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Abstract

The goal of this paper is to describe the effects of simple

electro-mechanical coupling in isotropic two-dimensional

(2D) cardiac tissue. To this aim, we show that the Nash-

Panfilov two variable model [PRL 95, 258104 (2005)] for

electrical activation, which couples active stress directly

to transmembrane potential, can be reduced in the linearly

elastic regime to an excitatory system with global coupling.

In the linear limit, numerical simulations of both models

give the same dynamic evolution, including the appear-

ance of an ectopic focus with origin at the center. Indeed,

after an initial excitation, mechano-electrical coupling can

generate sustained oscillations in the form of successive

waves originated at the center. These oscillations have a

large basin of attraction for different sample lengths and

values of the stretching current, specially when the recov-

ery time of the excitatory cells is short. We finally present

and discuss the appearance of oscillatory waves whose

origin is not the center of the 2D sample but a ring of tis-

sue around it. These waves appear spontaneously under

some conditions even when the first excitation is generated

at the center.

1. Introduction

One of the best investigated aspects of cardiac dynamics

is the electrical activity in the heart. The sinoatrial node,

a collection of cells situated on the right atrium, next to

the vena cava, generates electrical impulses with a period

mainly regulated by the sympathetic and the parasympa-

thetic nervous system. This initial activity is propagated in

the atrium, passes through the atrioventricular node, pro-

ceeds through the bundle of His to the Purkinje fibers,

reaching finally the whole ventricle [1]. The dynamics of

the currents involved at the cellular level is well established

and its macroscopic propagation can be accounted for ob-

taining experimentally the electric diffusion tensor at the

different points of the heart [2].

Furthermore, the mechanism by which electric propaga-

tion affects the elastic properties of the cell is well known.

After the cell is depolarized, there is an influx of calcium

ions inside the cell. This turns on a set of complex mecha-

nisms which unblock the connection between the actin and

myosin proteins present in the sarcomere of the cell. The

bonding of those proteins generates internal forces which

change the viscoelastic properties of the cell in the so-

called active state [1]. Unfortunately, this knowledge of

the cellular mechanisms is very difficult to translate to a

macroscopic level [3]. There are different reasons for this

difficulty. First, the passive properties of the heart as a vis-

coelastic material when no electrical activity is present are

not generally known, due to the high anisotropy of the tis-

sue, and the difficulty in performing experiments to mea-

sure tri-axial viscoelastic constants in tissue. Second, it

is even more difficult to asses the viscoelastic properties

in the active state, and to relate them with cell properties,

given the combination of passive elements (collagen pro-

teins, fibroblasts) and active elements (cardiomyocytes),

which change in a highly history-dependent way.

Furthermore, recent studies have shown the existence of

a mechano-electric feedback where the stretching of the

heart affects the propagation of the electric signal, due to

specific ion channels which are stretch-dependent (SAC)

[4,5]. This is, the ability of ions to pass through these chan-

nels depends on the level of stretching of the cell mem-

brane. Different simplified models have been proposed

that, taking into account the viscoelastic properties of car-

diac tissue and the strength of the mechano-electric feed-

back, analyze the kind of dynamics and new behavior that

may ensue [6, 7]. A good example is the Nash-Panfilov

(NP) model [6], which describes electro-mechanical cou-

pling in isotropic cardiac tissue at the most basic level.

In this contribution we show that, as long as deforma-

tions are small, mechano-electric feedback in the 2D ra-

dially symmetric Nash-Panfilov model introduces a global

feedback term in the equation for the transmembrane po-

tential. We will justify the generality of this model as the
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most simple way to incorporate electro-mechanic dynam-

ics in the heart. Later we demonstrate that the model repro-

duces the oscillatory regime of the Nash-Panfilov model

where consecutive pulses are generated at the center [8].

We also uncover the appearance of spontaneous oscilla-

tions whose focus are not the center of the tissue but an an-

nular ring. We finally conclude discussing the limitations

and possible future lines of research.

2. Methods

Our starting point is the Nash-Panfilov model for

the transmembrane potential propagation with electro-

mechanic feedback [6]:

∂tV = D∇2V − κhV (V − 1)(V − a) − hV − Ig(1)

∂th = ǫ(V )(κhV − h), (2)

∂tTa = ǫ(V )(κT V − Ta), (3)

∂XM

(

TMN ∂xj

∂XN

)

= 0. (4)

Here V is the normalized dimensionless transmem-

brane potential, h a recovery gate, Xi the fixed ref-

erence coordinates, xi the material coordinates, and

D the diffusion constant. The Laplacian operator

reads ∇2V = ∂XM

(√
CC−1

MN∂XN
V

)

, with CMN =

(∂xk/∂XM )(∂xk/∂XN ) the right Cauchy-Green defor-

mation tensor. Mechanical feedback is provided by the

stretch-activated current

Ig = g(V − 1)(
√

C − 1)Θ(C − 1), (5)

which only acts when the cell locally stretches, with C =
det(CMN ), and Θ(x) the Heaviside function.

To obtain the deformation C, a set of equations is

needed relating the contraction of the medium with the

change of transmembrane potential. Eq. (3) expresses the

dependence of the internal tension generated in the cell,

Ta, with the transmembrane potential V . The active ten-

sion in the system increases with V , with a delay fixed by

ǫ(V ), given by ǫ(V ) = ǫa, for V > a and ǫ(V ) = ǫb, for

V < a. Then, an isotropic hypoelastic model is formulated

to describe the mechanical properties of tissue. The total

stress is the sum of an active and a passive component

TMN =
1

2

(

∂W

∂CMN

+
∂W

∂CNM

)

+ TaC−1

MN . (6)

The strain energy function is given by

W = c1(I1 − 3) + c2(I2 − 3), (7)

with I1 = tr(C) and I2 = det(C) the first and second

invariants of CMN . This model specifies the mechanical

properties of the fiber relating the active stress Ta in the

medium, its passive properties, and the displacements gen-

erated in the fiber given by CMN .

When active tension is small compared with passive

stresses, the elastic equations of the model can be re-

duced to the standard 2D equations of linear elasticity. Let

xk = Xk + uk, so ∂xk/∂XM = δkM + ∂uk/∂XM . We

will assume that ∂uk/∂XM ≪ 1 and Ta ≪ c1, c2, so ac-

tive tension is small compared to the elastic moduli. Under

these assumptions, Eqs. (4), (6) and (7) become

c1∇2�u + c2
�∇(�∇ · �u) + �∇Ta = 0. (8)

In the following section we show simulations of the model

defined by Eqs. (1)-(3) and (8), thus using this linear equa-

tion as the material constitutive relation. We solve the cou-

pled electro-mechanical problem in a rectangular 2D tissue

where the basic electric model for the cell and the constitu-

tive equations are implemented as user subroutines in the

multipurpose finite element software ABAQUS. A semi-

implicit formulation is used. The gate variable h and the

internal tension Ta are integrated explicitly, while an im-

plicit formulation is used to solve the coupled problem de-

fined by Eq. (1) and (8). Temporal and spatial discretiza-

tion are set to dt=1 msec and dx=0.8 mm respectively.

For a radially symmetric field the system can be further

simplified. In that case, Eq. (8) reduces to

∂

∂r

[

1

r

∂

∂r
(rur)

]

+
∂Ta

∂r
= 0, (9)

where ur is the component of the displacement in the ra-

dial direction. Solving the former equation for ur, we ob-

tain

ur =
1

c1 + c2

[

r
A

2
− 1

r

∫ r

0

r′Ta(r′)dr′
]

, (10)

with an arbitrary constant A that has to be determined im-

posing the boundary conditions. For fixed boundaries in a

circular domain, ur = 0 at r = R, this constant takes the

value

A =
2

R2

∫ R

0

r′Ta(r′)dr′ = T a, (11)

where T a denotes the average value of Ta over the circular

domain. So, finally

ur =
1

c1 + c2

[

r
T a

2
− 1

r

∫ r

0

r′Ta(r′)dr′
]

. (12)

This result can be used to simplify Eq. (5) noting that

C = det(CMN ) ≃ 1+2�∇·�u, and
√

C ≃ 1+ �∇·�u. Using

our previous expression, we obtain:

�∇ · �u =
1

r

∂

∂r
(rur) =

T a − Ta(r)

c1 + c2

, (13)
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so Eq. (5) finally becomes

Ig =
g

c1 + c2

(V − 1)[T a − Ta(r)]Θ[T a − Ta(r)]. (14)

In other words, in the linear elastic regime under radially

symmetric conditions, the Nash-Panfilov model can be re-

duced to an excitatory system - similar to the FitzHugh-

Nagumo model- with global coupling. This same proce-

dure could be followed for a more complex model where

the transmembrane potential V , and the active tension Ta,

are controlled by multiple gates �h = (h1, h2, ...), re-

lated to different ionic currents. In this case, the SAC

current would have a general dependence of the form

Ig(V,�h, Ta, T a).
For the rest of the paper, we will consider the same ǫ(V )

for both h and Ta, so that Ta = (κT /κh)h can be in-

troduced in Ig [defined by Eq (14)], and the dynamics is

effectively defined by only two variables (V, h), evolving

according to Eqs. (1) and (2). We have simulated this sim-

plified two-variable model in a circular tissue using a finite

difference scheme with 0.1 < dx < 0.8 mm and dt=0.1

msec. We reproduce the same results as solving the full

linear Eq. (8) with the ABAQUS solver, if we take the di-

ameter of the circle to be the same as the side of the square,

and provided that the radial symmetry is conserved. This

indicates that, in this situation, boundary effects are not

very important (we only considered systems larger than 3.5
cm).

3. Results

The linear elastic and radially symmetric case presents,

under a broad range of parameters, an oscillatory regime

where successive pulses are generated from the center of

the tissue. The evolution of V and h for the center point in

the cell is oscillatory, as it is the evolution of global vari-

ables, i.e. the average values of transmembrane potential

V and gate h (V̄ ,h̄). In Fig 1 we show a characteristic

pattern obtained at t = 50, 150, 230, 270 ms after initial

excitation, showing the presence of a pulse advancing ra-

dially outwards towards the boundary of the tissue, while

another pulse appears at the center. This kind of pattern is

the same as those obtained in [8] solving the model with

the full elastic equations (1)-(7).

To explain this behavior we should understand the

mechanism behind the oscillatory regime, and specifically,

the appearance of successive waves. This question can be

addressed studying the nullclines of Eqs. (1) and (2) at

the source point, as has been done in the case of a one-

dimensional fiber [9]. Once the wave has originated (Fig.

1a), the variable h increases above the average value in tis-

sue h̄. At this point, the stretch activated current closes at

the origin [from Eq. (14); recall that Ta = (κT /κh)h],

and the system begins to recover. In this situation the only
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Figure 1. Transmembrane potential in a rectangular patch

of tissue of 4 cm per side after a) 50, b) 150, c) 230 and d)

270 ms of initial excitation at the center of the tissue, ob-

tained using the ABAQUS code with parameters D = 0.5
mm2/s, κh = 1000 s−1, κT = 1 MPa, a = 0.05, ǫa = 3
s−1, ǫb = 90 s−1, c1 = 3.85 MPa, c2 = 9.6 MPa, and

g = 500 s−1. The color code is such that red and blue cor-

respond, respectively, to depolarized and repolarized tis-

sue. The appearance of a new wave growing radially from

the center while the first one reaches the end of the sys-

tem can be clearly observed. The same basic results are

obtained if we use the approximation given by Eq. (14) in

a circular patch of tissue of diameter 4 cm (see Methods

section).

stable point is the trivial steady state V = 0, h = 0. If

the relaxation is such that h̄ remains significatively above

zero because some other part of the tissue is active (i.e.

a wave is still propagating), the trivial state suddenly be-

comes unstable due to the opening of the stretch activated

current Ig , pushing again the voltage towards depolariza-

tion. This generates another wave which propagates along

tissue closing the oscillation loop.

In order to obtain this oscillatory behavior, the value of g
has to be large enough so that the nullclines intersect in the

unstable branch of the cubic nullcline, generating an unsta-

ble fixed point. Furthermore, a global oscillatory system

requires h̄ to oscillate around a fix high value, otherwise

the stretching current would not be activated at the excita-

tion point. The appearance of new waves at one point has

to be compensated with the disappearance of waves which

reach the boundary. At the same time, the system has to be

large enough or ǫb high enough, so that h at the origin falls

sufficiently below h̄ to have a strong stretch current which

can sustain the oscillation.

The appearance of successive waves with origin at the

center is not the only non-trivial attractor we find. Keep-

ing the exact same parameters as before, but doubling the
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Figure 2. Four pictures of the evolution of electrical activ-

ity in a rectangular patch of tissue, showing the presence of

an attractor where the successive fronts are generated in an

annular ring, and not at the center of the cell. Pictures a) to

d) are taken at times t = 100, 300, 330, and 400 ms, after

which the pattern is repeated with a periodicity of ∼ 200
ms. Same parameters as in Fig. 1 but with a system size of

8 × 8 cm.

size of the system, we obtain a succession of patterns as

those presented in Fig. 2. Starting with an excitation at the

center (Fig. 2a), we clearly see that the starting point of

the next wave is not the same, but an annular ring around

the center (Fig. 2c). From there, an inward and an outward

front advance until they reach the center and the bound-

ary of the system (Fig. 2d). This process is repeated con-

tinuously and successive annular excitations appear. This

pattern indicates that there is characteristic length scale be-

hind the front, arising from an interplay of diffusion, size

of the system, and the recovery processes of the slow vari-

able h.

4. Discussion and conclusions

Concluding, we have been able to understand the un-

derlying physical mechanism of the oscillatory regime in

the Nash-Panfilov model in 2D, demonstrating its equiva-

lence to a FitzHugh-Nagumo type model with global cou-

pling, and studying its nullclines in the radial symmetric

case. We have shown that boundary effects which slightly

break the radial symmetry do not affect the characteristic

patterns, as long as the initial conditions and subsequent

evolution keep this radial symmetry.

Our simplification provides a basic framework to under-

stand mechano-electric coupling in the heart. In the more

general case without radial symmetry we can still make the

linear approximation and solve the elastic equations. The

exact mathematical problem will be cumbersome. Gener-
ally, the deformation tensor CMN can be written in terms

of non-local integrals, being the kernel the Green function

of the linear elastic problem with the appropriate boundary

conditions. The more general case, thus, implies global

coupling but not as simple averages, but as convolutions of

Ta.

One of the main limitations of our formulation, in or-

der to understand the basic ingredients of mechano-electric

coupling in 2D experiments, is that it does not incorporate

anisotropy of the tissue. This would affect the formulation

of stress (both active and passive), the stretch current, and

the diffusion tensor. Our future aim is to develop a sim-

ilar simplified description which takes into account these

effects. We hope that it will be equally valuable to under-

stand anomalous heart behavior.
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