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Abstract 

Wavelet transform coherence (WTC) can provide 

insight into the transient linear order of the regulatory 

mechanisms, via the computation of time-frequency maps 

of the time-variant coherence. This paper presents a 

framework for applying WTC for quantitative analysis of 

coherence in cardiovascular variability research. 

Computer simulations were performed to estimate the 

accuracy of the WTC estimates and a method for 

determining the coherence threshold for specific 

frequency band was developed and evaluated. Finally, we 

demonstrated, in two representative situations, the 

dynamic behavior of RSA through the analysis of the 

WTC between HR and respiration signals. This 

emphasizes that continuous wavelet transform (CWT) and 

its application to WTC is a useful tool for dynamic 

analysis of cardiovascular variability. 

1. Introduction 

The coherence function is used to assess the existence 

and strength of linear coupling between two signals in the 

frequency domain [1]. As such, it is often applied to the 

analysis of the ANS functionality via the examination of 

cardiovascular and respiratory interrelation [2].  A major 

limitation of the classical spectral analysis is the steady 

state assumption. This stipulation makes the selection of 

suitable segments of the time series quite difficult and 

makes these methods unsuitable for the analysis of 

transient phenomena. The use of wavelet transform in 

bivariate analysis of cardiovascular signals has the 

potential to offer additional information about the 

complex functioning of autonomic regulatory 

mechanisms. The wavelet transform coherence (WTC) is 

a known, though infrequently used tool in scientific areas. 

The use of WTC in cardiovascular variability research 

has already been introduced [3] and further explored 

[4;5], focusing on the dynamic analysis of RSA. The 

purpose of the following work is to establish the Wavelet 

coherence estimates for the use of physiological research, 

particularly for use in the analysis of ANS control.  

2. Methods 

2.1. Mathematical overview 

Wavelet Transform (WT) decomposes a time series 

signal into a time – scale plane. The continuous wavelet 

function based on the Morlet wavelet function consists of 

a plane wave modulated by a Gaussian . 
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whereas t and s are time and  scale. The Morlet 

coefficient 0ω  shifts the balance between frequency 

resolution and time resolution. We found that the 

preferable choice of time and frequency resolution 

combination for cardio respiratory signals is 

06 30ω≤ ≤ . 

The squared wavelet coherence estimator is defined as 

the squared absolute value of the smoothed cross wavelet 

spectrum, normalized by the smoothed wavelet power 

spectrum of the two signals  
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where n is the discrete time index,  
xx

nW  and 
yy

nW  are 

the wavelet spectral density function, 
yy

nW  is the cross 

wavelet spectrum, and the  brackets indicate a 

smoothing operator [6] . 
A detailed overview of wavelet analysis based on the 

Morlet wavelet  and of WTC was given in a previous 

work [3] and is based on the work of Torrence & Compo 

[7]. 

2.2. Simulations for assessing bias and SD 

In order to assess the statistical error of the WTC with 

regard to the theoretical coherence, computer simulations 
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were performed.  As our principal simulated signal (X(t)), 

we chose a white noise signal in the 0.18 – 0.4 Hz band 

to simulate an arbitrary respiration signal.  

In accordance with the LTI model with transfer 

function equal unity [8], the output signal Y(t) signals 

were obtained by adding uncorrelated white noise to X(t).  

The simulations were performed repeatedly with 

different amplitudes of the added white noise to give 

N>1000 realizations for each coherence level, in 0.1 

steps.  

The bias and standard deviation were obtained as 
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where k is the theoretical coherence levels  from 0.05 

to 0.95 in 0.1 steps, C2(k) is the WTC level. The 

procedure was repeated for different wavelet coefficients 

( 0ω ): 6,10,15,20 and 30. 

2.3. WTC threshold and error rates. 

Coherence threshold levels depends on the choice of 

the surrogate signals used and their similarity to the 

analyzed signals [9]. Therefore, the evaluation of the 

threshold for the band coherence is performed using  

signals created in the same way as the simulated signals 

described above, but with SNR<<1 which generates 

uncorrelated signal couples. The critical level for 

calculating the magnitude threshold was set at 95%. The 

threshold level was analyzed for the HF band (0.18 – 0.4) 

for 0ω : 6,10,15,20 and 30. 

In order to evaluate the error rates of the threshold 

level, simulations similar to those performed for 

evaluating bias were used; realizations of the signals were 

analyzed with different SNR values to impose the full 

scale of coherence levels. For each theoretical coherence 

level, the WTC band coherence values were compared to 

the zero threshold level. The false negative rate (β) was 

calculated by assessing the relative number of coherence 

estimations which resulted in a value lower than the 

threshold level.  

The simulations were performed repeatedly and gave 

N>1000 realizations for each coherence level, in 0.1 

steps. β was assessed for different wavelet coefficients: 

6,10,15,20 and 30. 

 

 

2.4. Simulations for assessing the 

detection of coherence discontinuities 

In order to evaluate the ability of the WTC to follow 

transient changes, we created signals with a series of 

growing uncorrelated epochs to examine the ability of the 

WTC to detect and present them in an accurate way.  

To establish the ability of the WTC to detect 

coherence discontinuities within the HF band, 200 

simulations for each of the different wavelet coefficients 

were performed. Using the established threshold levels, 

detection ratio was calculated for each epoch time. For 

each wavelet coefficient, the minimal epoch time with a 

lower limit of 95% detection probability with 95% 

confidence interval was found.  

 

2.5. Application to real cardio – 

respiratory data 

The application of the WTC was investigated in 

experimental data obtained from a group of 8 healthy 

subjects.  

 We analyzed two different physiological conditions: 

 (i). Supine rest for 20 min which represents a static 

situation without external stimulation. (ii). Change 

Posture (CP) from supine to standing position, which 

induces a strong response of the autonomic control 

system. 

Analyses were performed using 0 20ω =  which was 

chosen based on results in the previous sections. 

Results were presented as means ± SD. Significance 

calculations between different time regions were 

calculated using the student t-test for two samples. 

Results were considered significant for p<0.05. 

3. Results 

3.1. Bias and standard deviation 

The bias is positive for low coherence levels, 

decreases almost linearly with increasing coherence and 

crosses zero for a small negative bias for all cases other 

than 0 6ω =  (Figure 1a). SD value increases as 

coherence level decreases up to a maximum value. After 

the maximum point the SD declines to a slightly lower 

value. As in the bias curve, the SD curves of lower 

coefficients have larger slope and higher maximum value 

(Figure 1b).  

3.2. Coherence threshold and detection 

error rate    

The coherence threshold was 0.79, 0.64, 0.5, 0.45 and 
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0.3 with respect to 0ω of 6, 10, 15, 20 and 30. The 

threshold level sets the false positive rate to be α=0.05. 

False negative error rates (β) are improved for larger 

0ω  (Figure 1c). For 0ω = 30, the error rate remains close 

to zero for a coherence level of as low as 0.55. Other 

slopes exhibit the same behavior with lesser performance. 

For 0ω = 6, the error rate rises sharply even for higher 

coherence levels. 

Figure 1 : Band Coherence (a) bias and (b) SD as 

function of coherence theoretical levels for different 

wavelet coefficients; (c) Probability estimation of 

accepting the null hypothesis of coupled signals (false 

negative rate) for different wavelet coefficients as 

function of coherence theoretical levels. For HF band 

averaging. 

Figure 2: a) Coherence map of simulated coupled signals, 

for 0ω = 10. Signals with "uncorrelated" epochs showing 

discontinuities in the predicted time epochs (arrows 

showing beginning of each epoch). b) HF band coherence 

as function of time of power map (a), the horizontal line 

represents the band threshold showing detection of epoch 

above 5 sec. The uncorrelated epochs grow from left to 

right with the following spans: 1, 2, 5, 10, 20, 30, 40, 50 

seconds 

3.3. Detection of coherence discontinuities 

Figure 2a shows coherence map of two signals with 

"uncorrelated" epochs. The Coherence band in the 

respiratory frequencies has visible discontinuities 

whenever there is no correlation between the two signals, 

except for the first 1 and 2 second epochs. Time 

dependent HF band coherence with its appropriate 

threshold, indicates for this specific example a detection 

of epochs above 5 sec. 

The minimum discontinuity epoch time for 95% 

detection probability increases from 10 to 50 second with 

respect to increasing 0ω . 

3.4. Application to real cardio – 

respiratory data 

 Results from simulated signals have shown that 0ω = 

20 was optimal when weighing bias, detection error rate 

and time resolution. Therefore, this value was 

subsequently used for the analysis of the human data. 

(i). Supine rest  - Although consistent, the coherence in 

the HF band is far from being stable, with epochs of weak 

or no coherence at all (below the threshold level)   

(Figure 3b). The areas of inconsistency are usually due to 

a sudden change in breathing and/or in HR (e.g. around 

600 and 900 seconds). The epochs of inconsistency may 

vary in the range of 10 seconds up to 100 seconds.  

Figure 3: example of typical HR – Resp WTC a) The 

coherence map. b)  The frequency average time 

dependent coherence of the HF band. The horizontal line 

is the significance level. 

 

 

Figure 4: Subject example during CP transition: a) The 

coherence map. b) time dependent coherence of the HF 

band. The vertical line marks the onset of the CP. The 

horizontal line is the significance level. 
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Not all visible changes in Resp or HR time series give 

a detectable change in the coherence map or in the HF 

band averaged coherence.  

 (ii). Change in Posture (CP) - The band WTC 

responds with a drop of coherence which reaches its 

minimum value 20 seconds after CP and recovers to a 

value significantly lower than in supine position 

(p<0.001). All subjects experienced a drop beyond the 

band threshold, which implies a loss of coherence in the 

HF band. Starting from a value of about 0.75 for supine 

position, the WTC of HR-RESP stabilizes after the drop 

at around 0.65 (Figure 4).  

 

4. Discussion and conclusions 

We tested the WTC method as a function of the 

wavelet coefficient 0ω . As expected from spectral 

analysis [8], the bias and SD increase for  smaller 0ω  as 

well as for lower coherence levels. The small negative 

bias exhibited on higher coherence level was less 

expected but has the same magnitude of the SD.   The 

preferred wavelet coefficient to use will be the larger one 

(above 15), with no major differences between them. 

The coherence threshold level acts as a marker for the 

existence of coupling. Higher threshold values limit the 

"dynamic range" of the estimates, since only above 

threshold value is considered as coherence. Therefore, 

higher 0ω  values are preferable. Error rates are higher 

for smaller 0ω , again due to the averaging effect of 

longer (in time) wavelet function and longer smoothing.  
The ability to detect transient events and, more 

specifically, time dependent loss of coherence could be 

an import advantage in the use of WTC. 

Smaller 0ω provided a better ability to detect shorter 

events.  

During supine rest, WTC revealed coherence in the HF 

band representing RSA, and was consistent overall. 

Although supine rest is considered as a "steady state" 

situation, almost all of the subjects exhibited areas of 

inconsistency in the coupling between the two signals. It 

can be assumed that most of those below threshold 

inconsistencies represent real coherence loss. 

For all subjects, the CP event caused a general loss of 

coherence between HR and Respiration. The loss of 

coherence marks a full system re-adjustment which is 

evidently a non linear process [10].  

The present framework advances WTC as an intuitive 

and straightforward complementary tool for the bivariate 

spectral analysis of the ANS regulatory mechanisms. 

WTC could be applied as a direct tool for the analysis of 

the dynamic linear coupling between physiological 

signals, and as a marker for the ANS function. It can also 

be used for detection of irregularities in the data when a 

priori assumptions of linear coupling are made. 

Acknowledgments 

This work was partially supported by a grant from the 

Nicholas and Elizabeth Slezak Super Center for Cardiac 

Research and Biomedical Engineering at Tel Aviv 

University. 

The authors wish to thank Ori Gilad for discussion and 

review of this manuscript.  

References 

 

[1] Kay SM. Modern Spectral Estimation: Theory & 

Application. 1st ed. New Jersey: Prentice Hall; 1988. 

[2] Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, 

Cohen RJ. Transfer function analysis of the circulation: 

unique insights into cardiovascular regulation. Am J 

Physiol Heart Circ Physiol 1991;261(4):H1231-H1245. 

[3] Keissar K, Davrath LR, Akselrod S. Time–Frequency 

Wavelet Transform Coherence of Cardio-Respiratory 

Signals during Exercise. 2006 p. 733-6. 

[4] Cnockaert L, Migeotte PF, Daubigny L, Prisk GK, Grenez 

F, Sa RC. A method for the analysis of respiratory sinus 

arrhythmia using continuous wavelet transforms. IEEE 

Trans Biomed Eng 2008;55:1640-1642. 

[5] Ostlund N, Suhr OB, Wiklund U. Wavelet Coherence 

Detects Non-autonomic Heart Rate Fluctuations in Familial 

Amyloidotic Polyneuropathy. 2007 p. 4660-2. 

[6] Grinsted A, Moore JC, Jevrejeva S. Application of the 

cross wavelet transform and the wavelet coherence to 

geophysical time series. Nonlinear Processes in Geophysics 

2004;11:561-6. 

[7] Torrence C, Compo GP. A Practical Guide to Wavelet 

Analysis. Bull Am Meteorol Soc 1998;79:61-78. 

[8] Bendat SJ, Piersol GA. Random Data: Analysis and 

Measurement Procedures. New York: Wiley; 1971. 

[9] Faes L, Pinna GD, Porta A, Maestri R, Nollo G. Surrogate 

data analysis for assessing the significance of the 

coherence function. IEEE Trans Biomed Eng 2004 

Jul;51(7):1156-66. 

[10] Hainsworth R, Mark AL. Cardiovascular reflex control in 

health and disease. London: W. B. Saunders Company Ltd; 

1993. 

 

Address for correspondence 

 

Kobi Keissar 

Abramson Center for Medical Physics, Sakler Faculty of Exact 

Sciences, Tel Aviv University 

Tel Aviv, Israel 69978 

keissar@post.tau.ac.il 

464


