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Abstract 
 

Recent studies [13, 18] have shown that clearing 
schemes are efficient multi-modal optimization 
methods. They efficiently reduce genetic drift which 
is the direct reason for premature convergence in 
genetic algorithms. However, clearing schemes 
assumed a landscape containing equal-spaced basins 
when using a fixed niche radius. Further, most 
clearing methods employ policies that favor elitists, 
thus affecting the explorative capabilities of the 
search. In this paper, we present a valley adaptive 
clearing scheme, aiming at adapting to non-uniform 
width of the valleys in the problem landscape. The 
framework of the algorithm involves hill-valley 
initialization, valley-adaptive clearing and archiving. 
Experimental results on benchmark functions are 
presented to demonstrate that the proposed scheme 
uncovers more local optima solutions and displays 
excellent robustness to varying niche radius than 
other clearing compeers.  

1. Introduction 
Most real world problems exhibit the property of 

having more than a local optimum solution. In 
particular, such problems are of great abundance in 
science and engineering [1-6]. Aerodynamic design, 
chemical isomers, scheduling and assignment 
problems represent some of the areas that possess 
fitness landscapes that are multi-modal in nature. 
Among these problems, most effort to date has 
concentrated on revealing the location and properties 
of the global optimum(s). Significantly lesser effort 
has been placed on identifying the set of all 
acceptable solutions. A motivating example for us in 
chemistry and physics is the discovery of low energy 
stable and meta-stable molecular structures which has 
remained an important and unsolved problem. Global 
optimization are often conducted at the expense of 
locating other low-lying isomers or otherwise known 
as local minima in the context of optimization. It is 
worth noting that isomers not only provide key 
insights into resultant properties but a statistical 

comparison between isomers also represents a more 
robust methodology for comparing models and 
determining fit to the quantum mechanical 
calculations [7,8]. 

In this paper, we are interested not only in 
finding one or more global optima but in identifying 
the set of all acceptable solutions. Such paradigms 
are commonly known as multi-modal optimization 
problems (MMOP). MMOPs can be classified into 
two main categories, according to the number and 
distribution of the local optimum set, namely, 1) 
finite MMOPs: a discrete set with finite optima 
representing the set of acceptable solutions, 2) 
infinite MMOPs where optima can be, for example, 
materialized in a circular manner similar to the waves 
of a lake when a stone is thrown in it [8]. In this 
work, our research interest is to deal with MMOPs 
containing a finite set of acceptable solutions. 

In light of their excellent adaptabilities, 
evolutionary algorithms are well-established as 
strong candidates for handling multimodal 
optimization problems. One of their key strengths lies 
in their ability to maintain a diverse set of solutions 
in a single population [9-13] when appropriately 
designed. Hence, several new challenges to 
evolutionary computation have arisen when dealing 
with problems plagued with multiple optima. How to 
assess when or if a local optimum has been detected 
and how to discover and identify unique local optima 
in the evolution process once it has been detected 
remain to be among some of the open issues. To date, 
several efforts by researchers have been made to 
tackle such problems. The most common methods 
such as fitness sharing and clearing methods are 
summarized and compared in [13]. The comparison 
has shown that clearing methods efficiently reduce 
genetic drift and maintain multiple solutions. 
However, clearing methods generally assume the 
landscape to contain equal-sized basins, with a basin 
size larger than or equal to the clearing radius. Such 
information requires a prior knowledge about the 
landscape. An inappropriate value assumed would 
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seriously affect eventually the search performance. 
Further, some individuals in the clearing methods 
have no chance to participate in the reproduction 
operators, limiting the exploration capabilities of the 
clearing methods. 

In this paper, we present a novel multi-modal 
optimization algorithm.  In this algorithm, the initial 
population of individuals is sampled to sit in unique 
valley or basin of attraction. Individuals then undergo 
the reproduction operators. Individuals falling on a 
same valley are grouped together and subsequently 
categorized into elites and inferiors according to their 
fitness. Elites are enforced to survive to the next 
generation, while the inferiors are locally optimized.  
All unique elite solutions are then archived.  

The paper is organized as follows: Section 2 
provides a brief definition of the non-linear 
programming problem. Related work is presented in 
Section 3. The details of the proposed method are 
presented in section 4 while section 5 reports the 
results obtained from our computational study. The 
brief conclusion is then stated in Section 6. 

2. Problem Statement  

Here, we consider the general multi-modal 
nonlinear programming problem of the following 
form. 

Minimize: ܨሺܠሻ   (1) 
Subjected to ݃ሺܠሻ  0              ݅ ൌ 1,2, … , ݀ 

ܔܠ   ܠ   ܝܠ 
where ܠ א  ,are the lower and upper bound vectors  ܝܠ and ܔܠ ,ௗ is the vector of design variables܀
respectively. It is often the case that ܨሺܠሻ and ݃ሺܠሻ, 
which denote the objective and inequality functions, 
respectively, are computationally expensive to 
evaluate. A local optimum is a stationary point with 
vanished gradient and positive definite hessian 
matrix. These points can be mathematically 
expressed as ܘ܆ ൌ ቄܠ| ቀௗிሺܑܠሻௗܑܠ ൌ 0ቁ  &  ൫݁,  0൯ቅ, 
where ܑܠ א  is the ܘ܆ ,ௗ, d is the dimensional size܀
finite set of all acceptable solutions, and ݁, is the 
eigenvalue of the hessian matrix ۶ܑ. 
3. Multi-Modal Optimization Methods: 

A Brief Review 

Seeking for more than one solution is a common 
theme in numerous problems of science and 

engineering. Using genetic algorithm (GA) to address 
such problems is not generally recommended, since 
the conventional GA is designed to converge at 
single solution. In recent decades, many niching 
methods have been proposed to make genetic 
algorithms capable of tackling multi-modal 
optimization problems. The more popular approaches 
are fitness sharing [12], deterministic crowding [14], 
probabilistic crowding [15], clustering [16], restricted 
tournament selection [17], and the clearing methods 
[13, 18]. A comparison of these multi-modal 
optimization methods in [13] has reported that 
clearing methods are shown to be generally more 
efficient for exploration of the problem search 
spaces. Unlike other niching methods where 
resources are shared among similar individuals of the 
population, clearing methods only consider the elite 
individuals [13], while other less fit individuals are 
treated with a killer penalty. Petrowski [18] also 
reported that clearing methods effectively succeed in 
reducing the effect of genetic drift. Nevertheless, it is 
worth noting that clearing methods suffer from 
several limitations [13]. Particularly, inferior 
individuals have no chance of participating in the 
mating operations, limiting the capability of the 
algorithm in exploring the search space sufficiently 
well. There is also a poor usage of resources since 
those individuals that generate little effectiveness hog 
up the limited finite population slots. It is also worth 
noting as well that the efficacy of both canonical 
clearing [18] and modified clearing methods [13] 
remains to be sensitive to the configuration of   Qୡ୪ୣୟ୰ 
or clearing niche radius. An inappropriate value 
assumed would seriously affect the eventual search 
performance.  Lastly, since clearing methods do not 
adapt to the nature of the problem landscape, there is 
a high chance that some local optimum solutions are 
left uncovered or missed in the search.  

4. Valley Adaptive Clearing 
Evolutionary Search  

Here, a valley-adaptive clearing multi-modal 
evolutionary search methodology is proposed. In this 
evolutionary search, the population of individuals is 
initiated with each individual falling in a different 
basin of attraction, using a hill-valley detection 
scheme (see section 4.1)1- A minimization problem is 
assumed. Each individual ܠ is evaluated based on  ܨሺܠሻ. Individuals then undergo selection, mutation 
and crossover. Thereafter, the yielding offspring 
undergoes the valley adaptive clearing scheme which 
                                                           
1 A minimization problem is assumed 

2



involves the identification (see section 4.2.1), 
clearing (see section 4.2.2) and valley replacement 
phases (see Section 4.2.3).  

4.1 Hill-Valley Detection  

The hill-valley detection procedure [19] begins 
by generating a line connecting two given points (s 
and e) in the Euclidean space. Subsequently, a 
number of intermediate points are sampled within the 
line. The fitness values of these points are then 
calculated.  A valley existence, on one hand, is 
identified, if the fitness of any sampled points 
represents an improvement over that of the given 
points. Otherwise, a hill is found [20]. 

4.2 Valley-Adaptive Clearing Scheme 

The valley-adaptive clearing scheme is 
composed of three core phases. The valley 
identification phase categorizes the population of 
individuals into groups of individuals sharing the 
same valley, denoted as Vgroups. Subsequently, the 
dominant individual (i.e., in terms of fitness value) of 
a valley group or Vid is archived if it represents a 
unique local optimum solution, while all other 
members of the same group undergo the valley 
replacement phase where relocation of these 
individuals to new basin of attractions or valleys are 
made so that unique local optimum solution 
elsewhere may be uncovered. In the event that no 
local optimum solution exists in a valley group, all 
individuals of the group will undergo the valley 
clearing stage where elite individuals are ensured to 
survive across the search generation while all others 
are relocated to new basin of the attractions. 

4.2.1 Valley Identification Phase 

The procedure of valley identification begins 
with the sorting of population individuals in 
ascending order according to fitness. Individuals are 
then grouped together if they share a common valley. 
Individuals belonging to the same valley group are 
then categorized according to their fitness into elites 
and inferiors. Elites are the fittest k individuals in a 
group, while the remaining individuals are the 
inferiors. 

4.2.2 Valley Clearing Phase 

Valley clearing is a process in which less fit 
individuals (or inferiors) are relocated out of the 

same basin of attraction, leaving valleys to be further 
exploited by the fittest individuals (elites). In the 
valley clearing process, each inferior member (x) of 
the valley group (Vid) is relocated randomly in the 
range of  Qୡ୪ୣୟ୰, i.e., the clearing niche radius, to 3 
* Qୡ୪ୣୟ୰, whereas other individuals (or elites) are left 
unchanged for the purpose of exploiting the basin of 
attraction. 

4.2.3 Valley Replacement Phase 

The motivation behind valley replacement 
process is to reduce any computational resources 
wasted on rediscovering of valleys where the optima 
have already been uncovered.  Individuals of the 
populations falling in previously encountered valleys 
are replaced with individuals in new basin of 
attractions, so as to bias the search towards 
previously unexplored region of the landscape. 

4.3 Archiving Procedure 

All optimum solutions found throughout the 
search are archived using an indexed database. Two 
data structures, the first is the array(s) or list(s) of 
discovered solutions, while the second is a 
hierarchical index or tree. Its nodes represent all 
cluster centers of the solutions found throughout the 
search, organized in a hierarchical manner according 
to the spatial order between solutions. The lists of 
solutions lie at the leave nodes of the index tree. 

To keep the archive free of duplicates, we 
proposed a hybrid archiving procedure that combines 
a distance metric with hill-valley detection procedure 
to detect duplicates in the archive. In this procedure, 
the hill-valley detection procedure is employed only 
on selected archived optima that fall within a 
predefined distance of an optimum. 

5. Empirical Study  

In this section, we study the efficacy of the 
valley adaptive clearing scheme (AVAC) in 
comparison with two other existing clearing methods, 
particularly the canonical clearing (C) and modified 
clearing (MC) schemes, using several multi-modal 
benchmark test problems. The test problems 
considered in the study and experimental results 
obtained are presented in Sections 5.1 and 5.2, 
respectively.  

5.1 Benchmark Test Problems 
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5.1.1 Two-Dimensional (2D) Test problems 

Problem 1. The 2D Rastrigin Function  

The 2D Rastrigin function Eqn. (2) is a typical 
multi-modal benchmark test problem used in 
evolutionary computation research. In the region 
specified below, the 2D Rastrigin function landscape 
contains 25 basins of almost equal size. ܨሺݔ, ሻݕ ൌ 20  ଶݔ  ଶݕ െ 10ሺcos ߨ2 ݔ  cos ߨ2  ሻ   (2)ݕ

where ݔ, ݕ א ሾെ2.5,2.5ሿ 
Problem 2. The 2D Sines function      

The 2D Sines function Eqn. (3) is a symmetric 
multi-modal test function with almost equal-size 49 
basins.   ܨሺݔ, ሻݕ ൌ 1  ሻݔଶሺ݊݅ݏ  ሻݕଶሺ݊݅ݏ െ 0.1݁ି௫మି௬మ    (3) 

Where ݔ, ݕ א ሾെ10,10ሿ 
Problem 3. The 2D Multi-function      

The 2D Multi-function Eqn. (4)  is a challenging 
test case for multi-modal optimization. Its landscape 
includes 64 basins of varying sizes and heights.  ܨሺݔ, ሻݕ ൌ െ1 െ ݔ sinሺ4ݔ ߨሻ  ݕ  sinሺ4 ݕ ߨ   ሻ  (4)ߨ

where ݔ, ݕ א ሾെ2,2ሿ. 
5.1.2 20 Dimensional (20D) Test Problems  

Problem 4. Hump Test problems 

Hump function is multi-variable function, in 
which l basins are randomly located with different 
shapes and sizes such that the distance between two 
optima (z and d) are greater than (rz + rd), where rz , 
and rd represent the radius of the basins around 
optimum z and d, respectively.  

ሻܠሺܨ ൌ ቊെ݄ܓ ቂ1 െ ቀௗሺܓ,ܠሻܓ ቁఈܓቃ ݂݅ ݀ሺܠ, ሻܓ  0ܓݎ    ݁ݏ݅ݓݎ݄݁ݐܱ א ܠ (5)    ݔ ,ௗ܀ א  ሾ0,1ሿ, ݄݇ߙ ,ܓ and ܓݎ donating the 
depth, a factor that determine the basin shape, size of 
the basin around an optimum (k) are configured as 
100, 1  and 1, respectively. number of basins is 
configured at 50.  ݀ሺܠ,  ሻ is the Euclidean distanceܓ
between an individual ܠ and an optimum ܓ.   

5.2 Experimental Results  

In this section, the experimental settings and 
results are reported. All clearing schemes are 
implemented in MATLAB development environment 

and experiments executed on a PC with 2.66 GHz 
Intel Duo Core CPU and 3 GB RAM. 50 independent 
runs are therefore executed to test the performance of 
the proposed scheme using the following algorithmic 
configurations: uniform mutation probability of 20%; 
scatter crossover probability of 60%, 20% of the 
population represents the elites and stochastic 
uniform sampling based selection.  The number of 
sample points (m) in the hill-valley detection, the 
number of elites (k), Qclear and the archiving-distance 
threshold are configured at 5, 2, 0.25 and 0.5, 
respectively.  A population size of 50 and 150 is 
considered for the 2D and 20D problem, respectively. 
All the search terminates at a maximum generations 
of 100. In this section, performance analysis of 
clearing schemes with and without archive as well as 
the sensitivity of the archiving clearing schemes to 
the niche radius change are investigated in section 
5.2.1 and 5.2.2, respectively   

5.2.1 Performance Analysis of Clearing 
Schemes  

We study the search performance of the clearing 
schemes with and without archiving in terms of 
percentages of uncovered optima and execution time. 
Experiments were, therefore, executed on different 
landscapes of varying degree of complexity and 
dimensionality.  the performance of the clearing 
schemes (C-Canonical Clearing, and MC -Modified 
Clearing) and archiving clearing schemes (AC- 
Archiving Canonical Clearing, AMC – Archiving 
Modified Clearing, and AVAC- Valley-Adaptive 
Clearing) on all benchmark problems stated in 
section 5.1 is summarized in figures 1-4. Figures (1 
and 3) show the percentages of optima uncovered by 
different clearing schemes on the 2D and 20D 
benchmark problems.  The plotted results show that 
the archiving clearing schemes have rates of 
improvement ranging from 2-10 times over non-
archiving schemes in the percentage of uncovered 
optima. It is also shown that the valley adaptive 
clearing scheme maintains the highest percentages of 
uncovered local optima on each of the different 
benchmark problems.  The percentages of optima 
adaptive uncovered by AVAC, for example, vary in 
the ranges of 90-100%, whereas those uncovered by 
others clearing compeers vary largely in the range of 
10-95%, respectively.  Due to the large search space 
and dimensionality, the gaps between the percentages 
of the proposed scheme and other clearing schemes 
are observed to be very wide on the 2D Sines and 
20D Hump function benchmark problems. Figures (2 
and 4) show the execution time of different clearing 
schemes on the 2D and 20D benchmark problems.  
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The archiving clearing schemes execution time tends 
to be reasonably higher than those of non-archiving 
clearing schemes.  However, in complex optimization 
where function evaluations are computationally 
expensive [22], the archiving overhead may be 
regarded as negligible. In addition, AVAC generally 
outperforms AMC. In particular, AVAC saves 30-
60% of the execution time required by AMC. Since 
the archiving clearing schemes outperformed non-
archiving clearing schemes in maintaining multiple 
optima, we will consider only the archiving clearing 
schemes for further experimental analysis. 

 
Figure 1: Percentages of uncovered optima 
by clearing schemes, on the three 2D 
benchmark problems. 

 
Figure 2: Execution time of different clearing 
schemes, on the three 2D benchmark 
problems. 

 
Figure 3: Percentages of uncovered optima 
by clearing schemes, on the 20D Hump 
Function. 

5.2.2 Sensitivity Analysis of Niche Radius 

Next, we study the sensitivity of the niche radius 
or Qclear on the search performance of the archiving 
clearing schemes. In figures 6, the percentages of 
local optima uncovered by the respective archiving 
clearing schemes, for different configurations of 
niche radius Qclear, on the four benchmark problems 
are summarized  to vary largely in the range of 10-

100%, on the four benchmarks. In contrast, the valley 
adaptive clearing scheme fares significantly better in 
the range of 85-100%. The percentage standard 
deviations of local optima uncovered by AVAC, AC 
and AMC vary in the ranges of 1.5-5.6, 5.5-20 and 7-
23.5, respectively, demonstrated high sensitivity of 
the latter two methods to Qclear, the niche radius. 

 
Figure 4: Execution time of different clearing 
schemes on 20D Hump Function. 

6. Conclusion  

In this paper, we proposed a new multi-modal 
optimization evolutionary search scheme -the valley 
adaptive clearing scheme- involving hill-valley 
initialization, valley-adaptive clearing and archiving. 
In this study, we also considered incorporating the 
archiving procedure with the existing clearing 
scheme. Performance of the clearing schemes with 
and without archiving was compared. The results 
showed that the archiving clearing schemes generally 
maintained much more optima than existing non-
archiving clearing schemes. Among the archiving 
clearing schemes, experimental results showed that 
the proposed valley-adaptive clearing scheme 
maintained the highest percentage of uncovered 
optima with varying radii and landscapes of different 
degrees of complexity and dimensionality. These 
results highlighted the adaptability and robustness of 
the proposed scheme.   
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Figure 5: Percentages of optima uncovered by archiving clearing schemes on the benchmark 
problems, for different niche radii (Qclear). 
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