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Abstract

This paper presents a two stages method for three-

dimensional (3-D) coronary artery motion estimation from

rotational X-ray projection. In the first step we estimate a

3-D skeleton of the coronary tree at each cardiac phase,

using a deformable coronary tree model. The second stage

proceeds with a motion estimation between the 3-D recon-

structed coronary trees over the cardiac cycle. This esti-

mation is based on a 3-D B-spline interpolation model.

1. Introduction

Coronary arterial diseases remain a major cause of mor-

tality in Europe and in the US. Quantitative and accurate

characterization of abnormal vascular patterns (location,

shape) within the whole coronary network is of major im-

portance for diagnosis and treatment. For a long time,

only mono- and bi-plane X-ray techniques were available

to deal with this problem. Pioneering attempts, mainly fo-

cused on static reconstruction, were thus based on com-

puter vision approaches relying on epipolar techniques and

feature matching (refer to [1] for a review). However, a

first coupling with motion estimation was proposed in [2]

and led to a fast and efficient scheme to recover the cen-

trelines over the entire time sequence. Today, the recent

availability of Rotational X (Rot-X) and Multi-detector CT

devices opens new perspectives. If the latter can be seen

basically as a diagnosis tool, the former offers joint pre-

operative and intra-operative solutions. It provides during

the rotation of the C-arm (over 120-220 degrees within 5-7

seconds) a higher number of projections (80-160). Unfor-

tunately, due to the object motion (heart beating, breath-

ing...) the full set of projections cannot be directly used:

each projection corresponds to a different volume image.

Thus, the estimation of the object deformation and its use

in the tomographic reconstruction process are of major in-

terest. In angiography for instance, Christophe Blondel [3]

proposes a 3-D+t (time-dependant three-dimensional) re-

construction based on the estimation of a 3-D coronary

centreline model at a reference time. The motion compo-

nent is approximated by a 3-D+t B-spline model whose

parameters are estimated such that the deformed skele-

ton fits the projections at each state instant. This paper

deals with the reconstruction of the coronary tree motion

through the Rot-X sequence, with assumptions similar to

those made in [2, 3]. In other words, an initial exact static

3-D vascular tree described by centrelines is assumed to

be known as well as the projective geometry and the cen-

trelines in all projections. Moreover, the motion is sup-

posed cyclic and the projections are synchronized through

ECG-gating. We also assume that the vessel centrelines

have been segmented on each projection. Our contribu-

tion departs from the previous approaches in the following

aspect: we propose a deformable coronary tree centreline

model that leads to an estimation of the motion field based

on a quadratic minimization (section 2) instead of a non-

quadratic formulation [3]. The results on simulated data

are reported in section 3. Conclusions and perspectives are

drawn in section 4.

2. Methods

2.1. Deformable tree model

Let Ω ⊂ R
3 be the coronary tree domain and let us de-

note Vt ⊂ Ω the coronary tree at time t ∈ [0, NT ]. We

assume that Vt is T -periodical: for all t ∈ [0, (N − 1)T ],
Vt+T = Vt, T denoting the duration of a cardiac cy-

cle and N the number of observed periods. Vt is ob-

served through a finite number of projections at regular

instants tj = jT/S, j ∈ {1, . . . , NS}, where S is the

number of projections in a period. Hence the sequence
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(Vtj
)j is S-periodical and we can rewrite Vtj

= Vs, with

s = j mod(S). Vs now denotes the 3-D model at phase

s of the cardiac cycle. Let Θs = {ϑ1,s, . . . , ϑN,s} be the

device positions (angles) corresponding to a given phase s
of the cycle and P (ϑ1,s), . . . , P (ϑN,s) be the correspond-

ing projection planes. The proposed method considers that

a first 3-D skeleton of the coronary tree has been recon-

structed. This reconstruction may be based on the epipolar

constraint and is performed using the projections acquired

at phase s = 1 [3]. Let us denote V1 =
{

v1
1 , . . . , v

1
L

}

this

initial tree, where v1
ℓ ∈ R

3 for all ℓ ∈ {1, . . . , L}. Our aim

is to estimate Vs = {vs
1, . . . , v

s
L} for each s ∈ {2, . . . , S}

using successive deformations of the 3-D model V1. Pro-

ceeding this way allows each point v1
ℓ of V1 to be tracked in

time and to build a time-sequence v1
ℓ ∈ V1, . . . , v

S
ℓ ∈ VS

for each ℓ ∈ {1, . . . , L}, which makes the estimation of

a motion function ϕs : R
3 → R

3 more simple, as we

shall see further in this section. A topological structure

on Vs is required to define a regularity cost to prevent its

successive deformations to lead to a degenerated tree. A

natural neighborhood structure is the following: assuming

that V1 can be separated1 in J branches B1
1 , . . . , B

1
J with

B1
j =

{

v1
j,1, . . . , v

1
j,Ij

}

, whose elements are listed in an

order such that v1
j,1 and v1

j,Ij
are the border points of B1

j ,

a clique is a set {(j, i), (j, i + 1)}. The estimation of Vs

from Vs−1 is performed through the minimization of a cost

function that is composed of a data fidelity term and a regu-

larization term. For each projection angle ϑ, let Pgeom
ϑ (v)

be the geometric cone-beam projection of the 3-D point v
on the projection plane P (ϑ),

Pgeom
ϑ (v) =

a

b+ vx cos(ϑ) + vy sin(ϑ)

[

vx sin(ϑ) − vy cos(ϑ)
vz

]

,

where a (resp. b) is the distance of the X-ray source to the

detector (resp. the volume center). Let Dϑ : P (ϑ) → R
∗
+

be a function such thatDϑ(x) is small when x is located in

the neighborhood of a projected vessel in P (ϑ) and large

when x is in the background (see section 2.2 for the defi-

nition of the function). We can now define the data cost of

a point v in Ω with respect to the projections at phase s:

Es(v) =
1

N

N
∑

n=1

Dϑn,s
(Pgeom

ϑn,s
(v)).

The data fidelity cost Es(V ) of a 3-D coronary tree model

V = {v1, . . . , vL} is thus given by:

Es(V ) =
1

|V |

∑

v∈V

Es(v).

1Bifurcation points belong to at least 3 branches

We consider then the regularization term F(V ) (see section

2.3 for its definition), its objective being to constrain the

deformation of the model to be smooth. Then for all t ∈
{2, . . . , T}, the global deformation energy Ds(V ) for the

estimation of Vs is given by

Ds(V ) = Es(V ) + κF(V ),

where κ is a parameter that controls the elasticity of V .

For s = 2, . . . , S, a gradient based method is performed to

estimate Vs from Vs−1:

1. Initialize V (0) = Vs−1, q = 0
2. For ℓ = 1, . . . , L

Compute δq,ℓ = Es(v
(q)
ℓ )

Compute v
(q+1)
ℓ = v

(q)
ℓ − δq,ℓλ∇ℓDs(V

(q))
End For

3. Compute V (q+1) =
{

v
(q+1)
1 , . . . , v

(q+1)
L

}

4. If convergence then END For

5. Else q = q + 1, return to step 2.

Here ∇ℓDs(V ) denotes the gradient of Ds with respect

to vℓ. The time step δq,ℓ has been chosen to be equal to

Es(v
(q)
ℓ )1/2 in order to slow down the motion as V (q) ap-

proaches the solution.

The cost function Ds is completed to take into account

the length of the vessel. If we consider known the location

of the branch extremities in each projection plane P (ϑn,s),
we can exploit this information for the energy function

computation at these endpoints: let vj,1 (resp. vj,Ij
) be

the first (resp. the last) point in the branch Bj of a vessel

3-D skeleton V . The energy of vj,1 and vj,Ij
at phase s we

used are

Eend
s,j,1(vj,1) =

N
∑

n=1

ζn,s
j,1 ‖P

geom
ϑn,s

(vj,1) − hn,s
j,1 ‖

2

and

Eend
s,j,Ij

(vj,Ij
) =

N
∑

n=1

ζn,s
j,Ij

‖Pgeom
ϑn,s

(vj,Ij
) − hn,s

j,Ij
‖2

where hn,s
j,1 (resp. hn,s

j,Ij
) denotes an estimation of the first

(resp. the last) point of the extracted branch j on projec-

tion plane P (ϑn,s), and where ζn,s
j,1 (resp. ζn,s

j,Ij
) is a non-

negative normalized sequence (with respect to n) which

takes large values if hn,s
j,1 (resp. hn,s

j,Ij
) is likely to be a

correct starting (resp. ending) point for the branch j on

P (ϑn,s) and small values otherwise.

2.2. Distance function

We define here the "distance" function Dϑ used in 2.1.

Let vℓ be a point of a 3-D coronary skeleton V , and
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hϑ,ℓ = Pgeom
ϑ (vℓ) be its projection on P (ϑ). Let us denote

Hϑ = Pgeom
ϑ (V ) the projection of V on P (ϑ). Since we

assumed that the two-dimensional (2-D) centrelines have

been extracted on each projection plane P (ϑ), we can cal-

culate a distance function between hϑ,ℓ and the extracted

centrelines. Let Cϑ ⊂ P (ϑ) be the set of points of the

extracted centrelines on projection plane P (ϑ). A natural

way to define a distance between each point hϑ,ℓ ∈ Hϑ

and Cϑ would be Dϑ(hϑ,ℓ) = minc∈Cϑ
‖hϑ,ℓ − c‖2. How-

ever, this distance depends on the point c ∈ Cϑ that min-

imizes ‖hϑ,ℓ − c‖ and c may belong to a wrong branch.

To overcome this difficulty, we propose an alternative

distance function. Let us assume we are estimating Vs

from Vs−1. Let v
(q)
ℓ be a point of a 3-D coronary skele-

ton V (q) at iteration q of the deformation algorithm, and

h
(q)
ϑ,ℓ = Pgeom

ϑ (v
(q)
ℓ ). Remember that v

(q)
ℓ is a result of a

displacement of vs−1
ℓ ∈ Vs−1, which is also the last el-

ement of the sequence v1
ℓ ∈ V1, . . . , v

s−1
ℓ ∈ Vs−1. Let

c1(ϑ, ℓ, q), . . . , cnmin
(ϑ, ℓ, q) be the nmin closest points to

h
(q)
ϑ,ℓ in Cϑ: we define Dϑ(h

(q)
ϑ,ℓ) by the weighted sum

Dϑ(h
(q)
ϑ,ℓ) =

1

Γ(ϑ, ℓ, q)

nmin
∑

i=1

γi(ϑ, ℓ, q)‖h
(q)
ϑ,ℓ−ci(ϑ, ℓ, q)‖

2,

where Γ(ϑ, ℓ, q) =
∑nmin

i=1 γi(ϑ, ℓ, q). A high γi(ϑ, ℓ, q)
value means that ci(ϑ, ℓ, q) is likely to be a good tar-

get for h
(q)
ϑ,ℓ. The weights γi(ϑ, ℓ, q) may depend on lo-

cal properties of Cϑ and H1
ϑ = Pgeom

ϑ (V1), the pro-

jection of the initial coronary skeleton, such as the ves-

sel local direction. Let
−→
dir(h1

ϑ,ℓ|H
1
ϑ) be the vessel di-

rection of H1
ϑ at h1

ϑ,ℓ and
−→
dir(ci(ϑ, ℓ, q)|Cϑ) be the di-

rection of Cϑ at ci(ϑ, ℓ, q): we choose γi(ϑ, ℓ, q) =

1/
(

‖
−→
dir(h1

ϑ,ℓ|H
1
ϑ) −

−→
dir(ci(ϑ, ℓ, q)|Cϑ)‖1 + 1

)

.

2.3. Regularization cost

In this section we briefly introduce three regularity cost

function F. Let V be a coronary tree 3-D model, Υ(V ) be

the set of cliques in V , ι = {ι1, ι2} be an element of Υ(V ),
and ψ1, ψ2, ψ3 : R

+ → R
+ be three non-decreasing func-

tion. A first natural way to control the regularity of a 3-D

coronary tree model V is to maintain a small distance be-

tween two neighbouring points. The regularity functional

is therefore written as

F1(V ) =
1

|Υ(V )|

∑

ι∈Υ(V )

ψ1(‖vι1 − vι2‖).

Another way to control regularity is to maintain constant

distance between neighbouring points. Let ξV : Υ(V ) →
R

+ which maps a clique ι to the square distance between

the 3-D points indexed by ι1 and ι2:

∀ι ∈ Υ(V ), ξV (ι) = ψ2(‖vι1 − vι1‖).

We can interpret ξ as a random variable, and then calculate

its mean value and its variance:

E(ξV ) =
1

|Υ(V )|

∑

ι∈Υ(V )

ξV (ι)

and

V(ξV ) =
1

|Υ(V )|

∑

ι∈Υ(V )

(ξV (ι) − E(ξV ))
2
.

Thus we chose

F2(V ) =
√

V(ξV ).

Finally, the last solution consists of controlling the de-

formation magnitude from the initial 3-D model V1 =
v1
1 , . . . , v

1
L. Assuming we apply our algorithm on the 3-

D model V = {v1, . . . , vL}, we define the local displace-

ment function

∀ℓ ∈ {1, . . . , L}, Dℓ(vℓ) = vℓ − v1
ℓ ∈ R

3,

the regularity score we used is

F3(V ) =
1

|Υ(V )|

∑

ι∈Υ(V )

ψ3(‖Dι1(vι1) −Dι2(vι2)‖).

2.4. Motion parameters estimation

Once we have an estimation of each 3-D coronary tree

model Vs, the next step deals with the motion estimation

between two successive 3-D trees. This motion function

is computed using a B-spline based registration technique.

For each s ∈ {2, . . . , S}, we wish to build a function ϕs :
R

3 → R
3 such that for each ℓ ∈ {1, . . . , L}, ϕs(v

s
ℓ ) ≃ v1

ℓ .

Let M be a grid of Ω. A B-spline parametric model is

chosen to represent ϕs:

ϕs :





x
y
z



 7−→







x+
∑|M|

m=1 α
m
X,sbm(x, y, z)

y +
∑|M|

m=1 α
m
Y,sbm(x, y, z)

z +
∑|M|

m=1 α
m
Z,sbm(x, y, z)






,

where bm(x, y, z) = b(x − xm)b(y − ym)b(z − zm) is a

cubic B-spline function centered on (xm, ym, zm). The es-

timation of αs =
{

(αm
X,s, α

m
Y,s, α

m
Z,s)

}|M|

m=1
is carried out

by minimizing a least square cost function:

ψ(αs) =
L

∑

ℓ=1

‖ϕαs
(vs

ℓ ) − v1
ℓ‖

2

+µ
∑

m∼m′

‖αm
s − αm′

s ‖2 + ν‖αs‖
2,

where the second sum is taken over the neighbouring

points of M, and where µ and ν are regularization param-

eters. By convention, α1 = 0.
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Table 1. Scores for the three regularity cost functions

(×10−4).

regularity cost F1 F2 F3

ε(V, V ∗) 5.5 4.8 3.2

Figure 1. Result of the deformation algorithm between

end of systole and end diastole, after 20 iterations

3. Results

We dispose of 20 3-D centrelines V1, . . . , V20 at every

5% of the RR interval that had been previously extracted

from a 3-D dynamic sequence acquired on a 64-slice GE

LightSpeed CT coronary angiography [4]. The total num-

ber of projections is 80 and we simulated 4 cycles dur-

ing one acquisition, which means each of the 20 phases

is projected 4 times. The 2-D centrelines on each projec-

tion were simulated by performing geometric projections

of the 3-D centrelines on the planes P (ϑ). We calculated a

score function to evaluate the performance of our method:

if V ∗ = {v∗1 , . . . , v
∗
L} is the 3-D skeleton we wish to ap-

proximate and V = {v1, . . . , vL} is our deformable tree,

we calculate the distance between deformable model V
and the target V ∗:

ε(V, V ∗) =
1

L

L
∑

ℓ=1

‖v∗ℓ − vℓ‖
2.

We tried our method with the three proposed regularity

cost functions F1, F2 and F3. The starting tree V1 and

the target tree V ∗ correspond respectively to the end dias-

tolic and systolic phases in order to test the robustness of

the method for the largest possible movements. The cor-

responding optimum regularity parameters κ1, κ2 and κ3

were chosen empirically and were equal to 3.3, 0.22 and

3.8 respectively. We chose ψi(x) = x2 for i = 1, 2, 3.

Results can be seen in table 3 and Fig. 1. The motion pa-

rameter α was estimated with µ = 0.1 and ν = 0.005. The

approximated motion field can be seen in Fig 2.

Figure 2. Estimation of the motion field ϕs

4. Discussion and conclusions

We have briefly presented a 3-D deformable method al-

lowing the estimation of coronary tree motion over a car-

diac cycle from a X-ray projection sequence. This mo-

tion field can be further introduced in a tomographic re-

construction algorithm to reconstruct the coronary tree us-

ing the set of available projections in order to improve the

quality of the reconstruction. We tried our method with

three different regularity cost functions. So far it appears

that the third regularization cost (based on local regulariza-

tion of the motion) gave the best results.
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