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Abstract—The allocation of facilities in a plant layout is a 
complex problem. For solving it, many authors have used 
Genetic Algorithms (GAs) with the objective of reaching 
an efficient plant layout design. To represent the plant 
layout design as a data structure, GAs require a defined 
encoding scheme. Such a structure defines the types of 
solutions that can be obtained, and  influences the GA´s 
ability to find good solutions. There are a few surveys on 
facility layout problems, but they have not addressed 
evolutionary issues in depth. This work presents a review 
that focuses on encoding schemes and related operators 
used in GAs, and suggests a method of classifying the 
different encoding structures described in the 
bibliography. We also studied their main characteristics 
and objectives; and successfully identified the crossover 
and mutation operators that could be utilized depending 
on the type of encoding scheme. 

Keywords—Facility layout problems; Encoding 
schemes; Genetic Algorithms. 

I. INTRODUCTION 
Facility Layout Design determines the placement of 

facilities (sometimes called departments) in a          
manufacturing plant with the aim of achieving the most 
effective arrangement in accordance with some criteria 
or objectives laid down, while also admitting some  
constraints. Among others, these objectives could be to 
minimize the material handling cost, to maximize the 
closeness of relationships between each pair of           
facilities, or to satisfy a desired aspect ratio. Plant    
Layout Design is crucial for attaining production        
efficiency [16] because it directly influences           
manufacturing costs, lead times, work in process and 
productivity. Well laid out facilities contribute to the 
overall efficiency of operations and could reduce       
between 20% and 50% of the total operating costs [32]. 

Many techniques have been applied to deal with 
Plant Layout Design. One of those most widely used is 
Genetic Algorithms (GAs). An essential step in     
building a GA is to decide on the genetic representation 
of an individual (genotype), which must be concordant 
with a candidate solution of the problem (phenotype) on 

applying the decoding procedure. An important and  
difficult part of designing a good GA [9] is choosing 
the appropriate encoding scheme, as the choice also   
determines the operators such as crossover or mutation 
that could be applied. 

This paper presents an overview of encoding 
schemes and evolutionary operators used in GAs found 
effective in solving Facility Layout Problems. Indeed, 
they are important for a GA´s ability to evolve good  
solutions. First, in Section 2, we define layout        
problems. Section 3 describes the manner in which the 
facilities could be placed in the layout. In Section 4, the 
emphasis is on creating facility layout solutions.      
Section 5 discusses ways to encode solutions. Section 6 
examines the evolutionary operators associated with 
each encoding scheme.  

II. FACILITY LAYOUT PROBLEMS 
Plant layout problems are of several kinds [7], and 

are solved by employing different techniques [17, 27, 
24]. To design a plant layout, several characteristics 
that define the different problems needing solutions are 
to be considered. Some important features to take into 
account are: 

• Facility shape. It can be regular(all the facilities 
have the same shape, e.g. a rectangle) [1, 2, 4, 
5, 6, 8, 10, 11, 12, 14, 18, 19, 20, 21, 22, 25, 28, 
29, 30, 31, 34] or irregular (e.g. a polygon) [3, 
13, 15, 26, 33].  

• Facility dimensions. These can be equal [2, 5, 
6, 10, 21, 25, 26, 29, 31], when all the facilities 
have the same dimensions and size, or unequal 
[1, 3, 4, 8, 11, 12, 13, 14, 15, 18, 19, 20, 22, 26, 
28, 30, 33, 34], when at least one of them is  
different.   

• Number of floors. Most authors have           
considered only a single floor. But some of 
them [20, 22] have considered several floors 
(multi-floor facility layout problem). Which 
complicate the plant design because they         
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introduce more constraints (e.g. Vertical       
distance) and/or devices (stairs, elevators). 

• Planning horizon. A problem is defined as   
static when the environment is stable and there 
is no change in production requirements. It is 
dynamic [2, 6, 8] when the manufacturing plant 
is designed to enable it adapt the plant to a 
changing environment. 

• Aspect ratio. This value is applied to penalize 
impracticable solutions (such as when in the  
solution facilities appears with high length   
value and very small width value). 

• Objective function. Objective concerns are the 
factors to be optimized. The objective function 
allows to evaluate each solution to determine its 
performance. 

• Specific features. It is possible to conclude  
passages or aisles [13, 19, 20, 34], inner walls 
[19, 20], elevators [22] and stairs, among     
others.  

III. LAYOUT REPRESENTATIONS 
In the related literature, several types of               

representations are used to define the manner of    
placement of the facilities on the surface. There are, in 
the continuous type, the Bay [1, 4, 11, 13, 18, 19, 20, 
23, 30] and the Slicing Tree [14, 22, 28, 34] methods. 
In the discrete case, the representation used is the Grid 
[2, 3, 5, 6, 10, 15, 21, 25, 26, 29, 31, 33]. 

Bays. This approach divides the plant into a number 
of bay blocks, which is either fixed or variable. It is also 
possible that the width of all of the bays that make up 
the layout, are either fixed or variable. Figure 1 is an 
example taken from [13]. 

 

 
Figure 1. Bay Structure. 

Tree Structure. In this type, a slicing tree structure 
represents the layout: each leaf node represents a        
facility, and each internal node the slicing operator that 
cuts the layout into portions or allocations. These      
operators could be vertical or horizontal cuts, or they 
could be more detailed such as, below, up, right or left 
cuts. In Figure 2, we can see the slicing tree and its   
representation (taken from [28]). 

 

 
Figure 2. A slicing tree and the slicing structure, respectively. 

Grid. This approach divides the plant into squares of 
the same area and dimensions. If the facilities are of 
equal dimensions and regular shape, we have only a 
simple problem of allocating n facilities into m          
positions. However, if the dimensions are unequal 
and/or the shape is irregular, it becomes necessary to 
adopt another structure (e.g. the Space Filling Curve 
(SFC)), that enables identification of each square within 
a determined facility (see Figure 3 taken from [3]). 

 

 
Figure 3. An example of a 12-square layout with SFC. 

IV.  CREATING SOLUTIONS 
Usually the data structure that represents a facility 

layout is complex. To improve encoding schemes, in 
this section, we identify the component functions that 
lead to a complete structured plant design. Each of 
these functions could be encoded in different ways that 
are described in the next section. The identified           
elemental functions are: 

Place. This function places a facility in a location 
determined by its coordinates. From Figure 4 we can 
see that the encoding schemes that implement this are 
the float permutations [8] and float strings without     
restrictions [19, 20]. In the former, the float strings are 
permutations of the facility center coordinates. The   
latter encoding divides the distance proportionately   
between the origin and the center of aisles. 

Sort. This function arranges in order the facilities in 
the layout of a plant, and determines their sequence 
(e.g. we have a different sequence of facilities if we 
read the facility from top to bottom and from left to 
right than if we read it in the reverse order). From    
Figure 4, we find that to provide this function, the    
permutations are normally used. Logically, when        
integer permutations with integers as operators are     
intercalated [22], the sequence of the facilities in the 
layout also appears. In [28] is described another way to 
sort the order of the facilities. They used, a comprised 
value between '0' and '1' randomly assigned to each    
facility for determining the facility sequence by sorting 
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values. The last encoding, that allows sorting of the    
elements in the plant is the float string with the           
restriction that the aggregate of all the string elements is 
less or equal to the total area of the plant [19, 20].  

 

 
Figure 4. Relations between the functions and their associated 

encoding schemes. 

Partitioning. This function divides the plant into 
portions (e.g. when the layout is divided into bays). 
There are several options for encoding this function 
(see Figure 4). The first of these is the combination of 
integer permutations and integers. Matsuzaki et al. [22] 
use this method in the slicing tree, where the integer 
permutations indicate the facility sequence, and the  
other integers are operators that enable division of the 
plant into sections. The second option is a string of     
increasing positive integers [30], which indicates the  
locations of the breakpoints. The third way of grouping 
is through the integer string. In this method, the          
elements could be inserted without restrictions, being 
operators that represent the plant divisions [14, 28, 34], 
or they could show the way to group the facilities 
through the sweeping direction and the sweeping band 
[33, 15]. Another grouping option is the integer string, 
where the element adds the total number of facilities 
that exists in the layout [1, 11, 4, 20]. This string        
indicates the number of facilities in each bay block, 
such that the string has the same     elements as the bays 
in the plant. The last option for grouping is binary      
encoding [13, 33, 15, 8]. When the value '0' appears in 
the binary string, it indicates that the equivalent facility 
is in the same group or block; when the value '1'        
appears in the string, it is the indication to begin with 
another block. 

Orientation. Orientation is the last function seen in 
Figure 4. This function allows rotation of a facility over 
its central axis with respect to the point of origin. For 
setting the orientation of the facility, a integer string is 
used [34], in which each element is an operator that 
provides this facility orientation. 

V. ENCODING 
Having analyzed the studies that have investigated 

this aspect, we can classify the encoding schemes into 
several types: 

Integer/Real permutations: The objective of this   
encoding is to determine the facility sequence that  
comprises a plant. Generally, this encoding is a string of 
n sizes, where n is the number of facilities in the layout. 
Logically, the string can not have repeated elements, 
because the same facility can not be placed in two      
locations of the layout. Many authors have employed 
integer strings to establish the facility sequence [1, 2, 3, 
4, 5, 10, 11, 12, 14, 15, 19, 20, 21, 25, 26, 29, 30, 31, 
33, 34]. However, only a few have used real strings [19, 
20]. In the case of dynamic layout, some authors have 
represented the corresponding layout for each period 
with permutations of integers [2, 6] or floats [8]. In the 
last case, the author uses the real string to establish     
simultaneously the facility sequence and position the  
facility centers.  

Integer permutations and integers: This encoding 
was proposed by Matsuzaki et al. [22] to determine the 
facility sequence and to simultaneously group the       
facilities in the layout. For the first method, this method 
uses integer elements that can not be repeated. To     
represent the cut operators, he uses 4 characters (that 
can be translated into integers) that can be repeated. 
Both types of elements are combined in the string. The 
size of the string is the sum of the number of facilities 
and the numbers of cut operators (which are equal to 
the number of facilities minus one). 

Integer string: this type of encoding scheme could 
be divided into three types. 

• Increasing positive integer. The integer string is 
created because each element is larger than the 
next. Tate and Smith [30] use this encoding to 
group into bays the elements of the layout, 
which consists of an integer string where each 
element represents the last facility of the bay. 
The total number of elements of the string plus 
one, is equal to the total number of the bays in 
the plant. 

• Sum of all elements equal to total number of  
facilities. The integer string is created because 
each element is greater than '1', and the sum of 
all elements is equal to the number of facilities 
that make up the layout. Some authors [1, 
4],[11], and [20] have used this encoding to 
group the facilities into bays, and hence 
propose an integer string where each integer 
represents the number of elements in a bay.  

• Without restrictions. This encoding is used to 
group facilities and to determine the orientation 
of the facility. Honiden [14] employed an       
integer string to show the grouping order of   
facilities. Tam [28] used a string composed of 
characters (that can be translated to integers), 
each of them of a value of four possible         
operators (bottom, upper, right, and left), which 
determine the cuts of the slicing tree. Wang et 
al. [33] and Hu et al. [15] utilize this coding 
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scheme to show the sweeping band, that        
determines the method of grouping the layout. 
Wu and Appelton [34] uses this encoding for 
two functions: on the one hand, he employs a 
string of integers that represents the cutting  
levels and allows grouping of the facilities in 
the plant. On the other hand, he uses another  
integer string to indicate the orientation of the 
facility. Each element of this string could       
associate one of four possible values (0º, 90º, 
180º and 270º). 

Float: this encoding scheme could be divided into 
three cases, too:  

• Without restrictions. The real or float string is 
used to place the element position in the layout. 
Lee et al. [19, 20] in order to allocate the      
vertical and horizontal passages in the plant. 

• Values in (0,1). The real or float string is      
created considering that the value each element 
has is included in the range (0-1). Norman and 
Smith [23] use this encoding to arrange the    
sequence of the facilities of the plant by         
assigning a random value between '0' and '1' to 
each facility and then, arranging the string from 
the smaller to the higher value. 

• Sum of all elements are <= total area. The float 
string is created considering that each element 
value is included between lower and higher 
bounds. Moreover, it is necessary that the sum 
of all elements be lower or equal than the total 
area of the distribution. In this case, the string is 
composed of float elements (that are organized 
as the string of facility sequence) which offer 
the area information of each facility in the    
layout. 

Binary string: This type of encoding groups the    
facilities in the layout to enable determination of the 
orientation of the facility. Gomez et al. [13] employed a 
binary string of elements to divide the plant into bays. 
When the value '1' appears in the string, the facility is 
the last among the bays, in the other case, the value '0' 
appears in the string. Moreover, Dunker et al. [8] used a 
binary string to establish the facility orientation in the 
dynamic layout. If the value is '0', the orientation is  
vertical, or else, it is horizontal. 

VI. CROSSOVER AND MUTATION OPERATORS 
The operators analyzed are: Crossover (allows to 

create children from two or more parents), and         
Mutation (allows to obtain a new offspring  modifying 
the parent). 

Most of the operators analyzed are well known and 
are illustrated in [9]. The crossover operators studied 
are Uniform, PMX, OX, CX, N-point, and the selection 
of the best parent (is taken for the child created). 

The studied mutation operators are: PM, AM, SM, 
Inverse, PM if improved (the mutation is done if the 

new individual is better), Insert/Delete or 
Increase/Decrease a gen, Divide or Join genes.  

 

TABLE I. ANALYSIS OF CROSSOVER METHODS. 

Representation Crossover 
Encoding 
Scheme 

Unif
orm PMX OX CX N 

point
Select  

the best

Permut.
integers √ √ √ √ √ √ 

floats O √ O O √ O 
Int. Permut. + Int. √ O O O O O 

Int. 
String 

Increasing 
positive X X X X O O 

Sum all = 
total fac. X √ O O X O 

Without 
restrictions O O O O √ O 

Float 
String 

Without 
restrictions O O O O √ O 

(0-1) val. X X X X O O 

Elem. area 
sum <= 

total area.
X √ O X X O 

Binary String O √ O X O O 
 
We can see these operators, Crossover in Table 1 

and Mutation in Table 2, and those studied in the        
revised works, are marked '√'. The methods that could 
not be applied by the encoding nature are marked 'X', 
and finally, we marked 'O' those that can be applied but 
are not used in reviewed literature. 
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TABLE II. ANALYSIS OF THE MUTATION METHODS. 

Representation Mutation 

Encoding Scheme P
M 

A
M 

S
M 

I
n
v 

PM 
if 

impr 

Ins/ Del or
Inc/ Dec a 

gen 

Div/ 
Join 

Permut 
Int. √ √ √ √ √ X X 

floats √ O O O O X X 

Int. Permut. + Int. O O O √ O O √ 

Int. 
String 

Incr. 
Positive X X X X X O X 

Elem. 
sum = nº 

fac. 
√ O O O O √ O 

Without 
restrict. √ O O O O X X 

Float  
String 

Without 
restrict. O O O O O X X 

 (0-1) 
Values X X X X X X X 

 Elem. 
area sum 
<= total 

area. 

X O O O X X X 

 Binary String √ O O O O X X 

VII. Conclusions 
In this paper, we have presented a survey that       

focuses on encoding schemes and the evolutionary    
operators used by GAs applied to Facility Layout   
Problems. Other surveys have examined Facility     
Layout, but have not studied evolutionary techniques in 
depth. Although, this overview can not be exhaustive, 
the analysis carried out enables us  identify: (1) the 
manner of placement of facilities on the surface, (2) the 
component functions that could be used to create the  
facility layout solutions, and (3) techniques to encode 
them. Combining the identified component functions 
could create new unexplored encoding schemes.   

In this manner, many different ways of encoding the 
facility layout solutions are available. Logically, 
crossover and mutation operators also depend on the 
encoding scheme selected. Moreover, we have        
identified the evolutionary operators that could be      
applied to each encoding scheme. Some of them have 
not been tested yet. These encoding schemes and their 
operators will determine the ability of the GA to obtain 
good solutions.  

The classifications and analyses described in this 
work, could prove useful for future studies in facility 
layout problems. In this context, the next step of         
research could be to evaluate new encoding schemes 
and untested evolutionary operators. This would enable 
achieve the aim of improving results and                   
recommending the best among them. 
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