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Abstract 

This paper proposes electrocardiographic mismatch 

(ECGM) to quantify differences in the long-term ECG 

signals for two patients. ECGM compares the symbolic 

distributions of ECG signals and measures how different 

patients are electrocardiographically. Using ECGM, we 

propose a hierarchical clustering scheme that can 

identify patients in a population with anomalous ECG 

characteristics. When applied to a population of 686 

patients suffering non-ST-elevation ACS, our approach 

was able to identify patients at an increased risk of death 

and myocardial infarction (HR 2.8, p=0.003) over a 90 

day follow-up period. 

 

1. Introduction 

In this paper, we propose a comparative approach to 

identify patients at increased risk of adverse 

cardiovascular outcomes. Our approach is based upon the 

hypothesis that patients at increased risk of death 

following ACS comprise a minority that is 

electrocardiographically dissimilar from the much larger 

set of low risk patients, i.e., high risk patients can be 

recognized as population outliers. 

Evidence suggests that high risk patients constitute a 

small minority. For example, cardiac mortality over a 90 

day period following ACS was reported to be 1.79% for 

the SYMPHONY trial involving 14970 patients [1] and 

1.71% for the DISPERSE2 trial with 990 patients [2]. 

The rate of myocardial infarction (MI) over the same 

period for the two trials was 5.11% for the SYMPHONY 

trial and 3.54% for the DISPERSE2 trial. 

In contrast to using specific features, we focus instead 

on finding cases that are atypical in morphology and 

dynamics. We propose a new metric, called the 

electrocardiographic mismatch (ECGM), which 

quantifies the extent to which the long-term ECG 

recordings from two patients differ. The pairwise 

differences are used to partition patients into groups with 

similar ECG characteristics and potentially common risk 

profiles. 

Our hypothesis is that those patients whose long-term 

electrocardiograms did not match the dominant group in 

the population, are at increased risk of adverse 

cardiovascular events. These cases have a high 

electrocardiographic mismatch relative to the majority of 

the patients in the population, and form one or more 

subgroups that are suspected to be at an increased risk of 

adverse events in the future. 

Our approach is orthogonal to the use of specialized 

high risk features along two important dimensions. 

Firstly, it does not require the presence of significant 

prior knowledge. We only assume that ECG signals from 

patients who are at high risk differ from those of the rest 

of the population. There are no specific assumptions 

about the nature of these differences. Secondly, the 

ability to partition patients into groups with similar ECG 

characteristics and potentially common risk profiles 

allows for a more fine-grained understanding of a how a 

patient’s future health may evolve over time. Matching 

patients to past cases with similar ECG signals could lead 

to more accurate assignments of risk scores for particular 

events such as death and MI. 

2. Electrocardiographic mismatch 

The electrocardiographic mismatch (ECGM) between 

two patients, p and q, is calculated in two steps. 

As a first step, the ECG signal for each patient is 

symbolized using the techniques similar to those 

described in [3]. Symbolization involves segmenting the 

original ECG signal into heart beats, and then separating 

the beats into different groups based on their 

morphology. 

To segment the ECG signal into beats, we use two 

open-source QRS detection algorithms with different 

noise sensitivities. The first of these makes use of digital 

filtering and integration [4] and has been shown to 

achieve a sensitivity of 99.69%, while the second is based 

on a length transform after filtering [5] and has a 

sensitivity of 99.65%. Both techniques have a positive 

predictivity of 99.77%. QRS complexes were marked at 
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locations where these algorithms agreed. 

The process of partitioning segmented beats into 

different groups is carried out using the dynamic time-

warping (DTW) algorithm described in [3], which is able 

to quantify differences in morphology between two beats. 

Using DTW, beats that are similar in morphology are 

considered to belong to the same morphology class, while 

those that have a high morphology difference according 

to DTW are considered to belong to a different group. 

Details of DTW and the process of partitioning beats into 

groups with distinct morphologies are presented below in 

more detail. 

Given any two beats, x1 and x2, of length l1 and l2 

respectively, DTW produces the optimal alignment of the 

two sequences by first constructing an l1-by-l2 distance 

matrix d such that: 
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Each entry (i,j) in this matrix represents the square of 

the difference between samples x1[i] and x2[j]. A 

particular alignment then corresponds to a path, ϕ, 

through the distance matrix of the form:  
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where ϕ1 and ϕ2 represent row and column indices into 

the distance matrix, and K is the alignment length. 

The optimal alignment produced by DTW minimizes 

the overall cost: 

                     ),(min),( 2121 xxCxxC ϕ
ϕ

=       (3) 

where ϕC  is the total cost of the alignment path ϕ and is 

defined as: 
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The search for the optimal path is carried out in an 

efficient manner using dynamic programming. The final 

energy difference between the two beats x1 and x2, is 

given by the cost of their optimal alignment, and depends 

on both the amplitude differences between the two 

signals, as well as the length K of the alignment (which 

increases if the two beats differ in their timing 

characteristics). 

DTW quantifies changes in morphology resulting 

from amplitude and timing differences between two 

beats. Using this information, beats with distinct 

morphologies can be placed in different groups, with 

each group being assigned a unique label or symbol. This 

is done by means of a Max-Min iterative clustering 

algorithm that proceeds by choosing an observation at 

random as the first centroid c1 and setting the set S of 

centroids to {c1}. During the i-th iteration, ci is chosen 

such that it maximizes the minimum distance between ci 

and observations in S: 
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where C(x,y) is the DTW difference between x and y 

as defined in (3). The set S is incremented at the end of 

each iteration such that S = S ∪ ci. 

The number of clusters discovered by Max-Min 

clustering is chosen by iterating until the maximized 

minimum dissimilarity measure in (5) falls below a 

specified threshold し. At this point, the set S comprises 

the centroids for the clustering process, and the final 

assignment of beats to clusters proceeds by matching 

each beat to its nearest centroid. Each set of beats 

assigned to a centroid constitute a unique cluster. The 

final number of clusters, k, obtained using this process 

depends on the separability of the underlying data. 

The overall effect of DTW-based partitioning of beats 

is to transform the original raw ECG signal into a 

sequence of symbols, i.e., into a sequence of labels 

corresponding to the different beat morphology classes 

that occur in succession. A more detailed discussion of 

the symbolization process is provided in [3]. 

Denoting the set of symbols for patient p as Sp and the 

set of probabilities with which these symbols occur in the 

electrocardiogram as Pp (for patient q an analogous 

representation is adopted), we calculate the ECGM 

between these patients as: 
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In (6), C(a,b) corresponds to the dynamic time-warping 

cost of aligning the centroids of symbol classes a and b. 

Intuitively, the electrocardiographic mismatch between 

patients p and q corresponds to an estimate of the 

expected dynamic time-warping cost of aligning any two 

randomly chosen beats from these patients. The ECGM 

calculation in (6) achieves this by weighting the cost 

between every pair of symbols between the patients by 

the probabilities with which these symbols occur. 

An important feature of ECGM is that it is explicitly 

designed to avoid the need to set up a correspondence 

between the symbols of patients p and q for comparative 

purposes. In contrast to cluster matching techniques that 

compare data for two patients by first making an 

assignment from symbols in one patient to the other, 

ECGM does not require any cross-patient registration of 

symbols and performs weighted comparisons between all 

symbols for p and q. 

3. Hierarchical clustering 

For every pair of patients in a population, the 

electrocardiographic mismatch between them is 

computed using the techniques described in Section 2. 

The resulting divergence matrix, D, relating the pairwise 

electrocardiographic mismatches between all the patients 

86



 

 

is used to partition the population into groups with 

similar cardiac characteristics. This process is carried out 

by means of hierarchical clustering [6]. 

Hierarchical clustering starts out by assigning each 

patient to a separate cluster. It then proceeds to combine 

two clusters at every iteration, choosing clusters that obey 

some concept of being the “closest” pair. We use a 

definition of closest that corresponds to merging two 

clusters A and B for which the mean electrocardiographic 

mismatch between the elements of the clusters is 

minimized, i.e., we choose clusters A and B such that they 

minimize the merge distance, f, which is given by : 
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Where |A| and |B| correspond to the number of 

elements in each cluster. 

Intuitively, this approach picks two clusters to merge 

that are closest in the sense that the average distance 

between elements in the two clusters is minimized. This 

definition of closest is similar to the unweighted pair 

group method with arithmetic mean (UPGMA) or 

average linkage criterion [6]. 

Broadly speaking, there are two approaches to decide 

when to terminate the iterative clustering process. The 

simplest approach is to terminate at the iteration when the 

clustering process has produced a pre-determined number 

of clusters. However, in this case we have no prior 

assumptions about the appropriate number of clusters. 

We therefore use a more complex approach in which the 

number of clusters is determined by the dataset.  

The merge distance defined in (7) is monotonically 

nondecreasing with iteration number. Small increases in 

the merge distance suggest that the clustering process is 

merging clusters that are close. Conversely, large merge 

distances correspond to clusters being merged that are 

dissimilar. We therefore use the merge distance to 

indicate when the clustering process is beginning to show 

diminishing returns, i.e., merging clusters that are 

increasingly far apart. Continuing beyond this point may 

lead to the new clusters created containing heterogenous 

elements. We therefore terminate the clustering process 

when the merge distance for the next three iterations 

would show a quadratic concave up increase.  

4. Evaluation and results 

The population used for this work comprised patients 

in the DISPERSE2 trial [7], who were admitted to a 

hospital with non-ST-elevation (NSTE) acute coronary 

syndromes. Three lead continuous ECG (cECG) 

monitoring was performed for a median duration of 4 

days at a sampling rate of 128 Hz. The endpoints of 

cardiac death and MI were adjudicated by a blinded 

Clinical Events Committee for a median follow-up period 

of 60 days. The maximum follow-up was 90 days. Data 

from 686 patients was available after removal of noise-

corrupted signals. During the follow-up period there were 

14 cardiac deaths and 28 MIs. 

To evaluate the ability of ECGM to identify patients 

at increased risk of future cardiovascular events, we first 

separated the patients into a dominant normal sub-

population (i.e., the low risk ECGM group) and a group 

of abnormal patients (i.e., the high risk ECGM group). 

This was done by terminating hierarchical clustering 

automatically as described in Section 3 and labeling all 

patients outside the largest cluster as being abnormal and 

potentially high risk. In the subsequent discussion, we 

denote this new risk variable as the ECG Non-Dominance 

(ECGND). Patients placed in the non-dominant group by 

ECGM clustering were assigned an ECGND value of 1, 

while those in the dominant group had a value of 0. 

Kaplan-Meier survival analysis was used to study the 

event rates for death and MI. Hazard ratios (HR) and 

95% confidence interval (CI) were estimated by using a 

Cox proportional hazards regression model to study event 

rates in patients within the dominant and non-dominant 

groups. The HR for the dominant and non-dominant 

ECGM groups was compared to other clinical risk 

variables; age, gender, smoking history, hypertension, 

diabetes mellitus, hyperlipidemia, coronary heart disease 

(CHD), prior MI, prior angina and ST depression on 

holter. The risk variables were also examined using 

multivariate analysis. 

The results of univariate and multivariate analysis are 

given in Tables 1 and 2. In the case of ECGND, patients 

who were electrocardiographically mismatched with the 

dominant group of the population showed an increased 

risk of adverse cardiovascular events. Patients outside the 

dominant cluster had a much higher rate of death and MI 

during follow-up i.e., the occurrence of either of these 

adverse outcomes, the cumulative incidence in the high 

risk group was 9.17% as opposed to 3.50% in the low 

risk group (p<0.01). 

5. Discussion 

In this paper, we explore the hypothesis that patients at 

increased risk of adverse cardiovascular outcomes 

following acute coronary syndrome (ACS) may be 

detected as a minority that is electrocardiographically 

dissimilar to other patients in the population. To test this, 

we developed an approach to automatically quantify the 

difference between a pair of ECG recordings. We also 

described how this information can be used in a 

hierarchical clustering framework to partition patients 

into similar groups, with matching long-term 

electrocardiograms. Using such an approach, we searched 

for clusters of patients that are population outliers. Our 

study of 686 patients showed that patients who are 
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electrocardiographically mismatched from the majority 

patient population are at a considerably increased risk of 

adverse cardiovascular events such as death and MI over 

a 90 day period following NSTEACS. 
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Variable Hazard Ratio P Value 

Age 1.05 < 0.01 

Gender 0.77 0.468 

Smoker 1.15 0.670 

Hypertension 1.99 0.103 

Diabetes 1.84 0.077 

Hyperlipidemia 0.74 0.362 

CHD 0.85 0.635 

Prior MI 1.46 0.281 

Prior angina 1.03 0.932 

ST depression 1.04 0.910 

ECGND 2.58 < 0.01 
 

Table 1: Univariate association of risk variables with 

death and MI over 90 day follow-up period. 

 
 

Variable Hazard Ratio P Value 

Age 1.05 < 0.01 

Gender 0.63 0.242 

Smoker 1.52 0.285 

Hypertension 1.81 0.185 

Diabetes 1.41 0.350 

Hyperlipidemia 0.76 0.429 

CHD 1.14 0.720 

Prior MI 1.33 0.451 

Prior angina 0.87 0.707 

ST depression 0.74 0.387 

ECGND 2.43 < 0.01 
 

Table 2: Multivariate association of risk variables with 

death and MI over 90 day follow-up period. 
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