
Handling Box, Linear and Quadratic-Convex Constraints for Boundary
Optimization with Differential Evolution Algorithms

Massimo Spadoni
Department of Mathematics for Economic and Social Sciences

University of Bologna, Italy (spadoni@rimini.unibo.it)

Luciano Stefanini
DEMQ, Department of Economics and Quantitative Methods

University of Urbino, Italy (lucste@uniurb.it)

Abstract

We propose and test the performance of an implicit strat-
egy to handle box, linear and quadratic convex constraints,
based on changing the search space from points to direc-
tions, suitable to be easily implemented in combination with
differential evolution (DE) algorithms for the boundary op-
timization of a generic continuous function. In particular,
we see that DE can be ef�ciently implemented to �nd so-
lutions on the boundary of box constraints, linear inequal-
ity constraints and quadratic convex constraints, for which
the feasible set is convex and bounded. The computational
results are performed on different classes of minimization
problems.
Keywords: Constrained Global Optimization, Boundary

Optimization, Differential Evolution Algorithm.

1 Introduction

The literature in the recent years (see [4], [9], [8], [15])
has shown an extended interest toward adding more gen-
eral constraints to the box ones managed in the �rst im-
plementations of the DE algorithms (Differential Evolution,
see [12], [13]). The paper addresses situations where the
constraints are box, linear and/or quadratic convex and the
solution of the optimization problem is on the boundary of
the feasible region. The approach is relevant both for prob-
lems where the solution of interest is on the boundary of
the feasible region and for problems (such as the minimiza-
tion of a concave function) having naturally a boundary so-
lution. The proposed technique is based on changing the
search space from points to directions, suitable to be eas-
ily implemented in combination with DE for boundary op-
timization of generic continuous functions. In particular,
we see that DE methods can be ef�ciently implemented to

�nd solutions on the boundary of box constraints, linear in-
equality constraints and quadratic convex constraints, for
which the feasible set is convex and bounded. We claim for
the uselessness of penalization methods when dealing with
constraints of the type speci�ed ([4],[15]).
In section 2 we give the general setting to �nd the feasi-

ble directions that allow optimization on the boundary. Sec-
tion 3 introduces DE and shows the results of applying our
strategy to a set of computational tests taken from the liter-
ature.

2 General setting

We consider the problem of �nding the global minimum
of a continuous function f(x1; :::; xn) where the variables
are subject to different types of constraints:
- box constraints: xj 2 [x�j ; x

+
j], j = 1; 2; :::; n;

- linear inequality constraints: pTi x � qi, i = 1; :::;mL;
- convex quadratic inequality constraints: xTQkx +

rTk x+ sk � 0, k = 1; 2; :::;mQ;
If some variables xj are not boxed, we assume x�j =

�BIG and/or x+j = BIG, where BIG is a large positive
number.
If we denote by X the feasible set, it is convenient to

write X as the intersection X = XB \ XL \ XQ where
- XB = f(x1; :::; xn)jxj 2 [x�j ; x

+
j];8jg

- XL = f(x1; :::; xn)jpTi x � qi;8ig
- XQ = f(x1; :::; xn)jxTQkx+ rTk x+ sk � 0;8kg.
We will handle the box, linear and convex quadratic con-

straints implicitly; other constraints can eventually be han-
dled via penalization.
We will also distinguish the two situations where the so-

lution is to be located on the boundary or possibly inside the
(convex) feasible set XBLQ obtained by the box, linear and
convex quadratic constraints, producing the two problems:

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.231

7

(P) : minff(x)jx 2 XBLQg or, denoting @X the
boundary of X,

(@P) : minff(x)jx 2 @XBLQg:
A case of particular interest is when function f is con-

cave, as it is well known that the optimal solution is "nat-
urally" on the boundary or at a vertex of X and, except for
special cases, the global minimisation is NP-hard.
Recent literature on global optimization of general (con-

tinuous) objective functions has dedicated extended atten-
tion to the Differential Evolution (DE) algorithms, intro-
duced in recent years for the box-constrained problem and
modi�ed in different ways to handle more general con-
straints; the inclusion of non-box constraints into the prob-
lems solved by DE is still an open problem. We suggest a
simple technique to handle linear and convex quadratic con-
straints, directly by transforming the sampling of x on the
search domain into the sampling on a set of directions u,

x = a+ tu (1)

where a is a given point (called the base point), u is the
sampling direction and t is a parameter to be determined
such that x is feasible.
It is well known from convex analysis that, if XBLQ (in

particular XB ;XL and XQ) are (convex and) bounded, then
the set of values t for which x 2 XBLQ is a closed inter-
val [t�; t+] (eventually empty if a + tu does not intersect
XBLQ).
In our implementation, we distinguish two cases for the

base point a:
i) a 2 XBLQ; in this case every direction produces fea-

sible x's, for given u, belonging to the segment having ex-
trema x�u = a and x+u = a+ t+u (i.e. t� = 0 and t+ � 0).
ii) a =2 XBLQ; in this case the feasible points x, for a

given u, are the points of the segment having extrema x�u =
a+ t�u and x+u = a+ t+u.
In the following, we will see how to determine t� and

t+ from the three types of constraints. We will essentially
concentrate on case i) and eventually we will use case ii)
to �nd a feasible a and then proceed with i). We suggest
a way of handling box and/or linear constraints by using
linear trasformations (1) of the variables where u 6= 0 are
unconstrained variables (directions) and t is a positive real
number computed to ensure that x 2 @P and a is any point
in P.
As we have said, the idea of our implementation requires

the calculation of the appropriate values t� and t+ for a
given direction u and for each type of constraint (box, linear
or convex quadratic inequalities).
Consider the box XB of Rn

XB =
�
xjx�j � xj � x

+
j ; j = 1; :::; n

	
and a feasible point a 2 XB (e.g. aj =

x�j +x
+
j

2); let also
u 2 Rnnf0g be given. It is easy to see that a point x =

a + tu, t � 0; belongs to XB for all values of t 2 [0; t+]
where

t+ = min

(
minf

x�j �aj
uj

juj < 0g;minf
x+j �aj
uj

juj > 0g
)

and for t = t+ we get the point a + t+u at the boundary
@XB . Note that the assumption of u 6= 0 is essential and
the components for which uj = 0 are irrelevat for the com-
putation of t+. If the base point is not in the box, we have
to determine also t� and to see if u is a feasible direction.
We obtain the following rule:
- if, for some j, uj = 0 and x�j �aj > 0 or x

+
j �aj < 0,

then direction u is not acceptable to reach XB ;
- otherwise, de�ne

t0 = max

�
maxfx

+
j �aj
uj

juj < 0g;maxf
x�j �aj
uj

juj > 0g
�

and
t00 = min

�
minfx

+
j �aj
uj

juj > 0g;minf
x�j �aj
uj

juj < 0g
�
;

if t0 < t00 then t� = t0 and t+ = t00, otherwise no t exists
and direction u is not acceptable.
Behaving this way with an acceptable direction u, the

sampling of the objective function is on the border of the
constraints; this makes avoidable to sample outside the fea-
sible region and no penalization is needed for the manage-
ment of a point outside.
Consider now the case of linear constraints and let XL

be the corresponding polyhedron

XL=fxjpTi x � qi, i = 1; :::;mLg:

Also in this case we �rst assume a feasible a 2 XL. It is
easy to see that a point x = a+ tu; t � 0 belongs to XL for
all values of t 2 [0; t+] where

t+ = minfqi � p
T
i a

pTi u

��pTi u < 0g (2)

and if the set of indices fi
��pTi u < 0gis empty, then the

polyhedron XL is unbounded in the direction u.
Obviously, we get the boundary @XL for t = t+.
In the general case where a 2 Rn is an arbitrary point

(not belonging to XL) and u 6= 0 is a given direction, the
points x = a + tu with t � 0 belong to the polytope XL
for t 2 [t�; t+] where t� and t+ are calculated as follows
(note that a+ tu 2 XL if tpTi u � qi � pTi a 8i).
We have three cases:
1) pTi u = 0 : - if qi � pTi a > 0 then no t exists and

direction u is not acceptable to reach XL; - if qi � pTi a � 0
then any t is valid and the i� th constraint can be ignored.
2) pTi u > 0 : - if qi � pTi a > 0 then t must satisfy

t � qi�pTi a
pTi u

; - if qi � pTi a � 0 then any t is valid and the
i� th constraint can be ignored.

8

3) pTi u < 0 : - if qi � pTi a > 0 then no t exists and
direction u is not acceptable; - if qi � pTi a = 0 then only
t = 0 is acceptable for the i�th constraint; - if qi�pTi a < 0
then t must satisfy t � qi�pTi a

pTi u
.

Consequently, we obtain

t� = maxfqi � p
T
i a

pTi u

��pTi u > 0; qi � pTi a > 0g; (3)

if the set of indices fi
��pTi u > 0; qi � pTi a > 0g is not

empty (otherwise t� = 0) and

t+ = minfqi � p
T
i a

pTi u

��pTi u < 0; qi � pTi a < 0g (4)

if the set of indices fi
��pTi u < 0; qi � pTi a < 0g is not

empty (otherwise t+ = +1 and XL is unbounded).
Finally, in the case of convex quadratic inequalities, let

XQ be the corresponding convex set

XQ=fxjxTQkx+ rTk x+ sk � 0; k = 1; 2; :::;mQg:

Also in this case we �rst assume a feasible a 2 XQ.
After the substitution x = a+ tu; t � 0, the constraints

can be written as

Akt
2 +Bkt+ Ck � 0 (5)

where

Ak = uTQku

Bk = uTQka+ a
TQku+ r

T
k u

Ck = aTQka+ r
T
k a+ sk

As the constraints are assumed to be convex, we have
uTQku � 0 i.e. Ak � 0. If, for some k, the parabolic
inequality (5) is never satis�ed with respect to t � 0, then
direction u is not acceptable.
De�ne also the following quantities

Dk = B
2
k � 4AkCk:

Note that if a is feasible for the quadratic constraints,
then Ck � 0 and t = 0 is always feasible; if only t = 0
satis�es the constraints, then direction u must be discarded.
Also note that in this case we always have Dk � 0.
Going into the details, we have three cases.
1. Ak > 0; Dk > 0: the constraint is satis�ed for all

t 2 [0; �Bk+
p
Dk

2Ak
]; set nk = 0 if �Bk+

p
Dk

2Ak
= 0, otherwise

nk = 1 and t0k = 0; t00k =
�Bk+

p
Dk

2Ak
.

2. Ak = 0; Bk 6= 0: in this case feasible t satisfy t �
�Ck
Bk
; set nk = 0 if �CkBk

� 0, otherwise nk = 1 and t0k = 0;
t00k =

�Ck
Bk
.

3. Ak = 0; Bk = 0: here, as Ck � 0 then any t is valid
(set nk = 2).
The feasible interval [0; t+] for the values of t is then

obtained (if nk > 0 for all k, otherwise u is discarded) by

t+ = minft00k jnk = 1g.

The case where a is not feasible requires to determine the
interval [t�; t+] for the valid values of t and it is possible
that no such t exist.
Note that if a is not feasible, then Ck > 0 andDk can be

negative. The details are as follows:
1. Ak > 0; Dk < 0: no feasible t exists and direction u

is discarded; set nk = 0:
2. Ak > 0; Dk � 0: in this case we need �Bk�

p
Dk

2Ak
�

0; set nk = 0 if �Bk�
p
Dk

2Ak
< 0, otherwise nk = 1 and

t0k =
�Bk�

p
Dk

2Ak
; t00k =

�Bk+
p
Dk

2Ak
.

3. Ak = 0; Bk > 0: in this case no feasible t exist; set
nk = 0:
4. Ak = 0; Bk < 0: in this case feasible t satisfy t >

�Ck
Bk
; set nk = 1 and t0k =

�Ck
Bk
, t00k = +1:

5. Ak = 0; Bk = 0: here, as Ck > 0 then no t is valid
(set nk = 0).
The feasible interval [t�; t+] for the values of t is then

obtained (if nk > 0 for all k, otherwise u is discarded) by

t� = maxft0kjnk = 1g and t+ = minft00k jnk = 1g.

3 Implementation and computational tests

As we have seen in the previous section, in cases of box,
linear and convex quadratic constraints, the computation of
tu such that x = a+ tuu 2 @XBLQ or of [t�u ; t+u] such that
x = a + tu 2 XBLQ 8t 2 [t�u ; t+u] is easy; starting with
a feasible point a 2 XBLQ the transformation (1) can be
directly substituted into the objective function obtaining the
equivalent problem

minF (u) = f(a+ tuu), u 2 [�1; 1]n

where tu is the unique values of t > 0 such that a+ tuu 2
@XBLQ.
Our idea of the algorithm implemented for DE is to �nd

a solution of problem (@P) by determining a valid direction
u, computing the current value of tu and the corresponding
xu = a+ tuu and evaluating the objective function there.
Clearly, for a given valid direction u, also all directions

�u with positive � and �u 2 [�1; 1]n produce the same xu
at the boundary of the feasible region. On the other hand,
DE produces new search points by "sampling" the hyper-
cube, so the possibility of equivalent directions (with the
same objective value) exists, unless the search itself is con-
trolled and constrained e.g. by generating only normalized
directions (kuk = 1).

9

In order to avoid this effect, we insert a simple modi�ca-
tion of the objective function so that directions near to nor-
malized are preferred; this is done by using a two-objective
strategy that prefers normalized directions as a second ob-
jective of the search (see [3] and the references therein).
The idea of DE to �nd Min is to start with an

initial "population" x(1) = (x1; :::; xn)
(1); :::; x(p) =

(x1; :::; xn)
(p)2X of p feasible points for each generation

(i.e. for each iteration) to obtain a new set of points by
recombining randomly the individuals of the current popu-
lation and by selecting the best generated elements to con-
tinue in the next generation. The initial population is chosen
randomly to "cover" uniformly the entire parameter space.
Denote by x(k;g) the k�th vector of the population at itera-
tion (generation) g and by x(k;g)j its j�th component.
At each iteration, the method generates a set of candidate

points y(k;g) to substitute the elements x(k;g) of the current
population, if y(k;g) is better. To generate y(k;g) two opera-
tions are applied: recombination and crossover.
A typical recombination operates on a single component

j 2 f1; :::; ng by generating a new perturbed vector of the
form v

(k;g)
j = x

(r;g)
j +
[x

(s;g)
j � x(t;g)j], where r; s; t 2

f1; 2; :::; pg are chosen randomly and
 2]0; 2] is a constant
(eventually chosen randomly for the current iteration) that
controls the ampli�cation of the variation.
The potential diversity of the population is controlled

by a crossover operator, that construct the candidate y(k;g)
by crossing randomly the components of the perturbed
vector v(k;g)j and the old vector x(k;g)j (j1; j2; :::; jh are ran-
dom),

y
(k;g)
j =

(
v
(k;g)
j if j 2 fj1; j2; :::; jhg
x
(k;g)
j if j =2 fj1; j2; :::; jhg

and the components of each individual of the current
population are modi�ed to y(k;g)j by a given probability q:
Typical values are
 2 [0:2; 0:95], q 2 [0:7; 1:0] and

p � 5n (the higher p, the lower
).
The candidate y(k;g) is then compared to the existing

x(k;g) by evaluating the objective function at y(k;g) : if bet-
ter then substitution occurs in the new generation g + 1,
otherwise x(k;g) is retained.
Many variants of the recombination schemes have been

proposed and some seem to be more effective than others
(see e.g. [12]):

3.1 Computational tests

We have implemented the DE procedure using MAT-
LAB and we have run a series of examples with problems
taken from the literature and problems with randomly gen-
erated constraints. The problems are classi�ed in three
classes of examples: a) Problems with only box constraints

and solutions on the boundary; b) Problems with linear and
convex quadratic constraints and solutions on the boundary;
c) Problems with all types of constraints and internal solu-
tions.
As the basic routines for DE, we have used the

one described in [13]. The strategies for DE are
numbered from 1 to 6 as 1=DE/rand/1, 2=DE/local-
to-best/1, 3=DE/best/1 with jitter, 4=DE/rand/1 with
per-vector-dither, 5=DE/rand/1 with per-generation-dither,
6=DE/rand/1 either-or-algorithm (see routine DEOPT in
[13]).
The results are illustrated in the tables, where FEbest and

FEworst specify the function evaluation counts for the given
best Sbest and worst Sworst strategy, respectively;
 is the
value of the DE parameter with best performance and f� is
the optimum value found.
The �rst example is:
min
x

1:45x21 + 0:75x22 + 7x23 � 2x1x3 � 2x2x3 +

2
p
x1 + x2 + x3
s.t.
2x1 � x2 � x3 � �1
�3x2 � x3 � �9
�3x1 � 1:5x2 � x3 � �12
�3x1 + 3x2 � x3 � �3
�x1 + x2 � 2x3 � �3:5
2x1 + 3x2 � x3 � 7
xi � 0
The results are

 Sbest FEbest Sworst FEworst f�

0.5 3 930 5 3930 6.5086

For the box constrained problems with solutions at the
boundary, we consider the following n-dimensional quartic
function with a random noise variable de�ned by

(P1): min
nP
i=1

[2:2(xi + ei)
2 � (xi + ei)4]

s.t. xi 2 [�2; 2], i = 1; 2; :::; n
where ei is uniformly distributed on [0:2; 0:4]. The

global minimization (P1) is NP-hard and the solution is at
a vertex of the box. We have generated different problems
with n from 5 and 10.
The second problem concerns the packing of p > 1 equal

circles in a square; it is a minimization of a concave function
over a box (with p circles we have a problem in n = 2p
variables representing the centers):

(P2): min
(xi;xp+i)2U

�
�max

i<j

�
(xi � xj)2 + (xp+i � xp+j)2

��
s.t.
0 � xi; xp+i � 1 for i = 1; 2; :::; p:
where U = [0; 1]2

The third and fourth problems consider the minimization
of concave functions over a box x 2 [0; 1]n (from [7]):

10

(P3): min�3
nP
j=1

x2j + 2
n�1P
j=1

xjxj+1

(P4): min�

nP
j=1

1
j xj

!
ln

1 +

nP
j=1

1
j xj

!
The results for DE are illustrated in the following table

(FEbest and FEworst specify the number of function evalu-
ations for the given best Sbest and worst Sworst strategies,
respectively, f� is the optimum value and fworst is the val-
ued reached by the worst strategy, that may differ from f�
when the number of function evaluations has reached the
upper limit of 249600 (corresponding to 5000 generations).

Problem
 Sbest FEbest f� Sworst FEworst fworst
P1, n=5 0.6 3 5050 -87.3898 4 33550 -87.3898

P1, n=10 0.6 2 44600 -169.6234 1 (249600) -169.6183

P2, p=5 0.6 3 9100 -0.7071 5 82300 -0.7071

P2, p=9 0.6 3 42400 -0.5 5 >249600 -0.5

P3, n=5 0.5 3 3050 -5.1962 4 20550 -5.1962

P3, n=10 0.5 3 7100 -6.7082 5 (249600) -6.7081

P4, n=5 0.5 3 2300 -2.7146 5 13300 -2.7146

P4, n=10 0.5 2 9600 -4.0079 4 203100 -4.0079

The results reported in [7] for problems P3 and P4 are
not comparable with the ones in the previous table because
the authors use other parameters (computational time, num-
ber of iterations) and do not show the number of function
evaluations; meanwhile, the times are out of our experience
obtained with a code running in MATLAB. Notice that the
sizes of the problems in the mentioned paper are limited to
n = 5 or 6, so the case with n = 10 is not solved in [7].
The tests for fully constrained problems with boundary

solutions are taken from [5], [7], [10], [14], and [15].

(P5): min
x
5

4P
j=1

xj � 5
4P
j=1

x2j �
13P
j=5

xj

s.t.
�2x1 � 2x2 � x10 � x11 � �10
�2x1 � 2x3 � x10 � x12 � �10
�2x2 � 2x3 � x11 � x12 � �10
2x4 + x5 � x10 � 0
2x6 + x7 � x11 � 0
2x8 + x9 � x12 � 0
8x1 � x10 � 0
8x2 � x11 � 0
8x3 � x12 � 0
0 � xi � 1; (i = 1; :::; 9)
0 � xi � 100; (i = 10; 11; 12)
0 � x13 � 1

The global minimum is at x� = (1; 1; 1; 1; 1; 1; 1; 1; 1;
3; 3; 3; 1) and f� = �15.
(P6) min xTQx

s.t.
5P
j=1

xj � 1

0 � xj � 1, j = 1; :::; 5

where

Q =

266664
14 15 16 0 0
15 14 12:5 22:5 15
16 12:5 10 26:5 16
0 22:5 26:5 0 0
0 15 16 0 14

377775
(P7) Min x21+ x22+ x1x2� 14x1� 16x2+ (x3� 10)2

+4(x4 � 5)2 + (x3 � 3)2 + 2(x6 � 1)2 + 5x27
+7(x8�11)2+2(x9�10)2+(x10�7)2+45

s.t.
�105 + 4x1 + 5x2 � 3x7 + 9x8 � 0
10x1 � 8x2 � 17x7 + 2x8 � 0
�12� 8x1 + 2x2 + 5x9 � 2x10 � 0
3(x1 � 2)2 + 4(x2 � 3)2 + 2x23 � 7x4 � 120 � 0
5x21 + 8x2 + (x3 � 6)2 � 2x4 � 40 � 0
x21 + 2(x2 � 2)2 � 2x1x2 + 14x5 � 6x6 � 0
0:5(x1 � 8)2 + 2(x2 � 2)2 + 3x25 � 6x6 � 30 � 0
�3x1 + 6x2 + 12(x9 � 8)2 � 7x10 � 0
�10 � xj � 10

Solution is x� = (2:172; 2:364; 8:774; 5:096; 0:991;
1:431; 1:322; 9:829; 8:280; 8:376) with f� = 24:306)
The results for DE are illustrated in the following table;

the structure of the table is mimicked from the previous one.

Problem
 Sbest FEbest f� Sworst FEworst fworst
P5, n=13 0.4 1 79430 -15.0 6 281520 -15.0

P6, n=5 0.5 3 2300 0.0 4 9050 0.0

P7, n=10 0.6 3 17100 24.3062 5 239600 24.3062

Comparing with the perfomances of DE published in
[15], our implementation compares favourably. For exam-
ple, the number of function evaluations for functions g01
(our P5) and g07 (our P7) are respectively 111034 (our
3100) and 83476 (our 17100).
The test problems for concave minimization with linear

constraints are P8 to P13, of the form

minff(x)jpTi x � qi;8i; xj 2 [0; 100];8jg,

where f(x) is one of the following functions:

P8: f1(x) = �

x1 +

nP
j=2

j�1
j xj

!3=2
P9: f2(x) = �

nP
j=1

1
j xj

!
ln

1 +

nP
j=1

1
j xj

!!
P10: f3(x) = �3

nP
j=1

x2j + 2
n�1P
j=1

xjxj+1

P11: f6(x) = �
nP
j=1

[ln(1 + xj)� exp(�xj=n)]

P12: f8(x) = �
s

nP
j=1

x2j �

nP
j=1

p
xj

!3=2

11

P13: f10(x) = �
nQ
j=1

x
�j
j , where the �j � 0 are

randomly generated with
nP
j=1

�j = k � 1 (it follows that

f10 is concave) We use k = 2.

The linear constraints for f1 to f10 are of the form pTi x �
qi; i = 1; :::;mL and are generated randomly according to
the procedure suggested by [10]. The point a = (1; :::; 1) is
always feasible.
The runs for DE are documented in the following table

(with the same structure as before); they have the number
of linear constraints set tomL = 25

Problem
 Sbest FEbest f� Sworst FEworst fworst
P8, n=10 0.7 3 32100 -41.7017 1 255100 -41.7017

P9, n=10 0.7 3 26100 -9.7248 1 188100 -9.7248

P10, n=10 0.8 3 58100 -107.2079 2 85100 -107.2079

P11, n=10 0.7 3 15100 0.3255 1 90100 0.3255

P12, n=10 0.7 3 19100 -41.1397 4 124100 -41.1397

P13, n=10 0.7 3 14100 -2.1334 4 112100 -2.1334

Problem P10 comes from [7] where it is solved for in-
stances of n between 5 and 9 and with mL between 8 and
16 linear constraints (generated in a similar way as us); the
authors espose the number of interations and computational
times (up to 9000 seconds on a workstation), not the count
of function evaluations.

References

[1] M.M. Ali, L.P. Fatti, "A differential free point generation
scheme in the differential evolution algorithm", Journal of
Global Optimization, 35 (2006) 551-572.

[2] J. Brest, M. Sepesy Maucec, "Population size reduction
for the differential evolution algorithm", Appl. Intell. DOI
10.1007/s10489-007-0091-x, Springer, LLC 2007.

[3] Z. Cai, Y. Wang, " A multiobjective optimization-based
evolutionary algorithm for constrained optimization", IEEE
Transactions on Evolutionary Computation, 10 (2006) 658-
675.

[4] C.A.C. Coello, "Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state if the art", Comput. Methods Appl. Mech.
Eng. 191 (2002) 1245-1287.

[5] C.A. Floudas, P.M. Pardalos et al., Handbook of test prob-
lems in local and global optimization, Kluwer Academic
Publ., 1999.

[6] G. Leguizamon, C.A. Coello Coello, "Boundary search for
constrained numerical optimization problems in ACO algo-
rithms", in M. Dorigo et al. (Eds.), Proceedings of ANTS

2006, Lecture Notes in Computer Science n. 4150, Springer,
2006, 108-119.

[7] M. Locatelli, N.V. Thoai, "Finite exact branch and bound al-
gorithms for concave minimization over polytopes", Journal
of Global Optimization, 18 (2000) 107-128.

[8] E. Mezura-Montes, C.A. Coello Coello, E.I. Tun-Morales,
"Simple feasibility rules and differential evolution for con-
strained optimization", Proceeding of IMICAI 2004, Lec-
ture Notes in Arti�cial Intelligence, 2972, Springer, 2004,
707-716.

[9] E. Mezura-Montes, J. Velazquez-Reyes, C.A. Coello Coello,
"Modi�ed differential elovution for constrained optimiza-
tion", Proceedings of Congress on Evolutionary Computa-
tion (CEC), 2006, 25-32.

[10] K. Moshirvaziri, "Construction of test problems for con-
cave minimization under linear and nonlinear constraints",
J.O.T.A. 98 (1998) 83-108.

[11] K. Price, "An introduction to differential evolution", in D.
Corne, M. Dorigo, F. Glover (Ed.), New Ideas in Optimiza-
tion, McGraw Hill, 1999, 79-108.

[12] R. Storn, K. Price, "Differential Evolution: a simple and
ef�cient heuristic for global optimization over continuous
spaces", ICSI technical report TR-95-012, Berkeley Univer-
sity, 1995. Also, Journal of Global Optimization, 11 (1997)
341-359.

[13] R. Storn, Differential Evolution for MATLAB, International
Computer Science Institute (ICSI), Berkeley, CA 94704,
http://http.icsi.berkeley.edu/~storn, 1997.

[14] X.L. Sun, J.L. Li, "A branch-and-bound based method
for solving monotone optimization problems", Journal of
Global Optimization, 35 (2006) 367-385.

[15] M. Zhang, W. Luo, X. Wang, "Differential evolution with
dynamic stochastic selection for constrained optimization",
Information Sciences, 178 (2008) 3043-3074.

12

