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Abstract: This paper deals with a robotised assistance dedicated for Handicap person. In this paper, we will propose to 
discus about one of the main functionality of this project: the tracking of the wheelchair from an 
autonomous mobile platform on which the Manus (c) arm is mounted. To ensure the tracking, we will 
present a method based on Kalman filter’s algorithm that we have upgraded in combination with two 
Kalman filtering levels. The first level permits an estimation of the wheelchair configuration in its 
environment and the second is used to compute the mobile platform configuration in connection with its 
environment. The association of the two filtering processes allows a robust tracking between a mobile target 
(wheelchair) and a mobile observer (assistive platform). More over, the team project was also composed 
with a clinical group; hence we present some interesting real-life testing of this technical assistance. 

1 INTRODUCTION 

Our laboratory works on an assistive prehensile 
mobile robot project and has to ensure the tracking 
of a wheelchair from the mobile platform. In this 
article, we propose an approach to solve the problem 
known as target motion analysis (TMA). We 
propose a target tracking filter based on a 
probabilistic approach with the Kalman Filtering 
which will be fed by omnidirectional vision sensors 
and dead-reckoning sensors mounted on the mobile 
platform. The problem of tracking is classical in the 
world of robotics. It’s generally linked to the data 
association stage and state estimation. The data 
association problem is that of associating the many 
measurements made by a sensor with the underlying 
states or trajectories that are being observed. It 
includes issues of validating data, associating the 
correct measurement to the correct states or 
trajectories, and initializing, confirming or deleting 
trajectories or states. The Probabilistic Data 

Association Filter (PDAF) for single target and the 
Joint Probability Data Association Filter (JPDAF) 
(Y. Bar Shalom et al, 1988), (Bar-Shalom Y et al, 
1995) for multiple targets are two inescapable 
approaches. They are both Bayesian algorithms that 
compute the probability of correct association 
between an observation and a trajectory. The general 
JPDAF framework can be implemented using Monte 
Carlo techniques, making it applicable to general 
non-linear and non-Gaussian models (D.Schulz et al, 
2003). 

A second classical paradigm of data association 
is the Multiple hypothesis tracking (MHT) 
(S.Blackman, 1986) which permits to represent 
multimodal distributions with Kalman filters (Y. Bar 
Shalom et al, 1988). It has been used with great 
effectiveness in radar tracking systems, for example. 
This method maintains a bank of Kalman filters, 
where each filter corresponds to a specific 
hypothesis about the target set. In the usual 
approach, each hypothesis corresponds to a 
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postulated association between the target and a 
measured feature. 

For our application, we have chosen to use two 
Kalman filters to solve the problem of target 
tracking from a mobile observer. 

The originality of this approach in connection 
with the classical solutions resides in two points: 
• Solving the problem of data association with a 

dedicated image-processing filter (camshift). 
• Solving the problem of simultaneous moving of 

the target and the tracker with two embedded 
Kalman filters.  

The combination of the prior two points 
contributes to solving the non-linearity problem of 
the global filter. 

Paper Organisation. In the next paragraphs (§1.1, 
§1.2, §1.3, §1.4), we will mention the specific 
context of this study, outline the perception system 
and describe the functionalities of the proposed 
assistive platform. After that in part 2, we will 
briefly explain the first tracking method (1TM) 
based on the iterative algorithm CAMSHIFT with a 
specific use for omnidirectional images. We also 
present very original clinical results of the tests 
made under genuine conditions by disabled people. 
In the last part (§3), we deal with the multi-level 
Kalman filtering tracking (second Tracking Method, 
2TM). Moreover, in this section, we will describe 
our Embedded Extended Kalman Filtering (EEKF). 
Finally (§4), we will conclude with an explanation 
of the experimental results. 

1.1 Context Overview 

This project, ARAP (Robotised Assistance for 
Prehensile Help), came into being from a human 
synergy, which grew out of a definition of problems 
faced by peoples of reduced mobility. The idea of 
robotised assistance for handicapped people 
followed an observation: there is generally a 
significant delay between technology, no matter how 
advanced, and assistance for peoples of reduced 
mobility. Above all, however, this project meets a 
social demand, that was defined by patients of 
reduced mobility confined to the Berck Hopale 
group (Hospital), who are taking part in this project. 
An interesting specificity of this project was 
composing a strongly plural-disciplinary team: 
• “Science for the Engineer” skills of the IUT of 
Amiens (University of Picardie, Jules Verne) have 
been used for the integration of a system of 
detection on the mobile platform and for the 
development of the prototype. 

• The “Human and Social Science” team was in 
charge of the psychological impact of this mobile 
assisting platform on the end-user.  
• The “Clinical group” (the Calvé Centre in 
Berck-Sur-Mer) used its clinical knowledge of the 
problem of disability, which will allow an 
evaluation of the work done.  

A lot of work has been carried out in connection 
with the problems defined by technical assistance. 
Some of them are describe in (B.Marhic et al, 2006).  

We have proposed studying the technical, 
psychological and clinical impact of robotised 
assistance for persons of reduced mobility by 
combining a mobile platform with a grasping arm in 
its usual role as robotics for handicapped persons 
(robot arm MANUS®). 

1.2 Main Perception System 

The mobile platform, in other words “the observer”, 
is mounted by the two classical kinds of sensors; i.e. 
the Inner Navigation System (INS) and the External 
Position System (EPS). The INS are dead-reckoning 
sensors and the EPS is a stereoscopic 
omnidirectional vision sensor used in a goniometric 
mode (figure 2). Moreover, this exteroceptive 
sensorial system is also used for the target 
observation (wheelchair) as a “classical” vision 
system involving the intrinsic properties (colour).  

The well-known equation (first order) of “dead-
reckoning”, considering the figure 1 is given by: 
Xm= [xm, ym, θm]T 
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Figure 1: Small movements of the robot during a period. 

Stereoscopic Omnidirectional Vision System. 
Main vision applications in mobile robotics use the 
classical pinhole camera model. Depending on the 
lens used, the field of view is limited. Nevertheless, 
it is possible to enlarge the field of view by using 
cameras mounted in several directions (H. Ishiguro, 
S. Tsuji, 1993) but the information flow is very 
important and time consuming. 

We have opted for a catadioptric vision system 
(figure 2). 
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Figure 2: The mobile platform and stereoscopic sensors. 

There are many advantages to using an 
omnidirectional vision sensor. Firstly, in one 
acquisition, we obtain a full view of the environment 
without using a sophisticated mechanical system. 
Secondly, the same system can be used as EPS and 
also as a “bearing sensor”. Finally, even if the visual 
interpretation of omnidirectional pictures is difficult, 
it is possible to compute a “classical perspective 
view” of the scene. The previous functionality is not 
discussed in this paper. 

The figure 3 shows an omnidirectional view of 
an environment with a wheelchair. 

A wheelchair 
 

 

 

Figure 3: (left) an omnidirectional view of a scene with a 
wheelchair in the field of view. (right) “un-warped” 
picture of the white area from the omnidirectional view. 

1.3 Main Functional Specificities 

Two functional specificities have been integrated 
into the robotised assistance (ARAP). Firstly 
(automatic mode), the mobile platform follows the 
patient’s wheelchair whenever the patient does not 
wish to use it. Secondly, a remote controlled mode 
for the grasping arm MANUS(R) and for the mobile 
base, used when the patient wishes to carry out a 
task involving grasping. 

1.4 Scientific Problematic 

The two main scientific themes associated with the 
automatic mode are the tracking and the path 

planning according to the obstacle avoidance and 
map building (locally). The coordination of the 
tracking and of the detection of obstacles is very 
important for the proper progress of our system.  

The block diagram below (figure 4) shows the 
concomitance between the local map and the 
tracking phase. These can sometimes give 
orientation orders to the mobile platform that are 
contradictory.  

In this paper, we focus only on the tracking 
problem. 

 

 
Figure 4: Coordination of tracking and detection of 
obstacle. 

2 1TM: OMNICAMSHIFT 

We wished to achieve the greatest possible degree of 
flexibility regarding the use of this robotic 
assistance. We therefore did not want to restrict our 
method to the use of one wheelchair in particular. 
More over, the wheelchair is not equipped with any 
particular marker; we have to track it as it is. Thus, 
in the first stage, our strategy for wheelchair 
recognition and tracking was based on a specific use 
of the CAMSHIFT. We have named the calculation 
of a CAMSHIFT directly into an omnidirectional 
image “OmniCAMSHIFT”. (C. Cauchois et al, 2005) 

The Continuously Adaptive Mean SHIFT 
(CAMSHIFT) algorithm (Bradski, 1998), is based 
on the mean shift algorithm (Comaniciu et al, 1997), 
a robust non-parametric iterative technique for 
finding the mode of probability distributions 
including rescaling. 

2.1 Initialisation (Target-wheelchair) 

Our construction of the model accommodates not 
only the wheelchair, but also the patient. This is why 
we turned our work towards an intrinsic model, 
directly calculated from a stereoscopic colour video 
signal. The figure below (Figure 5) shows 
omnidirectional images: they illustrate the extraction 
of the background and the extraction of the 
wheelchair. Once the model is computed, a 
histogram (acts as density function) representation is 
calculated. 
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Figure 5: Target Initialisation. Subtraction of the image. 

2.2 OmniCAMShift Results 

The next figure (Figure 6) shows an example of the 
OmniCAMShift application.  
 

Previous Location  
 
Estimated Location  
 
Final Location  
 
Estimated gyration  
 
Computed Angle for 
the triangulation   

Figure 6: Wheelchair recognition using OmniCAMShift. 

Once the wheelchair is identified in the two 
omnidirectional images, computing the relative 
position of the wheelchair by triangulation (figure 7) 
using the two computed angles is easy: 

Xtri= [xtri, ytri]T 
 

 

 

 

2)tan()tan(
)tan( d
ab

bdxtri +
−

×
=

 

)tan()tan(
)tan()tan(

ab
abdytri

−
××

=  

Figure 7: triangulation by two bearing angles. The 
referential frame is between the two omnidirectional 
sensors. 

2.3 Evaluation and Clinical Results 

As we explained at length, the prototype that we 
designed is based on an actual social demand. The 
prototype has thus been tested in a hospital. 
Unfortunately, the automatic mode, i.e. 1TM: 
OmniCamShift was not secure enough (loss of 
target) to be used and tested by handicaped people. 
The required reliability for wheelchair tracking was 
too strict to establish an evaluation with tetraplegic 
subjects in clinical conditions. In a first stage we 
chose to test the platform with 13 non handicapped 

subjects placed in the same constrained motor 
conditions as tetraplegic subjects.  

 

 
Figure 8: Operation’s schema. 

However, under laboratory conditions, the 
mobile platform was able to follow the wheelchair at 
a low speed and at a distance of 2m without any 
oscillation in the trajectory (automatic mode). In 
order to be manually controlled by the end-user, the 
base has to go around the wheelchair automatically 
when ordered to, without any prior warning. This 
intermediary phase corresponds to the transition 
from the automatic mode to the remote-controlled 
mode. This transitory trajectory was chosen in a 
reliable manner based on obstacle avoidance and the 
platform positioned itself without difficulty in front 
of the wheelchair in order to start the remote-
controlled operation. 

Real-life testing has shown that the end-user will 
encounter no difficulties operating the platform. The 
main clinical evaluation was dedicated to validate 
that the end-user can operate the mobile base + robot 
arm as easily when he is seated in the wheelchair as 
when he is in bed.  

During the grasping operation with a moving 
base, the time needed to place the base was not 
significantly different between for 5meters near 
84sec (standard deviation, s.d. 40) and 9 meters 
(105sec s.d. 36). The time needed to accomplish a 
grasping task was significantly longer when the 
joystick was driven by the chin (108sec s.d. 24) than 
by a hand blocked in an orthosis (102sec s.d. 33) or 
by a digital device (95sec s.d. 25). The difference in 
distance for the grasping action to be undertaken 
(between 1, 5 and 9 meters) had a non-significant 
impact on the outcome, respectively 56sec s.d. 17; 
64sec s.d. 17 and 67sec s.d. 25, with a significant 
difference between 1 to 9 meters. With a fixed base 
and randomly presented at either 90° or 45° to the 
subject, the average time needed to grasp showed a 

BIODEVICES 2008 - International Conference on Biomedical Electronics and Devices

12



 

significant increase between conditions (respectively 
61sec s.d. 18 and 141sec s.d. 56). No significant 
difference was found during the task combining the 
movement of the base and the grasping of an object, 
no matter if the patient was in the wheelchair or in 
bed, nor if the object was on the ground or on a 
table. However, the change in distance from 5 
meters to 9 meters increased significantly the 
average grasping time from 102sec s.d. 56 to 151 
s.d. 80. 

In short, the results presented by this research 
project show that whether feasible, the time for 
grasping with a mobile platform increases 
considerably with the distance and with the base 
orientation in comparison to the patient place. 
Grasping with a mobile robot seems to be a solution 
to a wider demand than that originally targeted by 
the first studies into the use of robotic assistance. As 
there are many people, other than from tetraplegic 
people, who are bed-ridden, a far wider target-group 
can benefit from the use of robotic assistance. 

However, the evaluation also proved that the 
wheelchair tracking by a mobile platform had its 
limitations and an actual use in an environment 
outside of the laboratory is very complicated. This 
necessitated the implementation of new software 
elements. A part of this future improvement is 
discussed in the next part of this article. 

3 2TM: KALMAN FILTERING 

For solving the problems of target loss presented 
above, we add at the previous tracking method 
Kalman filtering. That way, we can pinpoint some 
detection errors that weren’t detected before 
(divergence of the OmniCamShift). 

3.1 Problem Formulation 

The target, i.e. the wheelchair, located at coordinates 
(xf, yf) in the world frame, moves with a constant 
velocity. The state vector is defined by: 

[ ]Tfff yxX = .  
The discrete-time state equation for this problem 

can be written as: 
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Where Xm
(n+1) is defined figure1 and v(n+1) is 

centred Gaussian white noise v(n+1) ~ (0, Q) with Q 
= σ.I2, here σ is a scalar and I2 is the 2x2 identity 

matrix. The superscript f/m indicates the position of 
the wheelchair in relation to the mobile platform. 

We assume that during the prediction stage the 
relative movement between the wheelchair and the 
mobile platform remains constant: 

i.e.  Xf/m
(n+1) = Xf/m

(n) . This classical target-
observer geometry is depicted in the figure 9. 

 
Figure 9: Target-observer geometry. 

3.2 First Level of Filtering 

We use the dead-reckoning data (INS) to compute 
the observer state, i.e. our mobile platform state 
(step 1: the prediction stage); the non-linear equation 
8. Afterwards, the relative position Xtri of the 
wheelchair in connection with our mobile platform 
is computed by triangulation (figure 7) of data 
provided by the two omnidirectional vision sensors.  

The equation (2) enables us to obtain the state 
vector [ ]Tfff yxX ˆˆˆ =  which gives us the position 
of the wheelchair in the environment (World frame), 
based on the addition of two vectors mX  and mfX / . 
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where : mδθα −°= 90 . The previous vector 
[ ]Tfff yxX ˆˆˆ =  is computed outside the filter; fX̂ is 

used as the measurement in the observation equation 
(step 2: update Stage) defined as follow: 

      
n

f
nn

f wXHX +×=ˆ   (3) 

where w(n) is a zero-mean white Gaussian noise. 
The observation matrix H(n) of the filter becomes 

the matrix identity. The observation stage is thus 
linear. The diagram below (figure 10) summarises 
this process. Some actual results are shortly shown 
in the figure 11. This figure represents the position 
of our mobile platform and the wheelchair in a real 
scenario. The result obtained was satisfactory for a 
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straight trajectory but insufficient during the phase 
where the mobile platform turned, due to errors of 
dead-reckoning and the non-repositioning of the 
mobile platform. The state vector estimation fX̂  is 
highly dependant of the of dead-reckoning vector 

mX ; thus if an error occurs on mX , it appears on 
fX̂ . This method is not efficient. 

 
Figure 10: Filter’s algorithm. 

  
Figure 11: First filter results. (In blue the mobile platform 
position, in purple the estimated wheelchair position and 
in black the real wheelchair position). 

So, to resolve this new problem and to make our 
application robuster, we add a second level of 
Kalman to this filter, which then deletes this 
imperfection. We have named this second filter the 
Embedded Extended Kalman Filter (EEKF).  

3.3 Second Level: EEKF 

We now propose to fully estimate the platform state 
vector (“the observer”) by a classical EKF. Thus, 
this method requires knowledge of the 
environment’s landmarks (EPS). We will be able to 
determine, with precision, the position of our mobile 
platform and thus be able to re-inject the platform 
position in the first Kalman loop.  

For indoor application, these landmarks are 
walls, doors, objects, angles which one will be able 
to detect in an omnidirectional image using 
segmentation processing. Therefore, it is necessary 
for us to know the map of the environment to be able 

to match the omnidirectionnal image primitive to the 
known landmarks (doors and windows) of the 
environment (see figure 12). In order to extract the 
landmarks’ angles of the ominidirectionnal picture, 
we compute a Deriche-Canny filter before applying 
a classical Hough transform algorithm. 

 
Figure 12: Segmentation and landmarks in an 
omnidirectional image. 

 
Figure 13: Relation between landmarks and mobile 
platform. 

For this process, the equation of observation of the 
extended Kalman filter is as follows. The vector of 
observation is: 
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where τ
ki , which contains the azimuths angles, is 

the layer of ième landmark Bi of co-ordinates (xi, yi) i 
the world landmark in the moment k. And vk is a 
measurement noise, presumably white and Gaussian. 

The exact position of the beacon Bi is expressed 
according to the state vector Xk of the system as 
follows: 

)arctan(
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The matrix of the Jacobian of the vector function 
H is, in the case of measurements of absolute angle:  
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where d is the distance between the landmark 
and the mobile platform. 

We add this second Kalman filter before the 
correction of the first Kalman filter as can be seen in 
the graphic figure 14. 

The result of this add-on is a reposition of the 
mobile platform in the environment reference (see 
figure 13). This better knowledge of the base 
location also allows us to have a better estimation of 
the wheelchair. Moreover, the update stage of the 
first level Kalman filter is now achieved by data 
from both the triangulation and the platform location 
(second level Kalman filter).  

Moreover the errors induced by the dead-
reckoning such as skids and slips, errors of 
quantification and others, are taken into account in 
an improved way. This improvement stems from our 
multi-level Kalman filter that performs a more 
accurate location. 

 
Figure 14: New process of filtering. 

We can see that the second filter corrects the 
dead-reckoning as seen in figure 15, represented by 
the arrow. Here it is a big error because the 
wheelchair is suddenly turning. 

As we can see in the figure 16, the result of our 
process follows the curve well, which our system did 
not manage to do before.  

Figure 17 shows us the error in X and Y of your 
system. These results are given by the matrix of 
variance/covariance and allows us to see that our 
system tracks the target with the precision as 
expected. This way we can confirm the importance 
and the need of our second Kalman filter. 

 

 
A

B 

 
Figure 15: repositioning of the mobile platform. A: dead-
reckoning prediction location; B: EKF estimation. 

 
Figure 16: System in a straight trajectory following in a 
curve. 

 
Figure 17: Error of our wheelchair’s system in X and Y. 

4 CONCLUSIONS 

In this article, we studied a target tracking 
application dedicated to an assistive platform for the 
disabled. The aim was to track a wheelchair with a 
mobile platform mounted with a grasping arm 
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(MANUS®). We propose an approach based on an 
association of two Kalman filtering levels. We have 
named this architecture the EEKF. The first level 
permits to estimate the wheelchair configuration. 
The second is used to compute the mobile platform 
configuration in connection with its environment. 
We have shown that the second level increases the 
precision of the configuration estimation of the 
wheelchair in the platform frame. The use of the 
identity matrix in the first stage of the Kalman 
filtering allows us to solve the problem of the non-
linearity of the system due to the triangulation. 
However, our paradigm integrates a strong coupling 
of the camshift algorithm and the Kalman estimation 
state. This new target tracking approach shows that 
it is possible to compensate the loss of tracking by 
the camshift, whilst continuing to track. 

This paradigm can be considered as a 
contribution to solving the problem of TMA (target 
& tracker). The robustness of the filtering process is 
very important because it is used in a clinical 
context. Future works will study the integration of a 
supplementary layer based on a particle filter. 

Moreover, in this paper we have presented some 
original results concerning the clinical tests. These 
tests have permitted to evaluate the impact of the 
remote controlled mode of this assistive platform. 
The results seem to be encouraging. The automatic 
mode will also be evaluated in the near future.  
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