
Speeding up the Genetic Algorithm Convergence Using
Sequential Mutation and Circular Gene Methods

Mehdi Baradaran Nia
Electrical and Computer Engineering Department

University of Tabriz
Tabriz, Iran

e-mail: mbaradaran@tabrizu.ac.ir

Yousef Alipouri
Electrical and Computer Engineering Department

University of Tabriz
Tabriz, Iran

e-mail: alipouri.yousef@gmail.com

Abstract—Genetic Algorithms (GAs) are intelligent
computational tools which their simplicity, accuracy and
adaptable topology cause them to be used in globally minimum
or maximum finding problems. Developing the GAs to increase
their speed in finding the global minimum or maximum of a
cost function has been a big challenge until now and many
variants of GA has been evolved to accomplish this goal. This
paper presents two new Sequential Mutation Method and
Circular Gene Method to increase the speed of the GA. These
methods attain a better final answer accompanied by lesser use
of cost function evaluations in comparison with the original
GA and some other known complementary methods. In
addition, it speeds up reaching the minimum or maximum
point regarding the number of generations. A number of
common test functions with known minimum values and points
are tested and the results are compared with some other
algorithms such as original GA, Bacterial Evolutionary
Algorithm, Jumping Gene and PSO. Simulation results show
that the presented methods in this paper can reach the global
minimum point through lesser generations and evaluations of
the cost function in comparison with the traditional methods.

Keywords: Genetic algorithm; speeding up the convergence;
sequential mutation method; circular gene method

I. INTRODUCTION
There are many methods to locate minimum or

maximum of a function. The classical way to find the
extrema of a function is to take the gradient of the function
and set it equal to zero. But this method is usually
complicated especially for the multivariable functions and it
is difficult to deal with and is not usable when the function
is discrete or no derivation can be taken out of it. Although
it works well when the minimum is nearby, it cannot deal
well with cliffs or boundaries, where the gradient cannot be
calculated. These difficulties necessitate searching for other
methods to find the minimum and maximum of the
functions. Genetic algorithm is a useful method in this
aspect. GA is an optimization and searching technique based
on the biological genetic development principles which was
firstly developed by John Holland [1,2].

The GA begins, like any other numerical optimization
algorithm, by setting the parameters, defining the
optimization variables and the cost function. It ends like

other optimization algorithms too, by testing the
convergence. Some variants of GA have been introduced to
speed up its convergence.

 Some of these variants are Bacterial Evolutionary
Algorithm (BEA) and Jumping Gene (JG) methods. Also
some other minimum finding algorithm such as Particle
Swarm Optimization (PSO) can be considered in this regard.

The BEA incorporates an operation analog to the direct
transfer of strands of genes from host cells to other cells,
which is called gene transfer operation. The gene transfer
operation substitutes the crossover operation, allowing the
recombination of information between different individuals,
in the expectation that this will lead to the creation of better
individuals. In BEA algorithm, first chromosome in the
current population is copied m times and m-1 clones (genes)
is mutated. The mutation operation is applied to the
randomly chosen (݅)th part. The m clones are then evaluated
using the cost function and the fittest clone survives. This
procedure is repeated for all parts of the chromosome and
for all chromosomes [3,4,5]. This method needs to produce
less generations but its drawback is to recall the cost
function much more times during the algorithm running in
comparison with the other methods.

The phenomenon of jumping genes, also known as
transposons, was first discovered by McClintock from her
work on corn plants [6,7]. Further experimental observation
also indicated that there were two ways in which the JGs
could move around the genome. The first one was called
cut-and-paste, which means a piece of DNA is cut and
pasted somewhere else. The second one was known as
copy-and-paste. This means that the genes remain at the
same location while the message in the DNA is copied into
RNA and then copied back into DNA at another place in the
genome [8]. JG method is actually a mutation operator
which was developed by considering these biological
explanations to be used as an evolutionary algorithm in
minimum or maximum finding problems.

The PSO operates on “particles”, driving them toward
promising regions discovered adaptively by the whole
swarm. The idea behind the algorithm was inspired by
social behavior of animals, such as bird flocking or fish
schooling and PSO was formulated by Edward and Kennedy

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.140

31

in 1995 [1,9]. PSO is similar to GA respecting that both of
them begin with a random population but the original PSO
does not have evolutionary operators such as crossover and
mutation and is not binary encoded. In PSO, each particle
moves about the cost function surface with a velocity.
Velocities and positions get updated with regard to the
position of the best particle [1,10].

Although GA’s variants have been able to speed up the
original algorithm in finding the extremum point in
comparison with the original algorithm, but they still suffer
from being slow especially when the number of the variables
of the cost function is high. The basic idea of the method
proposed in this paper is to change the mutation operator
in order to speed up the GA. In this paper we introduce two
new operators and compare their performance with the
methods introduced previously. Then, these two operators
are applied to the GA simultaneously to increase the
efficiency of its performance. Simulation results show that
when these two operators are applied to the GA, its
performance gets enhanced with respect to the speed of
convergence and the number of cost function evaluations.
Also its efficiency is revealed when the number of the
variables of the cost functions is high.

The organization of this paper is as follow: Section 2
gives a brief explanation to genetic algorithms. Section 3
and 4 introduce the SMM, CGM and the basic ideas beyond
them, respectively. Section 5 explains the reason of merging
two proposed methods. In section 6 simulation results for
proposed methods are presented and the new operators are
compared with some previously known algorithms and
finally section 7 presents the conclusion and summarizes the
simulation results.

II. GENETIC ALGORITHM
The original GA begins by defining a chromosome or

an array of variable values. Then each chromosome gets a
cost found by evaluating the cost function and the costs and
associated chromosomes are ranked from the lowest cost to
the highest. Only the best ones are selected to continue,
while the rest is deleted. Two chromosomes are selected
from the pool of chromosomes to produce two new
offspring. Pairing takes place in the mating population until
offspring are born to replace the discarded chromosomes.
Mating is the creation of one or more offspring from
the parents selected in the pairing process. The genetic
makeup of the population is limited by the current
members of the population. The most common form of
mating involves two parents that produce two offspring. A
crossover point is randomly selected between the first and
last bits of the parents’ chromosomes. First parent passes its
binary codes to the left of the crossover point of the first
offspring. Similarly, second parent passes its binary codes
to the left of the same crossover point of the second
offspring. Then, the binary codes to the right of the
crossover point are changed in similar way. So each
offspring contains portions of the binary codes of both

parents. Some functions have many local minima. If we do
nothing to solve the tendency to converge quickly, we
could end up in a local r ather than a global minimum.
To avoid this problem of overly fast convergence, we
force the routine to explore other areas of the cost surface
by randomly introducing changes, called mutation, in some
of the variables. For the binary GA, random numbers are
chosen to select the row and columns of the variables to be
mutated [1] and mutation is done by simply changing a bit
from 0 to 1 and vice versa.

III. SEQUENTIAL MUTATION METHOD
One of the most important operators in the GA is the

mutation operator. Mutation makes new attributes in genes
and makes it possible to release the GA from the local
minimums and go toward the global minimum. Also, it
makes available to seek all parts of the searching space to
find the global minimum. In this method the place of
applying mutation is changed.

In the original GA, the mutation operates on some
randomly chosen bit(s) of chromosomes. But in sequential
mutation method (SMM), the mutation is applied only on
one gene in each chromosome. In other words, only one
gene of a chromosome is changed during the mutation and
the other genes survive. The SMM has a very important
property and it is speeding up finding the global minimum
with less recalling the cost function which will be discussed
widely in the results section.

In SMM, in each iteration, only one gene is selected
from each chromosome and the mutation is applied on only
the bits of this gene. These bits are selected randomly and
this procedure is done for all the chromosomes in the
current generation. For example, if the mutation rate of the
algorithm is ߤ, the number of genes of each chromosome is ݊, the number of chromosomes in each population is ௣ܰ௢௣,
and the number of bits of each gene is ௚ܰ௘௡௘ , so the
total number of bits in each population is ௕ܰ௜௧௦ ൌ ݊ ൈ ௣ܰ௢௣ ൈ ௚ܰ௘௡௘ and the number mutations is ܰ௠௨௧௘ ൌ ߤሺ݀݊ݑ݋ݎ ൈ ௕ܰ௜௧௦ሻ. In this case, regarding the
SMM, ݀݊ݑ݋ݎ൫ܰ௠௨௧௘/ ௣ܰ௢௣൯ bits of the selected gene in
each chromosome are mutated. The mutation places are
chosen randomly. The selection of the gene is in a
sequential order and the place of the selected gene goes one
step further by increasing the number of generations. Figure
1 illustrates the place of applying the sequential mutation
operator on one chromosome. In this figure, n is the number
of genes in each chromosome or the number of variables in
the cost function. After running the algorithm for n
iterations, in (n+1)th iteration, the SMM is applied on the
first genes of all chromosomes and this procedure is
continued.

32

Figure 1. Place of applying the mutation on the chromosome in SMM.

IV. CIRCULAR GENE METHOD
The basic idea behind the CGM is derived from the

biological behavior of the bacteria and some other
organisms. Dulbecco and Vogt, and Weil and Vinograd in
1963 discovered that double stranded DNA of the polyoma
virus (minute infectious agent which is normally present in
extremely small amounts in the wild mice) exists in a closed
circular form. At present it is generally acknowledged that
this form, called circular DNA, is found in bacteria,
cytoplasm (gelatinous or liquid material within a cell) in
animals and archaea (microorganisms which are similar to
bacteria in size and simplicity of structure) as well as in
eukaryotic cells (organisms whose cells are organized into
complex). Furthermore, giant DNA molecules in higher
organisms form loop structures held together by protein
fasteners in which each loop is largely analogous to the
closed circular DNA. In plants and animals DNA is
organized into linear chromosomes and is found in the
nucleus of cells. DNA in bacteria and some other mentioned
organisms is organized circularly. Bacteria have one large
circular DNA molecule carrying most of their inherited
information and mutation on them is done by changing the
sequence of amino acids in a protein of DNAs [11,12,13].

By considering these biological explanations we can see
the chromosomes in circular form due to the fact that the
chromosomes of the multivariable cost functions have
many bits and by deeming a large-bit-chromosome as a
bacterium chromosome, we can apply the mutation on it.
As considered above, the mutation is done on some
specific biological chromosomes by changing the place of
the amino acids in DNAs. So we can implement this idea
with rotating some bits (or genes) of the chromosomes. We
call this technique as circular gene method (CGM). The CGM
is applied after the crossover and before the original
mutation.

By applying the CGM, the 1st gene gives its value to
the 2nd gene and takes its value from the nth gene; the 2nd
gene gives its value to the 3rd gene and takes its value
from the 1st one, and the (k)th gene gives its value to the
(k+1)th gene and takes its value from the (k-1)th gene. In
fact, in CGM, the places of the genes in each iteration are

shifted one step to the left by considering the
chromosome to be circular. Like SMM, CGM is applied on
all chromosomes in each iteration. Figure 2 illustrates the
procedure of applying the CGM on one chromosome in ݊
iterations.

V. SMM AND CGM

Simulation results show that applying SMM can speed

up finding the global minimum of the cost functions but
individual using of CGM does not have expectable results
in comparison with other methods. But merging these two
methods (apply SMM and CGM together) has the
advantages of both SMM and CGM and has the best result
among methods introduced in this paper. Its effects get
clear when these methods are used for the cost functions
which have many variables. The overall flowchart of the
algorithm is shown in figure 3.

VI. SIMULATION RESULTS
The cost function that is going to be minimized or

maximized may have many variables or the number of
arithmetical operations used in the cost function may be
high. Also it is possible that for evaluation of a cost
function using given independent variables, some
experimental tasks by either simulation or real running of
the case, which may take a long time to be done, is needed.
So the number of times which a cost function is recalled to
be calculated can be considered as a criterion to measure the
speed of the algorithms.

In evolutionary algorithms, the main operators (such
as selection, cross over and mutation for GA and position
and velocity updating for PSO) are applied in a repeating
manner to produce new generations with the aim of
approaching the global extremum of the cost function. It is
clear that the number of production of the new generations,
which is also considered as the number of iterations, can be
used as another criterion to measure the speed of the
algorithms.

Figure 2. Circular gene method; the chromosome rotates and the place of
the genes is shifted to the left.

33

Figure 3. Flowchart of the algorithm and the place of applying
SMM and CGM.

In this paper, two mentioned criteria, the number of cost

function evaluations and the number of iterations are used
to compare the performance of different heuristic
algorithms.

Introduced methods are tested on 12 standard cost
functions (which are available in [1]) but due to the
limitation of presenting all the results in this paper, the
results of only two of them are considered here. These
functions have some local and one global minimums.
Results of the proposed methods are compared with the
original GA, Jumping Gene, BEA and PSO Algorithms.

For each cost function, drawn figures show the mean
results of 50-time-running the algorithms. Because the
random development of the algorithms causes them to have
different answers in different runnings, this is done for
reducing the effect of the chance and increasing the
reliability in the results.

To show the capability of the proposed methods, two
figures are drawn for each cost function. First figure shows
the cost of the elite gene (or best particle) versus the number
of iterations. This curve gives us a measurement of how fast
the corresponding algorithm converges and reaches the
global minimum. Also, it is a suitable way to compare
different algorithms in terms of the final value they reach
for a specified number of iterations. Second figure is a bar
chart. This figure has 6 corresponding bars for each
method. Each bar shows how many times the cost function
is recalled until the algorithm reaches ݕ percent of the
global minimum. Relevant percents of ݕ for each bar are
noted on the top side of the figures. In bar charts, horizontal
axis shows that which method belongs to each bar and
vertical axis represents the number of the recalled cost
functions.

In this paper the number of chromosomes (or particles)
in each population is equaled to 8, the mutation factor (the
fraction of the bits which gets mutated) is 0.1, each gene is
coded with 16 bits, inertia factor and acceleration
coefficients for PSO is 1 and ݉ for BEA is equal with the
number of genes.

It can be seen from convergence figures 4, 6 and 8 that
using SMM and CGM simultaneously has the best result
among other algorithms.

BEA shows a very fast fall in convergence figures in
the first generations. This phenomenon is due to the fact
that BEA uses lots of mutations in each generation.
Indeed, it reaches its cost function evaluation limit in the
first generations. The figures 5, 7 and 9 confirm this
explanation. The simulation codes are written in a way
that when the number of recalled cost function reaches its
maximum number, the program stops the algorithm. This
is why the curve convergence of BEA in figures 4, 6 and
8 are incomplete.

In bar charts, each method has a maximum limitation in
the number of recalled cost functions. When one method
reaches to this limitation, the program stops. The maximum
limitation is determined with respect to the maximum
number of permitted cost function evaluation by
corresponding method. In some figures, BEA violates this
limitation due to the fact that BEA can recall the cost
function more times in comparison with other methods in
each iteration. Because the limitation is checked in the
program at the beginning of each iteration, so BEA has the
opportunity to exceed this limitation.

PSO have better result than BEA in recalling the cost
function. Also PSO has an acceptable convergence plot
when the number of variables in cost function increases but
its performance is still worse than SMM and CGM.

JG-copy and JG-cut are two methods that have better
result than previous ones when the number of variables of
the cost function is low. Although these two methods show
a proper behavior in convergence figures, their drawback is
the high number of recalled cost functions.

The results of the all tested cost functions show that
using SMM and CGM simultaneously has the best result in
both convergence curves and the number of recalled cost
function charts. These advantages get highlighted when the
number of variables in the cost function increases.

SMM and CGM are capable to deal with the
multivariable cost functions and the results get better by
increasing the number of the variables in the cost function.
To show this phenomenon, table 1 is mentioned. This table
shows the values for the average of five-time-running of the
algorithms for cost function 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ
for different Ns. The value of global minimum of this cost
function is 0 which occurs at ܺ ൌ 0. All of the algorithms are
run until a pre-specified number of recalled cost functions
are reached. This number is shown in the last row of the
table. The components of table 1 show the final values of
each algorithm. This table reveals the capability of SMM
and CGM when the number of variables in the cost function
increases.

34

Figure 4. Plot of the minimum cost as a function of the generation for
the cost function 10ܰ ൅∑ ሺ݊ሻଶݔൣ െ ሺ݊ሻ൯൧ேଵݔߨ൫2ݏ݋ܥ10 and N=5; Global

minimum at ܺ ൌ 0 with value 0.

Figure 5. Plot of the number of recalled cost functions to reach ݕ

percent of the global minimum for the cost function 10ܰ ൅ ∑ ሺ݊ሻଶݔൣ െ ሺ݊ሻ൯൧ேଵݔߨ൫2ݏ݋ܥ10 and N=5.

Figure 6. Plot of the minimum cost as a function of the generation

for the cost function 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ and N=15; Global
minimum at ܺ ൌ 0 with value 0.

Figure 7. Plot of the number of recalled cost functions to reach ݕ

percent of the global minimum for the cost function

 ૚ ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ and N=15.

Figure 8. Plot of the minimum cost as a function of the generation

for the cost function 1 ൅ ∑ ୶ሺ୬ሻସ଴଴଴ െ ∏ Cos൫xሺnሻ൯NଵNଵ and N=50; Global
minimum at ܺ ൌ 0 with value 0.

Figure 9. Plot of the number of recalled cost functions to reach ݕ

percent of the global minimum for the cost function

 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ and N=50.

35

TABLE I. FINAL VALUE OF ALGORITHMS AFTER A SPECIFIED

NUMBER OF COST FUNCTION 1 ൅ ∑ ௫ሺ௡ሻସ଴଴଴ െ ∏ ሺ݊ሻ൯ேଵேଵݔ൫ݏ݋ܥ IS RECALLED

FOR DIFFERENT NS
Number of

variables (N) 3 5 10 15 20 40 50 100

GA 0.0045 0.0163 0.3100 0.5855 0.8261 1.0222 1.0336 1.0926
JG-copy 0.0005 0.0152 0.3573 0.5501 0.8356 1.0224 1.0316 1.0943

JG-paste 0.0051 0.0206 0.3266 0.5710 0.8640 1.0225 1.0328 1.1028

BEA 0.0036 0.0632 0.6590 0.8733 0.9917 1.0424 1.0543 1.1246

PSO 0.0087 0.0374 0.3607 0.3640 0.4208 0.4661 0.4573 0.6473

SMM 0.0039 0.0106 0.0570 0.0705 0.0682 0.6039 0.6113 0.7893

CGM 0.0051 0.0200 0.2312 0.6286 0.8730 1.0241 1.0349 1.0942

SMM+CGM 0.0014 0.0070 0.0435 0.0520 0.0423 0.2496 0.3995 0.3054
Number of

recalled cost
functions

3000 4000 4000 10000 15000 10000 15000 30000

VII. CONCLUTION
Two new methods, SMM and CGM, have been

presented. These methods are applied to the original GA
instead of regular mutation. Simulation results show that
using SMM and CGM simultaneously can speed up the
convergence of the GA accompanied by less recalling the
cost function in comparison with other algorithms. The
future prospect of the approaches proposed here is to
theoretical analysis of the new methods and utilize them in
continuous minimum finding algorithms.

REFERENCES
[1] A. Randy, L. Haupt, and B. S. E. Haupt, Practical Algorithm

Genetics, 2nd ed., John Wiley & Sons, 2004.
[2] J. H. Holland, Adaptation in Natural and Artificial System, University

of Michigan Press, 1975.
[3] A. H. S. Kim, and B. P.N. Roschke, “Design of fuzzy logic controller

for smart base isolation system using genetic algorithm,” Engineering
Structures, Elsevier, Vol. 28, pp. 84-96, 2006.

[4] N. E. Nawa and T. Furuhashi, “Fuzzy system parameters discovery
by bacterial evolutionary algorithm,” IEEE Trans. on Fuzzy Systems,
Vol. 7, No. 5, pp. 608 – 616, October 1999.

[5] N. Kubota, T. Fukuda, T. Arakawa, and K. Shimojima, “Evolutionary
transition on virus-evolutionary genetic algorithm,” IEEE Int. Conf.
on Evolutionary Computation, Indianapolis, pp. 291–296, April 1997.

[6] W. K. S. Tang, S. T. W. Kwong, and K. F. Man, “A jumping genes
paradigm: theory, verification, and applications,” IEEE Circuits and
Systems mag., Vol. 8, Issue. 4, pp. 18-38, 2008.

[7] K. S. N. Ripon, S. Kwong, and K. F. Man, “A real-coding
jumping gene genetic algorithm for multiobjective optimization,”
Journal of Inf. Sciences, Vol. 177, No. 2, pp. 632–654, 2007.

[8] T. M. Chan, K. F. Man, S. Kwong, and K. S. Tang, “A Jumping Gene
Paradigm for Evolutionary Multiobjective Optimization,” IEEE
Trans. on Evolutionary Computation, Vol. 12, No. 2, pp. 143-159,
April 2008.

[9] J. Kennedy and R. C. Eberhart. “Particle swarm optimization,” IEEE
Int. Conf. on Neural Networks. Piscataway, NJ, pp. 1942–1948, 1995.

[10] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic
Algorithms, Springer, 2008.

[11] A. V. Vologodskii, Biophysical Chemistry Textbook, 5th ed., online
book, Bloomfield, 1999.

[12] http://en.wikipedia.org/wiki/Circular_DNA

[13] http://encyclopedia.farlex.com/Deoxyribose+nucleic+ acid

36

