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Abstract

One of the rhythm control strategies in atrial fibrillation

management consists in the application of a brief single

electrical shock to the atria. This electrical cardioversion

does not always succeed, and the long-term success of this

therapy is not sufficiently predictable on the basis of clin-

ical and echocardiographic parameters. In noninvasive

atrial fibrillation studies, the frequencies observed in the

atrial ECG signals are considered as an indicator of the

underlying dynamics. In this study, we examen the use of

frequency tracking techniques in predicting the success of

electrical cardioversion.

A clinical database of 18 patients in sustained AF prior

to an electrical cardioversion attempt was employed. The

signal processing steps performed on 5-minute standard

12-lead ECG signals were: baseline correction, ventricu-

lar activity cancellation followed by an adaptive frequency

tracking algorithm. Fisher’s linear discriminant function

yielded up to 94% correct classifications (p= 10−3).

1. Introduction

Atrial fibrillation (AF) is frequently responsible for mor-

bidity and fatal complications. The diagnosis of AF as

such has been based mainly on visual inspection of the

surface electrocardiogram (ECG) [1]. Neither the natural

history of AF nor its response to therapy is sufficiently pre-

dictable from clinical and echocardiographic parameters.

Thus, it seems appropriate to develop tests that quantify

AF disease states and guide AF management [2]. The un-

derlying mechanisms of the wavefront dynamics of AF re-

late to their substrates, which manifest themselves on dif-

ferent time scales.

Invasive electrophysiological as well as noninvasive

studies based on the surface ECG have commonly used

two types of analysis to characterize these time scales:

the Fourier-based spectral and the time-frequency analy-

sis [3, 4]. In Fourier-based spectral analysis, the modal

frequency (MF), also known as dominant frequency, ob-

served from the electrogram or the ECG lead is believed to

determine the mean firing rate [3] or the most common fib-

rillatory rate of nearby endocardial sites [5], respectively.

In noninvasive analysis situations, the correspondence

between the atrial fibrillatory rate during AF and the MFs

observed on the ECG lead signals is assumed. This corre-

spondence was studied in [6]. The MF is usually estimated

after first cancelling the ventricular activity (VA). Two ap-

proaches are generally used to perform VA cancellation:

independent component analysis or average beat subtrac-

tion based approaches [7–9]. Subsequently, the MF is gen-

erally estimated on lead V1 intervals (typically 5 seconds

long) by using classical power spectral density (PSD) es-

timation techniques [4]. However, even after VA cancella-

tion, MF estimation is often hampered by the presence of

residual cancellation artifacts. The other leads, for which

VA cancellation performance is poorer, are generally not

considered, but it has been demonstrated that these other

leads may yield important information about AF complex-

ity [6].

Adaptive tracking of noisy sinusoidal signal compo-

nents recieves a great interest in many engineering applica-

tions such as communications [10], biomedical engineer-

ing [11], and speech processing [12]. Over the years, sev-

eral dedicated algorithms have been proposed in the liter-

ature. Some rely on a Kalman- [13] or an RLS-based [14]

prediction algorithm, but most are based on an adaptive

notch filter (ANF) or bandpass filter (BPF) structure. In the

latter methods, criteria relating to the output of the adap-

tive filter are used to update the filter parameters in order to

provide the tracking feedback. In 2005, Liao proposed an

interesting adaptive frequency tracking algorithm for sinu-

soids embedded in a noisy environment [15]. The novelty

of his technique is that derivations of the coefficients-up-

dating algorithms for the adaptive mechanisms are based

on the discrete oscillator model.

In this paper, we use this adaptive frequency tracking

method applied to the atrial signal of the standard 12-lead

ECG to obtain an instantaneous estimate of the MF and its

corresponding signal component. From the instantaneous
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estimated frequency and the filter output, we compute five

features to be used in a discrimination procedure between

successful and unsuccessful electrical cardioversion.

Prior to the application of this method, we briefly de-

scribe the the principle of the adaptive frequency algorithm

used and the characteristics of a clinical database.

2. Methods

2.1. Adaptive frequency tracking algo-

rithm

Frequency tracking on the atrial signal is realized us-

ing the algorithm called OSC-MSE (oscillator based mean

square error) BPF-based algorithm. The input signal u(·)
is assumed to be :

u(n) = d(n) + b(n), (1)

where d(·) is a sinusoid at frequency ω0 and b(·) is an ad-

ditive noise. The sinusoidal component d(·) should satisfy

the oscillator equation :

d(n) =2d(n − 1) cosω0 − d(n − 2)

≡2α0d(n − 1) − d(n − 2).
(2)

The adaptive coefficient α(·), which tracks α0 = cosω0,

determines the central frequency of the BPF. Its transfer

function is defined as

H(z; n) =
1 − β

2

1 − z−2

1 − α(n)[1 + β]z−1 + βz−2
, (3)

where 0 < β < 1 controls the bandwidth of the BPF.

The filter defined by (3) has a zero phase shift and a

unitary gain at the central frequency α(·), so the reference

signal x(·) (output of the filter) used in the adaptive mech-

anism is the component of u(·) at the frequency α(·).
In short, the adaptive algorithm is driven by a line-

enhanced version of the input signal. In the OSC-MSE

algorithm, the goal is to determine the value of α(n + 1)
that satisfies the discrete oscillator model. This is done by

minimizing the following cost function, based on the dis-

crete oscillator model:

J = E
{

[x(n) − 2α(n + 1)x(n − 1) + x(n − 2)]2
}

.
(4)

By setting ∂J/∂α(n + 1) = 0, the optimal solution for

this MSE criterion is

α(n + 1) =
E{x(n − 1)[x(n) + x(n − 2)]}

E{2x2(n − 1)}
. (5)

However this expression for α(n + 1) is not real-time

computable. Instead, the numerator and the denominator

are replaced by their exponentially weighted time-average

estimates, and the coefficient-updating algorithm becomes

α(n + 1) =
Q(n)

2P (n)
, (6)

where

Q(n) =δQ(n − 1) + (1 − δ)x(n − 1)[x(n) + x(n − 2)],

P (n) =δP (n − 1) + (1 − δ)x2(n − 1).

(7)

The parameter δ (0 ≪ δ < 1) controls the estimation

update rate. This algorithm was shown to be unbiased (see

[15] for details).

The OSC-MSE algorithm, as all adaptive algorithms,

presents a delay due to its adaptation to frequency changes

in the signal. The quality of the extracted component can

be improved by compensating for this adaptation delay m.

To this end, the extracted component is obtained by fil-

tering the input signal u(·) with the transfer function (3),

where the central frequency is the estimated frequency, ob-

tained with the OSC-MSE algorithm, with a m-sample

shift. The optimal delay m is found by applying an ex-

haustive search of the number of samples specifying the

delay that maximize the filter output.

2.2. Clinical Database

The discrimination procedure was tested on a clinical

database comprising 18 5-minute standard 12-lead ECGs

of patients observed in sustained AF. The signals were

recorded prior to electrical cardioversion attempt. Car-

dioversion succeeded in eight patients (referred as the SEC

group) and failed in the ten others (referred as the FEC

group). The signals were recorded and stored using a

commercial recording system (CardioLaptop R© AT-110,

SCHILLER). The electrocardiographic filter settings used

were 0.05 to 150 Hz. The system has a dynamic range

of ±10mV AC (resolution of 5µV) and a sampling rate of

500 Hz.

2.3. Procedure

The following processing steps were applied to all 12-

lead ECG signals present in the database.

• Baseline correction and VA cancellation on the ECG sig-

nals as described in [16].

• Downsampling at 50 Hz and highpass filtering (Butter-

worth filter, cutoff frequency at 1.5 Hz).

• Adaptive frequency tracking with the algorithm de-

scribed in section 2.1, with parameters β = 0.94 and

δ = 0.95 in equation (3) and (7), respectively.

• The optimal adaptation delay m for the application to

the ECG data was found to be 25 samples.
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• Extraction of the signal component corresponding to the

estimated instantaneous frequency by filtering with the op-

timal adaptation delay.

In the discrimination procedure, the following five fea-

tures were computed from the estimated frequency and its

corresponding signal component: mean and standard de-

viation of the estimated frequency (Fmean and Fstd, re-

spectively), mean and standard deviation of the envelop of

the extracted signal (Emean and Estd, respectively) and

the power ratio (R) between the extracted component and

the atrial signal. The quality of the discrimination based

on Fischer’s linear discriminant function was tested for all

possible selections of two features out of the five specified

above in their application to all of the leads of the standard

12-lead system.

3. Results

Figure 1 shows the result of the frequency tracking al-

gorithm on a 15-second ECG signal on lead V1 after VA

cancellation. The estimated frequency is displayed by the

black trace. A classical time-frequency plane is also dis-

played in the background, high and low power regions rep-

resented in yellow and black, respectively.
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Figure 1. Result of the frequency tracking algorithm on

a 15-second ECG signal on lead V1 after VA cancella-

tion. The estimated frequency is displayed by the black

trace against the background of a classical time-frequency

plane. High and low power regions represented in yellow

and black, respectively.

Figure 2 shows an example of the extracted signal com-

ponent corresponding to the estimated instantaneous fre-

quency as described in section 2.3. The solid trace repre-

sents the original 4-second ECG signal on lead V1 after

VA cancellation. The dashed trace represents the extracted

component.
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Figure 2. Example of extracted signal component corre-

sponding to the estimated instantaneous frequency. The

solid trace represents the original 4-second ECG signal on

lead V1 after VA cancellation. The dashed trace represents

the extracted component.

Features V1 V2 V3

R Estd 94.4% 77.8% 83.3%

R Emean 77.8% 72.2% 72.2%

Fstd Estd 72.2% 88.9% 83.3%

Fstd Emean 77.8% 77.8% 77.8%

Fmean Estd 77.8% 61.1% 83.3%

Table 1. Percentage of correct classifications of SEC and

FEC groups on leads V1, V2 and V3 for the five fea-

ture combinations yielding the highest correct classifica-

tion percentages.

Table 1 summarizes the results obtained for the classi-

fication of the SEC and FEC groups for leads V1, V2 and

V3 that correspond to the third, fourth and fifth column,

respectively. The five feature combinations yielding the

highest correct classification percentage correspond to the

rows.

Figure 3 illustrates the performance of the discrimina-

tion procedure applied to lead V1 for the R and EStd fea-

tures. The Fischer’s linear discriminant function separat-

ing both groups is characterized by a slope s = 0.024 and

an intercept i = 6·10−4. A 94.4% of correct classifications

is obtained, with a p value of 10−3.

4. Discussion and conclusion

This study suggests that frequency tracking can be a use-

ful tool for obtaining an estimate of the time course of the

MF of atrial signals. The statistical analysis of features

extracted from this time course and the corresponding ex-
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Figure 3. Scattergram showing the performance of the

separation based on R and EStd applied to lead V1. El-

ements of SEC are indicated by blue circles and those of

FEC by red crosses. The dotted line represent the Fischer’s

linear discriminant function.

tracted component was demonstrated to be highly effec-

tive in the discrimination between successful and unsuc-

cessful attempts at electrical cardioversion. Based on this

database, comprising notably only 18 subjects, the opti-

mal combination of features was found in the application

to lead V1, while using as features the power ratio between

the extracted component and the atrial signal and the stan-

dard deviation of the extracted component (94.4% of cor-

rect classifications).
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