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Abstract

Coronary x-ray angiography has proven to be an ef-

ficient method for treatment and diagnosis of cardio-

vascular diseases. In clinical practice, quantitative LV

analysis is done in 2-D and based on contour data since

3-D information is not available due to projection. In this

work, a novel approach for recoverying the 3-D LV shape

from bi-planar x-ray images is presented. The sparse and

noisy data available for reconstruction necessitates the

incorporation of geometric prior information. A statis-

tical shape model of the ventricular anatomy is learned

from high-resolution multi-slice CT data. Reconstruction

is based on a non-rigid 2-D/3-D registration technique. To

fit the shape model to the x-ray images of the patient, sim-

ulated projections of the model are calculated. An opti-

mization procedure mimimizes the difference between sim-

ulated and real projection images. The presented method

is evaluated using simulated data.

1. Introduction

Interventional x-ray angiography is state-of-the-art in

both treatment and diagnosis of cardio-vascular diseases.

In case of infarction, the viability of myocardium is eval-

uated based on x-ray images of the left ventricle (LV). Bi-

planar cine-angiographic equipment captures images si-

multaneously from two different projection directions dur-

ing 3-5 heart beats opacified with contrast agent. In clinical

practice, quantitative analysis of LV function is based on

projected end-diastolic (ED) and end-systolic (ES) endo-

cardial contours: ED and ES volumes are approximated to

assess ejection fraction (EF) and wall motion is quantified

using e.g. the centerline method [1] or the radial method

[2]. Instead of evaluating contour information, novel ap-

proaches aim at reconstructing the spatio-temporal shape

to analyze LV function in 3-D [3]. In this work, a new

method for spatial reconstruction is presented.

Several works have addressed the problem of recover-

ing the LV shape from projective x-ray images. While

Medina et al. [4] and Moriyama et al. [5] only use con-

tour information, Backfrieder et al. [6] and Prause et al.

[7] additionally exploit densitometric information derived

from the gray values of the x-ray images. Using more than

one bi-planar acquisition [5] increases the data available

for reconstruction, but also the x-ray exposure for the pa-

tient. However, the problem of recovering the LV from two

projections is ill-posed and incorporating prior knowledge

of its shape is an important aspect.

The novelty of our LV reconstruction algorithm is that it

incorporates a priori information learned from multi-slice

CT data in the form of a statistical shape model (SSM). Re-

construction is based on a non-rigid 2-D/3-D registration

approach utilizing simulated x-ray projections for model

fitting. The application of SSM for reconstruction has

been successfully demonstrated for other anatomies [8],

[9], [10]. To our knowledge, this is the first time that such

an approach is followed to recover the LV shape.

2. Methods

2.1. Statistical shape models

When building a 3-D SSM, a set of segmentations of

the target shape is required. The contour of each shape Si

is described by n landmarks, i.e. points of correspondence

that match between shapes, and represented as a vector of

coordinates: xi = (x1, ..., xn, y1, ..., yn, z1, ..., zn)i
T

. All

s shape vectors form a distribution in a 3n-dimensional

space. This distribution is approximated by x = x̄ + Φb,

with x̄ = 1

s

∑s

i=1
xi being the mean shape vector and b

being the shape parameter vector. By varying b, new in-

stances of the shape class can be generated. Φ is obtained

by performing a principle component analysis (PCA) on

the covariance matrix C = 1

s−1

∑s

i=1
(xi − x̄)(xi − x̄)T .

PCA yields the principle axes of this distribution; the

eigenvalues give the variances of the data in the direction

of the axes (= eigenvectors). To reduce noise and dimen-
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sionality only those eigenvectors with the largest t eigen-

values are used. t denotes the number of the most signifi-

cant modes of variation and is chosen so that a fraction f
of the total variation is retained,

∑t

j=1
λj ≥ f

∑
λj .

Prior to statistical analysis, location, scale and rotational

effects must be removed from the training shapes to obtain

a compact model. Commonly, Procrustes analysis is ap-

plied to minimize D =
∑ |xi − x̄|2, the sum of squared

distances (SSD) of each shape to the mean.

A more detailed explanation about the concept of SSMs

can be found in [11].

2.2. Building of LV model

A priori information of the ventricular anatomy is ex-

tracted from 15 data sets acquired with a Siemens So-

matom Sensation Cardiac 64 multi-slice CT. The scans are

performed at 65% of the heart phase (R-R peaks) with 120

kV; a B25f convolution kernel is applied for reconstruc-

tion. The volumes have a size of 512×512×230-300 vox-

els, an effective slice thickness of 0.5 mm and an in-plane

resolution of 0.35 mm at average.

The endocardial surface was manually segmented by ex-

perts in cardiology. Contours are specified in axial slices

by interactively setting control points of a cardinal spline.

Due to the high resolution only each fifth slice is seg-

mented; intermediate contours are interpolated.

A new method was developed that automatically ex-

tracts pseudo-landmarks from the segmented surface [12]:

1) All training shapes are uniformly sampled. Contours are

intersected with ncp equiangular rays. A spline connects

the i-th sampled contour point of each contour. All ncp

splines are intersected with nc parallel equidistant planes.

2) The sampled shapes are aligned among each other uti-

lizing Procrustes alignment. For pairwise shape registra-

tion, the iterative closest point (ICP) algorithm is applied.

3) A mean shape is computed by averaging the contour

point coordinates of the aligned shapes. 4) Landmarks on

the mean shape are backpropagated to the aligned shapes

by creating rays that originate from its centroid and run

through its contour points. The intersections of these rays

with an aligned shape denote the landmarks.

Once landmarks are determined, the shape model is built

as outlined in Section 2.1. The final LV model is described

by 2500 landmarks and shown in Figure 1.

2.3. Model fitting

A major difference compared to other works concerning

2-D/3-D registration (see [13] and references therein) is

that the shape of the 3-D object to be spatially aligned with

its projections is unknown. In this work, a non-rigid reg-

istration approach is followed which brings the LV SSM

from model space to image space: y = R([x̄ + Φb]s) + T .

mode 1

mode 2

mode 3

+3
√

λi mean −3
√

λi

Figure 1. First three modes of variation of the LV SSM.

Both shape parameter vector b and the pose parameters, i.e.

rotation matrix R, scale factor s and translation vector T ,

have to be found so that the registration error is minimized.

In contrast to [8] and [10] we do not use a gradient

descent technique for optimization, but, similar to [9],

the Downhill Simplex algorithm. To generate plausible

shapes [11], shape parameter vector b is constrained by

|bi| ≤ 3
√

λi during optimization. Unlike [8], [9] and [10]

we use quaternions instead of rotation matrices. Thus, the

number of parameters needed to represent orientation in

the pose vector is reduced by 5 (from 9 to 4).

The cost function to be minimized is based on contour

information derived from simulated x-ray projections. For

a given pose and shape parameter vector, a simulated pro-

jection of the SSM in image space is obtained by first con-

verting the polygonal model into a binary volume, then

deriving projection profiles from a given angle θ for each

axial slice using the radon transform and, finally, assem-

bling the profiles to a 2-D image. Figure 2 shows simu-

lated projections of the mean model from standard left and

right anterior oblique (LAO and RAO) view. The contour-
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related error for a single projection view is deduced by ra-

dially sampling the LV contour in both the simulated and

the real projection image and then calculating the SSD be-

tween corresponding sampled points, see Figure 3. The

total contour-related error is the sum of the SSD of both

projection views.

Figure 2. Simulated x-ray projection of the mean shape

model from standard LAO and RAO view.

Figure 3. Contour information used for model fitting. The

model contour is in dark, the original contour in bright

color.

3. Results

The presented method is implemented using Matlab and

the Insight Segmentation and Registration Toolkit (ITK).

For evaluation, leave-one-out experiments are performed.

From the segmented CT data sets, all but one are used

to learn a shape model. Simulated projections are calcu-

lated for the left-out data set, and from these projections

shape is recovered by fitting the learned model. The re-

covered and the original LV shape are converted into bi-

nary volumes (vrec, vorig) and compared based on two

volumetric measures: difference of volumes, DOV = 1−
|vol(vorig) − vol(vfitted)|/vol(vorig), and volume of dif-

ferences, V OD = 1−vol(xor(vorig, vfitted))/vol(vorig).
These evaluation steps are performed for each data set. The

resulting statistics are listed in Table 1.

Table 1. Comparison of original and recovered volume.

difference of volume of

volumes (%) differences (%)

mean 94.27 74.14

std 4.41 5.13

min 85.95 65.86

max 99.10 81.06

The experiments show that the original volume can be

recovered at high accuracy (94.27% at average), even if

only contour information is incorporated for reconstruc-

tion. However, the VOD measure indicates that there’s still

place for improvement concerning shape conformity.

Figure 4 shows one reconstruction result of the leave-

one-out experiments, convergence is shown in Figure 5.

Figure 4. Reconstruction example showing original shape

(bright) and recovered shape (dark).

Figure 5. Convergence of reconstruction example.

4. Discussion and conclusions

A novel method for reconstructing the LV shape from

bi-planar x-ray images is presented. One major difference

to other works in this field is the incorporation of geomet-

ric prior information, extracted from high-resolution multi-

slice CT data and modeled as a SSM. Reconstruction of the

LV shape is based on a non-rigid 2-D/3-D registration ap-

proach utilizing simulated x-ray projections. The model is

fitted by minimizing the difference between real and sim-

ulated projection images.

The CT data used in this work shows the ventricle

at high accuracy and is suitable for learning a detailed

anatomical model. The sparse data available for LV shape

recovery necessitates the incorporation of geometric prior

information. Using an approach based on SSM improves

robustness and allows generating plausible and patient-

specific shapes. Unlike other LV SSMs often found in liter-

ature, anatomical areas like the atrial concavity, the aortic
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valve region and the apex are preserved. This is necessary

to generate complete contour and densitometric informa-

tion by the simulated projections during registration. An-

other important reason is that these areas overlap with the

ventricular cavity in projection images and are therefore

hard to recover; an aspect not yet addressed in previous

work. Using a model-based reconstruction approach helps

in recovering these areas.

Once a ventricle is reconstructed, its volume can be

measured directly and needn’t be approximated from its

projected contour.

Future work will focus on improving the SSM and the

non-rigid 2-D/3-D registration. Incorporation of densito-

metric information is currently work in progress. The pre-

sented approach will be further evaluated using real patient

data.
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