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Abstract

Power line interference may severely corrupt a biome-
dical recording. Notch Filters and adaptive cancellers
have been suggested to suppress this interference. In this
paper, an improved adaptive canceller for the reduction
of the fundamental Power Line Interference component in
electrocardiogram (ECG) recordings is proposed. A com-
parison is made between the performance of our method
and a narrow and a wide Notch Filter and Notch Adaptive
Filter in suppressing the fundamental power line interfe-
rence component. For this purpose, a real ECG signal is
corrupted by an artificial power line interference signal.
The cleaned signal after applying all methods is compared
with the original ECG signal. Results indicate that power
line interference of ECG are removed effectively by this
new method. Interference elimination can be performed
continuously and rapidly even if the situations of interfe-
rence are changing with time or frequency. In the worst
conditions 48.5Hz and 51.5Hz (BW 1.5Hz), ANN obtained
results show the efficiency (CCC=0.96 £0.02 SIR=17.3 £
0.4) in comparison with the classical technique with the
best performance (CCC=0.9140.03 SIR=13.2+0.6). The
method is easy to implement and it is applicable not only
to ECG but also other biomedical signals.

1. Introduction

Electrocardiogram (ECG) is a method which has been
based on recording the heart electrical activity. ECG re-
gister is a non-stationary signal which includes valuable
clinical information. However, this information is being
often corrupted by noise. In addition, ECG signals have
also been interfered by 50/60 Hz power line. This comes
from the feeding lines of measurement systems, despite
having installed a grounding protection, a shielding and
amplifier incorrect design [1]. There is a single previous
step in order to eliminate this kind of interference in ECG
registers. This step implies to maintain the signal charac-
teristics for diagnosis. When ECG is being recorded, fre-
quency is being modified by power line around the nominal
50Hz or 60Hz (specifications are 50/60Hz +3%). When
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this frequency is being changed, then there will not be an
accurate answer to this filter. For this purpose, an adaptive
filter will be required.

The 50/60Hz Notch Filter (NF) rejects a narrow fre-
quency band around 50/60Hz. These methods are easy to
implement at a computational low cost. Moreover, these
are generating an undesirable signal modification. The
interferences are being eliminated but some important fre-
quency components of ECG signal are also removed [2].
First of all, adaptive filtering has been proposed by Widrow
[3]. This method does not disturb the ECG frequency
spectrum but this requires a reference signal, which adds
to the complexity of hardware and software [4, 5, 6]. In
order to solve this problem, different adaptive structures
have been studied for removing power line interference
[7,8,9,10, 11, 12]. These methods are also able, on the
one hand, to decrease the ECG noise. But, on the other,
they change the original signal. For this reason, a new
method has been created and developed to reduce the sig-
nal modification and to decrease power line interference
only in one step. The system which is being proposed,
is based on a growing Artificial Neural Network (ANN).
This ANN has been chosen mainly because its adaptabi-
lity to the nonlinear and time-varying features of the ECG
signal. The proposed ANN can be trained to filter out the
power line interference. In addition, the structure allows to
optimize both the number of neurons by which the hidden
layer is made up of and the coefficients matrices (weights
and bias). The matrices are optimized according to the
Widrow - Hoff Delta algorithm [13]. This system has three
important advantages, these being: First of all, the power
line interference and white noise are reduced; second, a
low modification of the signal is being caused; and third,
this system can be applied to a wide range of biomedical
signals.

2. Materials

In this study, two types of signals have been used.
These have been referred to either real recordings from
the PhysioNet Database [14] or synthetic signals. 450 re-
cordings with different pathologies have been obtained as
a result from PhysioNet with different types of QRS mor-
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phologies and 200 synthetic signals with different noises
have been generated by means of using the ECGSyn soft-
ware [14]. White (myoelectric, thermal, etc.) and power
line interference noise are included in these registers. The
sampling frequency used is 1kHz.

3. Methods

The Multi-Layer Perceptron (MLP) is a neural network
which Back-Propagation algorithm has been used. MLP
has been applied to the resolution of various problems [15].
At least, MLP is based on three layers, these being: An in-
put layer, one or more hidden layers and an output layer.
There are two phases in the method in order to estimate the
optimal number of nodes which have been located in the
hidden layer. The first phase will consist on stopping the
training after a certain number of iterations. The second
phase will determine the noise quantity which has been
properly removed from the registers with the current num-
ber of neurons which have been used in the hidden layer.
If the result of this test is not satisfactory, one or more neu-
rons will be added in the hidden layer in order to improve
the performance of the proposed network. However, in
these cases the network has to be completely trained [15].

3.1. Proposed system

The proposed system initially consists on a simple struc-
ture which is similar to the neural network [16] ADALINE
(ADAptive LINear Element) as Figure 1 shows (where
w 1s the weight of this neuron and b the bia). This net-
work structure has initially an input layer, one hidden layer
(made up of 30 neurons) and an ouput layer.

This new structure has been provided with a special
characteristic: it is growing while it is learning. By which
is meant that the neurons, which embed the intermediate
layer, have been added one by one and their weights (w)
and their bias (b) have also been adapted. However, the
input layer weights, which had been previously adapted,
remain stable in order to conserve the learning process.
Sometimes, this mechanism could produce neural net-
works with a sub-optimal number of neurons in the hidden
layer. Thus, this mechanism allows how to estimate the
network size in order to develop a concrete work. But each
time that a new neuron has been added to the hidden layer,
this network would not need to be completely trained.

3.2.  Training neural network

A single hidden layer has been used as a network proto-
type. In Figure 1, P = (p;) is the input vector, Y = (y;) is
the output vector (clean signal), W = (w;;) is the matrix
of weights between the input layer and the hidden layer,
b = (bi;) is the matrix of the bia between the hidden layer
and the output layer. The characteristic of this hidden layer
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Figure 1. Proposed Neural Network with two neurons in
the hidden layer. The black coefficients are constants.

is sigmoidal. ¢;(k) represents the expected output of the
pth set of the input vector. The initialization procedure has
been utilised to select which kind of network would be the
most initialized for training. The Widrow-Hoff Delta Rule
has been used to improve the network synaptic weights
and bias in order to minimize the error function. The
weights (W) and bias (b) have been chosen by a uniform
distribution of random numbers from the interval [—1, 1].
These values have been obtained experimentally by means
of adapting the network with a single pass.

3.3. Initialization process

This network has been built by a hidden layer network
which uses a sigmoidal activation function. There have
been created a number of candidate networks (H) which
contains a number of hidden neurons in order to initiate
the network learning. The value of H has been decided by
means of a test. For each candidate network, the sum of
absolute values of covariances have been calculated from
Equation 1.

=

I1—1| N

1
Fj=+ > (Ysp
k=1 [p=1

j=1,...H

(1)
where y; ,, is the output of the jth candidate network for
the pth training pattern. The parameter ¥ is the mean of
the jth hidden unit outputs, ey, , is the output error at the
kth output unit for the pth training pattern and €; is the
mean of the output errors at the kth output unit. Then,
the network with the maximum covariance I is selected
as the most promisingly network to be initialized. An op-
timum value H = 30 has been obtained.
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3.4. Learning algorithm using the Widrow-
Hoff Delta rule

The proposed network (Adaline) has been based on a
supervised learning which needs get to to know the asso-
ciated values in each input. These pairs of input/output
are:

{platl}a{ant2}7~-'7{antQ} (2)

where pg is the network input and ¢ is its corresponding
expected output, when p input is presented to the proposed
network, the network exit is compared with ¢, (the ex-
pected output) which has been associated to it. Our pro-
posed network (Adaline) has been deduced by the follo-
wing way, according to the procedure which has been des-
cribed in Widrow [13]. The process to update the weights
is being given by Equation 3.

e(k)p(k)
[p(k)I”

where k shows the current iteration of the updated process,
W (k + 1) is the following value which will be assigned to
the vector weights, and W (k) is the current value of the
vector weights. The current error e(k) has been defined
as the difference between the expected output ¢(k) and the
network exit a(k) = W7 (k)p(k) before its updating pro-
cess:

W(k+1) = W(K) + a 3)

e(k) = t(k) = W (k)p(k) 4)

In each iteration, the variation of error has been repre-
sented by:

Ae(k) = A(t(k) = WT (k)p(k)) = —p” (k) « W (k) (5)

In order to explain our Mean Squared Error (MSE), an-
other kind of algorithm will be applied. This algorithm
has been named Approximated Descendant Steps, whose
method has been based on the Widrow and Hoff Delta
Rule. By means of this algorithm, the instant gradient
has been calculated in each iteration instead of the true
gradient. For this reason, equation 6 is proving MSE
Function, this being:

e*(k) = (t(k) — y(k))* (6)

In Equation 6, ¢(k) represents the expected output in the
iteration k and y(k) shows the exit of the network. Our
updating process for weights and bias has been defined in
equations 7 and 8. The best results have been obtained
when 12 neurons were added to the hidden layer. When
more than 12 neurons are added, there is no improvement
of both the computational load and the noise reduction.
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wk+1) = wk)+2ae(k)p(k) (7
bk+1) = b(k)+ 2ae(k) ®)
4. Results

In this section, our system has been compared with
the standard filtering techniques (NF, Notch Adaptive Fil-
ter (NAF)), which had been introduced previously. The

equation MSE(§)=E{(5 — 9)2} has been used to calcu-
late MSE in order to verify learning of the neural network.

0 shows the exit to the system and 6 shows the clean signal.

The power line was a simulated 50Hz sinusoide. In
addition, the signal frequency has been modified between
48.5 Hz and 51.5 Hz. The following table shows the ob-
tained MSE for different bandwidths (0.5Hz and 1.5Hz)
and the selected techniques; NF, NAF and ANN.

Table 1. Average values of MSE for ECG recordings.
Bandwitdh of 0.5Hz and 1.5Hz
BW 0.5 Hz 1.5Hz
Method NF  NAF ANN  NF  NAF ANN
485hz 47 234 638 418 316 155
49 Hz 46 22.7 6.2 38.5 30.4 13.9
49.5 Hz 34 21.8 5.9 20 29.5 12.5
50 Hz 3 1.32 1.3 3.5 2.1 1.5
50.5Hz 335 21.7 5.6 194 29.2 12.4
51Hz 465 219 6 39 306 141
51.5Hz 475 23.6 6.5 41.05 21.9 16.2

Table 1 indicates that the MSE for NF is minimum at
50Hz but becomes significant as the power line wanders
away from 50Hz. Error is relevant, even when bandwidth
has been increased to 1Hz. The MSE for a ANN is quite
small and remains nearly constant even when frequency
line varies around 50Hz. Only at 51Hz the MSE becomes
relevant as bandwidth is increased above 1 Hz. For NAF
the MSE value is bigger than ANN for all frequencies, the
difference is the smallest for 50Hz.

In addition, the Interference Ratio Signal (SIR) has also
been computed by means of Equation 9, where x;,, shows
the input signal to the system; x,,,; the output and x the ori-
ginal recording without noise. The results of cross correla-
tion coefficient (CCC) and SIR are shown in Table 2. As
it can be observed, ANN achieves higher values than tra-
ditional methods reflecting an improved performance.

E mn ?
st ([ 2l ellL)
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In Figure 2, the results which have been obtained by
the NF, NAF and ANN method, have been represented.
Where ANN has been achieved to cancel the power line

interference, other systems can not reduce this interference
completely.




Table 2. Average values of CCC and SIR for ECG re-

cordings
Method NF NAF ANN
CCC 0.89+0.3 092£03 097+0.2
SIR 13.8+1.3 154+14 185+1.2
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Figure 2. A. Input Signal (Real ECG). B. Notch Filter out-
put signal C. Notch Filter Adaptive output signal D. Neural
Network output signal. The Power line frequency is S0Hz
with BW of 1Hz.
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5. Conclusions

This paper proves how the proposed growing ANN has
been used to remove white noise and power line interfe-
rence from ECG data in one step. Throughout all the
stages, our ANN has been adapted by means of using
the Widrow - Hoff Delta Algorithm, which has been im-
proved in order to achieve our target. By means of this im-
provement, ANN has obtained bigger values of CCC and
SIR than the other methods. This ANN system achieves
to correct the changes produced by noise and to reduced
significantly interferences in the ECG signals. As a way
of conclusion, suffice is to say that the neural network-
based approach obtains both more noise (power line and
white) reduction and low modification of the signal results
in comparison with systems which had been based on NF
and NAF methods.
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