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Abstract 

Chronic heart failure (CHF) is a major and growing 

public health concern (~23 million people worldwide) 

with five-year survival rates of 25% in men and 38% in 

women. Objective of this study was to investigate whether 

linear and nonlinear heart rate variability (HRV) indices 

enhance risk prediction in patients with CHF. To 

discriminate between low risk (stable condition, N=459) 

and high risk (cardiac death, N=50) CHF patient groups, 

nonlinear indices from compression entropy (CE), 

detrended fluctuation analysis (DFA), symbolic dynamics 

(SD) and standard linear HRV analysis were calculated 

from 24h Holter ECG recordings. Indices from nonlinear 

dynamics (CE, DFA, SD: p<0.001) contribute together 

with clinical parameters NYHA and LVEF to an 

enhanced risk stratification in CHF patients. 

 

1. Introduction 

Chronic heart failure (CHF) is an increasingly frequent 

occurring clinical syndrome affecting about 23 million 

people worldwide, particularly in the industrialized 

countries with ageing populations [1,2]. Often CHF is 

caused by a variety of factors, such as hypertension, 

cardiomyopathy and coronary artery disease and is 

characterized by an impaired ventricular filling or a 

reduced ventricular ejection fraction. Results from the 

Framingham study [3] revealed five-year mortality rates 

of 75% in men and 62% in women. 

The use of an implantable cardioverter-defibrillator 

can reduce the risk of death in CHF by 23%, but depends 

mainly on risk stratification [4]. In various studies [5-7] 

several non-invasive linear and nonlinear approaches 

were developed for identifying patients at high risk of 

cardiac death who would benefit from a preventive 

therapy. However, some of them could not contribute 

considerably to such risk stratification. 

The aim of this study was to investigate whether some 

most promising measures from linear [8] and from 

nonlinear heart rate variability (HRV) analysis enhance 

risk prediction in patients with CHF. 

2. Methods 

In the scope of the Spanish multicenter study MUSIC2 

(MUerte Subita en Insuficiencia Cardiaca or sudden 

death in heart failure) 509 CHF patients whose heart 

failure arises from different etiologies were enrolled. 

Inclusion criteria were: New York Heart Association 

index NYHA II or III, left ventricular ejection fraction 

LVEF<40%, left ventricular diastolic diameter 

LVDD>60mm, left ventricular hypertrophy LVH>14mm 

and sinus rhythm. Patients with severe valvular disease, 

severe hepatic, pulmonary or renal disease and other 

criteria influencing the autonomic regulation were 

excluded. All CHF patients were optimal treated with 

drugs as ACE inhibitors (74%), beta blockers (70%), 

diuretics (65%) and digitalis (21%). The investigation 

was conforming to the recommendations of the 

Declaration of Helsinki, the ethical committee of the 

respective institutions approved the study protocol and all 

patients gave their written informed consent before 

participation. 

From 24h Holter ECG records (sampling frequency = 

200Hz, ELA Medical) the beat-to-beat interval (BBI) 

time series (tachograms) were extracted. Afterwards, 

ectopic beats and artifacts within the tachograms were 

detected and corrected by an adaptive filter. 

The following indices were obtained from time 

domain and frequency domain (estimation of power 

spectra by Fast Fourier transform applying a Blackman 

Harris window) according the Task Force 

recommendations [8]: meanNN, sdNN, rmssd, LF, HF, 

LFn, HFn and LF/HF. 
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Nonlinear dynamic behavior within BBI time series 

can be characterized by measures from nonlinear 

symbolic dynamics (SD). According to Voss et al. [9], 

BBI time series were transformed into time series 

consisting of either four or two different symbols. From 

these symbol strings time series of words consisting of 3 

or 6 successive symbols were estimated and from these 

word sequences different single word type probabilities 

(pW000-pW333, plvar5) were calculated. 

In a further SD approach [10] a sliding window w 

consisting of five BBIs is shifted (here k=1) over the 

whole BBI time series (equation 1). Within every 

window k (L - number of total shifts), the number of 

consecutive BBI differences that are decreased in 

comparison to the a-scaled (in this study a=1) standard 

deviation sd(k) of the current window is determined and 

coded as symbol Sk resulting in a symbol string with a 

range of five possible symbols {0,1,2,3,4}. Amongst 

others, the measure tau1_p001 was obtained by counting 

the number of symbol types which exceed a probability 

of occurrence of 1%. 
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Detrended fluctuation analysis (DFA) [11] was applied 

to quantify the absence or presence of fractal correlation 

properties in the non-stationary BBI time series. The 

DFA calculation was performed as described in [12]. In 

this study, two DFA indices were calculated: a short-term 

scaling exponent g1 (box size n=4-16) and a long-term 

scaling exponent g2 (n=16-64). 

Finally, compression entropy (CE) of the BBI time 

series was estimated according to a modified LZ77 data 

compression algorithm that is described in detail in [13]. 

The CE approach allows a lossless data compression of 

the time series based on string matching applying a 

lookahead buffer of length b and sliding window of 

length w (in this study w=7 and b=3). The CE was 

estimated as ratio of compressed time series length and 

original time series length. 

After a follow-up period of 24 month, CHF patients 

could be separated into an age and gender matched low 

risk (LR: stable condition, N=415, ﾝ=317, ﾜ=98) and 

high risk group (HR: cardiac death, N=50, ﾝ=38, ﾜ=12) 

(Table 1). Furthermore, a low risk (N=221, ﾝ=180, 

ﾜ=41) and a high risk (N=35, ﾝ=30, ﾜ=5) subgroup 

consisting of only ischemic CHF patients were 

considered. 

Univariate statistical analyses (SPSS) based on Mann-

Whitney U-test (p<0.05) and descriptive statistics (mean 

values, standard deviations) were determined for all 

estimated parameters. Multivariate analysis on the basis 

of step-wise discriminant function analysis with cross-

validation was applied on uncorrelated parameters 

(Pearson correlation coefficient). Three optimal 

parameter sets each consisting of 5 univariate significant 

parameters were determined: a clinical parameter set, a 

non-clinical parameter set and a mixed set (of both 

clinical and non-clinical indices). 

3. Results 

Besides clinical indices, several non-clinical 

parameters, especially from nonlinear SD, DFA and CE, 

revealed significant (p<0.05) differences between the LR 

and HR group of CHF patients (Table 1). As expected, 

the HR group was characterized by a significantly 

increased NYHA index (p<0.01) and decreased LVEF 

(p<0.05). The mean heart rate was slightly higher (lower 

meanNN, p<0.05) within HR. From the frequency 

domain of standard HRV analysis, the normalized low 

frequency power (LFn) reflecting predominantly 

sympathetic modulation and LF/HF as index of 

sympathovagal balance were appreciably decreased in 

HR patients in comparison to LR patients (p<0.05). The 

normalized high frequency component (HFn) as measure 

of vagal activity was significantly higher (p<0.05) within 

the HR group. From SD, plvar5 quantifying the portion 

of low-variability within BBI time series was clearly 

increased (p<0.01) within HR. In contrast to the LR 

group, the index pW333 that classifies dynamic changes 

within a time series was slightly decreased (p<0.05) 

within the HR group. However, tau1_p001 as a further 

parameter of SD was considerably decreased within HR 

(p<0.01) compared to LR. The amount of short-term 

correlations represented by the short-term scaling 

exponent g1 from DFA was significantly decreased 

(p<0.01) within the BBI time series of HR patients. 

Finally, CE was also clearly decreased in HR.  

Similar results were obtained considering the 

discrimination of the ischemic CHF patient groups. With 

the exception of plvar5 (not significant) from SD, the 

same parameters could differentiate between LR and HR. 

For risk stratification in differentiating the groups LR 

and HR the best clinical parameter set (Figure 1) includes 

the following indices: gender, age, LVEF, NYHA and 

LVDD. This parameter combination results (Table 2) to a 

sensitivity (SENS) of 44%, specificity (SPEC) of 80%, 

area under ROC curve (AUC) of 67%, positive predictive 

value (PPV) of 22% and a negative predictive value 

(NPV) of 92%. The optimal non-clinical parameter set 

(tau1_p001, plvar5, g1, CE, LFn) reached 50% SENS, 

72% SPEC, 67% AUC, 50% PPV and 72% NPV. The 

mixed optimal parameter set consists of two clinical 

measures (NYHA, LVEF) and three non-clinical indices 

(g1, CE, plvar5) and leads to a SENS of 54%, SPEC of 

77%, AUC of 72%, PPV of 54% and a NPV of 77%. 
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Table 1. Univariate significances (p<0.05) for 

discrimination between low risk (LR) and high risk (HR) 

heart failure patients; mean value ± standard deviation, 

significance: n.s. - not significant, * - p<0.05, ** - 

p<0.01, applied analysis methods: a - clinical indices, b - 

standard HRV indices according to Task Force, c, d, e – 

indices from symbolic dynamic, detrended fluctuation 

analysis and compression entropy. 

4. Discussion and conclusions 

From the applied linear and nonlinear methods, four 

parameters with a significance level p<0.01 as CE, g1 

(from DFA), plvar5, tau1_p001 (both from SD) and four 

standard HRV measures (meanNN, LFn, HFn, LF/HF) 

and one SD parameter (pW333) with a significance level 

p<0.05 showed a principal ability for an enhanced risk 

classification in CHF patients.  

Comparable results with only slightly changed 

significant values were achieved considering only the 

subgroups of ischemic heart failure. The higher mean 

value of the clinical NYHA class indicates a decreasing 

of the physical performance within the HR group but 

depends on the subjective assessment of experienced 

cardiologists. 

According to Bethany et al. [14], it could be shown 

that CHF patients with a high risk of cardiac death exhibit 

a decreased LVEF compared to LR patients. Within the 

group of HR patients a decreased sympathetic drive 

(decreased LFn and LF/HF) and an enhanced vagal 

activity (increased HFn) was observed in comparison to 

the LR group. Galinier et al. [15] presented also a close 

relationship between decreased LF power and sudden 

cardiac death of CHF patients. From SD two measures 

plvar5 and tau1_p001 achieved clear significances and 

thus they could be suitable for classification of CHF 

patients with high risk of mortality. 

 
Figure 1. Comparison of the receiver operator (ROC) 

curves of the three different parameter sets for risk 

stratification in heart failure patients at high risk for 

cardiac death. 

 

Table 2. Classification results of the three different 

parameter sets (discriminant function analysis) consisting 

each of 5 indices; SENS - sensitivity, SPEC - specificity, 

AUC - area under curve, PPV - positive predictive value, 

NPV - negative predictive value, PPA - positive 

predictive accuracy, NPA - negative predictive accuracy. 

 

A reduction of dynamics within the BBI time series of 

HR patients was characterized by an increasing value of 

plvar5. The parameter tau1_p001 was diminished within 

the HR group indicating a reduced mean short-term 

variability associated with a lower level of complexity. A 

reduced complexity of the heart rate in HR patients was 

also approved by a decreased CE in the HR group. The 

SD parameter pW333 was reduced in the HR group 

indicating a lower probability of the occurrence of three 

consecutive shortened BBIs. [16] Mäkikallio et al. [16], 

showed that g1 from DFA is a powerful independent 

predictor of mortality in CHF which could be confirmed 

by this study. Thereby, a reduced short-term scaling 

exponent within the HR group indicates a lower amount 

parameter LR HR P 

gender [ﾝ/ﾜ] 317/98 38/12 n.s.

age [years] 63.64 ± 10.39 65.24 ± 12.50 n.s.

LVEF [%] 37.71 ± 14.44 33.34 ± 12.98 * 

NYHA 2.16 ± 0.37 2.40 ± 0.50 **

a 

LVDD [mm] 60.92 ± 10.17 62.18 ± 10.65 n.s.

meanNN [ms] 854 ± 132 813 ± 123 * 

sdNN [ms] 110 ± 39 99 ± 43 n.s.

LFn 0.69 ± 0.13 0.64 ± 0.14 * 

HFn 0.31 ± 0.13 0.36 ± 0.14 * 

b 

LF/HF 2.91 ± 2.07 2.21 ± 1.44 * 

plvar5 0.001 ± 0.005 0.004 ± 0.012 **

pW333 0.30± 0.08 0.27 ± 0.10 * c 

tau1_p001 4.82 ± 0.38 4.60 ± 0.49 **

d g1 1.17 ± 0.21 1.05 ± 0.24 **

e CE 0.52 ± 0.09 0.48 ± 0.10 **

Parameter Clinical Set Non-clinical Set Mixed Set 

SENS 44% 50% 54% 

SPEC 80% 72% 77% 

AUC 67% 67% 72% 

PPV 22% 50% 54% 

NPV 92% 72% 77% 

PPA 76% 70% 75% 

NPA 24% 30% 25% 
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of short-term correlations and an increased randomness 

of heart rate patterns within the BBI time series compared 

to the LR group. 

Considering the results of the discriminant function 

analysis it could be demonstrated that the determined 

optimal non-clinical parameter set is comparable to the 

clinical parameter set. It should be noted that the clinical 

indices NYHA, LVEF and LVDD were diagnosed by 

very experienced specialists leading to enhanced results 

of risk stratification compared to more inexperienced 

general practitioners. In comparison to clinical indices the 

linear and nonlinear parameters are easy to apply and 

independent on subjective influences.  

Interestingly, in addition to the clinical indices 

(NYHA, LVEF) only nonlinear measures were 

automatically chosen by the step-wise discriminant 

analysis (g1, CE, plvar5) for inclusion in the mixed 

optimal parameter set. The mixed parameter set leads to 

an enhanced risk stratification (increasing accuracy from 

AUC=67% to AUC=72%). 

In conclusion, the results of this study show that HRV 

measures especially from nonlinear dynamics together 

with clinical parameters contribute to an enhanced risk 

stratification in heart failure patients independent from 

the origin of heart failure which has to be verified by 

additional studies. 
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