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Abstract

Monitoring cerebrovascular state, including intracra-

nial pressure (ICP) and the ability to regulate cerebral

blood flow, is important for patient care in stroke, trau-

matic brain injury and other such conditions. However,

current methodologies for direct measurement of ICP are

highly invasive, and expose patients to the risk of infec-

tion. In addition, vascular properties such as resistance

and compliance cannot be directly assessed. In this work,

we employ a mathematical model-based approach to track

variations in ICP and cerebrovascular properties from sig-

nals that can be acquired entirely non-invasively. The per-

formance on simulation data indicates that the estimates

track the desired quantities closely, thus suggesting that

tests using clinical data are warranted.

1. Introduction

Brain tissue cannot withstand ischemic conditions: neu-

rological symptoms appear within seconds of reduced oxy-

gen delivery, and if ischemic conditions prevail for a few

minutes, there is a high risk of irreversible damage to brain

function [1]. To maintain the desired local blood sup-

ply, the cerebral vasculature has the innate ability to re-

spond to pressure and flow changes by altering the diam-

eters of arterioles and by altering the compliance of arter-

ies. In humans, this cerebral autoregulation acts to main-

tain a steady cerebral blood flow (CBF) in the face of ar-

terial blood pressure (ABP) variations in the range of 50-

150 mmHg [1].

Perfusion to the brain also directly depends on intracra-

nial pressure (ICP), which alters cerebral perfusion pres-

sure through the Starling resistor mechanism acting at the

level of cerebral veins [2]. The plateau-wave phenomenon,

where ICP rapidly rises and stays elevated for a period of

at least a few minutes, remains the subject of research due

to its association with poor patient outcome [3].

Several pathological conditions can affect the cerebral

vasculature and its autoregulatory ability. In ischemic

stroke or intracranial hemorrhage, for example, blood sup-

ply to the brain tissue is disrupted. Vascular diseases may

impair intracranial compliance or may block the absorp-

tion of fluid from the cranial into the vascular space, lead-

ing to an increased intracranial fluid volume. The cerebral

vasculature might fail to maintain the desired blood sup-

ply either due to an impaired cerebral autoregulation, for

example in premature neonates [4], or because intracranial

conditions are beyond its autoregulation capacity.

To monitor patient state and provide appropriate thera-

peutic intervention, continuous monitoring of ICP and the

state of cerebral autoregulation is critical. However, cur-

rent methods for direct measurement of ICP are highly in-

vasive, require considerable expertise, and pose the risk of

infection [5]. ICP measurement is therefore not routinely

done. The estimation of resistance and compliance in a

model for CBF regulation is described in [6], though not

aimed at ICP estimation or real-time monitoring.

In this work, we develop a mathematical model-based

approach to perform beat-by-beat estimation of ICP, cere-

brovascular resistance and arterial compliance, to aid

in diagnosis and therapy. We adapt a well-established

model [7] to capture the pulsatile behavior of the asso-

ciated variables. The model is then simplified, and esti-

mation algorithms are developed. These estimation algo-

rithms utilize ABP and CBF measurements, both of which

can be obtained entirely non-invasively. The performance

on simulated data is presented.

2. Methods

Initial model

A physiological model that is well-established and

widely used in the research community is the one proposed

by Ursino and Lodi [7], a simplified version of their de-

tailed model [8]. The model is represented by an electrical

circuit analog. We make the following two modifications

to this Ursino-Lodi model to obtain the representation in

Fig. 1.

Modification I: The model of [7] operates on mean quan-

tities, i.e., cycle-averaged pressures and flows, and all

the model relationships, including control mechanisms for
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Figure 1. The adapted cerebrovascular model.

varying resistance and compliance, are expressed in terms

of these averages. We instead allow the model to oper-

ate on pulsatile pressure and flow waveforms. However

we still use cycle-averaged quantities to drive the control

mechanisms (as these mechanisms tend to respond to av-

eraged rather than instantaneous quantities); averages are

computed using running-windows of duration equal to one

or more beats.

Modification II: The model [7] labels the flow through

the arterial resistance Ra of the cerebral vasculature as the

CBF. We instead take the flow q(t) at the input of the

model to be the CBF, since measurements of CBF are typ-

ically obtained at the level of the middle cerebral arteries,

upstream of the arterial bed.

The remaining components of the model in Fig. 1 have

the following interpretation. Intracranial space is modeled

by a compliance, Cic. The arterial portion of the cerebral

vasculature is modeled by a compartment with compliance

Ca, and resistance Ra. Cerebrospinal fluid (CSF) forma-

tion at the level of the capillaries is represented by a high

resistance pathway Rf, taking flow into the intracranial

space. Similarly, outflow of CSF is represented by another

high resistance pathway Ro, that drains into the venous si-

nuses at a pressure pvs. The venous segment is modeled by

two resistances corresponding to the proximal and distal

segments around the venous collapse that results from ICP

being higher than pvs. The Starling resistor model for this

phenomenon leads us to equate the pressure pv at the point

of collapse with ICP, labeled as pic in the figure. The cur-

rent source Ii(t) represents external injection of CSF into

the intracranial space. A first-order feedback, exactly as

in [7] but not shown in Fig. 1, acts to maintain a steady

flow through Ra.

Model simplification

The model of Fig. 1 is a second-order system with non-

linear components and specified by eight parameters. In

clinical environments, we expect to have only two (highly

correlated) measurement signals, ABP and CBF, which

makes it infeasible to obtain reliable estimates for all the

model parameters. Moreover, we do not really need to

know all the parameters; we are concerned with only the

ones that are relevant to determining ICP and autoregu-

lation. Hence, we need to simplify the model. Below

we develop one such simplification based on time-scale

separation of important cardiovascular dynamics. This is

only one of a handful of possible reduced models originat-

ing from the modified Ursino-Lodi model. Other reduced

models for the cerebrovascular system are possible and can

be treated similarly.

Our model simplification is based on the following ob-

servations about the model in Fig. 1.

Observation I: The resistances associated with CSF for-

mation and reabsorption pathways, R f and Ro respec-

tively, are at least two orders of magnitude higher than the

arterial-arteriolar resistance. Therefore, the flow through

these pathways is negligible compared to the arterial flow.

Since we are interested in analyzing the model at the time-

scale of the beat interval, we can safely remove these high

resistance paths.

Observation II: Intra-beat ICP variations are much

smaller compared to the intra-beat ABP variation. More-

over, significant changes in the mean level of ICP occur at

a longer time-scale than a beat period. Therefore, for intra-

beat analysis, ICP can be assumed to be approximately

constant.

These two observations reduce the original second-order

model into a first-order model, shown in Fig. 2. We have

combined Ra and Rpv into a single resistance, renaming

it as Rav. The simplified system can be described by the

following differential equation:

q(t) = Ca

dpa(t)

dt
+

1

Rav

[pa(t) − pic(t)] . (1)

Thus the estimation task is reduced to only determining

two parameters, Ca and Rav as well as the unknown node

pressure pic. We describe the estimation algorithm in the

next section.

Ca

Ravpa(t)

pic

q(t)
q1(t)

+
−

pv = pic

Figure 2. The simplified model.

Estimation algorithm

Given access to the ABP waveform pa(t) and CBF

waveform q(t), we describe a two-stage estimation scheme
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for the model parameters.

Step I: Sharp transitions in pa(t) induce a large flow

into the arterial compliance, and there is negligible flow

through the resistance branch during such transitions if

they occur over short enough periods. The typical ABP

waveform does indeed contain a sharp rise — within about

one-tenth of a beat period — from diastolic pressure to

systolic pressure in every beat. Hence, during that short

transition period, the input flow can be primarily attributed

to the compliance branch:

q(t) ≈ Ca

dpa(t)

dt
. (2)

Let tb and ts indicate the beginning and end of the sharp

transition, respectively, in a particular beat of ABP wave-

form pa(t). We can estimate Ca by integrating (2) over the

transition period, as below:

Ĉa =

∫ ts

tb

q(t)dt

pa(ts) − pa(tb)
. (3)

Step II: Using the result of the estimation in Step I and

again ignoring ICP variations over the duration of a single

beat, we can calculate the flow through the arterial resis-

tance as

q̂1(t) = q(t) − Ĉa

dpa(t)

dt
. (4)

Note that direct computation of the derivative involved

above may accentuate noise in the ABP waveforms. In

our simulation experiments, we used an experimental ABP

waveform as the input; simple finite-differencing provided

an adequate approximation of the derivative. In more noisy

cases, a more careful approximation scheme will need to

be used.

Assuming that the resistance stays constant over a beat

interval, ICP can be computed using q̂1(t) as

pic(t) = pa(t) − Ravq̂1(t). (5)

Still assuming ICP stays approximately constant within a

beat, we can estimate Rav from (5) using q̂1(t) and pa(t)
evaluated for at least two time instants t. For example, by

picking t1 and t2 within a beat, (5) yields

R̂av =
pa(t2) − pa(t1)

q̂1(t2) − q̂1(t1)
. (6)

To reduce sensitivity to the noise in q̂1(t), it is advanta-

geous to pick t1 and t2 to lie near the maximum and mini-

mum of the ABP waveform so that
dpa(t)

dt
≈ 0 in (4). With

this choice the estimate of Rav is minimally dependent on

the estimate of Ca.

Returning to (5) now gives the desired ICP estimate:

p̂ic(t) = pa(t) − R̂avq̂1(t). (7)

To provide smoother estimates of Ĉa and R̂av, we can av-

erage over several consecutive beats.

3. Results

The performance of our estimation scheme is analyzed

using simulated waveforms. To generate data for our anal-

ysis purposes, we supply an experimental ABP waveform

as input to the modified Ursino-Lodi model in Fig. 1, with

the control loop operational. Model parameters are set to

the nominal values specified in [7]. To represent some of

the phenomena of clinical interest, such as intracranial hy-

pertension and plateau waves [3, 5], we choose appropri-

ate perturbations on Ii in Fig. 1. We simulate the model

and record the waveform samples of pressure and flow

throughout the model, including ICP and CBF.

In one of the simulation runs, I i was set to 1.5 ml/sec

at t = 10 sec for a duration of 10 seconds, and then to

3 ml/sec at t = 40 sec for a duration of 5 seconds, and the

model was simulated for an experimental ABP waveform

provided as the input. Cycle-averaged ABP, CBF and q1

(i.e., flow through Ra) are shown in Fig. 3. We also record

cerebrovascular resistance and arterial compliance, which

represent the regulatory mechanism. The dashed lines in

Fig. 4 show the beat-by-beat values of compliance, resis-

tance and ICP obtained from the simulation for this partic-

ular run. Resistance is seen to have a rapid change at about

t = 160 sec. This variation corresponds to a sudden drop

in the input mean ABP around that time. ICP increases

rapidly to about 40 mmHg at t = 10 sec, and to 45 mmHg

at t = 40 sec due to the input perturbations.
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Figure 3. Simulation data: cycle-averaged ABP, CBF, and

q1 (flow through Ra) are shown (top to bottom).

Taking the ABP and CBF waveforms from the simula-

tion as the available data, beat-by-beat estimates of Ca, Rav

and ICP are obtained in accordance with the estimation al-

gorithm outlined above. The results for the simulation run

in Fig. 4 are shown in solid lines. The estimates for compli-

ance and resistance generally have less than 5% and 10%

error, respectively. The ICP estimates also track the simu-

lated ICP closely.
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Figure 4. Estimation performance: beat-by-beat values of

Ca, Rav and ICP are shown, where the blue (dashed) lines

correspond to the simulated values, and the estimates are

shown in red (solid) lines.

4. Discussion and conclusions

The dispersion in the estimation results of the above sec-

tion is caused by the signal quality, the algorithm choices

(such as the time indices selected in the algorithm), and the

assumptions made to simplify the model. Signal quality

depends on the sampling rate and the noise in the wave-

forms. The sampling rate of the waveforms determines the

timing jitter in the discrete-time indices for beat-onset de-

tection and for marking ts, t1 and t2; a low sampling rate

adds more noise to these marker locations. The results pre-

sented above were obtained for a sampling rate of 125 Hz.

Noise in the measurements degrades the estimation perfor-

mance, e.g., it makes the approximation of the derivative in

(4) poorer. Another algorithm choice is the window length

for averaging the resistance and compliance estimates. A

larger window serves to average out the noise better but

can degrade tracking of the transients. A window length of

5 beats was used in the results presented above.

In clinical environments, the measurements of ABP and

CBF pose some potential problems for our proposed ap-

proach.

1. ABP and CBF measurements are not available at the

same location. CBF is usually measured at the middle

cerebral artery via a Doppler-based method, while ABP

is generally measured at the radial artery or finger. Con-

sequently, the pressure and flow waveforms are shifted

with respect to each other, which therefore calls for a syn-

chronization step before estimation. Also, the peripheral

ABP morphology is different from what would be seen at

the middle cerebral artery. Since our estimation scheme

primarily utilizes the pulse-pressure information from the

ABP waveform rather than actual morphology, the main

effect is expected to be a scaling of the estimates, but this

remains to be investigated farther.

2. CBF is calculated from blood velocity measurement by

assuming a nominal value or an estimate of the diameter of

the middle cerebral artery. This is another potential source

of error in estimates, needing further investigation.

Clinical testing of the estimation approach described

here seems warranted. Such testing may point to neces-

sary refinements of the model. For example, intracranial

conditions may be such that only a subset of the cerebral

veins are in collapsed state. In this case, the Starling re-

sistor assumption in the model would need to be modified.

Finally, variations in resistance, compliance and ICP will

need to be tied more closely to the efficacy of autoregula-

tion.
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