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Abstract 

Prompt diagnosis of abnormally shaped wave forms in 

ECG signal is an important component in the early 

diagnosis of cardiac arrhythmias, improving the quality 

of life of patients. Meanwhile, detection models for 

Premature Ventricular Contractions (PVC) are widely 

investigated, a less studied problem is data analysis and 

visualization. In this paper, we propose an approach for 

PVC detection and data visualization by exploiting the 

intrinsic geometry of the high-dimensional data using 

manifold learning and Support Vector Machines (SVM). 

ISOMAP forms a neighborhood-preserving projection 

which allows to uncover the low-dimensional manifold 

and is used here as a pre-processing step. Then by 

incorporating training labels the method is capable of 

recognizing PVC patterns with comparable accuracy of 

kernel learning machines. 

1. Introduction 

Cardiovascular diseases (CVD) are the leading cause 

of death in developed countries. In this context 

Ventricular Arrhythmias (VA) assume a very important 

role, since their incidence in population can lead to 

critical situations and severe risk. Moreover, VA evolve 

from simple premature ventricular contractions (PVC) 

which are in most situations benign, to ventricular 

tachycardia (VT) and finally to critical ventricular 

fibrillation episodes which are potentially fatal and the 

main cause of sudden cardiac death.  

The detection of PVCs is thus of major importance, 

since they are associated with an increased risk of 

adverse cardiac events. Resulting from an ectopic 

depolarization on the ventricles (which replace the 

normal start of the cardiac beat), a wider and abnormally 

shaped QRS complex occurs. Additionally, typically 

QRS complexes are not preceded by P waves, and T 

waves are usually larger and with opposite deflection to 

the QRS complex.  

The automatic detection of PVC has been an active 

research during the last years. Basically the fundamental 

differences lie in the morphology of the ECG. Typically, 

a two step approach is then considered: i) first, 

measurements of average wave amplitudes, time duration  

and wave areas are used to extract a set of characteristic 

ECG parameters [1]; ii) second, a specified technique for 

classification is then applied ranging from probabilistic 

approaches, to knowledge-based systems or neural 

networks [2]. This motivates research authors either for 

investigating the most appropriate classifier, or for 

finding the most discriminative features and feature 

extraction methods of PVC characteristics. In [3] an 

algorithm for PVC detection based on QRS complex 

morphological characteristics is presented. In [4] the 

mean-square value of QRS was proposed as PVC 

discriminative features, together with two linear 

prediction coding coefficients. In [2] the proposed feature 

extraction methods are based on the spectral content of 

the signal, linear prediction coding and Principal 

Component Analysis (PCA). Wang et al. [5] focused on 

the extraction of template families of features from QRS 

morphology characteristics. In [6] PCA is also applied for 

feature extraction along with a Hebbian neural network 

classifier. For PVC classification, numerous algorithms 

such as decision trees and fuzzy ruled based networks 

have been proposed. Also, in [7], a wavelet transform 

method is introduced for feature extraction which uses a 

multilayer perceptron neural network.  

In this paper, we look at finding meaningful low 

dimensional structure from the high dimensional PVC 

features dataset for visualization and detection purposes. 

Instead of working with points in the high-dimensional 

space a reduced space is found in the embedded learning 

process. While linear methods such as Principal 

Component Analysis (PCA) and Multidimensional 

Scaling (MDS) break down with the problem 

nonlinearities, manifold learning attempts to uncover the 

low-dimensional manifold by nonlinear methods. One of 

the most used algorithms [8] for nonlinear dimension 

reduction is ISOMAP (Isometric Feature mapping) which 

can be viewed as an extension of the Multidimensional 

Scaling [9]. While ISOMAP is used in unsupervised 

learning our approach combines this algorithm with 

information of class labels for PVC automatic detection. 
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The approach is validated using data sets from MIT-BIH 

Arrhythmia Data Base. We show that the accuracy of the 

proposed approach is comparable to benchmarked 

Support Vector Machines (SVM) [10] and Relevance 

Vector Machines (RVM) [11] despite the fewer 

dimensions used resulting from embedding learning.  

The paper is organized as follows. In section 2 

manifold learning and Isomap are briefly described. In 

section 3 the experimental setup is introduced and results 

are presented and discussed. The conclusions and future 

work are presented in section 4.  

2. Methods 

Manifold is an abstract mathematical space in which 

every point has a neighborhood which resembles the 

spaces described by Euclidean geometry. Given data 

points 
1 2, ,..., D

nx x x ∈{  we assume that the data lies on a 

d-dimensional M manifold embedded into D{ , where 

d D< . Moreover, we assume the manifold M is 

described by a single coordinate chart : df M → { . The 

manifold learning consists of finding
1 ,..., d

ny x ∈{ , 

where ( )i iy f x= . ISOMAP is an algorithm [8] for 

nonlinear dimension reduction which can be viewed as an 

extension of the MDS. ISOMAP consists of 3 main steps: 

1) Estimates which points are neighbors on the manifold 

M, based on the distances ( , )Xd i j  between pairs of points 

,i j  in the input space X by computing the weighted graph 

G of neighborhood relations given by the edges of ( , )Xd i j ; 

2) Estimates the geodesic distances between all pairs of 

points in the manifold M by computing the shortest path 

distance on the k’s nearest neighbor graph built on the data; 

3) Applies classical MDS to the matrix of graph 

distances { }( , )G GD d i j= , constructing an embedding of 

the data in a d-dimensional Euclidean space Y that best 

preserves the manifold’s estimated intrinsic geometry. 

ISOMAP assumes that there is an isometric chart that 

preserves distances between points. If ix and jx  are two 

points in the manifold M embedded into D{  and the 

geodesic distance between them is ( , )G i jd x x , then there 

is a chart : df M → { such that ( ) ( ) ( , )i j G i jf x f x d x x− = .  

The algorithm presupposes that for nearby points in 

the high dimensional space the Euclidean distance is a 

good approximation of the geodesic distance whereas for 

distant points this is not true. In this case, a shortest path 

computation algorithm such as, Dijkstra’s or Floyd’s will 

approximate the remainder geodesic distances. This 

algorithm takes as input a weighted graph of the k’s 

nearest neighbors where its edges are weighted by the 

Euclidean distances between nearby data points.   MDS 

[9] is then used to estimate the points whose Euclidean 

distance equals the geodesic distances. Given a matrix 
n nD ×→ { of dissimilarities, MDS constructs a set of 

points whose interpoint Euclidean distances match those 

in D closely. 

2.1. Supervised Isomap 

In [12] an approach, S-ISOMAP, is developed for 

supervised nonlinear dimensionality reduction in 

visualization and classification problems. In S-ISOMAP, 

the information provided by the training class labels are 

used to refine the distances between inputs guiding the 

procedure of dimensionality reduction. The rationale is 

that both classification and visualization can benefit when 

the inter-class dissimilarity is larger than the intra-class 

dissimilarity. To achieve this purpose, the Euclidean 

distance ( , )i jd x x  between two given observations ix and 

jx , labeled iy and jy respectively, is replaced by a 

dissimilarity measure [12]:   
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(1) 

Note that the Euclidean distance ( , )i jd x x is in the 

exponent and the parameter β  is used to avoid that 

( , )i jD x x  increases too rapidly when ( , )i jd x x  is 

relatively large. Hence, β  depends on the density of the 

data set and is usually set to the average Euclidean 

distance between all pairs of data points. On the other 

hand, α  gives a certain possibility to points in different 

classes to be closer, i.e. to be more similar, than those in 

the same class. This procedure allows a better 

determination of the relevant features and will definitely 

improve visualization. However, as the learning mapping 

is not explicitly given by the previous procedure, our 

approach includes a Generalized Regression Neural 

Network (GRNN) for learning the mapping, prior to 

applying any of the classifiers: 1) KNN (KNearest 

Neighbor) 2) Fisher Linear Discriminant (FLD) and 3) 

SVM. The steps of our procedure are illustrated in Figure 

1 where only the SVM classifier is shown.  

 Training 

Data Set
Embedded

Mapping y

Kernel

Learning

GRNN

Model

SVM

Model

Testing 
Data Set

Learned
Embedded y

Model
Evaluation

S-Isomap

Llabes

SVM predict

Labes
 

Figure 1. S-ISOMAP supervised approach. 

918



 

 

2.2. Kernel- based methods 

SVM [10] were introduced by Vapnik, based on 

Statistical Learning Theory, and follow the principle of 

maximal margin separation, i.e find an optimal separating 

hyperplane between the two classes in the binary 

problem. RVM [11] are also a kernel-based approach 

which use a Bayesian probabilistic learning framework. 

Both yield sparse models able to efficiently classify 

binary patterns. 

3. Experimental results 

Experimental data used to test the proposed 

approaches were taken from MIT-BIH Arrhythmia 

Database1. Extensive pre-processing of the data files 

allowed the construction of the training, test and 

validation data sets each one consisting of 19391 sample 

data points [13]. Sensitivity and Specificity measures 

were chosen for algorithms comparison. They were 

preferred to simple accuracy metrics since they 

circumvent misinterpretations, when the datasets are 

unbalanced, i.e the metrics are reliable even for skewed 

datasets. 

3.1. Feature extraction 

Table 1 shows the 18 extracted features, computed 

simultaneously with the QRS complex detector (see 

[13]). Figure 2 illustrates the QRS complex with the 

extracted feature set.  

The size of the descriptive feature vector was then 

substantially reduced with respect to the original ECG in 

the Arrhythmia data base. However, for matters of data 

visualization further reduction is essential. 

 

Table 1. Extracted features from ECG signal 

Feature Description 

RRav RR mean interval 

RR0 Last RR interval 

SN Signal/Noise estimation 

Ql Q-wave length 

(Qcx, QcY) Q-wave mass centre (x,y) coordinates 

(Qpx, QpY) Q-wave peak (x,y) coordinates 

Rl R-wave length 

(Rcx, RcY) R-wave mass centre (x,y) coordinates 

(Rpx, RpY) R-wave peak (x,y) coordinates 

Sl S-wave length 

(Scx, ScY) S-wave mass centre (x,y) coordinates 

(Spx, Spy) S-wave (x,y) coordinates 

 

 
1 http://www.physionet.org/physiobank/database/html/mitdbdir/ 
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Figure 2. QRS Complex 

3.2. Discussion 

In Figure 3 the supervised approach, S-ISOMAP, is 

used for dimension reduction of d=3 with Euclidean 

distance for computing the dissimilarity matrix of data 

points. For graph computation we used K=5 to K=200 

nearest neighbors. The red dots in Figure correspond to 

abnormally shaped QRS while blue dots to normal ones.  

 

Figure 3. PVC Data Visualization with d=3 and K = 20. 

 

Table 2 presents validation results from running the 

algorithm with different K nearest neighbors followed by 

classification for model evaluation (see Figure 1). We 

have used 10 runs of 10-fold cross validation resulting in 

100 evaluations of each learning machine. The mean and 

standard deviations for the specified measures are 

evaluated and compared. The best result is indicated in 

bold and corresponds to 89.39±4.23 for sensitivity and 

98.28±0.65 for specificity with S-ISOMAP using SVM. 

While in Table 2 results allow to test the method with 

respect to trustworthiness of the neighborhood projection, 

therefore in visualization, in Table 3 we compare our 

approach with the state-of-the-art kernel machines SVM 

[10] and RVM [11]. We observe that, despite the fewer 

dimensions used, our approach is better than RVM by 5% 

in sensitivity and by 9% in specificity over testing data. 

While SVM performs better by 4% in sensitivity and only 

1% in specificity. 
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Table 2. Supervised ISOMAP 

S-Isomap KNN FLD SVM 

K Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

5 78.29±1.00 99.39±1.00 71.26±1.00 86.79±1.00 87.92±1.00 97.90±1.00 

7 77.01±5.69 99.10±0.27 72.12±10.83 87.36±6.19 83.65±9.41 97.75±0.47 

10 76.65±6.60 99.31±0.49 74.46±10.25 85.68±10.37 84.11±6.93 98.23±1.26 

15 79.12±7.33 99.35±0.47 74.90±14.34 94.31±4.08 86.34±6.04 98.59±0.94 

20 77.66±2.31 99.78±0.42 80.85±5.65 98.23±3.01 89.36±5.12 98.68±0.39 

40 85.37±2.47 99.39±0.49 88.75±3.06 96.81±0.94 89.39±4.23 98.28±0.65 

60 75.48±1.11 99.56±0.19 84.37±1.92 96.24±0.47 81.24±2.63 98.58±0.11 

80 74.22±6.47 99.46±0.22 86.67±2.58 96.18±1.78 81.60±2.66 98.87±0.55 

100 80.00±3.55 99.14±0.19 85.70±0.99 95.90±0.31 84.21±1.95 98.42±0.28 

150 76.74±2.21 99.78±0.10 86.05±0.29 96.72±0.32 84.88±2.54 99.02±0.24 

200 75.21±0.37 99.31±0.06 83.92±0.51 98.66±0.12 86.95±0.19 98.59±0.37 

Table 3. Algorithm’s Comparison (K = 20) 

 Testing Training 

 Sensitivity Specificity Sensitivity Specificity 

S-ISOMAP-KNN 77.66±0.32 99.78±0.25 88.02±3.16 99.95±0.08 

S-ISOMAP-FLD 80.85±4.80 98.23±0.93 81.50±9.46 96.38±5.55 

S-ISOMAP-SVM 89.36±1.51 98.68±0.07 98.72±1.01 98.77±1.15 

SVM 94.63±0.38 99.74±0.02 94.84±0.75 99.75±0.08 

RVM 85.78±3.48 89.53±2.89 92.28±1.16 93.53±0.81 

 

4. Conclusions 

The supervised ISOMAP combined with SVM applied 

to MIT-BH Arrhythmia data base were able to distinguish 

normal from abnormal PVC beats. Despite the reduced 

space used, S-ISOMAP-SVM performs better than RVM 

while single SVM is slightly better. For this reason, our 

approach takes advantage over other methods for the 

purpose of real-time PVC detection. Further work is 

foreseen to improve learning in the embedded procedure. 
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