
Encoding Structures and Operators used in Facility Layout Problems with
Genetic Algorithms

García-Hernández, L.a, Araúzo-Azofra, A.a, Pierreval, H.b and Salas-Morera, L.a

(a) Area of Project Engineering
University of Cordoba (Spain)

ir1gahel@uco.es, arauzo@uco.es,
lsalas@uco.es

(b) LIMOS UMR CNRS 6158 IFMA
(France)

 Henri.Pierreval@ifma.fr

Abstract—The allocation of facilities in a plant layout is a
complex problem. For solving it, many authors have used
Genetic Algorithms (GAs) with the objective of reaching
an efficient plant layout design. To represent the plant
layout design as a data structure, GAs require a defined
encoding scheme. Such a structure defines the types of
solutions that can be obtained, and influences the GA´s
ability to find good solutions. There are a few surveys on
facility layout problems, but they have not addressed
evolutionary issues in depth. This work presents a review
that focuses on encoding schemes and related operators
used in GAs, and suggests a method of classifying the
different encoding structures described in the
bibliography. We also studied their main characteristics
and objectives; and successfully identified the crossover
and mutation operators that could be utilized depending
on the type of encoding scheme.

Keywords—Facility layout problems; Encoding
schemes; Genetic Algorithms.

I. INTRODUCTION
Facility Layout Design determines the placement of

facilities (sometimes called departments) in a
manufacturing plant with the aim of achieving the most
effective arrangement in accordance with some criteria
or objectives laid down, while also admitting some
constraints. Among others, these objectives could be to
minimize the material handling cost, to maximize the
closeness of relationships between each pair of
facilities, or to satisfy a desired aspect ratio. Plant
Layout Design is crucial for attaining production
efficiency [16] because it directly influences
manufacturing costs, lead times, work in process and
productivity. Well laid out facilities contribute to the
overall efficiency of operations and could reduce
between 20% and 50% of the total operating costs [32].

Many techniques have been applied to deal with
Plant Layout Design. One of those most widely used is
Genetic Algorithms (GAs). An essential step in
building a GA is to decide on the genetic representation
of an individual (genotype), which must be concordant
with a candidate solution of the problem (phenotype) on

applying the decoding procedure. An important and
difficult part of designing a good GA [9] is choosing
the appropriate encoding scheme, as the choice also
determines the operators such as crossover or mutation
that could be applied.

This paper presents an overview of encoding
schemes and evolutionary operators used in GAs found
effective in solving Facility Layout Problems. Indeed,
they are important for a GA´s ability to evolve good
solutions. First, in Section 2, we define layout
problems. Section 3 describes the manner in which the
facilities could be placed in the layout. In Section 4, the
emphasis is on creating facility layout solutions.
Section 5 discusses ways to encode solutions. Section 6
examines the evolutionary operators associated with
each encoding scheme.

II. FACILITY LAYOUT PROBLEMS
Plant layout problems are of several kinds [7], and

are solved by employing different techniques [17, 27,
24]. To design a plant layout, several characteristics
that define the different problems needing solutions are
to be considered. Some important features to take into
account are:

• Facility shape. It can be regular(all the facilities
have the same shape, e.g. a rectangle) [1, 2, 4,
5, 6, 8, 10, 11, 12, 14, 18, 19, 20, 21, 22, 25, 28,
29, 30, 31, 34] or irregular (e.g. a polygon) [3,
13, 15, 26, 33].

• Facility dimensions. These can be equal [2, 5,
6, 10, 21, 25, 26, 29, 31], when all the facilities
have the same dimensions and size, or unequal
[1, 3, 4, 8, 11, 12, 13, 14, 15, 18, 19, 20, 22, 26,
28, 30, 33, 34], when at least one of them is
different.

• Number of floors. Most authors have
considered only a single floor. But some of
them [20, 22] have considered several floors
(multi-floor facility layout problem). Which
complicate the plant design because they

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.206

43

introduce more constraints (e.g. Vertical
distance) and/or devices (stairs, elevators).

• Planning horizon. A problem is defined as
static when the environment is stable and there
is no change in production requirements. It is
dynamic [2, 6, 8] when the manufacturing plant
is designed to enable it adapt the plant to a
changing environment.

• Aspect ratio. This value is applied to penalize
impracticable solutions (such as when in the
solution facilities appears with high length
value and very small width value).

• Objective function. Objective concerns are the
factors to be optimized. The objective function
allows to evaluate each solution to determine its
performance.

• Specific features. It is possible to conclude
passages or aisles [13, 19, 20, 34], inner walls
[19, 20], elevators [22] and stairs, among
others.

III. LAYOUT REPRESENTATIONS
In the related literature, several types of

representations are used to define the manner of
placement of the facilities on the surface. There are, in
the continuous type, the Bay [1, 4, 11, 13, 18, 19, 20,
23, 30] and the Slicing Tree [14, 22, 28, 34] methods.
In the discrete case, the representation used is the Grid
[2, 3, 5, 6, 10, 15, 21, 25, 26, 29, 31, 33].

Bays. This approach divides the plant into a number
of bay blocks, which is either fixed or variable. It is also
possible that the width of all of the bays that make up
the layout, are either fixed or variable. Figure 1 is an
example taken from [13].

Figure 1. Bay Structure.

Tree Structure. In this type, a slicing tree structure
represents the layout: each leaf node represents a
facility, and each internal node the slicing operator that
cuts the layout into portions or allocations. These
operators could be vertical or horizontal cuts, or they
could be more detailed such as, below, up, right or left
cuts. In Figure 2, we can see the slicing tree and its
representation (taken from [28]).

Figure 2. A slicing tree and the slicing structure, respectively.

Grid. This approach divides the plant into squares of
the same area and dimensions. If the facilities are of
equal dimensions and regular shape, we have only a
simple problem of allocating n facilities into m
positions. However, if the dimensions are unequal
and/or the shape is irregular, it becomes necessary to
adopt another structure (e.g. the Space Filling Curve
(SFC)), that enables identification of each square within
a determined facility (see Figure 3 taken from [3]).

Figure 3. An example of a 12-square layout with SFC.

IV. CREATING SOLUTIONS
Usually the data structure that represents a facility

layout is complex. To improve encoding schemes, in
this section, we identify the component functions that
lead to a complete structured plant design. Each of
these functions could be encoded in different ways that
are described in the next section. The identified
elemental functions are:

Place. This function places a facility in a location
determined by its coordinates. From Figure 4 we can
see that the encoding schemes that implement this are
the float permutations [8] and float strings without
restrictions [19, 20]. In the former, the float strings are
permutations of the facility center coordinates. The
latter encoding divides the distance proportionately
between the origin and the center of aisles.

Sort. This function arranges in order the facilities in
the layout of a plant, and determines their sequence
(e.g. we have a different sequence of facilities if we
read the facility from top to bottom and from left to
right than if we read it in the reverse order). From
Figure 4, we find that to provide this function, the
permutations are normally used. Logically, when
integer permutations with integers as operators are
intercalated [22], the sequence of the facilities in the
layout also appears. In [28] is described another way to
sort the order of the facilities. They used, a comprised
value between '0' and '1' randomly assigned to each
facility for determining the facility sequence by sorting

44

values. The last encoding, that allows sorting of the
elements in the plant is the float string with the
restriction that the aggregate of all the string elements is
less or equal to the total area of the plant [19, 20].

Figure 4. Relations between the functions and their associated

encoding schemes.

Partitioning. This function divides the plant into
portions (e.g. when the layout is divided into bays).
There are several options for encoding this function
(see Figure 4). The first of these is the combination of
integer permutations and integers. Matsuzaki et al. [22]
use this method in the slicing tree, where the integer
permutations indicate the facility sequence, and the
other integers are operators that enable division of the
plant into sections. The second option is a string of
increasing positive integers [30], which indicates the
locations of the breakpoints. The third way of grouping
is through the integer string. In this method, the
elements could be inserted without restrictions, being
operators that represent the plant divisions [14, 28, 34],
or they could show the way to group the facilities
through the sweeping direction and the sweeping band
[33, 15]. Another grouping option is the integer string,
where the element adds the total number of facilities
that exists in the layout [1, 11, 4, 20]. This string
indicates the number of facilities in each bay block,
such that the string has the same elements as the bays
in the plant. The last option for grouping is binary
encoding [13, 33, 15, 8]. When the value '0' appears in
the binary string, it indicates that the equivalent facility
is in the same group or block; when the value '1'
appears in the string, it is the indication to begin with
another block.

Orientation. Orientation is the last function seen in
Figure 4. This function allows rotation of a facility over
its central axis with respect to the point of origin. For
setting the orientation of the facility, a integer string is
used [34], in which each element is an operator that
provides this facility orientation.

V. ENCODING
Having analyzed the studies that have investigated

this aspect, we can classify the encoding schemes into
several types:

Integer/Real permutations: The objective of this
encoding is to determine the facility sequence that
comprises a plant. Generally, this encoding is a string of
n sizes, where n is the number of facilities in the layout.
Logically, the string can not have repeated elements,
because the same facility can not be placed in two
locations of the layout. Many authors have employed
integer strings to establish the facility sequence [1, 2, 3,
4, 5, 10, 11, 12, 14, 15, 19, 20, 21, 25, 26, 29, 30, 31,
33, 34]. However, only a few have used real strings [19,
20]. In the case of dynamic layout, some authors have
represented the corresponding layout for each period
with permutations of integers [2, 6] or floats [8]. In the
last case, the author uses the real string to establish
simultaneously the facility sequence and position the
facility centers.

Integer permutations and integers: This encoding
was proposed by Matsuzaki et al. [22] to determine the
facility sequence and to simultaneously group the
facilities in the layout. For the first method, this method
uses integer elements that can not be repeated. To
represent the cut operators, he uses 4 characters (that
can be translated into integers) that can be repeated.
Both types of elements are combined in the string. The
size of the string is the sum of the number of facilities
and the numbers of cut operators (which are equal to
the number of facilities minus one).

Integer string: this type of encoding scheme could
be divided into three types.

• Increasing positive integer. The integer string is
created because each element is larger than the
next. Tate and Smith [30] use this encoding to
group into bays the elements of the layout,
which consists of an integer string where each
element represents the last facility of the bay.
The total number of elements of the string plus
one, is equal to the total number of the bays in
the plant.

• Sum of all elements equal to total number of
facilities. The integer string is created because
each element is greater than '1', and the sum of
all elements is equal to the number of facilities
that make up the layout. Some authors [1,
4],[11], and [20] have used this encoding to
group the facilities into bays, and hence
propose an integer string where each integer
represents the number of elements in a bay.

• Without restrictions. This encoding is used to
group facilities and to determine the orientation
of the facility. Honiden [14] employed an
integer string to show the grouping order of
facilities. Tam [28] used a string composed of
characters (that can be translated to integers),
each of them of a value of four possible
operators (bottom, upper, right, and left), which
determine the cuts of the slicing tree. Wang et
al. [33] and Hu et al. [15] utilize this coding

45

scheme to show the sweeping band, that
determines the method of grouping the layout.
Wu and Appelton [34] uses this encoding for
two functions: on the one hand, he employs a
string of integers that represents the cutting
levels and allows grouping of the facilities in
the plant. On the other hand, he uses another
integer string to indicate the orientation of the
facility. Each element of this string could
associate one of four possible values (0º, 90º,
180º and 270º).

Float: this encoding scheme could be divided into
three cases, too:

• Without restrictions. The real or float string is
used to place the element position in the layout.
Lee et al. [19, 20] in order to allocate the
vertical and horizontal passages in the plant.

• Values in (0,1). The real or float string is
created considering that the value each element
has is included in the range (0-1). Norman and
Smith [23] use this encoding to arrange the
sequence of the facilities of the plant by
assigning a random value between '0' and '1' to
each facility and then, arranging the string from
the smaller to the higher value.

• Sum of all elements are <= total area. The float
string is created considering that each element
value is included between lower and higher
bounds. Moreover, it is necessary that the sum
of all elements be lower or equal than the total
area of the distribution. In this case, the string is
composed of float elements (that are organized
as the string of facility sequence) which offer
the area information of each facility in the
layout.

Binary string: This type of encoding groups the
facilities in the layout to enable determination of the
orientation of the facility. Gomez et al. [13] employed a
binary string of elements to divide the plant into bays.
When the value '1' appears in the string, the facility is
the last among the bays, in the other case, the value '0'
appears in the string. Moreover, Dunker et al. [8] used a
binary string to establish the facility orientation in the
dynamic layout. If the value is '0', the orientation is
vertical, or else, it is horizontal.

VI. CROSSOVER AND MUTATION OPERATORS
The operators analyzed are: Crossover (allows to

create children from two or more parents), and
Mutation (allows to obtain a new offspring modifying
the parent).

Most of the operators analyzed are well known and
are illustrated in [9]. The crossover operators studied
are Uniform, PMX, OX, CX, N-point, and the selection
of the best parent (is taken for the child created).

The studied mutation operators are: PM, AM, SM,
Inverse, PM if improved (the mutation is done if the

new individual is better), Insert/Delete or
Increase/Decrease a gen, Divide or Join genes.

TABLE I. ANALYSIS OF CROSSOVER METHODS.

Representation Crossover
Encoding
Scheme

Unif
orm PMX OX CX N

point
Select

the best

Permut.
integers √ √ √ √ √ √

floats O √ O O √ O
Int. Permut. + Int. √ O O O O O

Int.
String

Increasing
positive X X X X O O

Sum all =
total fac. X √ O O X O

Without
restrictions O O O O √ O

Float
String

Without
restrictions O O O O √ O

(0-1) val. X X X X O O

Elem. area
sum <=

total area.
X √ O X X O

Binary String O √ O X O O

We can see these operators, Crossover in Table 1

and Mutation in Table 2, and those studied in the
revised works, are marked '√'. The methods that could
not be applied by the encoding nature are marked 'X',
and finally, we marked 'O' those that can be applied but
are not used in reviewed literature.

46

TABLE II. ANALYSIS OF THE MUTATION METHODS.

Representation Mutation

Encoding Scheme P
M

A
M

S
M

I
n
v

PM
if

impr

Ins/ Del or
Inc/ Dec a

gen

Div/
Join

Permut
Int. √ √ √ √ √ X X

floats √ O O O O X X

Int. Permut. + Int. O O O √ O O √

Int.
String

Incr.
Positive X X X X X O X

Elem.
sum = nº

fac.
√ O O O O √ O

Without
restrict. √ O O O O X X

Float
String

Without
restrict. O O O O O X X

 (0-1)
Values X X X X X X X

 Elem.
area sum
<= total

area.

X O O O X X X

 Binary String √ O O O O X X

VII. Conclusions
In this paper, we have presented a survey that

focuses on encoding schemes and the evolutionary
operators used by GAs applied to Facility Layout
Problems. Other surveys have examined Facility
Layout, but have not studied evolutionary techniques in
depth. Although, this overview can not be exhaustive,
the analysis carried out enables us identify: (1) the
manner of placement of facilities on the surface, (2) the
component functions that could be used to create the
facility layout solutions, and (3) techniques to encode
them. Combining the identified component functions
could create new unexplored encoding schemes.

In this manner, many different ways of encoding the
facility layout solutions are available. Logically,
crossover and mutation operators also depend on the
encoding scheme selected. Moreover, we have
identified the evolutionary operators that could be
applied to each encoding scheme. Some of them have
not been tested yet. These encoding schemes and their
operators will determine the ability of the GA to obtain
good solutions.

The classifications and analyses described in this
work, could prove useful for future studies in facility
layout problems. In this context, the next step of
research could be to evaluate new encoding schemes
and untested evolutionary operators. This would enable
achieve the aim of improving results and
recommending the best among them.

REFERENCES
[1] G. Aiello, M. Enea, and G. Galante, “A multi-objective approach
to facility layout problem by genetic search algorithm and Electre
method”, Robotics and Computer-Integrated Manufacturing, Vol. 22,
pp.447–455, 2006.
[2] J. Balakrishnan, C.H Cheng, D.J. Conway and C.M. Lau, “A
hybrid Genetic Algorithm for the Dynamic Plant Layout Problem”,
International Journal of Production Economics, Vol 86, pp.107-120,
2003.
[3] J. Balakrishnan, C.H. Cheng and ,K.F. Wong, “FACOPT: A User
Friendly FACility Layout OPTimization System”, Computers &
Operations Research, Vol 30, pp.1625-1641, 2003.
[4] J. Chae and B.A. Peters, “Layout Design of Multi-Bay Facilities
with Limited Bay Flexibility”, Journal of Manufacturing, Vol 25,
2006.
[5] C. Chan and H. Tansri, “A Study of Genetic Crossover
Operations on the Facilities Layout Problem”, Computers &
Industrial Engineering, Vol 26, pp.537-550, 1994.
[6] D. Conway and M. Ventakaramanan, “Genetic Search and the
Dynamic Facility Layout Problem”, Computers & Operations
Research, Vol 21, pp.995-960, 1994.
[7] A. Drira, H. Pierreval and S. Hajri-Gabouj, “Facility Layout
Problems: A Survey”. Annual Reviews in Control, Vol 31, pp.255-
267, 2007.
[8] T. Dunker, G. Radons and E. Westkämper, “Combining
Evolutionary Computation and Dynamic Programming for Solving a
Dynamic Facility Layout Problem”. European Journal of Operational
Research, Vol 165, pp.55-69, 2005.
[9] A.E. Eiben and J.E. Smith, Introduction to Evolutionary
Computing. Springer, 2007.
[10] M. El-Baz, “A Genetic Algorithm for Facility Layout Problems
of Different Manufacturing Environments”, Computers & Industrial
Engineering, Vol 47, pp.233-246, 2004.
[11] M. Enea, G. Galante, and E. Panascia, “The Facility Layout
Problem Approached using a Fuzzy Model and a Genetic Search”,
Journal of Intelligence and Manufacturing, Vol 16, pp.303-315,
2005.
[12] M. Ficko, M. Brezocnik and J. Balic, “Designing the Layout of
Single- and Multiple-Rows Flexible Manufacturing System by
Genetic Algorithms”, Journal of Materials Processing Technology,
Vol 157-158, pp.150-158, 2004.
[13] A. Gómez, Q.I. Fernández, D. De la Fuente García and P.J.
García, “Using Genetic Algorithms to Resolve Layout Problems in
Facilities where there are Aisles”, International Journal of Production
Economics, Vol 84, pp.271-282, 2003.
[14] T. Honiden, “Tree Structure Modeling and Genetic Algorithm-
based Approach to Unequal-area Facility Layout Problem”,
Industrial Engineering & Management Systems, Vol 3, pp. 123-128,
2004.
[15] M.H. Hu, and M.J. Wang, “Using Genetic Algorithms on
Facility Layout Problems”. International Journal of Advanced
Manufacturing Technology, Vol 23, pp.301-310, 2004.
[16] P. Kouvelis, A.A. Kurawarwala and G.J. Gutiérrez,
“Algorithms for Robust Single and Multiple Period Layout Planning
for Manufacturing Systems”, European Journal of Production
Research, Vol 63, pp.287-303, 1992.

47

[17] S. Kuturel-Konak, “Approaches to Incertainties in Facilities
Layout Problems: Perspectives at the Beginning of the 21st
Century”, Journal of Intelligence and Manufacturing, Vol 18,
pp.273-284, 2007.
[18] Y.H Lee. and M.H. Lee, “A Shape-based Block Layout
Approach to Facility Layout Problems Using Hybrid Genetic
Algorithm”. Computers & Industrial Engineering, Vol 42, pp.237-
248, 2002.
[19] K.Y. Lee, S.N. Han and I.R. Myung, “An Improved Genetic
Algorithm for Facility Layout Problems Having Inner Structure
Walls and Passages”, Computers & Operations Research, Vol 30,
pp.117-138, 2003.
[20] K.Y. Lee, M. Roh and H. Jeong, “An Improved Genetic
Algorithm for Multi-Floor Facility Layout Problems Having Inner
Structure Walls and Passages”, Computers & Operations Research,
Vol 32, pp.879-899, 2005.
[21] K.L. Mak, Y.S. Wong and F.T.S. Chan, “A Genetic Algorithm
for Facility Layout Problem”, Computers Integrated Manufacturing
System, Vol 11, pp.113–127, 1998.
[22] K. Matsuzaki, T. Irohara, and K. Yoshimoto, “Heuristic
Algorithm to Solve the Multi-Floor Layout Problem with
Consideration of Elevator Utilization”. Computers & Industrial
Engineering, Vol 36, pp.487-502, 1999.
[23] B.A. Norman A.E. and Smith, “A Continuos Approach to
Considering Uncertainty in Facility Design”, Computers &
Operation Research, Vol 33, pp.1760-1775, 2006.
[24] H. Pierreval, C. Caux, J.L. Paris, and F. Viguier, “Evolutionary
approaches to the design and organization of manufacturing
systems”, Computers & Industrial Engineering, Vol 44, pp.39-364,
2003.
[25] A.S. Ramkumar, S.G. Ponnambalam, N. Jawahar, and R.K.
Suresh, “Iterated Fast Local Search Algorithm for Solving Quadratic

Assignment Problems”, Robotics and Computer-Integrated
Manufacturing, Vol. 24, pp.392–401, 2008.
[26] J. Singh, B.T. Foster and S.S. Heragu, “A Genetic Algorithm for
the Unequal Area Facility Layout Problem”, Computers &
Operations Research, Vol 25, pp.583–594, 1998.
[27] S.P. Singh and R.R.K. Sharma, “A Review of Different
Approaches to the Facility Layout Problems”, International Journal
of Advanced Manufacturing Technology , Vol 30, 2006 , pp.425–
433.
[28] K.Y. Tam, “Genetic Algorithms, Function Optimization, and
Facility Layout Design”. European Journal of Operational Research,
Vol 63, pp.322-346, 1992.
[29] D.M. Tate and A.E. Smith, “A Genetic Approach to the
Quadratic assignment problem”, Computers & Operations Research,
Vol 22, pp.73–83, 1995.
[30] D.M. Tate and A.E. Smith, “Unequal Area Facility Layout
Using Genetic Search”, IEE Transactions, Vol 27, pp.465–472,
1995.
[31] R. Tavakkoli-Moghaddain and E. Shayan, “Facilities Layout
Design by Genetic Algorithms”. Computers & Industrial
Engineering, Vol 35, pp. 527-530, 1998.
[32] J.A. Tompkins, J.A. White, Y.A. Bozer and J.M.A. Tanchoco,
Facilities Planning, Wiley, 3rd ed, New York, 2003.
[33] M.J. Wang, M.H. Hub and M.Y. Ku, “A Solution to the
Unequal Area Facilities Layout Problem by Genetic Algorithm”,
Computers in Industry, Vol 56, pp.207–220, 2005.
[34] Y. Wu and E. Appelton, “The Optimisation of Block Layout
and Aisle Structure by a Genetic Algorithm”. Computers &
Industrial Engineering, Vol 41, pp. 371-387, 2002.

48

