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Abstract—Genetic Algorithms (GAs) are intelligent 
computational tools which their simplicity, accuracy and 
adaptable topology cause them to be used in globally minimum 
or maximum finding problems. Developing the GAs to increase 
their speed in finding the global minimum or maximum of a 
cost function has been a big challenge until now and many 
variants of GA has been evolved to accomplish this goal. This 
paper presents two new Sequential Mutation Method and 
Circular Gene Method to increase the speed of the GA. These 
methods attain a better final answer accompanied by lesser use 
of cost function evaluations in comparison with the original 
GA and some other known complementary methods. In 
addition, it speeds up reaching the minimum or maximum 
point regarding the number of generations. A number of 
common test functions with known minimum values and points 
are tested and the results are compared with some other 
algorithms such as original GA, Bacterial Evolutionary 
Algorithm, Jumping Gene and PSO. Simulation results show 
that the presented methods in this paper can reach the global 
minimum point through lesser generations and evaluations of 
the cost function in comparison with the traditional methods. 

Keywords: Genetic algorithm; speeding up the convergence; 
sequential mutation method; circular gene method 

I.       INTRODUCTION 
There are many methods to locate minimum or 

maximum of a function. The classical way to find the 
extrema of a function is to take the gradient of the function 
and set it equal to zero. But this method is usually 
complicated especially for the multivariable functions and it 
is difficult to deal with and is not usable when the function 
is discrete or no derivation can be taken out of it. Although 
it works well when the minimum is nearby, it cannot deal 
well with cliffs or boundaries, where the gradient cannot be 
calculated. These difficulties necessitate searching for other 
methods to find the minimum and maximum of the 
functions. Genetic algorithm is a useful method in this 
aspect. GA is an optimization and searching technique based 
on the biological genetic development principles which was 
firstly developed by John Holland [1,2].  

The GA begins, like any other numerical optimization 
algorithm, by setting the parameters, defining the 
optimization variables and the cost function. It ends like 

other optimization algorithms too, by testing the 
convergence. Some variants of GA have been introduced to 
speed up its convergence. 

 Some of these variants are Bacterial Evolutionary 
Algorithm (BEA) and Jumping Gene (JG) methods. Also 
some other minimum finding algorithm such as Particle 
Swarm Optimization (PSO) can be considered in this regard.  

The BEA incorporates an operation analog to the direct 
transfer of strands of genes from host cells to other cells, 
which is called gene transfer operation. The gene transfer 
operation substitutes the crossover operation, allowing the 
recombination of information between different individuals, 
in the expectation that this will lead to the creation of better 
individuals. In BEA algorithm, first chromosome in the 
current population is copied m times and m-1 clones (genes) 
is mutated. The mutation operation is applied to the 
randomly chosen (݅)th part. The m clones are then evaluated 
using the cost function and the fittest clone survives. This 
procedure is repeated for all parts of the chromosome and 
for all chromosomes [3,4,5]. This method needs to produce 
less generations but its drawback is to recall the cost 
function much more times during the algorithm running in 
comparison with the other methods. 

The phenomenon of jumping genes, also known as 
transposons, was first discovered by McClintock from her 
work on corn plants [6,7]. Further experimental observation 
also indicated that there were two ways in which the JGs 
could move around the genome. The first one was called 
cut-and-paste, which means a piece of DNA is cut and 
pasted somewhere else. The second one was known as 
copy-and-paste. This means that the genes remain at the 
same location while the message in the DNA is copied into 
RNA and then copied back into DNA at another place in the 
genome [8]. JG method is actually a mutation operator 
which was developed by considering these biological 
explanations to be used as an evolutionary algorithm in 
minimum or maximum finding problems. 

The PSO operates on “particles”, driving them toward 
promising regions discovered adaptively by the whole 
swarm. The idea behind the algorithm was inspired by 
social behavior of animals, such as bird flocking or fish 
schooling and PSO was formulated by Edward and Kennedy 
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in 1995 [1,9]. PSO is similar to GA respecting that both of 
them begin with a random population but the original PSO 
does not have evolutionary operators such as crossover and 
mutation and is not binary encoded. In PSO, each particle 
moves about the cost function surface with a velocity. 
Velocities and positions get updated with regard to the 
position of the best particle [1,10].    

Although GA’s variants have been able to speed up the 
original algorithm in finding the extremum point in 
comparison with the original algorithm, but they still suffer 
from being slow especially when the number of the variables 
of the cost function is high. The basic idea of the method 
proposed in this paper is to change the mutation operator 
in order to speed up the GA. In this paper we introduce two 
new operators and compare their performance with the 
methods introduced previously. Then, these two operators 
are applied to the GA simultaneously to increase the 
efficiency of its performance. Simulation results show that 
when these two operators are applied to the GA, its 
performance gets enhanced with respect to the speed of 
convergence and the number of cost function evaluations. 
Also its efficiency is revealed when the number of the 
variables of the cost functions is high.  

The organization of this paper is as follow: Section 2 
gives a brief explanation to genetic algorithms. Section 3 
and 4 introduce the SMM, CGM and the basic ideas beyond 
them, respectively. Section 5 explains the reason of merging 
two proposed methods. In section 6 simulation results for 
proposed methods are presented and the new operators are 
compared with some previously known algorithms and 
finally section 7 presents the conclusion and summarizes the 
simulation results. 

II.       GENETIC ALGORITHM 
The original GA begins by defining a chromosome or 

an array of variable values. Then each chromosome gets a 
cost found by evaluating the cost function and the costs and 
associated chromosomes are ranked from the lowest cost to 
the highest. Only the best ones are selected to continue, 
while the rest is deleted. Two chromosomes are selected 
from the pool of chromosomes to produce two new 
offspring. Pairing takes place in the mating population until 
offspring are born to replace the discarded chromosomes. 
Mating is the creation of one or more offspring from 
the parents selected in the pairing process.  The  genetic  
makeup  of the  population  is  limited  by  the  current  
members  of the population. The most common form of 
mating involves two parents that produce two offspring. A 
crossover point is randomly selected between the first and 
last bits of the parents’ chromosomes. First parent passes its 
binary codes to the left of the crossover point of the first 
offspring. Similarly, second parent passes its binary codes 
to the left of the same crossover point of the second 
offspring. Then, the binary codes to the right of the 
crossover point are changed in similar way. So each 
offspring contains portions of the binary codes of both 

parents. Some functions have many local minima. If we do 
nothing to solve the tendency to converge quickly, we 
could end up in a local r ather than a global minimum. 
To avoid this problem of overly fast convergence, we 
force the routine to explore other areas of the cost surface 
by randomly introducing changes, called mutation, in some 
of the variables. For the binary GA, random numbers are 
chosen to select the row and columns of the variables to be 
mutated [1] and mutation is done by simply changing a bit 
from 0 to 1 and vice versa. 

III.       SEQUENTIAL MUTATION METHOD 
One of the most important operators in the GA is the 

mutation operator. Mutation makes new attributes in genes 
and makes it possible to release the GA from the  local 
minimums and go toward the global minimum. Also, it 
makes available to seek all parts of the searching space to 
find the global minimum. In this method the place of 
applying mutation is changed. 

In the original GA, the mutation operates on some 
randomly chosen bit(s) of chromosomes. But in sequential 
mutation method (SMM), the mutation is applied only on 
one gene in each chromosome. In other words, only one 
gene of a chromosome is changed during the mutation and 
the other genes survive. The SMM has a very important 
property and it is speeding up finding the global minimum 
with less recalling the cost function which will be discussed 
widely in the results section. 

In SMM, in each iteration, only one gene is selected 
from each chromosome and the mutation is applied on only 
the bits of this gene. These bits are selected randomly and 
this procedure is done for all the chromosomes in the 
current generation. For example, if the mutation rate of the 
algorithm is ߤ, the number of genes of each chromosome is ݊, the number of chromosomes in each population is ௣ܰ௢௣, 
and the  number  of  bits  of  each  gene  is ௚ܰ௘௡௘ , so the 
total number   of    bits    in    each    population   is    ௕ܰ௜௧௦ ൌ ݊ ൈ ௣ܰ௢௣ ൈ ௚ܰ௘௡௘  and the number mutations is ܰ௠௨௧௘ ൌ ߤሺ݀݊ݑ݋ݎ ൈ ௕ܰ௜௧௦ሻ. In this case, regarding the 
SMM, ݀݊ݑ݋ݎ൫ܰ௠௨௧௘/ ௣ܰ௢௣൯ bits of the selected gene in 
each chromosome are mutated. The mutation places are 
chosen randomly. The selection of the gene is in a 
sequential order and the place of the selected gene goes one 
step further by increasing the number of generations.  Figure 
1 illustrates the place of applying the sequential mutation 
operator on one chromosome. In this figure, n is the number 
of genes in each chromosome or the number of variables in 
the cost function. After running the algorithm for n 
iterations, in (n+1)th iteration, the SMM is applied on the 
first genes of all chromosomes and this procedure is 
continued. 
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Figure 1.    Place of applying the mutation on the chromosome in SMM. 

IV.       CIRCULAR GENE METHOD 
The basic idea behind the CGM is derived from the 

biological behavior of the bacteria and some other 
organisms. Dulbecco and Vogt, and Weil and Vinograd in 
1963 discovered that double stranded DNA of the polyoma 
virus (minute infectious agent which is normally present in 
extremely small amounts in the wild mice) exists in a closed 
circular form. At present it is generally acknowledged that 
this form, called circular DNA, is found in bacteria, 
cytoplasm (gelatinous or liquid material within a cell) in 
animals and archaea (microorganisms which are similar to 
bacteria in size and simplicity of structure) as well as in 
eukaryotic cells (organisms whose cells are organized into 
complex). Furthermore, giant DNA molecules in higher 
organisms form loop structures held together by protein 
fasteners in which each loop is largely analogous to the 
closed circular DNA. In plants and animals DNA is 
organized into linear chromosomes and is found in the 
nucleus of cells. DNA in bacteria and some other mentioned 
organisms is organized circularly. Bacteria have one large 
circular DNA molecule carrying most of their inherited 
information and mutation on them is done by changing the 
sequence of amino acids in a protein of DNAs [11,12,13]. 

By considering these biological explanations we can see 
the chromosomes in circular form due to the fact that the 
chromosomes of the multivariable cost functions have 
many bits and by deeming a large-bit-chromosome as a 
bacterium chromosome, we can apply the mutation on it. 
As considered above, the mutation is done on some 
specific biological chromosomes by changing the place of 
the amino acids in DNAs. So we can implement this idea 
with rotating some bits (or genes) of the chromosomes. We 
call this technique as circular gene method (CGM). The CGM 
is applied after the crossover and before the original 
mutation. 

By applying the CGM, the 1st gene gives its value to 
the 2nd gene and takes its value from the nth gene; the 2nd 
gene gives its value to the 3rd gene and takes its value 
from the 1st one, and the (k)th gene gives its value to the 
(k+1)th gene and takes its value from  the (k-1)th gene. In 
fact, in CGM, the places of the genes in each iteration are 

shifted one step to the left by considering the 
chromosome to be circular. Like SMM, CGM is applied on 
all chromosomes in each iteration. Figure 2 illustrates the 
procedure of applying the CGM on one chromosome in ݊ 
iterations. 
 

V.       SMM AND CGM 
 
Simulation results show that applying SMM can speed 

up finding the global minimum of the cost functions but 
individual using of CGM does not have expectable results 
in comparison with other methods. But merging these two 
methods (apply SMM and CGM together) has the 
advantages of both SMM and CGM and has the best result 
among methods introduced in this paper. Its effects get 
clear when these methods are used for the cost functions 
which have many variables. The overall flowchart of the 
algorithm is shown in figure 3. 

VI.       SIMULATION RESULTS 
The cost function that is going to be minimized or 

maximized may have many variables or the number of 
arithmetical operations used in the cost function may be 
high. Also it is possible that for evaluation of a cost 
function using given independent variables, some 
experimental tasks by either simulation or real running of 
the case, which may take a long time to be done, is needed. 
So the number of times which a cost function is recalled to 
be calculated can be considered as a criterion to measure the 
speed of the algorithms.  

In evolutionary algorithms, the main operators (such 
as selection, cross over and mutation for GA and position 
and velocity updating for PSO) are applied in a repeating 
manner to produce new generations with the aim of 
approaching the global extremum of the cost function. It is 
clear that the number of production of the new generations, 
which is also considered as the number of iterations, can be 
used as another criterion to measure the speed of the 
algorithms.  

 

 
 

Figure 2.    Circular gene method; the chromosome rotates and the place of 
the genes is shifted to the left. 
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Figure 3.     Flowchart of the algorithm and the place of applying 
SMM and CGM. 

 
In this paper, two mentioned criteria, the number of cost 

function evaluations and the number of iterations are used 
to compare the performance of different heuristic 
algorithms. 

Introduced methods are tested on 12 standard cost 
functions (which are available in [1]) but due to the 
limitation of presenting all the results in this paper, the 
results of only two of them are considered here. These 
functions have some local and one global minimums. 
Results of the proposed methods are compared with the 
original GA, Jumping Gene, BEA and PSO Algorithms. 

For each cost function, drawn figures show the mean 
results of 50-time-running the algorithms. Because the 
random development of the algorithms causes them to have 
different answers in different runnings, this is done for 
reducing the effect of the chance and increasing the 
reliability in the results. 

To show the capability of the proposed methods, two 
figures are drawn for each cost function. First figure shows 
the cost of the elite gene (or best particle) versus the number 
of iterations. This curve gives us a measurement of how fast 
the corresponding algorithm converges and reaches the 
global minimum. Also, it is a suitable way to compare 
different algorithms in terms of the final value they reach 
for a specified number of iterations. Second figure is a bar 
chart. This figure has 6 corresponding bars for each 
method. Each bar shows how many times the cost function 
is recalled until the algorithm reaches ݕ percent of the 
global minimum. Relevant percents of ݕ for each bar are 
noted on the top side of the figures. In bar charts, horizontal 
axis shows that which method belongs to each bar and 
vertical axis represents the number of the recalled cost 
functions. 

In this paper the number of chromosomes (or particles) 
in each population is equaled to 8, the mutation factor (the 
fraction of the bits which gets mutated) is 0.1, each gene is 
coded with 16 bits, inertia factor and acceleration 
coefficients for PSO is 1 and ݉ for BEA is equal with the 
number of genes. 

It can be seen from convergence figures 4, 6 and 8 that 
using SMM and CGM simultaneously has the best result 
among other algorithms.  

BEA shows a very fast fall in convergence figures in 
the first generations. This phenomenon is due to the fact 
that BEA uses lots of mutations in each generation. 
Indeed, it reaches its cost function evaluation limit in the 
first generations. The figures 5, 7 and 9 confirm this 
explanation. The simulation codes are written in a way 
that when the number of recalled cost function reaches its 
maximum number, the program stops the algorithm. This 
is why the curve convergence of BEA in figures 4, 6 and 
8 are incomplete. 

In bar charts, each method has a maximum limitation in 
the number of recalled cost functions. When one method 
reaches to this limitation, the program stops. The maximum 
limitation is determined with respect to the maximum 
number of permitted cost function evaluation by 
corresponding method. In some figures, BEA violates this 
limitation due to the fact that BEA can recall the cost 
function more times in comparison with other methods in 
each iteration. Because the limitation is checked in the 
program at the beginning of each iteration, so BEA has the 
opportunity to exceed this limitation. 

PSO have better result than BEA in recalling the cost 
function. Also PSO has an acceptable convergence plot 
when the number of variables in cost function increases but 
its performance is still worse than SMM and CGM. 

JG-copy and JG-cut are two methods that have better 
result than previous ones when the number of variables of 
the cost function is low. Although these two methods show 
a proper behavior in convergence figures, their drawback is 
the high number of recalled cost functions.  

The results of the all tested cost functions show that 
using SMM and CGM simultaneously has the best result in 
both convergence curves and the number of recalled cost 
function charts. These advantages get highlighted when the 
number of variables in the cost function increases. 

SMM and CGM are capable to deal with the 
multivariable cost functions and the results get better by 
increasing the number of the variables in the cost function. 
To show this phenomenon, table 1 is mentioned. This table 
shows the values for the average of five-time-running of the 
algorithms for cost function 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ  
for different Ns. The value of global minimum of this cost 
function is 0 which occurs at ܺ ൌ 0. All of the algorithms are 
run until a pre-specified number of recalled cost functions 
are reached. This number is shown in the last row of the 
table. The components of table 1 show the final values of 
each algorithm. This table reveals the capability of SMM 
and CGM when the number of variables in the cost function 
increases. 
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Figure 4.    Plot of the minimum cost as a function of the generation for 
the cost function 10ܰ ൅∑ ሺ݊ሻଶݔൣ െ ሺ݊ሻ൯൧ேଵݔߨ൫2ݏ݋ܥ10  and N=5; Global 

minimum at ܺ ൌ 0 with value 0. 

 
Figure 5.     Plot of the number of recalled cost functions to reach ݕ 

percent of the global minimum for the cost function 10ܰ ൅ ∑ ሺ݊ሻଶݔൣ െ ሺ݊ሻ൯൧ேଵݔߨ൫2ݏ݋ܥ10  and N=5. 

 
Figure 6.    Plot of the minimum cost as a function of the generation 

for the cost function 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ   and N=15; Global 
minimum at ܺ ൌ 0 with value 0. 

 
Figure 7.    Plot of the number of recalled cost functions to reach ݕ 

percent of the global minimum for the cost function 

 ૚ ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ  and N=15. 

 
Figure 8.    Plot of the minimum cost as a function of the generation 

for the cost function 1 ൅ ∑ ୶ሺ୬ሻସ଴଴଴ െ ∏ Cos൫xሺnሻ൯NଵNଵ   and N=50; Global 
minimum at ܺ ൌ 0 with value 0. 

 

 
Figure 9.    Plot of the number of recalled cost functions to reach ݕ 

percent of the global minimum for the cost function 

 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ  and N=50. 

35



TABLE I.           FINAL VALUE OF ALGORITHMS AFTER A SPECIFIED 

NUMBER OF COST FUNCTION 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ   IS RECALLED 

FOR DIFFERENT NS 
Number of 

variables (N) 3 5 10 15 20 40 50 100 

GA 0.0045 0.0163 0.3100 0.5855 0.8261 1.0222 1.0336 1.0926
JG-copy 0.0005 0.0152 0.3573 0.5501 0.8356 1.0224 1.0316 1.0943

JG-paste 0.0051 0.0206 0.3266 0.5710 0.8640 1.0225 1.0328 1.1028

BEA 0.0036 0.0632 0.6590 0.8733 0.9917 1.0424 1.0543 1.1246

PSO 0.0087 0.0374 0.3607 0.3640 0.4208 0.4661 0.4573 0.6473

SMM 0.0039 0.0106 0.0570 0.0705 0.0682 0.6039 0.6113 0.7893

CGM 0.0051 0.0200 0.2312 0.6286 0.8730 1.0241 1.0349 1.0942

SMM+CGM 0.0014 0.0070 0.0435 0.0520 0.0423 0.2496 0.3995 0.3054
Number of 

recalled cost 
functions 

3000 4000 4000 10000 15000 10000 15000 30000

 

VII.       CONCLUTION 
Two new methods, SMM and CGM, have been 

presented. These methods are applied to the original GA 
instead of regular mutation. Simulation results show that 
using SMM and CGM simultaneously can speed up the 
convergence of the GA accompanied by less recalling the 
cost function in comparison with other algorithms. The 
future prospect of the approaches proposed here is to 
theoretical analysis of the new methods and utilize them in 
continuous minimum finding algorithms.  
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