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Abstract

This paper describes and analyzes population size man-

agement, which can be used to enhance the efficiency of the

extended compact genetic algorithm (ECGA). The ECGA is

a selectorecombinative algorithm that requires an adequate

sampling to generate a high-quality model of the problem.

Population size management decreases the overall running

time of the optimization process by splitting the algorithm

into two phases: first, it builds a high-quality model of the

problem using a large population; second, it generates a

smaller population, sampled using the high-quality model,

and performs the remaining of the optimization with a re-

duced population size. The paper shows that for decompos-

able optimization problems, population size management

leads to a significant optimization speedup that decreases

the number of evaluations for convergence in ECGA by a

factor of 30% to 70% keeping the same accuracy and re-

liability. Furthermore, the ECGA using PSM presents the

same scalability model as the ECGA.

1. Introduction

A Genetic Algorithm [2] that can solve hard problems

quickly, accurately and reliably is called a Competent GA.

Several Competent GAs have been proposed in the last

years including the Gene Expression Messy GA (gemGA),

the Linkage Learning GA (LLGA), the Extended Com-

pact GA (ECGA), the Bayesian Optimization Algorithm

(BOA) [2], the Factorized Distribution Algorithm (FDA)

[6], among others. One key characteristic present on several

competent GAs is the ability to identify Building Blocks

(BBs) [2], which are of strongly interacting variables that

should be processed simultaneously. This information is

used to perform recombination in a non-disruptive way,

thereby enabling these methods to solve deceptive problems

using a polynomial number of function evaluations [2].

Particularly, the ECGA performs the BB identification via

a probabilistic model building process. The quality of the

probabilistic model is crucial for the performance of the

ECGA, since a better model results in a better use of the

genetic material of the population. The model quality can

be enhanced using a large sample for the construction of

the model. However, if the size of the population is inade-

quately large, the computational cost to evaluate the popula-

tion becomes unnecessarily high. Therefore, it is important

to properly size the population, by balancing Quality and

Performance.

Population size theories [2] argues that using a larger

population size, there is a higher guarantee of finding the

global optimum than using of a smaller population size.

Also, the use of a smaller population size implicates the

needing of a higher number of generations to achieve the

global optimum, while a larger population needs less gen-

erations. Thus, the number of evaluations of both strategies

can be close.

This paper introduces an Efficiency-Enhancement Tech-

nique (EET) called Population Size Management (PSM),

which can significantly speed up the optimization process

of ECGA and other genetic and evolutionary algorithms by

considerably reducing the total number of evaluations by a

factor of 30% to 70% while keeping the same accuracy and

reliability. Furthermore, the ECGA using PSM presents the

same scalability model as the one presented in [10].

The paper is organized as follows. Section 2 introduces

the ECGA, describing relevant modeling aspects. Section 3

proposes the PSM. Section 4 presents experimental results

showing the reduction of the population size and evalua-

tions required by the ECGA to solve the test problems. Fi-

nally, Section 5 summarizes and concludes the paper.

2. Extended Compact Genetic Algorithm

This section describes the ECGA and analyzes the pop-

ulation size and number of evaluations required for con-

vergence. Section 2.1 presents the ECGA’s probabilistic

model. Section 2.2 shows the basic procedure of an ECGA.
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Section 2.3 presents the theory related to the required pop-

ulation size and number of function evaluations required by

the ECGA. Section 2.4 presents the Bisection Method used

to find the Minimum Population Size. Finally, Section 2.5

presents EETs developed by other researchers.

2.1. Probabilistic Model

As a probabilistic model building genetic algorithm

(PMBGA) [2], ECGA replaces the traditional variation op-

erators of GAs by building a probabilistic model of promis-

ing solutions and sampling the model to generate new can-

didate solutions.

To build an accurate probabilistic model, it is important

to detect the interaction among the variables. The detection

process is called linkage learning [5]. In the ECGA’s ap-

proach, the linkage learning corresponds to determination

of an adequate Marginal Probability Model (MPM), which

is a model with BB information and a probability distribu-

tion function of the bits in the population. The functions

are evaluated using the minimum description length (MDL)

metric. The key concept of this metric is that, given two

distributions with very similar behavior, the simpler distri-

butions is preferred over the more complex one. By penal-

izing both inaccurate and complex models, the MDL can

be used to guide a search process to a proper probability

distribution. Thus, finding a good distribution can be seen

as an optimization problem with two objective functions:

minimize the complexity of the probability model descrip-

tion and maximize the model accuracy. More details can be

found in [5].

2.2. Basic ECGA Procedure

The ECGA evolves a population of candidate solutions

represented by fixed-length strings over a finite alphabet

(for example, binary strings). The initial population is ran-

domly generated according to a uniform distribution over

the set of all potential solutions. Each iteration (generation)

starts by selecting promising solutions from the current pop-

ulation using any standard selection method of genetic or

evolutionary algorithms as, for example, tournament selec-

tion [1]. From the promising solutions, the ECGA builds an

MPM. Then, a new population is created by sampling from

the MPM. A next iteration is executed, unless a predefined

termination criterion is met. Algorithm 1 synthesizes the

ECGA.

2.3. Population Size Theory

The success of populational optimization algorithms,

like the GA, is highly influenced by the choice of an ade-

quate population size. On the one hand, a small population

Algorithm 1 Algorithm of the ECGA.

1. Initialization: use a random uniform binary distribution;

2. Evaluation of the fitness value of the individuals;

3. Selection: the ECGA usually employs s-wise tournament selec-

tion;

4. Construction of the new probabilistic model: both the structure

and the parameters of the MPM are determined using a greedy

search heuristic;

5. Generation of new individuals: new individuals are created by

sampling from the MPM;

6. Replacement of the parents by the offspring;

7. Repetition of Steps 2-6 until a termination criterion is met.

size provides a small mapping of the search space, possibly

resulting in a premature convergence. On the other hand, a

large population size will considerably increase the compu-

tational effort. Therefore, the study of models for predic-

tion of adequate population sizes for different problems is

an important key in the development of a GA theory.

For problems in which the BB identification is necessary,

Goldberg, Deb, and Clark [3] proposed population-sizing

models for correctly deciding between competing BBs by

incorporating noise information arising from other BBs.

Using this approach, they have concluded that a failure in

the correct identification of the BBs in the first generation

could be detrimental to the overall solution quality, prevent-

ing the algorithm from converging to the correct solution.

Pelikan, Sastry, and Goldberg [7] showed that the pop-

ulation size (n) required for the BOA to build an accurate

model scales polynomially with the problem size, with a

degree D of the order between 1.05 and 2.1 (Θ(m1.05) ≤

n ≤ Θ(m2.1), where m is the number of BBs). These

bounds also apply to many other model-building GAs. Em-

pirical results show that n roughly scales as Θ(m1.4) [9].

As high is the problem size, the closer to 1 is the value of

D.

However, based on empirical results that indicate the se-

lection pressure affects the population size, Yu et. al. [10]

lately demonstrated that the population size that the ECGA

requires to solve a problem with m BBs of size k with a

failure rate of � = 1
m

is given by

n ⩾ c
sto

ln2(sto/1.6)
22kmlog2(m)(

�2
BB

d2
), (1)

where c is a positive constant, sto is the tournament size,

�BB is fitness-variance of a BB and d is the signal dif-

ference between competing BBs. Thus, the models predict

that ECGA’s population size scales subquadratically with

the number of BBs, estimated as Θ(mlog2(m)). It is impor-

tant to note that this model is valid for additively-separable

problems. To experimentally find the minimum population

size needed to solve a problem, the bisection method can be

used, as described in Section 2.4.

20



Problem Size, PS

M
in

im
u

m
 p

o
p

u
la

ti
o

n
 s

iz
e

, 
n

10
2

10
3

10
4

32 48 64 80 96 112 128 160 192

Experiment using Bisection: ΘΘ(m
1.19

log2((m)))
Theory: ΘΘ(mlog2((m)))

Figure 1. Population size: model versus

experiment for the deceptive function from

Equation 3 (Section 4.1), using k = 4

2.4. Finding the Minimum Population Size
using the Bisection Method

The bisection method [8] can determine the minimum

population size required for the ECGA such that the num-

ber of correctly converged BBs, with failure probability

� = 1
m

, is at least m−1. According to the population-sizing

theory, the estimated size tends to Θ(mDlog2(m)), with

D = 1. This result has been verified in experiments using

up to a billion of variables [4]. However, for smaller prob-

lems, the population size predicted by the bisection method

is close to Θ(m1.2log2(m)) (see Figure 1).

3. Population Size Management

To understand the principle behind the PSM, it is im-

portant to understand how the ECGA processes the popula-

tion and why they need large populations. Two decision-

wise population sizing models have been studied by re-

searchers [2]: The generation-wise model and the gambler’s

ruin model. The gambler’s ruin is less conservative and re-

sults in a better agreement with empirical data for simple

GAs. However, for multivariate PMBGAs, the generation-

wise model results in a better agreement. This model as-

sumes that the decisions have to be made correctly in the

first generation. The decisions made in the first generation

highly bias the search on subsequent generations. As a con-

sequence, the population used on the first generation has to

be large enough to support the correct decisions. The idea

for PSM is derived from this observation.

As presented before, the quality of the probabilistic

model is crucial for the performance of the ECGA [2].

Thus, the PSM must guarantee the generation of a high-

quality model in the very first generation. The high-quality

of the first model focuses the search process in the sub-

Algorithm 2 ECGA with PSM.

Phase 1

1: Initialization: the population is usually initialized with random

individuals – use a large population size;

2: Evaluation of the fitness value of the individuals;

3: Selection: the ECGA usually employs s-wise tournament selec-

tion;

4: Construction of the new probabilistic model: both the structure

and the parameters of the MPM are determined using a greedy

search heuristic;

Phase 2

5: Generation of new individuals: new individuals are created by

sampling from the probabilistic model – now, use a reduced pop-

ulation size;

6: Replacement of the parents by the offspring;

7: Repetition of Steps 2–6 until a termination criterion is met.

sequent iterations on promising regions, since the search

space is now reduced. A reduced population size can be

used for the second generation. The procedure can go on,

reducing the population even more in the following genera-

tions. The use of a reduced population size may affect the

quality of the generated model; however, the new models

tend to be close to the high-quality model found in the first

generation. Thus, the model built with the reduced popula-

tion will also be a high-quality model, consequence of the

refinement of the search in the promising region.

To build the high-quality model in the first generation,

we wisely provide a large enough sample of the search

space. The minimal population size needed to obtain a high-

quality model can be determined by the bisection method.

The resulting approach from the combination of PSM with

ECGA is synthesized in the Algorithm 2.

The PSM reduces the overall running time showing that

is possible to build an accurate model with relatively low

number of individuals. As the population size can be

smaller, the number of evaluations will be also lower. The

next Section presents and discusses a set of experiments

with an ECGA using the PSM.

4. Experiments

This Section is organized as follows. Section 4.1 de-

scribes the test problems and the experimental methodology

used. Section 4.2 presents the results.

4.1. Test Problems and Configuration

The deceptive functions used in the experiments are de-

scribed below.

ftrap(u) =

{

1,
1− d− u ∗

1−d
k−1 ,

if u = k
otℎerwise,

(2)
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where u is the number of 1s in the string, k is the size of the

trap function and d (d = 1
k

) is the fitness signal;

fdeception(X) =

m−1
∑

i=0

ftrap(xki+xki+1+...+xki+k−1), (3)

where X is a string and x is a subset of bits from X. Thus,

this equation sums the values of the traps for X; and

fdecnoise(X) = fdeception(X) +G(0, �2
N ), (4)

where G(0, �2
N ) is the noise which follows a Gaussian dis-

tribution with mean 0 and variance �2
N .

The test results are organized in tables presenting the fol-

lowing information:

1. Problem size (PS): the problem size in which the algo-

rithm was tested;

2. Population Size using ECGA (ECGA): the popula-

tion’s size when using the original ECGA;

3. Population Size using ECGA with PSM (PSM): the

population’s size when using the PSM; PSMF is the

size of the First population, used to build the high

quality-model. PSMR is the size of the Remaining

population;

4. Ratio of POPulation Size (RPOPS): PSMR

ECGA
. For in-

stance, RPOPS=0.4 means that the reduced popula-

tion’s size is 40% the size of the original population;

5. Ratio of Function Evaluations (RFE): the number of

function evaluations when using PSM divided by the

number of function evaluations when not using PSM.

The population sizes were determined by the bisection

method over 30 trials. For the original ECGA and PSMF ,

we used the average size found by the bisection method.

For the PSMR, we used the largest size over the trials.

4.2. Results

Table 1 presents the results for k=4. The RPOPS and

RFE show reductions in the population size and in the num-

ber of function evaluations larger than 50%. Thus, the PSM

enables to double the computational performance while

maintaining the same quality of the solutions and scalabil-

ity. Another interesting point is that, for PSs larger than

96, RPOPS and RFE decrease, indicating that, for larger

problems, the population needed to solve them can be even

smaller. Tests using PSs of thousands of variables will be

performed in future works to verify this statement.

Table 1. Results for k=4 without noise.
PS ECGA PSMF PSMR RPOPS RFE

32 652 736 304 0.46626 0.44165

48 1192 1344 604 0.50671 0.49336

64 1768 2112 822 0.46493 0.43631

80 2544 2944 1080 0.42453 0.40427

96 3376 3584 1735 0.51392 0.49193

112 4144 4352 2056 0.49614 0.48152

128 5090 5120 2411 0.47367 0.46725

144 5858 6304 2759 0.47098 0.45283

160 6751 7488 2986 0.44230 0.42322

176 7680 8608 3371 0.43893 0.41811

192 8801 9344 3856 0.43813 0.42724
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Figure 2. Population size for k=4 without

noise: ECGA versus ECGA with PSM.

Figure 2 shows the improvement in the performance

of the ECGA with PSM. The population size was

Θ(m1.19log2(m)), but with PSM it is considerably lower,

Θ(m0.97log2(m)), with D lower than the theoretical 1 (see

Section 2.3). A similar improvement can be verified in the

number of function evaluations, showed in Table 1 (see col-

umn RFE).

For the function k=4 with noise (Equation 4), the results

(see Table 2) show more than 50% of reduction in pop-

ulation size and close to 60% in the number of function

evaluations. The presence of noise makes the problem rel-

atively harder than the problem of Equation 3, but the PSM

provides an even higher improvement which can be further

studied in future works.

Figure 3 illustrates the considerable reduction in the pop-

ulation size and in the number of evaluations, as presented

in Table 2. The populational requirement of the ECGA with

PSM grows slower, which leads to an important enhance-

ment in the efficiency for the tested noisy problem.

Table 3 presents the results for tests without noise for

k=5. The reductions of population size are about 50% can
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Table 2. Results for k=4 with noise.
PS ECGA PSMF PSMR RPOPS RFE

16 352 348 269 0.76420 0.75608

32 1046 1152 562 0.53728 0.49073

48 2022 2240 906 0.44807 0.39681

64 3053 3264 1443 0.47265 0.42321

80 4380 4608 1902 0.43425 0.38259

96 5615 5888 2643 0.47070 0.43573
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Figure 3. Population size for k=4 with noise:

ECGA versus ECGA with PSM.

be seen where PS is 15, 30, 60 and 75. The benefit was

smaller for PS 45 and 90, with a reduction of about 30%,

which is also a considerable improvement over the ECGA

without the PSM.

Furthermore, reductions in the population size from

Θ(m1.34log2(m)) to Θ(m1.13log2(m)) (Figure 4) and

in the number of evaluations from Θ(m1.83log2(m)) to

Θ(m1.64log2(m)) (see Table 3) are also important evi-

dences of the effect of the PSM approach. These results

indicate that the PSM’s contribution is even more signifi-

cant for the larger problem.

Table 3. Results for k=5 without noise.
PS ECGA PSMF PSMR RPOPS RFE

15 340 380 155 0.45588 0.49901

30 1080 1180 520 0.48148 0.48694

45 1996 2130 1413 0.70792 0.69431

60 3182 3500 1800 0.56568 0.56311

75 4529 5000 2310 0.51005 0.50335

90 5781 6020 3907 0.67583 0.67431
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Figure 4. Population size for k=5 without

noise: ECGA versus ECGA with PSM.

5. Summary and Conclusions

In order to reduce the running time of evolutionary algo-

rithms for complex problems, various approaches have been

developed. The algorithms with best performance found in

the literature create probabilistic models used to generate

offspring.

To solve decomposable problems, the ECGA, studied in

this work, needs a large population size Θ(mlog2(m)) to

generate a high-quality model of the problem. This pop-

ulation size is used by the entire evolution process. How-

ever, this Θ(mlog2(m)) behavior is actually shifted up by

some degrees, being D one of them. Therefore, the behavior

would change to Θ(mDlog2(m)). The value of D tends to

1 for very large problem sizes, with thousands of variables,

not being accurate for smaller problems, which may require

D ≈ 1.2.

This paper presented an EET called PSM to speed up

the optimization process of ECGA. In PSM, the ECGA’s

process is divided in two phases. In the first phase, it gener-

ates a high-quality model by using a large population size.

This high-quality model leads the algorithm to a promising

region. In the next phase, the algorithm starts a small pop-

ulation inside this promising region, by sampling from the

high-quality model. By reducing the population size, the

number of evaluations will be reduced; consequently, the

overall running time. For the smaller problems tested in this

work, the PSM technique achieved results corresponding to

D lower than the theoretical value equal to 1.

By using this approach, the ECGA’s running time is re-

duced by a factor of 30% to 70% while keeping the same ac-

curacy and reliability. Furthermore, the ECGA using PSM

presents the same scalability model as the ECGA, according

to [10].

The results with the deceptive function show that the

population size required by ECGA can be considerably
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lower than the estimated to the original ECGA, if a high-

quality model is constructed for the first generation. In

face of this, we provide more indicatives that a key point

of the success of the ECGA, and probably, of other compe-

tent GAs, is the first probabilistic model. Thus, an EET to

accurately build this model is an important research field.

5.1. Acknowledgment

This work was supported by CAPES (a Brazilian re-

search agency) and sponsored by the Air Force Office of

Scientific Research, Air Force Material Command, USAF,

under grants FA9550-06-1-0370 and AF FA9550-06-1-

0096. The U.S. Government is authorized to reproduce

and distribute reprints for government purposes notwith-

standing any copyright notation thereon. The views and

conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or im-

plied, of the Air Force Office of Scientific Research or the

U.S. Government. The experiments were done using the

ECGA software developed by Fernando Lobo, available at

http://www.illigal.uiuc.edu.

References

[1] D. Goldberg and K. Deb. A Comparative Analysis

of Selection Schemes Used in Genetic Algorithms.

In Foundations of Genetic Algorithms, pages 69–93,

1991.

[2] David E. Goldberg. The Design of Innovation:

Lessons from and for Competent Genetic Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA,

2002.

[3] David E. Goldberg, Kalyanmoy Deb, and James H.

Clark. Genetic algorithms, noise, and the sizing of

populations. Complex Systems, 6:333–362, 1992.

[4] D.E. Goldberg, K. Sastry, and X. Llorà. Toward rou-

tine billion-variable optimization using genetic algo-

rithms: Short Communication. Complexity, 12(3):27–

29, 2007.

[5] G. Harik. Linkage Learning via probabilistic mod-

eling in the ECGA. Technical report, University of

Illinois at Urbana Chapaign, Urbana, IL, 1999.

[6] Heinz Mühlenbein and Thilo Mahnig. The factor-

ized distribution algorithm for additively decomposed

functions, 1999.

[7] M. Pelikan, K. Sastry, and D. E. Goldberg. Scalabil-

ity of the bayesian optimization algorithm. Interna-

tional Journal of Approximate Reasoning, 31(3):221–

258, 2003.

[8] K. Sastry. Evaluation-relaxation Schemes for Genetic

and Evolutionary Algorithms. PhD thesis, University

of Illinois at Urbana-Champaign, 2001.

[9] K. Sastry and D.E. Goldberg. Designing Competent

Mutation Operators Via Probabilistic Model Build-

ing of Neighborhoods. Genetic and Evolutionary

Computation-Gecco 2004: Genetic And Evolutionary

Computation Conference, Seattle, Wa, Usa, June 26-

30, 2004, Proceedings, 2004.

[10] Tian-Li Yu, Kumara Sastry, David E. Goldberg, and

Martin Pelikan. Population sizing for entropy-based

model building in discrete estimation of distribution

algorithms. In GECCO ’07: Proceedings of the 9th

annual conference on Genetic and evolutionary com-

putation, pages 601–608, New York, NY, USA, 2007.

ACM.

24


