its parallel distributed implementation in Section II. In 
Section III, we examine the effect of data reduction. Finally 
we conclude this paper in Section IV. 

II. PARALLEL DISTRIBUTED CLASSIFIER DESIGN 

A. Fuzzy Rules for Pattern Classificaiton 

Let us assume that we have m training (i.e., labeled) 
patterns xp = (xp1, …, xpn), p = 1, 2, …, m from M classes in 
the n-dimensional continuous pattern space where xpi is the 
attribute value of the p-th training pattern for the i-th 
attribute (i = 1, 2, ..., n). For simplicity of explanation, we 
assume that all the attribute values have already been 
normalized into real numbers in [0, 1]. 

For our n-dimensional pattern classification problem, we 
use fuzzy rules of the following type: 

 
Rule Rq: If x1 is Aq1 and  ...  and xn is Aqn 
 

  then Class Cq with CFq,    (1) 
 

where Rq is the label of the q-th fuzzy rule, x = (x1, …, xn) is 
an n-dimensional pattern vector, Aqi is an antecedent fuzzy 
set (i = 1, 2, …, n), Cq is a class label, and CFq is a rule 
weight (i.e., certainty grade). 

We simultaneously use multiple fuzzy partitions with 
different granularities in fuzzy rule generation. In this paper, 
we use four homogeneous fuzzy partitions in Fig. 1 (i.e., 14 
triangular fuzzy sets in Fig. 1). We also use the domain 
interval [0,1] as an antecedent fuzzy set in order to represent 
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a don’t care condition. That is, we use the 15 antecedent 
fuzzy sets in total. 
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Figure 1.  Four fuzzy partitions used in our computation experiments. 

 
The consequent class Cq and the rule weight CFq of each 

fuzzy rule Rq can be specified in a heuristic manner by 
compatible training patterns (by their compatibility grades) 
with the antecedent part of Rq. For details, see [9,13-15]. 

 

B. Fuzzy Rule Generation 

Since we use the 15 antecedent fuzzy sets for each 
attribute of our n-dimensional pattern classification problem, 
the total number of possible fuzzy rules is 15n. For high-
dimensional data sets, the total number of possible fuzzy 
rules becomes quite large. Moreover, it is very difficult to 
intuitively understand long fuzzy rules with many antecedent 
conditions. Thus, we only generate short fuzzy rules with 
only a small number of antecedent conditions. In this paper, 
we examine only short fuzzy rules of length Lmax or less (e.g., 
Lmax = 3) in order to generate understandable fuzzy rules as 
candidates in fuzzy rule selection. It should be noted that the 
length of a fuzzy rule is defined by the number of its 
antecedent conditions excluding don’t care. 

We generate a prespecified number of promising fuzzy 
rules as candidate rules in fuzzy rule selection. We use the 
product value of the confidence and the support of each 
fuzzy rule as a rule pre-screening criterion. That is, a 
prespecified number of fuzzy rules with the higher product 
values are used as candidates. 

The confidence of a fuzzy rule “If Aq then Class h” is 
calculated for each class (h = 1,  2, …,  M) as 
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where )( pq
xA  is the compatibility grade of xp with the 

antecedent part Aq, which is calculated by the product 

operation. On the other hand, the support of the fuzzy rule is 
calculated as follows: 
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C. Parallel Distributed Implementation 

Figure 2 shows the basic framework of our parallel 
distributed implementation of genetic fuzzy rule selection. 
To handle a large data set, we use a cluster computer system 
composed of a server CPU and a number of client CPUs. We 
can easily set up this type of systems by using some 
independent desktop computers or a single computer with 
multi-core CPUs. 
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Figure 2.  Parallel distributed genetic fuzzy rule selection. 

 
Our parallel distributed genetic fuzzy rule selection is 

executed in the following manner. 
 

[Parallel Distributed Genetic Fuzzy Rule Selection] 
 

Step 1: Generate a number of promising rules R (i.e., N 
rules) from the whole training patterns.  

Step 2: Randomly generate Npop binary strings of length N 
as an initial population. 

Step 3: Randomly divide the current population P and the 
training patterns D into sub-populations {P1, P2, …} 
and sub-groups {D1, D2, …}, respectively. 

Step 4: Send the sub-populations and the sub-groups of the 
training patterns to client CPUs. 

Step 5: Iterate genetic rule selection for a prespecified 
number of generations in each client CPU. 

Step 6: Systematically change the sub-groups of the 
training patterns to optimize each subpopulation for 
a different sub-group of the training patterns.  

Step 7: If a prespecified termination condition is not 
satisfied, return to Step 5. Otherwise go to Step 8. 
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Step 8: Choose the best fuzzy classifier Sbest from the whole 
population and examine the generalization ability 
for test patterns. 

 
In Step 2, each binary string of length N is represented as 

NssssS  321  where si = 1 and si = 0 mean that the i-th 
candidate rule is included in and excluded from the rule set S, 
respectively. 

In Step 5, we use tournament selection, uniform 
crossover, biased mutation to generate an offspring 
population. The biased mutation changes 0 to 1 with a small 
probability and 1 to 0 with a large probability to decrease the 
number of 1’s in the offspring. 

We use the following three objectives to find an accurate 
and compact fuzzy classifier S: 

 
f1(S): The number of correctly classified training patterns in 

the training data sub-group Dj by S,  

f2(S): The number of selected fuzzy rules in S, 

f3(S): The total number of antecedent conditions in S. 
 
These three objectives are combined into the following 

weighted sum fitness function: 

)()()()( 332211 SfwSfwSfwSfitness   

where w1, w2 and w3 are non-negative weights. This fitness 
function is maximized in genetic fuzzy rule selection. As a 
result, the accuracy is maximized while the complexity is 
minimized. 

The first objective is calculated by classifying training 
patterns xp. We use a single winner-based (i.e., winner-take-
all) classification method. A single winner rule is identified 
using the product of the compatibility grade and the rule 
weight of each fuzzy rule. 

Since we use a single winner-based classification method, 
some rules may be used for the classification of no training 
patterns. Whereas the existence of such an unnecessary rule 
in the rule set S has no effect on the first objective of the 
weighted sum fitness function, it deteriorates the second and 
third objectives. Thus we remove all the unnecessary rules 
responsible for the classification of no training patterns 
before calculating the second and third objectives. 

 

D. Data Reduction 

We examine three types of data reduction methods. One 
is random sampling. This method randomly eliminates a 
prespecified number of the training patterns from each sub-
group of the training patterns. 

Another type is random sampling with 1-NN. In this 
method, first each training pattern is classified by the other 
patterns using the nearest neighbor method. Then correctly 
classified patterns (e.g., a1, a2, a3, b1, b2, b3, b5 in Fig. 3) are 
randomly eliminated. 

The other is random sampling with rank. A rank of a 
pattern is the number of attributes on which that pattern and 

its adjacent two neighbors are from the same class. For 
example, b5 in Fig. 3 is Rank 0 whereas b2 is Rank 2 (only b2 
is Rank 2). Rank 1 patterns in Fig. 3 are a1, a5 and b1. A 
prespecified number of patterns with the highest ranks are 
eliminated. When we remove three patterns from Fig. 3, first 
b2 is removed. Then two of a1, a5, b1 are randomly removed. 

The second and third methods are similar to the 
Condensed Nearest Neighbor Rule [6] which tries to 
maintain the decision boundary. 
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Figure 3.  An example of a training data set. 

III. COMPUTATIONAL EXPEIRMENTS 

Through computational experiments on four benchmark 
data sets in Table I which are available from the UCI 
machine learning repository, we examined the effects of data 
reduction in our parallel distributed genetic fuzzy rule 
selection. We evaluated the generalization ability of the 
obtained fuzzy rule-based classifiers by iterating the ten-fold 
cross validation procedure two times (i.e., 2 x 10 CV). That 
is, each result is the average over 20 runs. We used a 
workstation with two Xeon 3.0 GHz dual processors (i.e., 
four CPU cores, in total). We used one of the four CPU cores 
as a server CPU. The other three were used as client CPUs. 

 

TABLE I.  DATA SETS USED IN OUR COMPUTATIONAL EXPERIMENTS. 

Data set Attributes Patterns Classes 

Yeast 8 1484 10 

Page-Blocks 10 5473 5 

Satimage 36 6435 6 

Pendig 16 10992 10 

 
At first, we generated 300 fuzzy rules for each class by 

using the product criterion of confidence and support. The 
maximum rule length of each fuzzy rule was specified as 2 
for the satimage data set, and 3 for the other three data sets. 

In genetic fuzzy rule selection, we specified the 
population size as 300 (i.e., the size of each sub-population 
was 100). The total number of evaluated strings was 
specified as 300300. This is equal to the number of strings in 

98



initial population with 300 strings and 1,000 generations in 
the case of genetic fuzzy rule selection. The weight vector in 
the fitness function in (4) was specified as w = (100, 1, 1). 

We examined the following five implementations. 
 

Type 0: Only the server performs rule extraction and genetic 
fuzzy rule selection. No subdivision is used in this 
case. Thus, this type is the same as the original non-
parallel algorithm.  

Type 1: Three clients perform genetic fuzzy rule selection. 
But the sub-groups of the training patterns are never 
changed during the execution.  

Type 2: Three clients perform genetic fuzzy rule selection. 
The sub-groups are changed every 100 generations.  

Type 3: Three clients perform genetic fuzzy rule selection. 
The sub-groups are changed every 10 generations.  

Type 4: Three clients perform genetic fuzzy rule selection. 
The sub-groups are changed every generation. 

 
Tables II-XVII show the average training data accuracy, 

the average test data accuracy, the average number of 
selected fuzzy rules, the average total rule length, and the 
average CPU time (in second) for each type. We performed 
statistical tests for examining the statistical significance of 
the difference between the original non-parallel algorithm 
(i.e., Type 0) and our parallel distributed algorithm (i.e., 
Types 1-4) in the test data accuracy. We used a paired 
student’s t-test when the distribution of experimental results 
can be regarded as a normal distribution. Otherwise, we used 
a Wilcoxon signed-ranks test [16]. The results were shown in 
bold face when the results are not significantly different from 
the results by the non-parallel algorithm (i.e., Type 0). We 
specified the significance level  as 0.05. 

 

A. Results on the Yeast Data Set 

From Table II, we can see that there is no statistical 
difference between Type 0 and all the others. That is, we can 
drastically reduce the computational time without the 
deterioration in the test data accuracy. The best setting was 
Type 3 in terms of the test data accuracy. The computation 
was about nine times faster than that of Type 0. It should be 
noted that the number of fuzzy rules in the classifier obtained 
by Type 3 was also smaller than that by Type 0. This may be 
a positive effect of data subdivision on avoiding the over-
fitting to the training patterns. It should be also noted that the 
result by Type 1 was not statistically different from that by 
Type 0. This means that we do not need to use all the 
training patterns intrinsically, because each client CPU in 
Type 1 always used the same training data sub-group without 
the systematical re-assignment like Types 2-4. 

Tables III-V show the results by data reduction from 10% 
to 50%. We can see that we can eliminate 40% of the 
training patterns by random sampling without the 
deterioration in the test data accuracy. Comparing with Type 
0 with all the training patterns, we can reduce the 
computational time to more than 1/14. An interesting 

observation is that the number of fuzzy rules in the classifier 
obtained by using data reduction was also decreased as the 
reduction rate increases. 

 

TABLE II.  RESULTS ON THE YEAST DATA SET. TYPE 0 IS A NON-
PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES. 

Type Train Test Rules Length Time (s) 

0 61.35 57.84 23.1 63.4 2047.5 

1 59.59 57.32 18.5 50.6 231.1 

2 59.96 57.35 17.1 47.4 221.4 

3 60.63 57.51 16.9 48.2 228.9 

4 60.20 57.44 16.9 48.6 421.0 

 

TABLE III.  RESULTS OF TYPE 3 ON THE YEAST DATA SET BY 
RANDOM SAMPLING. 

Rate Train Test Rules Length Time (s)

10% 60.43 57.83 16.0 45.6 206.5 

20% 60.29 57.92 15.8 44.5 184.2 

30% 60.05 57.41 15.2 43.3 162.7 

40% 59.70 57.09 14.4 41.0 141.9 

50% 59.24 57.03 14.0 39.7 120.4 

 

TABLE IV.  RESULTS OF TYPE 3 ON THE YEAST DATA SET BY 
RANDOM SAMPLING WITH 1-NN. 

Rate Train Test Rules Length Time (s)

10% 60.67 57.04 17.2 49.5 206.0 

20% 60.44 56.94 16.8 47.0 184.1 

30% 59.89 57.30 15.7 44.5 160.4 

40% 59.15 56.39 14.8 42.7 150.8 

50% 58.38 55.52 14.2 41.0 138.6 

 

TABLE V.  RESULTS OF TYPE 3 ON THE YEAST DATA SET BY 
RANDOM SAMPLING WITH RANK. 

Rate Train Test Rules Length Time (s)

10% 60.63 57.96 17.3 48.8 207.4 

20% 60.35 57.15 16.5 46.9 185.0 

30% 60.08 57.16 16.5 46.9 162.6 

40% 59.63 56.71 15.7 44.6 142.9 

50% 59.40 56.86 15.5 44.5 131.1 

 
B. Results on the Page-Blocks Data Set 

Table VI shows that the results by Type 2 and Type 4 
were not significantly different from that by Type 0. The 
computation by Type 2 was about nine times faster than that 
of Type 0. Since Type 2 was faster than Type 4, we used 
Type 2 to examine the data reduction effects. 
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TABLE VI.  RESULTS ON THE PAGE-BLOCKS DATA SET. TYPE 0 IS A 
NON-PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES. 

Type Train Test Rules Length Time (s)

0 90.38 90.24 7.6 15.1 3301.8 

1 90.30 90.16 5.7 11.6 362.4 

2 90.30 90.20 5.9 12.6 364.1 

3 90.31 90.16 5.9 13.2 366.6 

4 90.23 90.17 4.3 9.7 712.4 

 
 
From Tables VII-IX, we can see that only random 

sampling with rank could reduce the training data set without 
the deterioration in the test data accuracy. The computation 
of Type 2 by random sampling with rank can be more than 
13 times faster than that of Type 0. Since the page-blocks 
data set is highly imbalanced, patterns from minority classes 
might be removed by random sampling and random 
sampling with 1-NN. 

 

TABLE VII.  RESULTS OF TYPE 2 ON THE PAGE-BLOCKS DATA SET BY 
RANDOM SAMPLING. 

Rate Train Test Rules Length Time (s) 

10% 90.30 90.18 5.7 12.1 325.3 

20% 90.27 90.14 5.1 10.2 288.1 

30% 90.26 90.14 5.2 10.4 252.1 

40% 90.25 90.18 5.0 10.6 216.2 

50% 90.23 90.09 4.6 9.5 179.9 

 

TABLE VIII.  RESULTS OF TYPE 2 ON THE PAGE-BLOCKS DATA SET BY 
RANDOM SAMPLING WITH 1-NN. 

Rate Train Test Rules Length Time (s) 

10% 90.29 90.13 5.6 11.6 323.0 

20% 90.30 90.12 5.9 12.2 288.0 

30% 90.25 90.07 5.1 10.3 252.9 

40% 90.25 90.07 5.1 10.1 216.8 

50% 90.22 90.09 4.6 9.0 181.6 

 

TABLE IX.  RESULTS OF TYPE 2 ON THE PAGE-BLOCKS DATA SET BY 
RANDOM SAMPLING WITH RANK. 

Rate Train Test Rules Length Time (s) 

10% 90.31 90.18 6.1 13.2 323.0 

20% 90.32 90.17 6.2 13.4 288.0 

30% 90.31 90.20 5.9 13.4 252.9 

40% 90.31 90.19 5.9 12.4 216.8 

50% 90.31 90.18 5.6 12.1 181.6 

 

C. Results on the Satimage Data Set 

Table X shows that we can reduce the computational 
time by Types 1-4. We employed Type 3 for data reduction 
because of the highest test data accuracy. 

From Tables XI-XIII, the best reduction rate was 
obtained from random sampling with rank. Its computational 
time was more than 22 times shorter than that of Type 0. It 
may be possible to reduce more patterns by this method. 

 

TABLE X.  RESULTS ON THE SATIMAGE DATA SET. TYPE 0 IS A NON-
PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES. 

Type Train Test Rules Length Time (s) 

0 83.45 82.11 33.7 67.3 10968.7 

1 82.65 81.82 25.3 50.1 1161.2 

2 82.83 81.97 21.1 42.0 1035.6 

3 83.22 82.15 22.0 43.8 1036.3 

4 83.04 81.74 22.3 43.5 1449.6 

 

TABLE XI.  RESULTS OF TYPE 3 ON THE SATIMAGE DATA SET BY 
RANDOM SAMPLING. 

Rate Train Test Rules Length Time (s)

10% 83.16 82.08 20.8 41.2 911.9 

20% 83.07 82.14 20.6 40.8 799.8 

30% 82.95 81.91 19.5 38.9 692.7 

40% 82.89 81.89 18.3 36.4 570.7 

50% 82.76 81.63 17.5 34.6 471.5 

 

TABLE XII.  RESULTS OF TYPE 3 ON THE SATIMAGE DATA SET BY 
RANDOM SAMPLING WITH 1-NN. 

Rate Train Test Rules Length Time (s)

10% 83.19 81.90 21.2 42.2 905.1 

20% 83.11 81.70 21.2 42.0 797.7 

30% 83.02 81.94 19.6 38.7 685.1 

40% 82.95 82.07 19.0 37.6 574.9 

50% 82.79 81.81 18.0 35.4 468.0 

 

TABLE XIII.  RESULTS OF TYPE 3 ON THE SATIMAGE DATA SET BY 
RANDOM SAMPLING WITH RANK. 

Rate Train Test Rules Length Time (s)

10% 83.22 82.07 21.4 42.2 908.2 

20% 83.18 82.09 20.6 40.8 792.8 

30% 83.14 82.02 20.4 40.4 694.5 

40% 83.12 82.00 20.5 40.5 624.8 

50% 82.98 81.94 19.8 39.0 490.9 
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D. Results on the Pendig Data Set 

From Table XIV, we can see that the test data accuracy 
by Type 2 was not statistically different from that by Type 0. 
We used Type 2 for data reduction. 

In Tables XV-XVII, we can remove 40% of the training 
patterns without the deterioration of the test data accuracy by 
random sampling with rank. But, when the rate was 30%, 
there was a statistical difference. This may mean that we 
need a more careful data reduction method. The computation 
by random sampling with rank (40%) was more than 17 
times faster than that of Type 0. 

 

TABLE XIV.  RESULTS ON THE PENDIG DATA SET. TYPE 0 IS A NON-
PARALLEL APPROACH. TYPE 1-4 ARE PARALLEL APPROACHES. 

Type Train Test Rules Length Time (s) 

0 89.50 88.73 52.4 156.2 30187.5 

1 88.85 88.24 39.4 116.5 3101.5 

2 89.29 88.61 34.3 102.1 2941.1 

3 89.19 88.47 38.9 115.3 3031.6 

4 89.01 88.38 41.5 123.4 3636.5 
 

TABLE XV.  RESULTS OF TYPE 2 ON THE PENDIG DATA SET BY 
RANDOM SAMPLING. 

Rate Train Test Rules Length Time (s)

10% 89.23 88.67 32.9 97.6 2575.1 

20% 89.14 88.51 33.1 98.2 2286.3 

30% 89.09 88.58 32.8 97.6 1980.4 

40% 88.93 88.38 32.1 95.4 1673.8 

50% 88.78 88.39 32.1 95.6 1381.3 
 

TABLE XVI.  RESULTS OF TYPE 2 ON THE PENDIG DATA SET BY 
RANDOM SAMPLING WITH 1-NN. 

Rate Train Test Rules Length Time (s)

10% 89.26 88.72 34.1 100.9 2590.2 

20% 89.09 88.52 33.9 100.5 2287.2 

30% 89.05 88.38 33.9 101.0 1992.8 

40% 89.02 88.20 32.5 96.7 1694.0 

50% 88.82 88.35 30.5 90.6 1391.5 
 

TABLE XVII.  RESULTS OF TYPE 2 ON THE PENDIG DATA SET BY 
RANDOM SAMPLING WITH RANK. 

Rate Train Test Rules Length Time (s)

10% 89.26 88.63 34.2 101.9 2590.0 

20% 89.23 88.61 34.0 101.0 2296.0 

30% 89.16 88.36 32.8 97.9 2004.7 

40% 89.11 88.54 32.0 95.0 1698.9 

50% 88.95 88.40 30.7 91.4 1388.4 

IV. CONCLUDING REMARKS 

In this paper, we examined the effects of data reduction 
in our parallel distributed genetic fuzzy rule selection. We 
used three random sampling methods for data reduction. 
Through computational experiments with large data sets, we 
showed that the computation time can be further reduced by 
using data reduction. We also showed that the obtained 
classifiers has a smaller number of fuzzy rules when we used 
our parallel distributed implementation and data reduction 

The best data reduction method and its reduction rate 
depend on the data set. We may need deeper understanding 
of data complexity for the design of appropriate data 
reduction methods. We should also discuss the results using 
other performance measures like AUC, Cohen’s Kappa, 
Geometric Mean from the viewpoint of the analysis on 
imbalanced data sets.  
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