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Abstract 

We propose a new technique that quantifies the extent 

to which subtle ECG morphology changes exist from beat 

to beat. Termed morphological variability (MV), this 

variable measures changes in the shape and timing 

characteristics of cardiac events in sequential pairs of 

heart beats. In contrast to other techniques that focus on 

one specific aspect of the ECG, our approach integrates 

information from all waves and intervals in the beat, with 

the goal of providing a more global assessment of 

cardiac electrical performance. When tested on 400 

patients following ACS, an increased risk of death was 

seen during a follow-up period of 90 days for patients 

with high MV (HR=5.96;p=0.002). This relationship 

could be observed even after adjusting for HRV measures 

(adjusted HR=3.56;p=0.05). 

 

1. Introduction 

An extensive literature exists on the subject of heart 

rate variability (HRV) applied to ECG signals [1]. HRV 

provides a non-invasive means to assess autonomic 

modulation of sinus node activity. Since the autonomic 

system has an influence on the rate at which the heart 

beats, observing the variation in the length of RR 

intervals over time provides insight into sympathetic and 

parasympathetic stimulation of the heart. This 

information may have prognostic value in identifying 

patients at risk for increased cardiac mortality. 

While a variety of metrics have been proposed to 

calculate HRV, including time-domain, frequency-

domain and non-linear approaches, these metrics are 

unified in that they only use information related to the 

length of the RR intervals. They do not include 

information associated with how the shape of the heart 

beats changes from beat to beat.  

We extend the process of studying variability in the 

length of heart beats with an analogous approach to study 

variability in the morphology of heart beats. This work is 

motivated by a belief that subtle changes in morphology 

might be indicative of electrochemical abnormalities 

within the myocardium that are potentially proarrhythmic 

[2]. The resulting risk measure produced by measuring 

this effect is termed the morphologic variability (MV). 

2. Methods 

For every pair of consecutively occurring beats in the 

ECG signal, differences in morphology are quantified by 

calculating an “energy difference” between the beats.  

The simplest way to calculate this energy difference is to 

simply subtract the samples of one beat from another.  

However, if samples are compared based strictly on their 

distance from the start of the P-wave, this process may 

end up computing the differences between samples 

associated with different waves or intervals. For example, 

consider the two heart beats depicted in Figure 1.  In the 

drawing on the left, samples are aligned based on their 

distance from the onset of the P-wave.  One consequence 

of this is that samples that are part of the T-wave of the 

top beat are compared with samples not associated with 

the T-wave of the bottom beat.  A measure computed this 

way will not reflect differences in the shapes of the T-

waves of adjacent beats 

 
Figure 1. Alignment of beats by dynamic time-warping. On 

the left, samples are aligned by index. This may lead to energy 

differences being calculated across inconsistent parts of the two 

signals. Conversely, on the right, the dynamic time-warping 

algorithm produces the optimal alignment of the two sequences 

and ensures a more a consistent measure of energy differences 
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We use a variant of dynamic time-warping (DTW) [3] 

to align samples that correspond to the same kind of 

underlying physiological activity.  As depicted in the 

drawing on the right side of Figure 2, this can require 

aligning a single sample in one beat with multiple 

samples in another beat. The algorithm uses dynamic 

programming to search for an alignment that minimizes 

the overall distortion.  Distortion is measured using the 

method described in [4], which captures differences in 

both amplitude and timing of ECG waves.   

More precisely, given two beats, x1 and x2, of length l1 

and l2 respectively, DTW produces the optimal alignment 

of the two sequences by first constructing an l1-by-l2 

distance matrix d. Each entry (i,j) in this matrix d 

represents the square of the difference between samples 

x1[i] and x2[j]. A particular alignment then corresponds to 

a path, l through the distance matrix of the form:  
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where l1 and l2 represent row and column indices into 

the distance matrix, and K is the alignment length. 

The optimal alignment produced by DTW minimizes 

the overall cost: 
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where Cϕ  is the total cost of the alignment path l and is 

defined as:     
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The search for the optimal path is carried out in an 

efficient manner using dynamic programming. The final 

energy difference between the two beats x1 and x2, is 

given by the cost of their optimal alignment, and depends 

on both the amplitude differences between the two 

signals, as well as the length K of the alignment (which 

increases if the two beats differ in their timing 

characteristics). In this way, the technique described here 

measures changes in morphology resulting from both 

amplitude and timing differences between the two beats. 

The process described above transforms the original 

ECG signal from a sequence of beats to a sequence of 

energy differences. This new signal, comprising pair-

wise, time-aligned energy differences between beats, is 

then smoothed using a median filer of length 8.  We call 

the resulting times series the morphologic distance (MD) 

for the patient.   

The morphologic variability (MV) for a patient can be 

calculated from the MD time-series using metrics 

commonly employed in HRV analysis. An advantage of 

this approach is that it allows us to more directly 

understand the potential of morphology to yield 

information beyond that supplied by analysis of RR 

intervals. 

Two of the most widely used HRV measures are the 

time-domain metric SDANN (the standard deviation of 

the average of five minute windows of the time-series) 

and the frequency-domain metric LF/HF (the average 

ratio of the power in the frequency spectrum of five 

minute windows of the time-series between 0.04–0.15 Hz 

and 0.15–0.4 Hz).  We compute similar measures using 

the MD time-series, yielding two distinct MV measures, 

MV-SDANN and MV-LF/HF. 

3. Results 

We calculated MV and HRV measures within 48 hours 

of ACS for 400 randomly selected patients in the 

MERLIN trial [5]. Patients were dichotomized at both the 

80
th

 and 90
th

 percentiles for MV-SDANN and at the 10
th

 

and 20
th

 percentiles for HRV-SDANN. In the case of the 

LF/HF measure, which is not a direct measure of 

variability and instead measures the balance between the 

low frequency and high frequency components of the 

underlying time-series, patients were dichotomized at the 

10
th

 and 20
th

 percentiles for both MV and HRV.  

Table 1 presents the results of univariate association 

between these risk measures and death over a 90 day 

follow-up period. In the case of heart rate variability, 

HRV-LF/HF at both the 10
th

 and 20
th

 percentile showed a 

highly statistically significant association with the 

endpoint of death over the 90 day period following ACS. 

The LF/HF measure was a better risk-stratifier than the 

SDANN measure. Replacing the HRV metrics used here 

with other metrics (i.e., SDNN, ASDNN, HRVI, BETA) 

did not improve the results.  

For morphologic variability, MV-LF/HF was highly 

associated with death at both the 10
th

 and the 20
th
 

percentile cutoff. As was the case for HRV, the LF/HF 

measure for MV performed consistently better than the 

SDANN measure. 

Table 1. Univariate association between different HRV 

and MV measures and death following ACS in 90 days. 

Parameter Hazard Ratio (P-value) 

HRV-SDANN  

   HRV-SDAPP (20%) 4.11 (0.014) 

   HRV-SDAPP (10%) 1.86 (0.424) 

HRV-LF/HF  

   HRV-LF/HF (20%) 5.90 (0.002) 

   HRV-LF/HF (10%) 6.90 (0.001) 

MV-SDANN  

   MV-SDAPP (80%) 0.36 (0.321) 

   MV-SDAPP (90%) 0.80 (0.833) 

MV-LF/HF  

   MV-LF/HF (20%) 5.96 (0.002) 

   MV-LF/HF (10%) 7.15 (0.001) 
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Table 2. ROC c-statistic for different HRV and MV 

measures and death following ACS in 90 days. 

Parameter ROC c-statistic 

HRV-SDANN 0.62 

HRV-LF/HF 0.70 

MV-SDANN 0.59 

MV-LF/HF 0.75 

Table 3. Multivariate association between MV-LF/HF 

and different HRV measures for death over 90 days. 

Parameter Hazard Ratio (P-value) 

Model 1  

   HRV-SDAPP (20%) 2.86 (0.078) 

   MV-LF/HF (20%) 4.68 (0.011) 

Model 2  

   HRV-SDAPP (10%) 1.12 (0.819) 

   MV-LF/HF (10%) 6.96 (0.001) 

Model 3  

   HRV-LF/HF (20%) 3.51 (0.053) 

   MV-LF/HF (20%) 3.56 (0.050) 

Model 4  

   HRV-LF/HF (10%) 3.79 (0.050) 

   MV-LF/HF (10%) 3.99 (0.042) 

 

 

 
 

(a) MV-LF/HF (Y = -25.69 + 16.38 X; p = 0.015) 

 

 
 

(b) HRV-LF/HF (Y = 29.92 + 2.66 X; p = 0.696) 

 

Figure 2: Robust regression of MV-LF/HF and HRV-LF/HF 

against the survival time for patients who died during the first 

three months following NSTEACS. The linear model shown in 

each case (red) is derived by means of iteratively reweighted 

least squares with the bisquare weighting function. 

Our results show that for both HRV-LF/HF and MV-

LF/HF the relationship between the risk variable and 

death was generally even more pronounced at the lowest 

decile than at the lowest quintile. This suggests that there 

is a graded response whereby the risk of death increases 

the lower each metric is. For the period examined, the 

MV-LF/HF risk variable dichotomized at the 10
th

 

percentile showed the strongest association with the 

endpoint of death. 

We also calculated the ROC c-statistics for the 

different risk variables and the endpoint of death. The 

results of this analysis are shown in Table 2. 

The ROC c-statistics for the different risk variables 

and the endpoint of death over multiple time periods are 

shown in Table 2. The c-statistics for both HRV-LF/HF 

and MV-LF/HF exceeded the threshold of 0.7 associated 

with clinical utility [6]. 

To test whether an analysis of the entire beat, as 

opposed to a particular segment of the ECG signal is 

important for achieving these results, we also analyzed 

the contribution of each segment of the ECG signal (e.g., 

ST segment or QT interval) to the overall MV-LF/HF 

value.  We found that no one segment was predominant 

in its overall effect on MV-LF/HF (data not shown). In 

short, the entire signal is needed to obtain the results 

reported here. 

The results of multivariate analysis for the MV-LF/HF 

measure with the different HRV metrics is shown in 

Table 3. In the multivariate models, MV-LF/HF was the 

only risk variable significantly associated with the 

endpoint of death at the 20
th

 percentile cutoff. At the 10
th

 

percentile cutoff, both MV-LF/HF and HRV-LF/HF were 

independently associated with death in the multivariate 

model, suggesting that HRV and MV provide 

complementary information. This is consistent with our 

assumption that they provide measures of different 

physiological activity. 

Figures 2(a) and 2(b) plot the MV-LF/HF and HRV-

LF/HF risk variables against the survival time for patients 

who died within 90 days of ACS. In these cases, MV-

LF/HF showed a statistically significant linear association 

between the risk variable and the time to survival for 

patients. A unit increase in MV-LF/HF was correlated 

with a 16 day increase in the survival time of these 

patients (p=0.015). In the case of HRV-LF/HF, the 

relationship between the risk variables and the survival 

time was weaker. 

4. Discussion and conclusions 

In this paper, we investigate supplementing 

information in the variability of RR intervals in an ECG 

signal with variability of beat shape from beat to beat. 

We introduce morphologic variability (MV) as a measure 

of global variation in the ECG morphology. We approach 
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the problem of calculating MV in a manner analogous to 

HRV. Specifically, just as HRV measures are computed 

from a time-series that describes variations in heart rate 

or RR intervals, MV measures are computed from a 

morphologic distance (MD) time-series that describes 

differences between the morphology (or shape) of 

adjacent beats as measured by dynamic time-warping. 

Time domain statistical measures such as SDANN then 

use the raw MD or RR time-series to compute metrics 

that describe variability while frequency domain 

measures such as LF/HF derive the power spectrum and 

measure the difference between low frequency and high 

frequency content.  

Our hope was to design a measure that would detect 

signs of ischemia associated with subtle morphologic 

changes throughout the entire ECG signal that are not 

commonly appreciated in clinical practice [7-8].  Even in 

the absence of overt signs of ischemia, subtle ECG 

changes may indicate electrochemical abnormalities 

within the myocardium that are potentially proarrhythmic 

[2]. Given this, we hypothesized that an automated 

procedure for identifying subtle morphologic changes 

between successive beats in a surface ECG signal would 

provide additional data that could be used to identify 

patients at high risk following ACS. 

We investigated the potentially complementary 

information provided by MV and HRV in risk-stratifying 

patients at increased risk of cardiac mortality following 

acute coronary syndromes (ACS). In our study, we found 

MV-LF/HF did indeed have a highly significant 

association with death in this cohort. In fact, in this 

cohort, MV-LF/HF was more significantly correlated 

with death than any of the HRV measures.  We did not, 

however, find an association between MV-SDANN and 

death in this cohort.  This might seem surprising; 

especially in conjunction with the finding that HRV-

SDANN was found to be associated with death in this 

cohort.  The difference stems from the fact that 

calibration errors do not affect the measurement of the 

QRS complex and do not have a significant impact on the 

estimation of HRV. However, in the case of MV time-

domain metrics, they may lead to some patients 

appearing to have more or less energy in their beat-to-

beat differences. This is not a case with the use of the 

LF/HF metric, which is a ratio and inherently normalizes 

the score for each patient.  

The results reported here suggest strongly that that a 

low MV-LF/HF ratio is significantly, and independently, 

associated with an increased risk of death in the 

subsequent short and long term periods following 

hospital admission for NSTEACS. Information in the 

MV-LF/HF score may be further supplemented by HRV-

LF/HF and HRV-SDANN metrics in multivariate 

models. 
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