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FOREWORD 

 

This volume contains the proceedings of the First International Conference on Bio-inspired Systems and 
Signal Processing (BIOSIGNALS 2008), organized by the Institute for Systems and Technologies of 
Information Control and Communication (INSTICC) and the University of Madeira, technically 
co-sponsored by the IEEE Engineering in Medicine and Biology Society (EMB) and in 
cooperation with AAAI. 

The purpose of the International Conference on Bio-inspired Systems and Signal Processing is to bring 
together researchers and practitioners from multiple areas of knowledge, including biology, 
medicine, engineering and other physical sciences, interested in studying and using models and 
techniques inspired from or applied to biological systems. A diversity of signal types can be found 
in this area, including image, audio and other biological sources of information. The analysis and 
use of these signals is a multidisciplinary area including signal processing, pattern recognition and 
computational intelligence techniques, amongst others. 

BIOSIGNALS is one of three integrated conferences that are co-located and constitute the 
International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC). 
The other two component conferences are HEALTHINF (International Conference on Health 
Informatics) and BIODEVICES (International Conference on Biomedical Electronics and 
Devices).  

The joint conference, BIOSTEC, has received 494 paper submissions from more than 40 countries 
in all continents. 65 papers were published and presented as full papers, i.e. completed work (8 
pages/30’ oral presentation), 189 papers reflecting work-in-progress or position papers were 
accepted for short presentation, and another 86 contributions were accepted for poster 
presentation. These numbers, leading to a “full-paper” acceptance ratio below 14% and a total oral 
paper presentations acceptance ratio below 52%, show the intention of preserving a high quality 
forum for the next editions of this conference.  

The conference included a panel and six invited talks delivered by internationally distinguished 
speakers, namely: Sergio Cerutti, Kevin Warwick, F. H. Lopes da Silva, Vipul Kashyap, David Hall 
and Albert Cook. Their participation has positively contributed to reinforce the overall quality of 
the Conference and to provide a deeper understanding of the field of Biomedical Engineering 
Systems and Technologies.  

The proceedings of the conference will be indexed by several major indices including DBLP, 
INSPEC and ISI-Proceedings and it will also be submitted for indexing to EI. A book with the 
revised versions of a short list of selected papers from the conference will be published by 
Springer-Verlag in the new CS book series: Communications in Computer and Information Science 
(CCIS). Additionally, a special issue of the IEEE Transactions on Biomedical Circuits and Systems 
will be edited based on the very best papers of the conference.  
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FOREWORD (CONT.) 

 

The program for this conference required the dedicated effort of many people. Firstly, we must 
thank the authors, whose research and development efforts are recorded here. Secondly, we thank 
the members of the program committee and the additional reviewers for their diligence and expert 
reviewing. Thirdly, we thank the keynote speakers for their invaluable contribution and for taking 
the time to synthesise and prepare their talks. Fourthly, we thank the program chairs, Pedro 
Encarnação and António Veloso, whose collaboration was much appreciated. Finally, special 
thanks to all the members of the INSTICC team, especially Marina Carvalho at the conference 
secretariat, and the local organising committee from the University of Madeira, especially Jorge 
Cardoso and Paulo Sampaio, whose collaboration was fundamental for the success of this 
conference. 

This year, the organization will distribute two paper awards at the conference closing session: the 
best paper award and the best student paper award. The decision was mainly based on the paper 
classifications provided by the Program Committee.  

We wish you all an exciting conference and an unforgettable stay in the lovely island of Madeira. 
We hope to meet you again next year for the 2nd BIOSIGNALS, details of which are available at 
http://www.biosignals.org.  

 

Joaquim Filipe 

INSTICC/Polytechnic Institute of Setúbal 
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MULTIVARIATE, MULTIORGAN  
AND MULTISCALE INTEGRATION OF INFORMATION  

IN BIOMEDICAL SIGNAL PROCESSING 

Sergio Cerutti 
Department of Bioengineering, Polytechnic University, Milano, Italy 

sergio.cerutti@polimi.it 

Abstract: Biomedical signals carry important information about the behavior of the living systems under studying. A 
proper processing of these signals allows in many instances to obtain useful physiological and clinical 
information. Many advanced algorithms of signal and image processing have recently been introduced in 
such an advanced area of research and therefore important selective information is obtainable even in 
presence of strong sources of noise or low signal/noise ratio. Traditional stationary signal analysis together 
with innovative methods of investigation of dynamical properties of biological systems and signals in 
second-order or in higher-order approaches (i.e., in time-frequency, time-variant and time-scale analysis, as 
well as in non linear dynamics analysis) provide a wide variety of even complex processing tools for 
information enhancement procedures. Another important innovative aspect is also remarked: the integration 
between signal processing and modeling of the relevant biological systems is capable to directly attribute 
patho-physiological meaning to the parameters obtained from the processing and viceversa the modeling 
fitting could certainly be improved by taking into account the results from signal processing procedure. 
Such an integration process could comprehend parameters and observations detected at different scales, at 
different organs and with different modalities. This approach is reputed promising for obtaining an olistic 
view of the patient rather than an atomistic one which considers the whole as a simple sum of the single 
component parts. 
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1 INTRODUCTION 

Biomedical signals and imaging carry important 
information about the behavior of the living systems 
under studying. A proper processing of these signals 
and images allow in many instances to obtain useful 
physiological and clinical information. Actually, 
many advanced algorithms of digital signal and 
image processing are at disposal and therefore 
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important selective information is now obtainable 
even in presence of strong sources of noise or low 
signal/noise ratio. In most of the cases it is not sure 
whether such sources might derive even by complex 
and unknown interactions with other biological 
systems whose implications could be important from 
the physiological or clinical standpoints. Traditional 
stationary signal analysis together with innovative 
methods of investigation of dynamical properties of 
biological systems and signals in second-order or in 
higher-order approaches (i.e., in time-frequency, 
time-variant and time-scale analysis, as well as in 
non linear dynamics analysis) provide a wide variety 
of even complex processing tools for information 
enhancement procedures in the challenging studying 
of a better explanation of many physiological and 
clinical phenomena.    

2 INTEGRATION BETWEEN 
SIGNAL PROCESSING AND 
PHYSIOLOGICAL MODELING 

Another important innovative aspect to improve the 
information content from biomedical data is 
constituted by the integration between signal 
processing and modeling of the relevant biological 
systems, thus directly attributing patho-physiological 
meaning to the model parameters obtained from the 
processing; and, viceversa, the modeling fitting 
could certainly be improved by taking into account 
the results from signal/image processing procedures. 

3 MONOVARIATE AND 
MULTIVARIATE SIGNAL 
PROCESSING 

Other kinds of integration may be fulfilled, taking 
into account more signals from the same system in a 
multivariate way (i.e. from a single-lead vs 
multichannel EEG or ECG analysis) and combining 
also the action of different systems such as 
autonomic nervous system, cardiovascular and 
respiratory systems, etc. Sleep is a formidable 
example of multiorgan involvement in both 
physiological (sleep staging and correlation with 
cardiorespiratory system) and pathological 
conditions (sleep apnea, sleep deprivation, restless 
leg syndrome and so on). 

4 MULTISCALE APPROACH 

Further, modern rehabilition techniques (motor and 
/or cognitive) make use actually of objective indices 
obtained from the patient’s biosignals and images to 
better “personalize” rehabilitation protocols (from 
EEG, EP’s, ERP’s, MRI, fMRI, NIRS, etc). In 
neurosciences such an integration process could 
comprehend parameters and observations detected 
also at different scales, from genome and proteome 
up to the single organ and to the entire body 
compartment. Examples will be described where an 
animal model (murine model) is developed by 
alterating a gene putative to a determined patholopy 
(i.e.epilepsy) and changes in EEG signals are studied 
(spike/wave occurrences and modifications in signal 
power bands). In clinical applications, it is worth 
mentioning the important data fusion which could be 
fulfilled by the integration of simultaneous EEG 
recordings and fMRI in some epileptic patients 
during inter-critical or critical events.  

Finally, another important integration can be 
obtained along different observation scales. 
Traditionally, biological signal analysis is carried 
out at the level of organ or system to be investigated 
(i.e., ECG or EEG signal, arterial blood pressure, 
respiration and so on). It is very clear the advantage 
of correlating this information with that one obtained 
about the same system, but at different scale level, 
i.e. at cellular level or even at subcellular level (for 
example, analyzing possible genetic correlates or 
typical patterns of proteins or even DNA/RNA 
sequences). Biomedical engineering as a dedicated 
discipline may strongly contribute to this multiscale 
information processing 

Along this approach line, even the long-QT 
syndrome, can be efficiently studied at different 
scale level: a mutation in a portion of gene SCN5A 
which presents a phenotype compatible to long-QT3 
type, is known to produce an altered function of Na+ 
channels. Through a proper model which describes 
the functioning of ventricular cells is possible to 
evidence that this alteration may induce a 
prolongation of QT duration, as detected on ECG 
tracing. This event is further correlated with an 
increased risk of ventricular tachyarrhythmias. 
Hence, the path is completed: from the genetic 
expression up to the disease manifestation (Clancy  
and Rudy, 1999), (Priori ey al., 2003). Many 
different signal processing and modeling are 
involved in this paradigmatic example: an 
integration along the various scales of observation 
may undoubtedly contribute to a better 
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understanding of the complex pathophysiological 
correlates. 
A great effort is on course nowadays for creating 
very large databases and networking of models and 
technologies for integrating such information 
(Physiome project (Hunter et al., 2002), (Rudy, 
2000) to be connected with Genome and Proteome 
projects and Virtual Physiological Human project – 
VPH – which  is inserted into the activities of the 7th 
Framework Programme of EU). 
Other examples are constituted by the studying of 
the profile of expressed proteins in 2D-gel supports, 
or after mass-spectrometry analysis, relative to a 
variety of pathologies (i.e. epilepsy, peripheral 
neuropathies or Amyotrophic Lateral Sclerosis 
(ALS), or in oncological studies) thus singling out 
the set of proteins which present a correlate with the 
pathology in respect to the control group.  
This overall approach is reputed promising for 
obtaining an olistic view of the patient rather than an 
atomistic one which considers the whole as a simple 
sum of the single component parts. 
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OUTTHINKING AND ENHANCING BIOLOGICAL BRAINS 

Kevin Warwick  
University of Reading, UK 

Keywords: Brain-Computer Interface, Biological systems, Implant technology, Feedback control. 

Abstract: In this paper an attempt has been made to take a look at how the use of implant and electrode technology 
can now be employed to create biological brains for robots, to enable human enhancement and to diminish 
the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the 
recipients. An indication is given of a number of areas in which such technology has already had a profound 
effect, a key element being the need for a clear interface linking the human brain directly with a computer. 
An overview of some of the latest developments in the field of Brain to Computer Interfacing is also given 
in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that 
have been and are being undertaken and reported on, as opposed to those speculated, simulated or proposed 
as future projects. Related areas are discussed briefly only in the context of their contribution to the studies 
being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is 
made directly with the cerebral cortex and/or nervous system.  
Tests and experimentation which do not involve human subjects are invariably carried out a priori to 
indicate the eventual possibilities before human subjects are themselves involved. Some of the more 
pertinent animal studies from this area are discussed including our own involving neural growth. The paper 
goes on to describe human experimentation, in which neural implants have linked the human nervous 
system bi-directionally with technology and the internet. A view is taken as to the prospects for the future 
for this implantable computing in terms of both therapy and enhancement. 
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1 INTRODUCTION 

Research is being carried out in which biological 
signals of some form are measured, are acted upon 
by some appropriate signal processing technique and 
are then employed either to control a device or as an 
input to some feedback mechanism (Penny et al., 
2000), (Roitberg, 2005). In many cases neural 
signals are employed, for example 
Electroencephalogram (EEG) signals can be 
measured externally to the body, using externally 
adhered electrodes on the scalp (Wolpaw  et al., 
1990) and can then employed as a control input. 
Most likely this is because the procedure is 
relatively simple from a research point of view and 
is not particularly taxing on the researchers 
involved. However, reliable interpretation of EEG 
data is extremely complex – partly due to both the 
compound nature of the multi-neuronal signals being 
measured and the difficulties in recording such 
highly attenuated  

In the last few years interest has also grown in the 
use of real-time functional Magnetic Resonance 
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Imaging (fMRI) for applications such as computer 
cursor control. This typically involves an individual 
activating their brain in different areas by 
reproducible thoughts (Warwick, 2007) or by 
recreating events (Pan et al., 2007). Alternatively 
fMRI and EEG technologies can be combined so 
that individuals can learn how to regulate Slow 
Cortical Potentials (SCPs) in order to activate 
external devices (Hinterberger et al., 2005). Once 
again the technology is external to the body. It is 
though relatively expensive and cumbersome.  

It is worth noting that external monitoring of neural 
signals, by means of either EEG analysis or indeed 
fMRI, leaves much to be desired. Almost surely the 
measuring technique considerably restricts the user’s 
mobility and, as is especially the case with fMRI, the 
situation far from presents a natural or comfortable 
setting. Such systems also tend to be relatively slow, 
partly because of the nature of recordings via the 
indirect connection, but also because it takes time 
for the individual themselves to actually initiate 
changes in the signal. As a result of this, 
distractions, both conscious and sub-conscious, can 
result in false indicators thus preventing the use of 
such techniques for safety critical, highly dynamic 
and, to be honest, most realistic practical 
applications. Despite this, the method can enable 
some individuals who otherwise have extremely 
limited communication abilities to operate some 
local technology in their environment, and, in any 
case, it can serve as a test bed for a more direct and 
useful connection.     

The definition of what constitutes a Brain-Computer 
Interface (BCI) is extremely broad. A standard 
keyboard could be so regarded. It is clear however 
that various wearable computer techniques and 
virtual reality systems, e.g. glasses containing a 
miniature computer screen for a remote visual 
experience (Mann, 1997), are felt by some 
researchers to fit this category. Although it is 
acknowledged that certain body conditions, such as 
stress or alertness, can be monitored in this way, the 
focus of this paper is on bidirectional BCIs and is 
more concerned with a direct connection between a 
biological brain and technology, and ultimately a 
human and technology.  

2 IN VIVO STUDIES  

Non-human animal studies can be considered to be a 
pointer for what is potentially achievable with 
humans in the future. As an example, in one 

particular animal study the extracted brain of a 
lamprey, retained in a solution, was used to control 
the movement of a small wheeled robot to which it 
was attached (Reger et al., 2000). The lamprey 
innately exhibits a response to light reflections on 
the surface of water by trying to align its body with 
respect to the light source. When connected into the 
robot body, this response was utilised by 
surrounding the robot with a ring of lights. As 
different lights were switched on and off, so the 
robot moved around its corral, trying to position 
itself appropriately.  

Meanwhile in studies involving rats, a group of rats 
were taught to pull a lever in order to receive a 
suitable reward. Electrodes were then chronically 
implanted into the rats’ brains such that the reward 
was proffered when each rat thought (one supposes) 
about pulling the lever, but before any actual 
physical movement occurred. Over a period of days, 
four of the six rats involved in the experiment 
learned that they did not in fact need to initiate any 
action in order to obtain a reward; merely thinking 
about it was sufficient (Chapin, 2004). 

In another series of experiments, implants consisting 
of microelectrode arrays have been positioned into 
the frontal and parietal lobes of the brains of two 
female rhesus macaque monkeys. Each monkey 
learned firstly how to control a remote robot arm 
through arm movements coupled with visual 
feedback, and it is reported that ultimately one of the 
monkeys was able to control the arm using only 
brain derived neural signals with no associated 
physical movement. Notably, control signals for the 
reaching and grasping movements of the robotic arm 
were derived from the same set of implanted 
electrodes (Carmena et al., 2003), (Nicolelis et al., 
2000). 
 
Such promising results from animal studies have 
given the drive towards human applications a new 
impetus. 

3 ROBOT WITH A BIOLOGICAL 
BRAIN 

Human concepts of a robot may involve a little 
wheeled device, perhaps a metallic head that looks 
roughly human-like or possibly a biped walking 
robot. Whatever the physical appearance our idea 
tends to be that the robot might be operated remotely 
by a human, or is being controlled by a simple 
programme, or even may be able to learn with a 



 

IS-11 

microprocessor/computer as its brain. We regard a 
robot as a machine. 
In a present project neurons are being cultured in a 
laboratory in Reading University to grow on and 
interact with a flat multi-electrode array. The neural 
culture, a biological brain, can be electronically 
stimulated via the electrodes and its trained response 
can be witnessed.  

The project now involves networking the biological 
brain to be part of a robot device. In the first 
instance this will be a small wheeled robot. The 
input (sensory) signals in this case will be only the 
signals obtained from the wheeled robot’s ultrasonic 
sensors. The output from the biological brain will be 
used to drive the robot around. The goal of the 
project initially will be to train the brain to drive the 
robot forwards without bumping into any object. 
Secondly, a separate biological brain will be grown 
to be the thinking process within a robot head (called 
Morgui) which houses 5 separate sensory inputs. 

What this means is that the brain of these robots will 
shortly be a biological brain, not a computer. All the 
brain will know is what it perceives from the robot 
body and all it will do will be to drive the robot body 
around or control the robot head respectively. The 
biological brain will, to all intents and purposes, be 
the brain of the robot. It will have no life, no 
existence outside its robotic embodiment. 

Clearly this research alters our concept of what a 
robot is, particularly in terms of ethical and 
responsibility issues. If a role of animal research is 
to open up possibilities for future human trials, then 
in this case the research could well be opening a 
window on the ultimate possibility of human 
neurons being employed in a robot body. All the 
‘human’ brain would know would be its life as a 
robot.  

4 HUMAN APPLICATION  

At the present time the general class of Brain-
Computer Interfaces (BCIs) for humans, of one form 
or another, have been specifically developed for a 
range of applications including military weapon and 
drive systems, personnel monitoring and for games 
consoles. However, by far the largest driving force 
for BCI research to date has been the requirement 
for new therapeutic devices such as neural 
prostheses.  

The most ubiquitous sensory neural prosthesis in 
humans is by far the cochlea implant (Fin and 

LoPresti, 2003). Here the destruction of inner ear 
hair cells and the related degeneration of auditory 
nerve fibres results in sensorineural hearing loss. As 
such, the prosthesis is designed to elicit patterns of 
neural activity via an array of electrodes implanted 
into the patient’s cochlea, the result being to mimic 
the workings of a normal ear over a range of 
frequencies. It is claimed that some current devices 
restore up to approximately 80% of normal hearing, 
although for most recipients it is sufficient that they 
can communicate to a respectable degree without the 
need for any form of lip reading. The typically 
modest success of cochlea implantation is related to 
the ratio of stimulation channels to active sensor 
channels in a fully functioning ear. Recent devices 
consist of up to 32 channels, whilst the human ear 
utilises upwards of 30,000 fibres on the auditory 
nerve. There are now reportedly well over 10,000 of 
these prostheses in regular operation.   
 
Studies investigating the integration of technology 
with the human central nervous system have varied 
from merely diagnostic to the amelioration of 
symptoms (Warwick and Gasson, 2004). In the last 
few years some of the most widely reported research 
involving human subjects is that based on the 
development of an artificial retina (Rizzo, 2001). 
Here, small electrode arrays have been successfully 
implanted into a functioning optic nerve. With direct 
stimulation of the nerve it has been possible for the 
otherwise blind recipient to perceive simple shapes 
and letters. The difficulties with restoring sight are 
though several orders of magnitude greater than 
those of the cochlea implant simply because the 
retina contains millions of photodetectors that need 
to be artificially replicated. An alternative is to 
bypass the optic nerve altogether and use cortical 
surface or intracortical stimulation to generate 
phosphenes (Dobelle, 2000).  
 
Most invasive BCIs monitor multi-neuronal 
intracortical action potentials, requiring an interface 
which includes sufficient processing in order to 
relate recorded neural signals with movement intent. 
Problems incurred are the need to position electrodes 
as close as possible to the source of signals, the need 
for long term reliability and stability of interface in 
both a mechanical and a chemical sense, and 
adaptivity in signal processing to deal with 
technological and neuronal time dependence. 
However, in recent years a number of different 
collective assemblies of microelectrodes have been 
successfully employed both for recording and 
stimulating neural activity. Although themselves of 
small scale, nevertheless high density 
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connectors/transmitters are required to shift the 
signals to/from significant signal processing and 
conditioning devices and also for onward/receptive 
signal transmission.  
 
Some research has focussed on patients who have 
suffered a stroke resulting in paralysis. The most 
relevant to this paper is the use of a ‘3rd generation’ 
brain implant which enables a physically incapable 
brainstem stroke victim to control the movement of 
a cursor on a computer screen (Kennedy, 2000), 
(Kennedy, 2004). Functional Magnetic Resonance 
Imaging (fMRI) of the subject’s brain was initially 
carried out to localise where activity was most 
pronounced whilst the subject was thinking about 
various movements. A hollow glass electrode cone 
containing two gold wires and a neurotrophic 
compound (giving it the title ‘Neurotrophic 
Electrode’) was then implanted into the motor 
cortex, in the area of maximum activity. The 
neurotrophic compound encouraged nerve tissue to 
grow into the glass cone such that when the patient 
thought about moving his hand, the subsequent 
activity was detected by the electrode, then 
amplified and transmitted by a radio link to a 
computer where the signals were translated into 
control signals to bring about movement of the 
cursor. With two electrodes in place, the subject 
successfully learnt to move the cursor around by 
thinking about different movements. Eventually the 
patient reached a level of control where no 
abstraction was needed – to move the cursor he 
simply thought about moving the cursor.  Notably, 
during the period that the implant was in place, no 
rejection of the implant was observed; indeed the 
neurons growing into the electrode allowed for 
stable long-term recordings.  
 
Electronic neural stimulation has proved to be 
extremely successful in other areas, including 
applications such as the treatment of Parkinson’s 
disease symptoms. With Parkinson’s Disease 
diminished levels of the neurotransmitter dopamine 
cause over-activation in the ventral posterior nucleus 
and the subthalamic nucleus, resulting in slowness, 
stiffness, gait difficulties and hand tremors. By 
implanting electrodes into the subthalamic nucleus 
to provide a constant stimulation pulse, the over 
activity can be inhibited allowing the patient, to all 
external intents and purposes, to function normally 
(Pinter et al., 1999).  

5 BRAIN WITHIN A BRAIN 

Ongoing research, funded by the UK Medical 
Research Council, is investigating how the onset of 
tremors can be accurately predicted such that merely 
a stimulation current burst is required rather than a 
constant pulsing (Gasson et al., 2005: pp.16/1-16/4). 
This has implications for battery inter-recharge 
periods as well as limiting the extent of in-body 
intrusive signalling. The deep brain stimulator can 
be used to collect local field potential (LFP) signals 
generated by the neurons around the deep brain 
electrodes (Gasson et al., 2005: pp.16/1-16/4). 
Determining the onset of events can be investigated 
by using fourier transforms to transfer the time 
based signal to a frequency based spectrogram to 
determine the change in frequency at the critical 
time period. However, in addition to that, the 
frequency changes in the period of time immediately 
prior to the tremor occurrence can give important 
information. 
 
Fig.1 shows the results of an initial attempt to train 
an artificial neural network to indicate not only that 
a Parkinsonian tremor is present but also that one is 
very likely to occur in the near future. The aim of 
this research is that, once a reliable predictor has 
been obtained, the stimulating pulsing will only be 
enacted when a tremor is predicted, in order to stop 
the actual physical tremor occurring before it even 
starts in the first place.  
 
The bottom trace in Fig.1 shows emg (muscular) 
signals, measured externally, associated with 
movement due to the tremors. It can be seen that the 
tremors in this incident actually start at around the 
45 to 50 second point.  The trace just above this 
indicates the corresponding electrical data measured 
as deep brain Local Field Potentials in the Sub-
Thalamic Nucleus of the patient involved. It can be 
witnessed how, in this case, the electrical data takes 
on a different form (in terms of variance at least) at 
around the 45 to 50 second point. The four top plots 
meanwhile indicate the outputs from 4 differently 
structured artificial neural networks, based on multi-
layer perceptrons with different numbers of neurons 
in the hidden (middle) layer.  
 
It can be seen how, for each network, the output of 
the network goes high (logic 1) at the 45 to 50 
second point, to indicate the presence of a 
Parkinsonian tremor. This is all well and good, what 
is important however is that the output of the 
networks also briefly goes high around the 30 
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Figure 1: Time plot of the onset of a Parkisonian tremor incident with corresponding artificial neural network indicators. 

second point and this can be seen as an indication of 
the fact that a tremor will shortly occur. Ongoing 
research is involved with selection of the type and 
number of inputs to the network, presently these 
being based on the energy spectrum in different 
frequency ranges. The networks are also being tested 
on considerable amounts of resting data, that is long 
periods of brain activity where no tremors at all 
actually occur in patients. Clearly the aim is that a 
network will not give false predictions of tremors. 
 

In fact false positive predictions are not so much of a 
critical problem. The end result with a false positive 
is that a stimulation may occur when it is not strictly 
necessary. In any event no actual tremor would 
occur, which is indeed a good outcome, however 
unnecessary energy would have been used – in fact 
if numerous false predictions occurred the intelligent 
stimulator would tend toward the present ‘blind’ 
stimulator. Effectively the occasional false positive 
prediction is perhaps not a problem, unless it became 
a regular occurrence. The good news is that results 
show that the network can be readily tuned to avoid 
false positives anyway. 

6 GENERAL IMPLANT STUDIES 

Some of the most impressive human research to date 
has been carried out using the microelectrode array, 
shown in Figure 2. The individual electrodes are 

only 1.5mm long and taper to a tip diameter of less 
than 90 microns. Although a number of trials not 
using humans as a test subject have occurred 
(Branner and Normann, 2000), human tests are at 
present limited to two studies. In the second of these 
the array has been employed in a recording only role 
(Donoghue et al., 2002), (Donoghue et al., 2004), 
(Friehs et al., 2004), most notably recently as part of 
the ‘Braingate’ system. Essentially activity from a 
few neurons monitored by the array electrodes is 
decoded into a signal to direct cursor movement. 
This has enabled an individual to position a cursor 
on a computer screen, using neural signals for 
control combined with visual feedback. The first use 
of the microelectrode array (Figure 2) will be 
discussed in the following section as this has 
considerably broader implications which extend the 
capabilities of the human recipient. 
 
A key selection point at the present time are what 
type of implant to employ, as several different 
possibilities exist, ranging from single electrode 
devices to multielectrode needles which contain 
electrode points at different depths to multielectrode 
arrays which either contain a number of electrodes 
which penetrate to the same depth (as in Figure 2) or 
are positioned in a banked/sloped arrangement. A 
further key area of consideration is the exact 
positioning of a BCI. In particular certain areas of 
the brain are, apparently, only really useful for 
monitoring purposes whilst others are more useful 
for stimulation. 
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Actually deriving a reliable command signal from a 
collection of captured neural signals is not 
necessarily a simple task, partly due to the 
complexity of signals recorded and partly due to 
time constraints in dealing with the data. In some 
cases however it can be relatively easy to look for 
and obtain a system response to certain anticipated 
neural signals – especially when an individual has 
trained extensively with the system. In fact neural 
signal shape, magnitude and waveform with respect 
to time are considerably different to the other signals 
that it is possible to measure in this situation. 
 

If a greater understanding is required of neural 
signals recorded, before significant progress can be 
made, then this will almost surely present a major 
problem. This is especially true if a number of 
simultaneous channels are being employed, each 
requiring a rate of digitization of (most likely) 
greater than 20KHz in the presence of unwanted 
noise. For real time use this data will also need to be 
processed within a few milliseconds (100 
milliseconds at most). Further, although many 
studies have looked into the extraction of command 
signals (indicating intent) from measured values, it 
is clear that the range of neural activity is 
considerable. Even in the motor area not only are 
motor signals present but so too are sensory, 
cognitive, perceptual along with other signals, the 
exact purpose of which is not clear – merely 
classifying them as noise is not really sufficient and 
indeed can be problematic when they are repeated 
and apparently linked in some way to activity. 
 

It is worth stressing here that the human brain and 
spinal cord are linking structures, the functioning of 
which can be changed through electronic stimulation 
such as that provided via an electrode arrangement. 
This type of technology therefore offers a variety of 
therapeutic possibilities. In particular the use of 
implanted systems when applied to spinal cord 
injured patients, in whom nerve function is 
disordered, was described in (Warwick, 2004) as 
having the following potential benefits (among 
others):     
 

1. Re-education of the brain and spinal cord 
through repeated stimulation patterns 

2. Prevention of spinal deformity 
3. Treatment of intractable neurogenic and other 

pain 
4. Assisting bladder emptying 
5. Improving bowel function 
6. Treatment of spasticity 
7. Improvement of respiratory function – 

assisting coughing and breathing 

8. Reduction of cardiovascular maleffects 
9. Prevention of pressure sores – possibly 

providing sensory feedback from denervated 
areas 

10. Improvement and restoration of sexual 
function 

11. Improved mobility 
12. Improved capability in daily living, especially 

through improved hand, upper limb and 
truncal control 

 

Sensate prosthetics is another growing application 
area of neural interface technology, whereby a 
measure of sensation is restored using signals from 
small tactile transducers distributed within an 
artificial limb (Fin and LoPresti, 2003). The 
transducer output can be employed to stimulate the 
sensory axons remaining in the residual limb which 
are naturally associated with a sensation. This more 
closely replicates stimuli in the original sensory 
modality, rather than forming a type of feedback 
using neural pathways not normally associated with 
the information being fed back. As a result it is 
supposed that the user can employ lower level 
reflexes that exist within the central nervous system, 
making control of the prosthesis more subconscious. 
 

One final noteworthy therapeutic procedure is 
Functional Electrical Stimulation (FES), although it 
is debatable if it can be truly referred to as a BCI, 
however it aims to bring about muscular excitation, 
thereby enabling the controlled movement of limbs. 
FES has been shown to be successful for artificial 
hand grasping and release and for standing and 
walking in quadriplegic and paraplegic individuals 
as well as restoring some basic body functions such 
as bladder and bowel control (Grill and Kirsch, 
2000). It must be noted though that controlling and 
coordinating concerted muscle movements for 
complex and generic tasks such as picking up an 
arbitrary object is proving to be a difficult, if not 
insurmountable, challenge. 
 

In the cases described in which human subjects are 
involved, the aim on each occasion is to either 
restore functions since the individual has a physical 
problem of some kind or it is to give a new ability to 
an individual who has very limited motor abilities. 
In this latter case whilst the procedure can be 
regarded as having a therapeutic purpose, it is quite 
possible to provide an individual with an ability that 
they have in fact never experienced before. On the 
one hand it may be that whilst the individual in 
question has never previously experienced such an 
ability, some or most other humans have – in this 
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case it could be considered that the therapy is 
bringing the individual more in line with the “norm” 
of human abilities. 
It is though also potentially possible to give extra 
capabilities to a human, to enable them to achieve a 
broader range of skills – to go beyond the “norm”. 
Apart from the, potentially insurmountable, problem 
of universally deciding on what constitutes the 
“norm”, extending the concept of therapy to include 
endowing an individual with abilities that allow 
them to do things that a perfectly able human cannot 
do raises enormous ethical issues. Indeed it could be 
considered that a cochlea implant with a wider 
frequency response range does just that for an 
individual or rather an individual who can control 
the curser on a computer screen directly from neural 
signals falls into this category. But the possibilities 
of enhancement are enormous. In the next section 
we consider how far things could be taken, by 
referring to relevant experimental results. 

7 HUMAN ENHANCEMENT 

The interface through which a user interacts with 
technology provides a distinct layer of separation 
between what the user wants the machine to do, and 
what it actually does. This separation imposes a 
considerable cognitive load upon the user that is 
directly proportional to the level of difficulty 
experienced. The main issue it appears is interfacing 
the human motor and sensory channels with the 
technology. One solution is to avoid this 
sensorimotor bottleneck altogether by interfacing 
directly with the human nervous system. It is 
certainly worthwhile considering what may 

potentially be gained from such an invasive 
undertaking.  
Advantages of machine intelligence are for example 
rapid and highly accurate mathematical abilities in 
terms of ‘number crunching’, a high speed, almost 
infinite, internet knowledge base, and accurate long 
term memory. Additionally, it is widely 
acknowledged that humans have only five senses 
that we know of, whereas machines offer a view of 
the world which includes infra-red, ultraviolet and 
ultrasonic. Humans are also limited in that they can 
only visualise and understand the world around them 
in terms of a limited dimensional perception, 
whereas computers are quite capable of dealing with 
hundreds of dimensions. Also, the human means of 
communication, essentially transferring an electro-
chemical signal from one brain to another via an 
intermediate, often mechanical medium, is 
extremely poor, particularly in terms of speed, 
power and precision. It is clear that connecting a 
human brain, by means of an implant, with a 
computer network could in the long term open up 
the distinct advantages of machine intelligence, 
communication and sensing abilities to the 
implanted individual. 

As a step towards this more broader concept of 
human-machine symbiosis, in the first study of its 
kind, the microelectrode array (as shown in Figure 
2) was implanted into the median nerve fibres of a 
healthy human individual (myself) in order to test 
bidirectional functionality in a series of experiments. 
A stimulation current direct onto the nervous system 
allowed information to be sent to the user, while 
control signals were decoded from neural activity in 
the region of the electrodes (Gasson et al., 2005:pp  
365-375), (Warwick et al., 2003).  

 
Figure 2: A 100 electrode, 4X4mm Microelectrode Array, shown on a UK 1 pence piece for scale. 
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In this way a number of experimental trials were 
successfully concluded (Warwick et al., 2004), 
(Warwick et al., 2005): In particular: 

1. Extra sensory (ultrasonic) input was 
successfully implemented and made use of.  

2. Extended control of a robotic hand across the 
internet was achieved, with feedback from the 
robotic fingertips being sent back as neural 
stimulation to give a sense of force being 
applied to an object (this was achieved 
between New York (USA) and Reading(UK)) 

3. A primitive form of telegraphic 
communication directly between the nervous 
systems of two humans was performed.  

4. A wheelchair was successfully driven around 
by means of neural signals.  

5. The colour of jewellery was changed as a 
result of neural signals – as indeed was the 
behaviour of a collection of small robots.  

In each of the above cases it could be regarded that 
the trial proved useful for purely therapeutic reasons, 
e.g. the ultrasonic sense could be useful for an 
individual who is blind or the telegraphic 
communication could be very useful for those with 
certain forms of Motor Neurone Disease. However 
each trial can also be seen as a potential form of 
augmentation or enhancement for an individual. The 
question then arises as to how far should things be 
taken? Clearly enhancement by means of BCIs 
opens up all sorts of new technological and 
intellectual opportunities, however it also throws up 
a raft of different ethical considerations that need to 
be addressed directly.  

8 ON STIMULATION 

After extensive experimentation it was found that 
injecting currents below 80µA onto the median 
nerve fibers had little perceivable effect. Between 
80µA and 100µA all the functional electrodes were 
able to produce a recognizable stimulation, with an 
applied voltage of 40 to 50 volts, dependant on the 
series electrode impedance. Increasing the current 
above 100µA had no apparent additional effect; the 
stimulation switching mechanisms in the median 
nerve fascicle exhibited a non-linear thresholding 
characteristic. 
 

During this experimental phase, it was pseudo 
randomly decided whether a stimulation pulse was 
applied or not. The volunteer (myself), wearing a 
blindfold, was unaware of whether a pulse had been 
applied or not, other than by means of its effect in 
terms of neural stimulation. The user’s accuracy in 
distinguishing between an actual pulse and no pulse 
at a range of amplitudes is shown in Figure 3. 
 

In all subsequent successful trials, the current was 
applied as a bi-phasic signal with pulse duration of 
200 µsec and an inter-phase delay of 100 µsec. A 
typical stimulation waveform of constant current 
being applied to one of the MEA’s implanted 
electrodes is shown in Fig 4. 

It was, in this way, possible to create alternative 
sensations via this new input route to the nervous 
system. Of the 5 enhancement features mentioned in 
the previous section, this one will be described, as an 
example, in further detail. Background information 
on the other enhancements can be found in a number 
of references, e.g. (Gasson et al., 2005:pp  365-375), 
(Warwick et al., 2003), (Warwick et al., 2004), 
(Warwick and Gasson, 2004). 
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Figure 4: Voltage profile during one bi-phasic stimulation pulse cycle with a constant current of 80µA. 

It must be reported that it took 6 weeks for my brain 
to repetitively recognize the stimulating signals 
accurately. This time period can be due to a number 
of contributing factors:  

(a) The team had to learn which signals (what 
amplitude, frequency etc.) would be best in 
order to bring about a recognizable 
stimulation. 

(b) The recipient’s brain had to learn to 
recognize the new signals it was receiving. 

(c) The bond between the recipient’s nervous 
system and the implant was physically 
changing (becoming stronger).  

9 EXTRA SENSORY 
EXPERIMENT 

An experiment was set up to determine if the human 
brain is able to understand and successfully operate 
with sensory information to which it had not 
previously been exposed. Whilst it is quite possible 
to feed in such sensory information via a normal 
human sensory route, e.g. electromagnetic radar or 
infra-red signals are converted to visual, what we 
were interested in was feeding such signals directly 
onto the human nervous system, thereby bi-passing 
the normal human sensory input. 

Ultrasonic sensors were fitted to the rim of a 
baseball cap (see Figure 5) and the output from these 
sensors, in the form of a proportional count, was 
employed to bring about a direct stimulation of the 
nervous system.  Hence when no objects were in the 
vicinity of the sensors, no stimulation occurred, and 
as an object moved close by so the rate of 
stimulation pulses being applied increased in a linear 
fashion up to a pre-selected maximum rate. No 
increase in stimulation occurred when an object 
moved closer than 10cm to the sensors. 

The ultrasonic sensors were open type piezoelectric 
ceramic transducers with conical metal resonators 
and operated at 40 KHz. These were used in a pair, 
one for transmit and one for receive, to give 
maximum sensitivity for small and distant objects. 
The most useful range for the experimentation was 
found to be 2 – 3m, this being also dependent on the 
size of object. A simple microcontroller was 
programmed to perform the echo ranging on the pair 
of transducers, and provide the range to the first 
detectable object only. This was translated into a 
stimulation pulse train, which operated on a single 
pin of the electrode array. Pins on the array had been 
tested for their suitability for stimulation by the 
earlier experimentation in which the recipient 
identified the presence or absence of stimulation 
pulse trains at various amplitudes and repetition 
frequencies. 
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Figure 5: Experimentation and testing of the ultrasonic baseball cap. 

It was found that very little learning was required for 
the new ultrasonic sense to be used effectively and 
successfully – merely a matter of 5/6 minutes. This 
said it must be remembered that it had already taken 
several weeks for the recipient’s brain to 
successfully, accurately recognize the current signals 
being injected.   
As a result, in a witnessed experiment, the recipient, 
whilst wearing a blindfold, was able to move around 
successfully within a cluttered laboratory 
environment, albeit at a slower than normal walking 
pace. The sensory input was “felt” as a new form of 
sensory input (not as touch or movement) in the 
sense that the brain made a direct link between the 
signals being witnessed and the fact that these 
corresponded in a linear fashion to a nearby object.  

10 CONCLUSIONS 

External input-output interfaces with human and 
animal brains have been studied for many years. 
These are sometimes referred to as Brain-Computer 
Interfaces (BCIs) even though the interface may be 
external to the (human) body and its sensorimotor 
mechanism. In this paper an attempt has been made 
to put such systems in perspective. Emphasis has 
been placed on such interfaces that can be obtained 

by means of implanted devices through invasive 
surgery and actual direct neural connections. In 
particular a number of trials in this area have clearly 
shown the possibilities of monitoring, stimulating 
and enhancing brain functioning. 
Although there is no distinct dividing line it is quite 
possible as far as humans are concerned to 
investigate BCIs in terms of those employed for 
direct therapeutic means and those which can have 
an enhanced role to play. It is clear that the 
interaction of electronic signals with the human 
brain can cause the brain to operate in a distinctly 
different manner. Such is the situation with the 
stimulator implants that are successfully used to 
counteract, purely electronically, the tremor effects 
associated with Parkinson’s disease. Such 
technology can though potentially be employed to 
modify the normal functioning of the human brain 
and nervous system in a number of different ways. 
The same stimulator, with slightly different 
positioning, has been shown to elicit feelings of 
sadness or happiness in the recipient. Given the 
nature of the intelligent stimulator described here it 
would appear to be possible to monitor, in real time, 
a human brain with a computer brain, and for the 
computer brain to predict when the human is going 
to feel sad – quite some time before they actually 
feel sad. In theory a signal could then be injected at 
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that time to make them feel happy, or at least to stop 
them actually ever feeling sad in the first place. 
Maybe this could be regarded as an electronic anti-
depressant. There are of course questions about 
recreational use here – but this would need a deep 
brain implant which might well prove to be rather 
too onerous for most people.   
Perhaps understandably, invasive BCIs are presently 
far less well investigated in University experiments 
than their external BCI counterparts. A number of 
animal trials have though been carried out and the 
more pertinent have been indicated here along with 
the relevant human trials and practice. In particular 
the focus of attention has been given to the 
embodiment of grown neural tissue within a 
technological body. Whilst only 1,000 or so neurons 
are involved this presents an interesting research 
area in a number of ways. But once the number of 
such neurons used increases 1,000 or 1,000,000-
fold, it also raises enormous philosophical and 
ethical issues. For example is the robot ‘thinking’ 
and what rights should it have?   
The potential for BCI applications for individuals 
who are paralysed is enormous, where cerebral 
functioning to generate command signals is 
functional despite the motor neural pathways being 
in some way impaired – such as in Lou Gehrig’s 
disease. The major role is then either one of relaying 
a signal of intention to the appropriate actuator 
muscles or to reinterpret the neural signals to operate 
technology thereby acting as an enabler. In these 
situations no other medical ‘cure’ is available, 
something which presents a huge driver for an 
invasive implant solution for the millions of 
individuals who are so affected. Clearly though, 
bidirectional signalling is important, not only to 
monitor and enact an individual’s intent but also to 
provide feedback on that individual’s resultant 
interaction with the real world. For grasping, 
walking and even as a defensive safety stimulant, 
feedback is vital. This paper has therefore focussed 
on such studies.  

Where invasive interfaces are employed in human 
trails, a purely therapeutic scenario often exists. In a 
small number of instances, such as use of the 
microelectrode array as an interface, an individual 
has been given different abilities, something which 
opens up the possibilities of human enhancement. 
These latter cases however raise more topical ethical 
questions with regard to the need and use of a BCI. 
What might be seen as a new means of 
communication for an individual with an extreme 
form of paralysis or a new sensory input for 

someone who is blind, opening up a new world for 
them, can also be seen as an unnecessary extra for 
another individual, even though it may provide 
novel commercial opportunities. What is therapy for 
one person may be regarded as an enhancement or 
upgrading for another.   

Whilst there are still many technical problems to be 
overcome in the development of BCIs, significant 
recent experimental results have indicated that a 
sufficient technological infrastructure now exists for 
further major advances to be made. Although a more 
detailed understanding of the underlying neural 
processes will be needed in the years ahead, it is not 
felt that this will present a major hold up over the 
next few years, rather it will provide an avenue of 
research in which many new results will shortly 
appear through trials and experimentation, possibly 
initially through animal studies although it must be 
recognised that it is only through human studies that 
a full analysis can be made and all encompassing 
conclusions can be drawn. Nevertheless the topic 
opens up various ethical questions that need to be 
addressed and as such, research in this area should, I 
believe, only proceed in light of a pervasive ethical 
consensus. 
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ANALYSIS AND MODELS OF BRAIN EPILEPTIC ACTIVITIES 

Fernando Henrique Lopes da Silva 
University of Amsterdam, The Netherlands 

Abstract: The essence of epilepsy is the sudden occurrence of a qualitative change in the behaviour of neuronal 
networks of some specific areas of the brain. In general we may assume that neuronal networks possess 
multistable dynamics. We may simplify this concept considering the case that a neuronal network may 
display, at least, two dynamical states: an interictal state characterised by a normal on-going neural activity, 
as revealed in the Eletcroencephalogram of Magnetoencephalogram (EEG, MEG), that may be apparently 
random, and another one – the ictal state - that is characterised by the sudden occurrence of synchronous 
oscillations, most commonly with large amplitude. The latter becomes manifest as a paroxysmal change of 
behaviour and /of the state of consciousness of a patient, i.e. an epileptic seizure. In the terminology of the 
mathematics of non-linear systems, we may state that a neuronal network behaves as a bistable system with 
two attractors, to which the system converges depending on initial conditions and on the system’s 
parameters.  
We propose schematically that the transition between the normal on-going to the seizure activity can take 
place according to three basic models: Model I – a transition may occur due to random fluctuations of some 
system’s parameters. These transitions are thus unpredictable. Models II and III – a transition may result 
from a gradual change of some unstable parameters, either due to endogenous (model II) or exogenous 
(model III). In these cases the change of parameter values causes a deformation of the attractor resulting in a 
transition from the basin of the attractor corresponding to the normal state, to the attractor corresponding to 
the seizure dynamical state. Some experimental findings obtained in different cases of epilepsy, both in 
human and in animals, are compatible with each of these 3 models. Some examples of these cases are 
illustrated. 
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FROM THE BENCH TO THE BEDSIDE 
The Role of Semantics in Enabling the Vision of Translational Medicine 

Vipul Kashyap 
Partners HealthCare System, Clinical Informatics R&D, USA 

Abstract: Biomedical research and healthcare clinical transactions are generating huge volumes of data and 
information. At the same time, the results of biomedical research in the form of new molecular diagnostic 
tests and therapies are being increasingly used in the context of clinical practice. There is a critical need to 
speed "translation" of genomic research insights into clinical research and practice. In this talk, we will 
discuss challenges faced by a healthcare enterprise in realizing the vision of Translational Medicine, such as: 
- The need to create structured and semantic representations of genotypic and phenotypic data such as 
clinical observations and molecular diagnostic tests.  
- The need for cost-effective and incremental data integration for combining genotypic and phenotypic 
information at the point of care.  
- The need for actionable decision support for suggesting molecular diagnostic tests and therapies in the 
context of clinical care.  
- The need for knowledge update, propagation and consistency to keep abreast of the rapid pace of 
knowledge discovery being witnessed in the life sciences, a crucial pre-requisite to reduce the cost of 
knowledge acquisition and maintenance.  
Semantics-based approaches to address the above-mentioned challenges, including the applicability of 
semantic web standard (RDF, OWL, Rules); and issues related to the value proposition of these 
technologies will be presented. 
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THE CANCER INFORMATICS ECOSYSTEM 
A Case Study in the Accretion of Federated Systems based on  

Service Oriented Architectures, Semantic Integration and Computing Grids 

David Hall 
Research Triangle Institute in North Carolina, USA 

Abstract: Information technology is playing an increasingly critical role in health and life sciences research due to the 
profound expansion in the scope of research projects in the post-genomic age. Robust data management and 
analysis systems are becoming essential enablers of these studies. Driven by funding agency requirements, 
funding opportunities, and grass roots organizing, efforts are underway to develop standards and 
technologies to promote large-scale integration of publicly-funded systems and databases including 
infrastructure developed for individual studies. Predicted benefits include an enhanced ability to conduct 
meta-analyses, an increase in the usable lifespan of data, a funding agency-wide reduction in the total cost 
of IT infrastructure, and an increased opportunity for the development of third party software tools. This 
presentation will critically examine efforts towards developing publicly-accessible interoperable and 
distributed production systems in the health and life sciences via ontologies, formal metadata, service 
oriented architectures, and grid computing models with a focus on several projects under the direction of the 
author in the area of cancer informatics. 
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ICT AND PERSONS WITH DISABILITIES 
The Solution or the Problem? 

Albert M. Cook 
Faculty of Rehabilitation Medicine, University of Alberta, Edmonton Alberta, Canada 

al.cook@ualberta.ca 

Keywords: Assistive technologies, information and computer technologies, persons with disabilities. 

Abstract: In order to lead full and productive lives, persons with disabilities need to have the same access to 
information and communication systems as the rest of the population. Advances in information and 
communication technologies (ICT) are occurring quickly, and the capability of technologies to meet the 
needs of persons with disabilities is growing daily. Future developments in assistive technologies (AT) and 
the successful application of these technologies to meet the needs of people who have disabilities are 
dependent on exploitation of these ICT advances. AT also involves the development of specialized 
interfaces such as the brain computer interface (BCI), adaptive interfaces that accommodate for changes in 
the user’s physical skills, cognitive interfaces that allow understanding of the human technology interface 
by individuals with intellectual disabilities and systems that accommodate for user needs based on 
environmental sensing (e.g., GPS interfaces) and downloading of profiles to meet specific user needs. 
Universal Design (or design for all) calls for the design of products and environments to be usable by all 
people, to the greatest extent possible, without the need for adaptation or specialized design. In the physical 
world this often means ramps, curb cuts and other adaptations to the built environment to accommodate 
individuals who have disabilities. In the ICT world the barriers to access are technological, and the goal for 
ICT universal design is to have an environment with enough embedded intelligence to be easily adaptable to 
the varying cognitive, physical and sensory skills of a wide range of individual’s in order to meet their 
productivity, leisure and self care needs. If ICT advances are not adaptable enough to be accessible to 
persons with disabilities it will further increase the disparity between those individuals and the rest of the 
population leading to further isolation and economic disadvantage. On the other hand, availability of these 
technologies in a transparent way will contribute to full inclusion of individuals who have disabilities in the 
mainstream of society. 
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research has focussed on the use of robotics with 
young children who have severe disabilities to 
develop and assess cognitive and linguistic skills. He 
has US and foreign patents and numerous 
publications and conference presentations in these 
areas. He has been principal investigator on research 
and training grants in augmentative communication, 
assistive technologies and biomedical engineering. 
Dr. Cook is Past-President and Fellow of RESNA, a 
major professional society for assistive technology 
practitioners in North America. He has also served 
in national united States positions in the Institute of 
Electrical and Electronic Engineers Engineering in 
Medicine and Biology Society, the American 
Society for Engineering Education, the Biomedical 
Engineering Society, the International Society for 
Augmentative and Alternative Communication and 
the Association for the Advancement of Medical 
Instrumentation. Dr. Cook is a registered 
professional engineer (electrical) in California. 

1 ICT AND PERSONS WITH 
DISABILITIES TECHNOLOGY 
AND PROGRESS 

Societal Progress requires change much of which is 
accomplished through advances in technology. In his 
book, A Short History of Progress, Ronald Wright 
(2004) points out that this characteristic has been 
true for millions of years as societies have advanced 
through greater utilization of technology. 

Wright goes on to describe the problems that 
technology typically creates such as over 
consumption, environmental ruin, and separation of 
classes. These problems are amplified for people 
who have disabilities, and they lead to a gap in the 
access to work, self care and community 
participation for persons with disabilities compared 
to the general population. Since people with 
disabilities often depend on technologies for societal 
participation, the lack of availability of accessible 
technology or the obsolescence of accessible 
technologies isolates them further. This is an 
extension of the concept of the “digital divide” that 
separates people along socioeconomic lines based on 
their access to ICT. I refer to it as the “disability 
gap”. 

2 ADVANCES IN INFORMATION 
AND COMMUNICATION 
TECHNOLOGIES (ICT)  

The 21st Century is characterized by a continuous 
move from a machine-based to a knowledge based 
economy (Ungson & Trudel, 1999). In this shift, the 
basis of competence is changing to knowledge skills 
from machine skills. Information currently amounts 
to 75% of value added to products This will 
continually increase, and connectivity will be the 
key to business success. There is also a move from a 
regional or national scope of business influence to a 
global scope, in which virtual networks dictate 
organizational structures.  

Key players in business development are 
becoming communication suppliers with the move 
from host-based to network based systems. 
Telephone, cable TV and internet service providers 
control commercial growth. Along with these 
changes networks will become more graphically-
based moving increasingly from text-based systems. 
In order to lead full and productive lives, persons 
with disabilities need to have the same access to this 
new information and communication system as the 
rest of the population. 

2.1 What Can we Expect from 
Technology in the Next 20 Years? 

The cost of information technology is continually 
dropping for comparable or increased computing 
power and speed. There is also a greater 
understanding of the biological/physical interface for 
the control of computers. The human computer 
interface (HCI) is being developed to be more 
human-like, more user oriented and more intelligent-
providing additional capabilities for searching, 
processing and evaluating information.   

There are a number of changes that are likely to 
occur over the next few years (Applewhite, 2004). 
There will be an increase in automated transactions 
between individuals and organizations enabling 
people to complete all transactions without face-
toface interactions. It is expected that we will 
achieve equalized access to the web and information 
between the developed and developing world. 
Embedded systems will dramatically increase with 
application such as “intelligence in the doorknob” 
that recognizes the owner and doesn’t require key 
manipulation. We are likely to see much greater 
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understanding of the biological to physical interface 
for the control of computers. 

2.2 Changes in Mainstream Tech with 
AT Implications  

There are many examples of emerging mainstream 
technologies with potential for assisting people with 
disabilities to access ICT systems. A few of these 
are described in this section.  

Display-based assistive technologies present an 
array of choices for a user to select from (Cook & 
Polgar, 2007). This often referred to as scanning 
since the choices are highlighted sequentially and 
then chosen using some sort of gross movement. 
One of the problems associated with this approach is 
that there must be a physical display for making 
selections. This often requires the overall system to 
be larger and more bulky or places a display 
between a user and a communication partner. A new 
development is a direct retinal display that creates 
image that overlays view of real object (Lewis, 
2004). The retinal display is low powered because it 
is shined on retina directly. Scanning light into the 
eye allows the image to overlay an object such as a 
communication partner’s face-enabling eye contact 
and small size. The scanning array could be the 
retinal image, since display scans across the retina 
power levels can be kept low kept low for safety. 

Another development is 3-D displays that create a 
more intuitive view of objects, events and activities 
(Lewis, 2004). This type of display may be helpful 
to individuals who have cognitive disabilities. It 
might also create new challenges for individuals 
with visual limitations. 

Embedded automatic speech recognition is being 
developed for PDAs because of the need for 
keyboards with more and more functions and the 
limitations of very small keyboards (Kumagai, 
2004). This feature could be very useful to reduce 
individuals who have limited hand function or for 
those who cannot see the keyboard to make entries.  

3 MEETING THE ICT NEEDS OF 
PERSONS WITH DISABILITIES  

Over the centuries, our ability to make tools is what 
distinguishes us as human, but our tools ultimately 
control us by making us dependent on them (Wright, 
2004). This dependence is less optional for people 
who have disabilities 

3.1 Impact of Technology Advances on 
People who have Disabilities 

Technology advances increase the gap between 
people who have disabilities and those who don’t 
(Wright, 2004). All societies become hierarchical 
with an upward concentration of wealth (including 
aggregations of technology tools) that ensures that 
“there can never be enough to go around", and this 
disparity contributes to the “digital divide" and the 
"disability gap".  As advances occur more quickly, 
the gap widens faster and the people who are poor 
and/or disabled loose out even more completely and 
faster. This is a characteristic of cultural and societal 
"progress" over centuries-technology drives change, 
and creates both positive and negative outcomes in 
the process 

The prognosis is not good for people with 
disabilities unless there is considerable effort to keep 
them connected to ICT and thereby to commerce, 
employment and personal achievement. There two 
fundamental approaches to this problem (1) make 
mainstream technologies accessible to people who 
have disabilities, or (2) design special purpose 
technologies specifically for people with disabilities.  
The former approach is referred to as universal 
design or design for all. The second approach 
utilizes assistive technologies.  

3.2 Implications for Assistive 
Technologies 

Access to ICT for people with disabilities is a 
significant global problem, and it has major 
implications for assistive technologies. There is a 
constant challenge to keep ICT systems accessible to 
persons who have disabilities as mainstream 
advances occur and adaptations become potentially 
incompatible with the new systems.  Communication 
technologies change rapidly, and each change may 
result in the need to re-design accessible interfaces. 
We are closer to goal of having assistive technology 
adaptations available when the mainstream 
consumer product ships, but there are still many 
problems with “workarounds” necessary to make 
mainstream operating system, productivity software 
and internet access accessible to people with 
disabilities.  

Development and maintenance of access to ICT 
must be driven by the needs of people with 
disabilities. Developments which broaden the scope, 
applicability and usability of the human technology 
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interface will be driven, at least in part by the needs 
of people who have disabilities. 

The Internet (e-mail and chat rooms) have the 
advantage of anonymity, and this can be a major 
benefit to individuals who have disabilities. Because 
the person’s disability is not immediately visible, 
people who have disabilities report that they enjoy 
establishing relationships with people who 
experience them first as a person and then learn of 
their disability. For example, Blackstone, (1996) 
describes some of the advantages of e-mail for 
individuals who have disabilities.  Since the receiver 
of the message reads it at a later time composition 
can be at a slower speed. The person with a 
disability can communicate with another person 
without someone else being present, establishing a 
greater sense of privacy than situations in which an 
attendant is required. It is also possible to work form 
any location-avoiding some transportation problems 

3.3 Universal Design 

Increasingly, commercial products are being 
designed to be usable by all people, to the greatest 
extent possible, without the need for adaptation or 
specialized design (NC State University, The Center 
for Universal Design, 1997).  

3.3.1 General Principles of Universal Design 

Features are built into products to make them  more 
useful to persons who have disabilities (e.g., larger 
knobs; a variety of display options--visual, tactile, 
auditory; alternatives to reading text--icons, 
pictures) are built into the product. This is much less 
expensive than modifying a product after production 
to meet the needs of a person with a disability. The 
North Carolina State University Center for Universal 
Design, in conjunction with advocates of universal 
design, have compiled a set of principles of 
universal design, shown in Box 1. This center also 
maintains a Web site on universal design 
(www.design.ncsu.edu/cud). 

3.3.2 Universal Design for ICT  

In universal design for ICT the barriers are 
technological rather than political and economic 
barriers that characterize architectural and 
commercial product design (Emiliani, 2006). The 
goal of universal design for ICT is to have an 
environment with enough embedded intelligence to 
be easily adaptable. The features of future 
information services are that there will be no clearly 

predefined service and little distinction between 
interpersonal communication and access to 
information. Services will need to be highly 
interactive, inherently multimedia, sensory 
multimodal (i.e., access via auditory or visual means 
is equally possible). To achieve this cooperation 
between users or representatives of users is critical 
in a variety of contexts of use. The overall goal is to 
have access to information involving communities 
of users with a wide range of motor, sensory and 
cognitive skills. 

ONE: EQUITABLE USE 
The design is useful and marketable to people with 
diverse abilities. 
TWO: FLEXIBILITY IN USE 
The design accommodates a wide range of individual 
preferences and abilities. 
THREE: SIMPLE AND INTUITIVE USE 
Use of the design is easy to understand, regardless of 
the user's experience, knowledge, language skills, or 
current concentration level. 
FOUR: PERCEPTIBLE INFORMATION 
The design communicates necessary information 
effectively to the user, regardless of ambient 
conditions or the user's sensory abilities. 
FIVE: TOLERANCE FOR ERROR 
The design minimizes hazards and the adverse 
consequences of accidental or unintended actions. 
SIX: LOW PHYSICAL EFFORT 
The design can be used efficiently and comfortably 
and with a minimum of fatigue. 
SEVEN: SIZE AND SPACE FOR APPROACH 
AND USE 
Appropriate size and space is provided for approach, 
reach, manipulation, and use regardless of user's body 
size, posture, or mobility. 

Box 1: Principles of Universal Design From North 
Carolina State University, The Center for. Universal 
Design, 1997. 

In addition to Universal Design for ICT, access 
to capabilities of mainstream technologies includes 
individualized assistive technologies that are easily – 
customized. This in return requires an increased 
understanding of the biological/physical interface for 
the control of assistive technologies and expanded 
availability of embedded systems networks.  

3.4 A Working Definition of Assistive 
Technologies  

The International Classification of Functioning, 
Disability and Health (ICF) is a system developed 
by the World Health Organization (WHO) that is 
designed to describe and classify health and health 
related states. These two domains are described by 
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body factors (body structures and functions) and 
individual and societal elements (activities and 
participation) (WHO, 2001). The ICF recognizes 
two contextual factors that modify health and health 
related states: the environment and personal factors 
(WHO, 2001). Environmental elements include 
assistive technologies in relation to activities of daily 
living, mobility, communication, religion and 
spirituality as well as in specific contexts such as 
education, employment and culture, recreation and 
sport (WHO, 2001). Other environmental elements 
such as access to public and private buildings, and 
the natural and built outdoor environments, also 
have implications for assistive technologies. 

A commonly used definition of assistive 
technology is from the Technical Assistance to the 
States Act in the United States (Public Law (PL) 
100-407): Any item, piece of equipment or product 
system whether acquired commercially off the 
shelf, modified, or customized that is used to 
increase, maintain or improve functional 
capabilities of individuals with disabilities. 

3.4.1 Hard and Soft Technologies 

Odor (1984) has distinguished between hard 
technologies and soft technologies. Hard 
technologies are readily available components that 
can be purchased and assembled into assistive 
technology systems. The main distinguishing feature 
of hard technologies is that they are tangible. On the 
other hand, soft technologies are the human areas of 
decision making, strategies, training, concept 
formation, and service delivery as described earlier 
in this chapter. Soft technologies are generally 
captured in one of three forms: (1) people, (2) 
written, and (3) computer (Bailey, 1997). These 
aspects of technology, without which the hard 
technology cannot be successful, are much harder to 
obtain. Soft technologies are difficult to acquire 
because they are highly dependent on human 
knowledge rather than tangible objects. This 
knowledge is obtained slowly through formal 
training, experience, and textbooks such as this one. 
The development of effective strategies of use also 
has a major effect on assistive technology system 
success. Initially the formulation of these strategies 
may rely heavily on the knowledge, experience, and 
ingenuity of the assistive technology practitioner. 
With growing experience, the assistive technology 
user originates strategies that facilitate successful 
device use. There is a false belief that progress is 
solely driven by “hard” technological change The 
gap between the general public and persons with 

disabilities can only be closed by gains in both soft 
and hard technologies 

3.4.2 Mainstream Technologies to Specially 
Designed Technologies: A Range of 
Options 

As illustrated in Figure 1, the needs of people with 
disabilities can be met in a number of ways. Off the 
shelf “standard” (i.e., mainstream technologies) 
commercially available devices (especially those 
designed using the principles of universal design) 
can often be used by people with a variety of 
disabilities. For example, standard personal 
computers designed for the general population are 
often used by persons with disabilities. Sometimes 
these need to be modified however, to make them 
useable. Another type of commercially available 
device is one that is mass-produced but specifically 
designed for individuals with disabilities (special 
commercially available devices). These devices 
often need to be modified to meet the needs of a 
specific individual.  Our goal is to reduce the 
amount of modification necessary and to make 
mainstream technologies as accessible as possible. 
However, there will always be a portion of the 
disabled population that will require specifically 
designed assistive technologies.  

Commercially AvailableCommercially Available

StandardStandard
(for general(for general
population)population)

SpecialSpecial
(for disabled(for disabled
population)population)

ModifiedModified

CustomCustom
 

Figure 1: This diagram shows the progression from 
commercially available devices for the general population 
and commercially available devices for special 
populations to modified devices and custom devices. From 
Cook and  Polgar, (2007). 
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3.5 The Human Technology Interface 
for ICT 

3.5.1 General Concepts 

It is estimated that as many as 40 million persons in 
the United States alone have physical, cognitive, or 
sensory disabilities (Lazzaro, 1999). The world-wide 
impact is significantly larger. If these people are to 
compete on an equal basis with non-disabled 
individuals, then it is extremely important that the 
internet be accessible to all. As the internet becomes 
more and more dependent on multimedia 
representations involving complex graphics, 
animation, and audible sources of information, the 
challenges for people who have disabilities increase. 
In order for access to the Internet to be useful to 
people with disabilities, the accessibility approach 
must be independent of individual devices. This 
means that users must be able to interact with a user 
agent (and the document it renders) using the input 
and output devices of their choice based on their 
specific needs. A user agent is defined as software 
to access Web content (www.w3.org/wai). This 
includes desktop graphical browsers, text and voice 
browsers, mobile phones, multimedia players, and 
software assistive technologies (e.g., screen readers, 
magnifiers) that are used with browsers. The person 
with a disability interacts with technology through 
the Human Technology Interface (HTI) (Cook and 
Polgar, 2007).  

The graphical user interface (GUI) has both 
positive and negative implications for persons with 
disabilities. The positive features are those that 
apply to non-disabled users (e.g., use of icons, 
recognition rather than recall memory, screen icons 
for the same task look the same, operations such as 
opening and closing files are always the same). The 
GUI is the standard user interface because of its ease 
of operation for novices and its consistency of 
operation for experts. The latter ensures that every 
application behaves in basically the same way. 
People with motor disabilities may not have the 
necessary physical (eye-hand coordination) and 
visual skills to navigate the GUI. Modification of the 
GUI to allow specialized access (see Figure 1) can 
also be more challenging for GUI-based operating 
systems. 

As networks are expanded and more devices 
(e.g., cell phones, PDAs) have open architectures, it 
will be possible to download profiles, adaptations 
and special instructions that enable adaptable 
systems to be developed to meet the needs of people 

who have disabilities. Some examples are (1) 
trainable hearing aids that adjust automatically to the 
environments in which they are used; (2) a “Smart 
House” that assesses occupants current state and the 
state of various home utilities to aid with common 
activities of daily living, provides feedback should 
residents become disoriented or confused and report 
medical emergencies automatically; an orientation 
and direction finding device that senses the current 
location (via GPS) and gives directions to a desired 
location for individuals who cannot read maps 
because of visual or cognitive disabilities. 

3.5.2 Access for Motor Impairment 

There are a significant number of people who cannot 
effectively use standard keyboards, mouse controls 
or switches. It is likely that we will see a much 
greater understanding of the biological/physical 
interface for the control of computers in the future 
(Applewhite, 2004). 

One approach that may offer promise is the brain 
computer interface (BCI).  BCI systems may be 
grouped into a set of functional components 
including the input device, amplification, feature 
extraction, feature translation and user feedback 
(Mason and Birch, 2003). Signals are 
mathematically analyzed to extract features useful 
for control (Fabiani, Mcfarland, Walla, and 
Pfurtscheller 2004). Features or signals that have 
been used include slow cortical potentials, P300 
evoked potential, sensorimotor rhythms recorded 
from the cortex and neuronal action potentials 
recorded within the cortex). A typical task for a user 
is to visualize different movements or sensations or 
images.   

Another approach to cursor control is the use of a 
digital camera and image recognition software to 
track a particular body feature to control an on-
screen mouse cursor (Betke, Gips and Fleming, 
2002). The most easily tracked feature is the tip of 
the nose, but the eye (gross eye position not point of 
gaze), lip, chin and thumb have also been used. Non-
disabled subjects used this approach and fund that 
the camera mouse was accurate but slower than a 
typical hand-controlled mouse.  Using an on-screen 
keyboard the camera mouse was half as fast as a 
regular mouse in a typing task, but the accuracy 
obtained was equivalent on each system. More and 
more computers have built-in cameras, so the 
camera mouse requires only software to capture the 
body feature image and interpret its movement as 
mouse commands. This may lead to wider 
application of this technique.  
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There are many other approaches that are used to 
provide access to and control over technologies for 
people with severe motor disabilities (Cook and 
Polgar, 2007) \. These range form keyboards of 
various type, to automatic speech recognition to 
mouse and mouse emulators systems to single and 
multiple switches.  

3.5.3 Access for Cognitive Impairment 

Cognitive disabilities include a wide range of skills 
and deficiencies. Learning disabilities typically 
involve significant difficulties in understanding or in 
using either spoken or written language, and these 
difficulties may be evident in problems with reading, 
writing, mathematical manipulation, listening, 
spelling or speaking (Edyburn, 2005). These 
limitations make it increasingly difficult to access 
complicated Web sites that may include flashing 
pictures, complicated charts, and large amounts of 
audio and video data. While there are assistive 
technologies that are specifically designed to address 
these areas (discussed later in this chapter), many of 
the technological tools are useful for all students, 
and are part of instructional technology (Ashton, 
2005). Even the so-called assistive technologies 
have features (e.g., multimedia, synthetic speech 
output, voice recognition input) that are useful to all 
learners. 

For individuals with acquired cognitive 
disabilities due to injury (e.g., traumatic brain 
injury) or disease (e.g., stroke (CVA) or dementia) 
changing features such as font size, background/ 
foreground color combinations, contrast, spacing 
between words, letters and paragraphs and using 
graphics can all improve access to screen-based 
information. Another technological concept for these 
individuals is a cognitive prosthesis, which is a 
custom-designed computer-based compensatory 
strategy that directly assists in performing daily 
activities1. It may also include additional 
technologies such as a cell phone, pager, digital 
camera or low tech approaches  

Persons with intellectual disabilities have 
difficulties with memory, language use and 
communication, abstract conceptualization, 
generalization and problem identification/problem 
solving. Characteristics of the HTI that are important 
for these individuals include simplicity of operation, 
capacity of the technology to support repetition, 
consistency in presentation, and inclusion of 

                                                 
1 Institute for Cognitive Prosthetics, http://www.brain-rehab.com/ 
definecp.htm  

multiple modalities (e.g., speech, sounds and 
graphical representations) (Wehmeyer, Smith and 
Davies, 2005). 

An example of technology designed for cognitive 
needs is the Planning and Execution Assistant and 
Trainer (PEAT). It is a PDA-based personal 
planning assistant designed to assist individuals with 
cognitive disorders due to brain injury, stroke, 
Alzheimer's disease, and similar conditions 
(Levinson, 1997). PEAT employs artificial 
intelligence to automatically generate plans and also 
to revise those plans when unexpected events occur. 
PEAT uses a combination of manually entered 
schedules and a library of stored scripts describing 
activities of daily living (e.g., morning routine or 
shopping). Scripts can be used for both planning and 
for execution. Planning involves a simulation of the 
activity with key decision points presented and 
prompts (auditory and visual) supplied necessary to 
aid the individual through the planning process. The 
plan to be executed can be either the stored script or 
a modified script based on the simulation. The 
PEAT artificial intelligence software generates the 
best strategy to execute the required steps in the plan 
(LoPresti, Mihailidis, and Kirsch, 2004). PEAT also 
automatically monitors performance, and corrects 
schedule problems when necessary. 

3.5.4 Access for Auditory Impairment 

Since web pages are a mixture of text, graphics, and 
sound, people who are deaf may be prevented from 
accessing some information unless alternative 
methods are available. The primary approach for 
thee individual is the use of the Microsoft 
Synchronized Accessible Media Interchange 
(SAMI), which allows authors of Web pages and 
multimedia software to add closed captioning for 
users who are deaf or hard of hearing. This approach 
is similar to the use of closed captioning for 
television viewers. The W3C WAI SMIL 
(www.w3.org/WAI) is designed to facilitate 
multimedia presentations in which an author can 
describe the behavior of a multimedia presentation, 
associate hyperlinks with media objects, and 
describe the layout of the presentation on a screen  

Trainable hearing aids adjust automatically to the 
environments in which they are used through access 
to embedded information networks. This allows 
automatic adaptation to changing noise levels and 
environments.  
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3.5.5 Access for Visual Impairment 

The W3C WAI user agent guidelines are based on 
several principles that are intended to improve the 
design of both types of user agents. The first is to 
ensure that the user interface is accessible. This 
means that the consumer using an adapted input 
system must have access to the functionality offered 
by the user agent through its user interface. Second, 
the user must have access to document content 
through the provision of control of the style (e.g., 
colors, fonts, speech rate, and speech volume) and 
format of a document. A third principle is that the 
user agent help orient the user to where he is in the 
document or series of documents. In addition to 
providing alternative representations of location in a 
document (e.g., how many links the document 
contains or the number of the current link), a well-
designed navigation system that uses numerical 
position information allows the user to jump to a 
specific link. Finally, the guidelines call for the user 
agent to be designed following system standards and 
conventions. These are changing rapidly as 
development tools are improved.  

Communication through standard interfaces is 
particularly important for graphical desktop user 
agents, which must make information available to 
assistive technologies. Technologies such as those 
produced by the W3C include built-in accessibility 
features that facilitate interoperability. The standards 
being developed by the W3C WAI provide guidance 
for the design of user agents that are consistent with 
these principles. The guidelines are available on the 
W3C WAI Web page (www.w3.org/wai). 

3.5.6 Other ICT Access 

Cellular telephones are becoming more powerful 
with capabilities approaching that of personal 
computers. This expanded capability will provide 
significant advantages for people with disabilities, 
especially those with low vision or blindness. 
describes Three changes will be particularly 
valuable to people who have disabilities:: (1) 
standard cell phones will have sufficient processing 
power for almost all the requirement of persons with 
visual impairments, (2) software will be able to be 
downloaded into these phones easily, (3) wireless 
connection to a worldwide network will provide a 
wide range of information and services in a highly 
mobile way (Fruchterman, 2003). Because many of 
these features will be built into standard cell phones 
the cost will be low and reachable by persons with 
disabilities.  A major advance will occur if the cell 

phone industry moves away from proprietary 
software to an open source format providing the 
basis for a greater diversity of software for tasks 
such as text-to-speech output, voice recognition and 
optical character recognition in a variety of 
languages. Many applications for people with 
disabilities will be able to be downloaded from the 
internet. With expanded availability of embedded 
systems, it will be possible for a user to store their 
customized programs on the network and download 
them as needed form any remote location.  

Downloading a talking book program into a cell 
phone can provide access to digital libraries for 
persons who are blind. Outputs in speech or enlarged 
visual displays can be added as needed by the user.  
With a built-in camera and network access a blind 
person could obtain a verbal description of a scene 
by linking to on-line volunteers who provide 
descriptions of images. These applications will 
depend on the increasing application of universal 
design in information technology products (Tobias, 
2003). These applications include ATMs, cell 
phones, vending machines and other systems that are 
encountered on a daily basis (Tobias, 2003).  

4 INFRASTRUCTURE FOR 
FUTURE ACCESSIBILITY 

The infrastructure for future accessibility consists of: 
(1) an expanded, smarter and more available "real" 
and "virtual" internet, (2) Home automation systems 
that are smarter and have greater interconnectivity, 
(3) universal design principles that are applied more 
widely, (4) alternative approaches for accessing 
information technologies, and (5) special-purpose 
assistive technologies. 

The Infrastructure for future accessibility will 
depend on several factors. These include: Web-
based virtual systems, home automation, universal 
design for ICT, alternatives for accessing 
information technologies and special-purpose 
assistive technologies. In addition there is n on going 
need for the development of soft technology tools. 

If ICT advances are not adaptable enough to be 
accessible to persons with disabilities it will further 
increase the disparity between those individuals and 
the rest of the population leading to further isolation 
and economic disadvantage. On the other hand, 
availability of these technologies in a transparent 
way will contribute to full inclusion of individuals 
who have disabilities in the mainstream of society. 
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5 CONCLUSIONS 

The move to the information age offers great 
promise for persons with disabilities. It also holds 
great threats for persons with disabilities. Constant 
vigilance is required to insure that information 
technologies remain accessible and responsive to the 
needs of persons with disabilities. The future for 
persons with disabilities will not be driven by 
advances in technology, but rather by how well we 
can take advantage of those advances for the 
accomplishment of the many tasks of living that 
require technological assistance 

6 SUMMARY  

Anticipated changes in technologies coupled with 
the focus on the social aspects of disability, provide 
a significant opportunity for major advances in the 
degree to which individuals with disabilities can 
participate in all aspects of life, including work, 
school, leisure and self care.  

Technological advances will be particularly 
important as the percentage of the population that is 
elderly rises. Concepts from universal design will be 
important in ensuring that this segment of the 
population remains active and is able to participate 
in society. This new group of elderly individuals will 
also be more experienced with computers and other 
technologies than their predecessors and they may 
well demand greater performance and adaptability 
from both assistive technologies and mainstream 
ICT (e.g., telephones, internet communication).  

The percentage of individuals with long-term 
disabilities who join the over 65 age group will also 
increase. These individuals will have been long-term 
users of assistive technologies, and their experience 
will have major implications for developments to 
meet future needs.   

While much of what I have described is 
conjecture, it is based on modest extrapolation from 
the current state of the art. There are some things 
that we know with a high degree of certainty. We 
know that computer systems will be faster, have 
more memory be smaller and be less expensive for 
the same or greater functionality. We also know that 
the communication channel bandwidth will continue 
to increase allowing much more information and 
much more sophisticated information processing.  
Finally, it is clear that people with disabilities will 
continue to assert their right to fully participate in 
society. 

Technological advances also raise questions for 
people who have disabilities. The most important of 
these is whether accessibility will keep pace with 
technological developments. For example, will 
assistive technologies for input and output be 
compatible with the user agents and operating 
systems of tomorrow. A second major question is 
whether the needs of persons with disabilities will be 
a driving force in future technological developments. 
Will people who have disabilities have to adapt to 
the existing technologies based on characteristics for 
non-disabled people or will universal design become 
a greater reality?  In the latter case, adaptations will 
become less important and accessibility will become 
the rule rather than the exception.  

For people who have disabilities, there are 
significant implications of emerging information 
processing technologies. If not closely monitored, 
these could result in less rather than more access to 
the new information economy for persons with 
disabilities. Despite the wider use of universal 
design principles, there will still be a need for 
effective assistive technology design and application 
if individuals with disabilities are to realize the full 
potential of the new information age. 
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Abstract: In analysis of multi-channel event related EEG signals indepedent component analysis (ICA) has become
a widely used tool to attempt to separate the data into neuralactivity, physiological and non-physiological
artifacts. High density elctrode systems offer an opportunity to estimate a corresponding large number of
independent components (ICs). However, too large a number of ICs leads to overfitting of the ICA model,
which can have a major impact on the model validity. Consequently, finding the optimal number of compo-
nents in the ICA model is an important problem. In this paper we present a method for model order selection,
based on a probabilistic framework. The proposed method is amodification of the Molgedey Schuster (MS)
algorithm to epoched, i.e. event related data. Thus, the contribution of the present paper can be summarized
as follows: 1) We advocate MS as a low complexity ICA alternative for EEG. 2) We define an epoch based
likelihood function for estimation of a principled unbiased ’test error’. 3) Based on the unbiased test error
measure we perform model order selection for ICA of EEG. Applied to a 64 channel EEG data set we were
able to determine an optimum order of the ICA model and to extract 22 ICs related to the neurophysiological
stimulus responses as well as ICs related to physiological-and non-physiological noise. Furthermore, highly
relevant high frequency response information was capturedby the ICA model.

1 INTRODUCTION

The electroencephalogram (EEG) is a recording of
electrophysiological brain activity and the major ben-
efit of EEG relative to other brain imaging modali-
ties is a high temporal resolution. The basic elec-
trophysiology of the EEG signal implies that it may
be modelled as a linear mixture of multiple sources
of neural activity, non-brain physiological artifacts
such as eye blinks, eye movements, and muscle activ-
ity, and non-physiological artifacts such as line noise,
and electrode movement (Onton et al., 2006; Hesse
and James, 2004). By electrical conductance these
source signals instantaneously project to the scalp
electrodes used for acquisition (Onton et al., 2006).
Assuming linear addition of these relatively indepen-
dent source signals at the scalp electrodes motivates
the use of instantaneous independent component anal-
ysis (ICA) as a technique for extracting a set of under-

lying sources from the recorded EEG signals (James
and Hesse, 2005; Makeig et al., 2002; Hyvarinen and
Oja, 2000). The EEGLAB software is widely used for
decomposing EEG using ICA (Delorme and Makeig,
2004). More accurate modeling of the signal com-
ponent(s) including residual delayed correlations can
be achieved using so-called convolutive ICA in a sub-
space of components extracted by the initial instanta-
neous ICA (Dyrholm et al., 2007).

Epochs extracted from an EEG experiment are de-
scribed by the data matrixX ∈ R

M×N , whereM is
the number of electrode channels andN is the number
of sampling time points. In the followingN is the to-
tal time consisting of a certain number of epochs, i.e.,
individual experiment. The epochs may be separated
by variable time intervals according to the specific ex-
perimental design. It is a specific point in the follow-
ing, where we are going to invoke temporal correla-
tion based models, that we do not compute temporal
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correlations across epoch boundaries.
In general the ICA model can be written as

X = AS Xn,t =

K
∑

k=1

An,kSk,t, (1)

whereXn,t is the signal at then′th sensor att′th time
point andK is the number of sources or independent
components (ICs).A ∈ R

M×K is denoted the mix-
ing matrix andS ∈ R

K×N the source matrix. In this
model the sources as well as the mixing coefficients
are unknown. The random signalX is observed, and
from this A andS are estimated. It is impossible to
determine the variance (energy) of the sources, since
any scalar multiplier in one of the sources could be
cancelled by dividing the corresponding column inA
with the same multiplier. Therefore, the sources are
often assumed to have unit variance, which can be
achieved by normalizing the source signals and mul-
tiply the corresponding column of the mixing matrix.
Specifically, there is a sign ambiguity, if we change
the sign of a source signal and change the sign of
the corresponding column in the mixing matrix, the
same reconstructed signal is obtained by multiplica-
tion. Finally, the ordering of components is arbitrary.
We may order independent component according to
variance of their contribution to the reconstructed sig-
nal.

The recovery of the mixing matrix and the sources
is not possible from the covariance matrix alone,
hence, by principal component analysis (PCA). Addi-
tional information is needed. ICA is often based on a
non-Gaussianity assumption of the sources (Bell and
Sejnowski, 1995) or by assumed differences in source
auto-correlation (Molgedey and Schuster, 1994).

The number of EEG channelsM may be differ-
ent from the number of sourcesK, thus it is relevant
to estimateK. Estimation of the correct number of
sources can have a major impact on the validity of
the ICA solution and prevents overfitting (James and
Hesse, 2005). One approach to prevent overfitting is
based on pre-processing by PCA, where the number
of sources is determined by the number of dominant
eigenvalues which account for a high proportion of
the total variance in the data set. However this proce-
dure has been criticized for sensitivity to noise (James
and Hesse, 2005). Another approach is based on step-
wise extraction of sources until a specified accuracy
is achieved (James and Hesse, 2005). However this
method is highly dependent on the choice of the ac-
curacy level. In this paper we present a method for
model order selection, based on a probabilistic frame-
work. This approach was earlier proposed in a multi-
media contexts (Kolenda et al., 2001). However, the
approach requires large amount of memory for long

signals and is inapplicable to EEG signals that are
epoched due to temporal discontinuities where epochs
are merged. Here we present a method that is cus-
tomized to epoched data with the additional benefit
of reducing the memory requirement. In our method
PCA leads to a number of model hypotheses, of which
an ICA model is estimated using a modified version
of the Molgedey Schuster (MS) algorithm (Molgedey
and Schuster, 1994). The MS algorithm is chosen be-
cause it is based on source autocorrelation, which is
very relevant to EEG, and because of its relative low
computational complexity. We take further advantage
of the epoched nature of the signals, and split the data
set into a training- and a test set. Model selection, i.e.,
estimatingK, is then based on evaluating the likeli-
hood of each model hypothesis using the test set in
order to ensure generalization.

The paper is organized as follows. First we give a
description of our method and we compare by sim-
ulation study the modified MS algorithm with the
currently used ICA methods for EEG TDSEP (Ziehe
et al., 2000) and infomax ICA (Bell and Sejnowski,
1995). We then test our model selection scheme
within the simulated data and apply our method on
real event related EEG data from an experiment in-
volving visual stimulus.

2 METHODS

In the following, a description of PCA and the MS
algorithm will be given. This is followed by a de-
scription of the probabilistic modelling. Finally the
procedures for model order selection is presented.

2.1 PCA

Using PCA it is possible to reduce the dimension-
ality of the ICA model. In EEGM ≪ N which
leads to the singular value decomposition (SVD)X =
UDV T , whereU ∈ R

M×M , D ∈ R
M×N , and

V ∈ R
N×N . By selecting the firstK eigenvectors

in U as a new basis, the signal spaceS is reduced to
K dimensions. ICA is performed inS, whereA is the
ICA basis projected onto the PCA subspace. The mix-
ing matrix in the original vector space and the source
signals are then given by

Ã = UA (2)

S = A−1DV T . (3)

The noise spaceE is spanned by the remainingM−K
eigenvectors.
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2.2 Molgedey Schuster Separation

The Molgedey Schuster approach is based on the
assumption that the autocorrelation functions of the
independent sources are non-vanishing, and can be
used if the source signals have different autocorrela-
tion functions (Molgedey and Schuster, 1994; Hansen
et al., 2000; Hansen et al., 2001). Time shifted data
matricesXτ andSτ are defined followed by the defi-
nition of the cross-correlation function matrix for the
mixture signals

C(τ) ≡
1

Ne

XτXT , (4)

where C ∈ R
M×M and Ne is the epoch length.

For τ = 0 the usual cross-correlation matrix is ob-
tained. Due to the epoched nature of the signalsC(τ)
is estimated within each epoch and averaged, since
the cross-correlation is not valid over epoch bound-
aries. Now we define the quotient matrixQ(τ) ≡
C(τ)C(0)−1 which is rewritten, using the relation
X = AS, as

Q(τ) = C(τ)C(0)−1

=
1

Ne

XτXT (
1

Ne

XXT )−1

= (ASτ )(AS)T ((AS)(AS)T )−1

= ASτST AT A−T (SST )−1A−1

= AD(τ)D(0)−1A−1, (5)

whereD(τ) ≡ 1

Ne
SτST in the limit Ne → ∞ is the

diagonal source cross-correlation matrix at lagτ . It
is now seen, that the eigenvalue decomposition of the
quotient matrix

QΦ = ΦΛ (6)

leads toA = Φ andΛ = C(τ)C(0)−1. τ is estimated
as described in (Kolenda et al., 2001).

2.3 Probabilistic Modeling

The ICA model is defined in terms of the model pa-
rameters i.e. the mixing matrixA. Using Bayes
theorem the probability of specific model parameters
given the observed dataP (A|X) can be written as

P (A|X) =
P (X |A)P (A)

P (X)
, (7)

whereP (X |A) is the likelihood function, andP (A)
is the prior probability of a specific model. This like-

lihood function is rewritten as

P (X |A) =

∫

P (X, S|A)dS

=

∫

P (X |S, A)P (S)dS

=

∫

δ(X − AS)P (S)dS (8)

Evaluating the integral in (8) gives

P (X |A) = P (A−1X)
1

||A||
, (9)

where||A|| is the absolute determinant ofA.
In order to write the likelihood function we need

the likelihood for the reduced signal spaceS as well
as for the noise spaceE . Since the sources are sta-
tistically independent we haveP (S) =

∏K
i=1

P (si),
wheresi denotes the i’th source. If the sources are
assumed stationary, independent, have zero mean,
possess time-autocorrelation and are Gaussian dis-
tributed, then the source distribution is given by
(Hansen et al., 2001; Hansen et al., 2000)

P (S) =

K
∏

i=1

1
√

|2πΣsi
|
exp

(

−
1

2
sT

i Σ−1
si

si

)

, (10)

where Σsi
= E[sis

T
i ] = Toeplitz([γsi

(0), ...
, γsi

(Ne − 1)]) andγsi
are the source autocorrelation

function values. The autocorrelation function values
are estimated in each epoch and averaged. This esti-
mate of the source distribution leads to a formulation
of the likelihood for the signal space as

P (S|A) =

K
∏

i=1

1
√

|2πΣsi
|

(

1

||A||

)Ne

× exp

(

−
1

2
s−1

i ΣT
si

si)

)

. (11)

The noise spaceE is assumed to be isotropic with
noise varianceσ2

E = (M−K)−1
∑M

i=K+1
D2

ii. It can
be shown (Kolenda et al., 2001; Minka, 2001) that

P (E|σ2
E ) =

(

2πσ2
E

)−Ne(M−K)
2

× exp

(

−
Ne(M − K)

2

)

. (12)

The signal and noise space are assumed independent
which leads to the likelihood function

P (X |A) = P (S|A)P (E|σ2
E ). (13)

2.4 Model Order Selection

PCA reduction of dimensionality leads to a set ofM
model hypotheses. Since the data set consists of a
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large number of epoch e.g. 105, we have the opportu-
nity to split the data set into a training setDtrain and
a test setDtest. UsingDtrain the model parametersA
andΣsi

in (11) are estimated. The negative logarithm
of the likelihood function (13) is then evaluated using
Dtest, where (11) is rewritten as

− log (P (S|A)) = Ne log(||A||)

+
1

2
Ne + K log(2π) +

1

2

K
∑

i=1

log(
∣

∣Σsi,train

∣

∣)

+
1

2

K
∑

i=1

Tr(Σsi,test
Σ−1

si,train
), (14)

whereNe is the number of samples in each epoch ,
||A|| is the absolute determinant ofA estimated from
Dtrain, K is the dimension ofD andΣsi,train

and
Σsi,test

are estimated fromDtrain andDtest respec-
tively. By observing (13) model order selection is per-
formed by identifying the model order having mini-
mal generalization error.

3 EXPERIMENTAL EVALUATION

Simulation experiments was conducted to investigate
the performance of the MS algorithm and the test set
procedure for model order selection. The data sets are
constructed from three sourcess1, s2, ands3 which
show bursts at frequencies of 14, 19, and 11 Hz re-
spectively. The simulated source signal matrixS con-
sist of 80 epochs of bursts with random intra epoch in-
terval. A 50 Hz noise sources4 is included after gen-
eration of the 80 epochs. Electrode signals are created
by mixing the simulated source signals with a speci-
fied mixing matrixA, and Gaussian noiseE is added
to the electrode signals leading to a specic signal-to-
noise ratio (SNR) (a description of noise generation
is found in Appendix). Epochs are extracted from the
mixed signals using EEGLAB (Delorme and Makeig,
2004).

3.1 Algorithm Performance Results

By PCA the dimensionality of the simulation was
reduced to 4 dimensions, and the ICA model esti-
mated by TDSEP, the infomax ICA implementation
of EEGLAB, and our modified MS algorithm. To
evaluate the separation performance of our algorithm,
we use the correlation between original- and esti-
mates sources as well as the source-to-interference ra-
tio (SIR) (Fevotte et al., 2005; Vincent et al., 2006)
measure

SIR = 10 log10

||starget||
2

||einterf ||2
, (15)

Figure 1: Simulation experiment. Results for source sep-
aration for TDSEP (Applied with default timelags 0,1),
EEGLAB’s implementation of infomax ICA, and our epoch
modified MS algorithm. The simulation data is constructed
from four signal sources mixed out in 32 channels, Gaussian
noise is added. Dimensional reduction to four dimensions
by PCA. Experiment repeated 10 times, error bars indicate
three standard deviations of the mean. Top: Performance
of source estimation measured in terms of mean SIR. Bot-
tom: Performance measured in terms of mean correlation
between true sources and estimates.

where starget represents the target source or true
source andeinterf represents interferences of un-
wanted sources. The SIR was calculated using the
BSS EVAL toolbox (Fevotte et al., 2005), where the
performance measure is computed for each estimated
sourceŝi by comparing it to the true sourcesi and
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Figure 3: Left: Negative log likelihood for each of the 64 model hypotheses. Test set curve is averaged over 10 experiments,
and minimum is found at 22 dimensions, suggesting an ICA model with 22 ICs. BIC is more conservative and estimates
16 ICs. Right: Zoom of the minimum region in the test set curveindicated by the box on left plot. Errorbars indicate three
standard deviations of the mean.

Figure 2: Simulation experiment. Results for model or-
der selection for the test set procedure and for BIC estima-
tion. The simulation is constructed from four signal sources
mixed out in 32 channels, and Gaussian noise is added. BIC
underestimates the number of sources at 0 dB whereas the
test set procedure remains stable until -1 dB.

other unwanted sources(sj)j 6=i. In general SIR lev-
els below 8-10 dB indicate failure in separation (Bos-
colo et al., 2004). Figure 1 shows that source esti-
mates achieved with the modified MS algorithm are
comparable with results from the alternative ICA al-

gorithms. The MS algorithms has the advantages that
it is fast compared to infomax ICA and TDSEP. Fur-
thermore, there exists a heuristic for estimation of the
time lag parameterτ .

3.2 Model Estimation

Model order selection is performed using the test
set likelihood function (13) as evaluated using 10-
fold cross-validation. Figure 2 shows model or-
der estimates for a wide range of SNR. Here the
proposed cross-validation procedure is compared to
the Bayesian Information Criterion (BIC) (MacKay,
1992). The experiment indicates, that the cross-
validation procedure is more robust than BIC estima-
tion but it also has a tendency to underestimate the
number of sources at low SNR.

4 APPLICATION ON EEG DATA
SET

Our model selection procedure was applied on a data
set from a visual stimulation experiment with exper-
imental details described in (Mørup et al., 2006) and
paradigm described in (Herrmann et al., 2004). EEG
was recorded with 64 scalp electrodes arranged ac-
cording the the International 10-10 system, sampling
frequency 2048 Hz, band pass filter 0.1-760 Hz. Data
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Figure 4: Interpolated scalp maps individually scaled to maximum absolute values. Dimensionality of the data from 64 scalp
electrodes reduced to 22 by PCA. ICs estimated by MS algorithm, and components are sorted according to variance. The
percentage at each IC indicates how much variation is explained by the respective IC of the average ERP at the electrode,
where the respective IC project the strongest, calculated as (||Xk||

2

F − ||Xk − Pk||
2

F )/||Xk ||
2

F , whereXk is the ERP at
electrodek andPk is the projection ERP of the respective IC onto electrodek. Estimated ICs represents different types of
sources, for example, IC1 reflects eye artifacts, IC2, IC3, IC4, IC6 reflect brain sources and IC21, IC22 reflect electrodenoise.

was high pass filtered at 3 Hz in EEGLAB, and line
noise removed using a maximum likelihood 50 Hz
filter. The data were referenced to digitally linked
earlobes, down sampled to 256 Hz and cut into 105
epochs (-500 to 1500 ms).

PCA leads to a set of 64 model hypotheses. For
each hypothesis the negative logarithm of the likeli-
hood function (13) was evaluated using 10-fold cross-
validation. The experiment was repeated 10 times
with different splits of training- and test sets. Figure
3 shows model order estimation by the test set proce-
dure and BIC estimation.

According to model order estimation the dimen-
sionality of the data set was reduced to 22 by PCA.

ICs were estimated by the MS algorithm and sorted
according to variance. Figure 4 shows all IC scalp
maps. To categorize components each scalp map and
averaged event related potentials (ERPs) were exam-
ined, where for example IC2, IC3, IC4 and IC6 reflect
brain sources, IC1 reflects physiological eye artifacts,
and IC21 and IC22 reflect electrode noise.

Further analysis of IC3 is performed by creating
ERP images (Delorme and Makeig, 2004) as shown
in Figure 5 top, from the PO4 electrode signal and
IC3 projected onto electrode PO4. Generally the elec-
trode signal has a larger amplitude than the projec-
tion of IC3, however, the major dynamics of the ERP
seems to be captured by IC3. Another common analy-
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Figure 5: Top panel; ERP images, scaled to same color scale, epochs sorted by epoch number. Left; Image of IC3 projected
onto electrode PO4. Right; Electrode signal at PO4. The electrode signal has a larger amplitude than the projection of IC3,
however, the major dynamics of the ERP seems to be captured inIC3. Bottom panel; Time-frequency plots of the ITPC scaled
to same color scale. Left; IC3 projected onto electrode PO4.Right; Electrode signal at PO4. IC3 reveals prominent evoked
activity in the gamma band around 40 Hz compared to the raw electrode signal.

sis tool is time-frequency analysis of ERPs (Delorme
and Makeig, 2004; Mørup et al., 2007), where differ-
ent time-frequency measures exist. By ERPWAVE-
LAB (Mørup et al., 2007) we wavelet transformed the
data using the complex Morlet wavelet and calculated
the inter-trial phase coherence (ITPC)

ITPC(c, f, t) =
1

N

N
∑

n=1

X(c, f, t, n)

|X(c, f, t, n)|
, (16)

whereX(c, f, t, n) denotes the time-frequency coef-
ficient at channelc, frequencyf , time t and epoch
n. ITPC measures phase consistency over epochs.
Figure 5 bottom shows time-frequency plots of ITPC
for the PO4 electrode signal and IC3 projected onto
electrode PO4. It is evident that IC3 reveals promi-
nent evoked activity in the gamma band around 40 Hz
compared to the raw electrode signal. Gamma band
activity is consistent with earlier findings (Mørup

et al., 2006; Herrmann et al., 2004). Accordingly,
relevant high frequency response information is cap-
tured in IC3, whereas noise contributions are isolated
in other ICs.

5 CONCLUSIONS

Based on a probabilistic framework, we have for-
mulated a cross-correlation procedure for ICA and a
model order selection scheme applicable to epoched
EEG signals. Our procedure is an extension of the
Molgedey Schuster approach to ICA and utilizes the
epoched nature of the signals. The approach is based
on assuming source autocorrelation, which is very rel-
evant to EEG. In our model selection procedure we
split data into a training- and a test set to obtain an
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unbiased measure of generalization. Based on the
unbiased test error measure we perform model or-
der selection for ICA of EEG. Applied to a 64 chan-
nel EEG data set we were able to determine the or-
der of the ICA model and to extract 22 ICs related
to the neurophysiological stimulus responses as well
as ICs related to physiological- and non-physiological
noise. Furthermore, relevant high frequency response
information was captured by the ICA model. In this
study we have applied our model selection procedure
to EEG signals. However, our approach may also be
applicable to other types of signals.
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APPENDIX

Definition of SNR

Let N be the number of samples andM the num-
ber of electrodes. The signal to noise ratio is defined

by SNR =
‖AS‖2

F

‖E‖2
F

, where‖E‖2
F = NMσ2. Then

the variance of the additive noise isσ2 =
‖AS‖2

F

NM·SNR
.

In decibels the signal to noise ratio isSNRdB =
10 log10(SNR).
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Abstract: The electroencephalogram (EEG) is a standard technique to record and study the brain activity with a high tem-
poral resolution. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI)
is a non-invasive imaging method that allows the localization of activated brain regions with a high spatial
resolution. The co-recording of these two complementary modalities can give new insights into how the brain
functions. However, the interaction between the strong electromagnetic field (3T) of the MR scanner and the
currents recorded by the electrodes placed on the scalp generates artifacts that obscure the EEG and diminish
its readability.
In this work we used canonical correlation analysis (CCA) inorder to remove the ballistocardiographic artifact
(BCGa). CCA is applied to two consecutive windows in order totake into account both spatial and temporal
information. We showed that users can easily remove the artifact through a graphical user interface by adjust-
ing the number of components to be removed according to visual inspection of the signal, its power spectrum,
the cumulative explained variance and the correlation coefficients.

1 INTRODUCTION

The simultaneous registration of EEG and fMRI has
become a valuable tool for the understanding of the
functionalities of the brain during cognitive and be-
havioral studies. The good temporal resolution of the
EEG and the high spatial resolution of the fMRI of-
fer an insight into the brain dynamics not achievable
with any other non-invasive technique. However, the
presence of the strong magnetic field of the MR scan-
ner generates artifacts on the EEG, such as the bal-
listocardiographic artifact (BCGa), which obscure the
brain activity. The origin of the BCGa is still unclear
but it is believed to be related to blood flow in scalp
arteries leading to electrode movements.

Different methods have been suggested in litera-
ture in order to remove this artifact, all of them based
either on blind source separation (Niazy et al., 2005;

Benár et al., 2003; Srivastava et al., 2005) or averag-
ing techniques (Allen et al., 1998). These methods
can be applied either to a time window containing all
the EEG channels, considering only spatial correla-
tion or independence, or to a window containing a de-
layed version of the same channel, taking into account
only temporal correlation. It should be noted, how-
ever, that BCGa is periodic and affects all the elec-
trode sites. Both periodicity and topographical sim-
ilarity of the BCGa can be exploited to identify the
source or sources responsible for the artifact.

In this work we propose a framework based on
canonical correlation analysis (CCA) to remove the
BCGa. The advantage of using CCA applied to two
consecutive windows is that the algorithm takes into
account both spatial and temporal information.
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2 MATERIALS AND METHOD

2.1 Data

The data consist of 12 fragments of EEG recorded
from an epileptic patient during fMRI. Information
about dataset are shown in table 1. In these data
BCGa were identified by visual inspection. The
electroencephalographic data were recorded using
an EEG/fMRI compatible equipment (BE-MRI
EBNeuro, Medtronic). The fMRI data were recorded
using a 3T MR scanner (Siemens TRIO). The
electrodes were positioned according to the 10-20
international system and an average reference was
used. The sampling rate was 4096 Hz in order
to allow removal of the gradient artifact using the
BE-MRI toolbox . After gradient artifact removal the
signal was then subsampled to 512 Hz and band-pass
filtered between 0.5 Hz and 40 Hz. No epileptic
activity was identified in the recording. The final
EEG segment considered consisted of 20 channels.

Table 1: Data description: NRC is the number of compo-
nents removed to clean the dataset, EV is the variance ex-
plained by the removed components, CORR is the lowest
correlation of the removed components. Mean value (mean)
and standard deviation (STD) are also shown.

dataset n. of BCG NRC EV CORR
setA1 18 6 0.89 0.97
setA2 19 5 0.84 0.98
setA3 18 5 0.85 0.98
setA4 18 5 0.84 0.98
setB1 17 6 0.88 0.97
setB2 14 5 0.84 0.98
setB3 17 6 0.87 0.96
setB4 18 6 0.87 0.97
setC1 16 5 0.84 0.98
setC2 16 6 0.87 0.96
setC3 15 6 0.87 0.97
setC4 18 6 0.88 0.97
mean 5.6 0.86 0.97
std 0.55 0.02 0.09

2.2 Blind Source Separation

Blind source separation (BSS) techniques aim at de-
composing the original signal into a set of compo-
nents or sources. LetX = [x1(t) . . .xM(t)]T , t = 1. . .N
with N the number of samples, be a matrix containing
the time series recorded throughM sensors. The sig-
nals can be expressed as follows:

X = A S (1)

whereA is the(M ×M) unknown mixing matrix and
S = [s1(t) . . . sM(t)]T ,t = 1. . .N is the matrix contain-
ing the time course of the sources.
BSS estimates the unmixing matrixW, in such a way
that the sources are maximally independent (Indepen-
dent component analysis) or uncorrelated (Principal
component analysis). The estimated sourceŝS can
then be recovered using the following formula:

̂S = W X (2)

2.3 Canonical Correlation Analysis

CCA (Hotelling, 1936) is a multivariate technique
that finds two sets of basis vectors, one in each signal
space, such that the correlation between the signals in
the new subspaces is maximized and the covariance
matrix is diagonal.

Consider two sets of zero-mean random vari-
ables X = [x1(t) . . .xM(t)]T ,t = 1. . .N and Y =
[y1(t) . . .yM(t)]T ,t = 1. . .N. We can then define two
linear combinations ofx andy as follows:

U = ΩT
X X

V = ΩT
Y Y

(3)

U and V are calledcanonical variates and ΩX =
[ωx1, . . .ωxM ]T and ΩY = [ωy1, . . .ωyM ]T are there-
gression weights. In order to find the regression
weights, we maximize the correlation between the
two new variables with respect toΩX,ΩY. The corre-
lation can be expressed as follows:

ρ(ΩX,ΩY) =
ΩT

XCXYΩY
√

(ΩT
XCXXΩX)(ΩT

YCYYΩY)
(4)

whereρ is a matrix containing the correlations be-
tweenX andY and the covariance matricesCXX, CYY
andCXY are estimated from the data.

2.3.1 Implementation of CCA

One possible implementation of CCA relies on the
computation of the principal angles between two or-
thogonal subspaces (Golub and Van Loan, 1996). Let
us consider˜X = XT and ˜Y = YT . First we compute
two orthogonal subspacesQ

˜X andQ
˜Y of the original

signal spaces:

˜X = Q
˜XR

˜X
˜Y = Q

˜YR
˜Y

(5)

Next, we compute the singular value decomposition
of QT

˜X
Q

˜Y:

QT
˜X

Q
˜Y = ECFT (6)
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Figure 1: Simultaneous EEG/fMRI recording before BCG artifact removal.

whereC is a diagonal matrix containing the correla-
tion coefficients associated to each variate in decreas-
ing order. We can then compute the canonical vari-
ates:

UT = Q
˜XE = ˜XR−1

˜X
E = ˜XΩX

VT = Q
˜YF = ˜YR−1

˜Y
F = ˜YΩY

(7)

2.3.2 Signal Reconstruction

Once the canonical variates are calculated, a subset
of them can be used to reconstruct the original signal.
The specific variates are selected by setting to zero the
regression coefficients corresponding to the unwanted
variates. The new signal approximation can be com-
puted using the new regression weights˜ΩX and˜ΩY,as
follows:

̂X = (˜Ω−1
X )T U = ˜ΩT

UU
̂Y = (˜Ω−1

Y )T V = ˜ΩT
VV

(8)

2.4 Method

The artifact removal procedure involves the following
six steps:

1. identification of the BCG artifacts on the EEG,

2. segmentation of the EEG around the artifact,

3. application of CCA to two consecutive windows,

4. detection of artifactuated canonical variates,

5. removal of the artifactuated sources,

6. reconstruction of the original signal.

Figure 2: Normalized power spectrum of the Fp1 chan-
nel before (red line) and after (black line) artifact removal,
when six components are removed.

Figure 1 shows the original EEG. The artifacts are
easily distinguishable on the EEG channels and are
marked by vertical lines. At first inspection the arti-
fact appears synchronized over the channels but with
different amplitude. Moreover the shape changes over
time whereas the relative contribution of the artifact
to different electrode sites is time-independent. For
these reasons, CCA was applied to two consecutive
windows: this allows the extraction of components
that share the same topography over time.

BALLISTOCARDIOGRAPHIC ARTIFACT REMOVAL FROM SIMULTANEOUS EEG/FMRI RECORDING BY
MEANS OF CANONICAL CORRELATION ANALYSIS
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Figure 3: Cumulative explained variance for each BCG oc-
currence plotted as a function of the number of components:
the vertical line marks the component where the 95% of the
total variance is explained for all the BCG artifact. The red
dot represents the variance explained by the first six com-
ponents.

Figure 4: Correlation coefficients calculated by CCA plot-
ted for each BCG as a function of the components: the ver-
tical line marks the component where the correlation coef-
ficient is lower than 95% in all BCG’s.. The red dot repre-
sents he correlation of the sixth component.

The artifacts are manually identified on the EEG.
The data are then segmented by considering a win-
dow of 300 ms (the approximate duration of the ar-
tifact) around each artifact occurrence. CCA is ap-
plied to two consecutive windows (m× n, wheren is
the number of points andm is the number of chan-

nels) and the canonical variates are calculated. The
sources outputted by the CCA algorithm are ordered
according to their correlation (see equation 6). The
basic assumption is that the artifact is determined by
the same sources active during two consecutive time-
windows, superimposed to EEG activity uncorrelated
to the artifact.

In order to guide the choice of the number of com-
ponents to remove, the following three features are
considered: the normalized power spectrum of the
Fp1 channel, where the artifact has high amplitude,
the cumulative explained variance and the correla-
tion coefficients given by CCA. Figure 2 represents
the normalized power spectrum of the Fp1 channel,
where the artifact has high amplitude, before and af-
ter artifact removal. In figure 3 the cumulative ex-
plained variance for each BCG occurrence is plotted
as a function of the number of components consid-
ered: the vertical line marks the component where the
95% of the total variance is explained for all the BCG
artifacts. In figure 4 the correlation coefficients calcu-
lated by CCA are plotted for each BCG as a function
of the components: again the vertical line marks the
component where the correlation coefficient is lower
than 95% in all BCG’s.

A graphical user interface (GUI), shown in figure
5, was developed in order to facilitate the artifact re-
moval procedure. A sliding bar allows the user to in-
crease the number of removed components from 0 to
k: at each step of the sliding bar, the first k compo-
nents, i.e. the k canonical variates associated to the
highest correlation, are removed. Simultaneously the
EEG before and after artifact removal is plotted, as
well as the normalized power spectrum of the Fp1
channel, the explained variance and the correlation
coefficients. A black dot represents the position of the
current component with respect to the explained vari-
ance and the correlation. The value of the explained
variance and the correlation at each step are also given
as the average over the BCG’s shown in the GUI. At
every step of the sliding bar, the plots and the values
of explained variance and correlation are updated. In
this way the user can determine the number of com-
ponents to remove based on visual inspection of both
EEG and its power spectrum (the smaller the harmon-
ics, the cleaner the signal), until the EEG appears
readable and the power spectrum does not change sig-
nificantly. Moreover the user can avoid excessive re-
moval of EEG activity by monitoring the explained
variance and the correlation of the component at the
current step.
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Figure 5: Screenshot of the graphical user interface (GUI) developed to remove the BCGa from EEG data. Panel A is
updated at every step of the sliding bar by a superposition ofthe original and the clean data. In panel B the number of
component removed at the current step are reported, as well as the explained variance and correlation, as the mean over the
BCG occurrences shown in panel A, for the particular number of components. Panel C represents the normalized power
spectrum of FP1 before (dashed line) and after (solid line) artifact removal. In panel D the cumulative explained variance for
each BCG occurrence shown in A is plotted as a function of the components. In E the correlation coefficients resulting from
the application of CCA to each BCG occurrence are also plotted as a function of the components.

Figure 6: Simultaneous EEG/fMRI recording after BCG artifact removal.

3 RESULTS AND DISCUSSION

Figure 6 shows the EEG after artifact removal, the
vertical lines define the time occurrence of the ar-
tifact. In this case the first six components were
removed (explained variance = 0.90; correlation =

0.97). The high amplitude artifact-related activity is
not visible anymore. Moreover, by monitoring the ex-
plained variance and the correlation coefficients, we
are able to preserve information in background EEG.
Table 1 shows how the number of removed compo-
nents is adaptively chosen, so that the algorithm can
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cope with the intrinsic subject variability.
Figure 2 shows the normalized power spectrum

of the channel Fp1 before and after artifact removal
when the first six components were removed. The
harmonic components disappeared. Moreover, re-
moving more than the first five components does not
significantly change the power spectrum of the data.
We can infer that the first six components were artifact
related, whereas the remaining sources were EEG-
related.

Therefore, the results confirm the presence of arti-
factual sources that share the same topographies over
time.

4 CONCLUSIONS

We demonstrated that CCA can be a valuable tool
in removing the BCG artifact from simultaneous
EEG/fMRI recording.

We believe that CCA is able to take into account
the physiology of the artifact. The identification of
sources whose topographies do not change over time
allows the use of both spatial and temporal informa-
tion during the identification of the artifact. The use
of a moving window also allows the topographies to
adapt to the physiological variation of the blood flow.
This makes CCA an extension with respect to those
methods, like ICA or PCA, in which only the spa-
tial information is considered. Moreover CCA is less
sensitive than ICA to the window length (Hyvarinen
et al., 2001), allowing the use of a time window that
matches the artifact characteristics.

Further research has to be done in order to auto-
matically detect the BCGa on the EEG data and au-
tomatically identify the number of components to re-
move, in such a way that an optimal reconstruction is
achieved in each window. In order to assess the relia-
bility of the procedure, the application of the method
to a larger database of human recording is also neces-
sary. Moreover a simulation study is needed in order
to test the performances of the algorithm with respect
to noise and artifact characteristics.
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Abstract: The performance of three Entropy/complexity measures in detecting EEG seizures in the neonate were 
investigated in this study. A dataset containing EEG recordings from 11 neonates, with documented 
electrographic seizures, was employed in this study. Based on patient independent tests Shannon Entropy 
was found to provide the best in discrimination between seizure and non-seizure EEG in the neonate. 
Lempel-Ziv complexity and Multi-scale Entropy were second and third respectively, while Sample Entropy 
did not prove a useful feature for discriminating seizure patterns from non-seizure patterns. 

1 INTRODUCTION 

Seizures are one of the few neurological conditions 
in the neonate that require immediate medical 
attention and represent the most distinctive sign of 
central nervous system dysfunction (Volpe, 2001). 
Neonatal seizures occur in 6% of low birth-weight 
infants and in approximately 2% of all newborns 
admitted to a neonatal ICU. An automatic neonatal 
seizure detector would be a significant aid in 
newborn monitoring given that expert EEG 
interpretation is not available on a 24-hour basis. 
The current state of the art in neonatal seizure 
detection does not offer the reliability or robustness 
necessary for use in a neonatal ICU. A multi-signal 
approach has been proposed (Greene et al., 2007), 
based on the extraction of pertinent features from 

EEG and ECG signals. Choice of which features to 
extract is an area of active research in neonatal 
seizure detection. 

The aim of this study was to compare the 
applicability of four measures of signal entropy and 
complexity, which measure the degree of regularity 
or complexity in a single channel EEG, as possible 
features for use in a neonatal seizure detection 
system.  

2 AUTOMATIC NEONATAL 
SEIZURE DETECTION 

The block diagram in Fig.1 describes the detection 
method employed in this study to compare 
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complexity and entropy measures. Initially, the EEG 
channel was processed, extracting features or 
parameters to facilitate subsequent discrimination in 
a pattern classifier between seizure and non-seizure 
EEG. 

 
EEG Signal ClassifierFeature 

Extraction
Seizure/Non-Seizure

Figure 1: Detection method block diagram. 

The focus of this study was on the feature 
extraction phase, with entropy and complexity being 
the feature extracted. 

3 DATA SET 

The dataset for this study comprised multi-channel 
EEG recordings from 11 babies from two different 
test centers. Recordings from Kings College 
Hospital, London (8 babies) were made on 
Telefactor Beehive Video EEG machine and 
sampled at 200Hz. Recordings from the Unified 
Maternity Hospitals, Cork (3 babies) were on a 
Viasys NicOne Video EEG machine and sampled at 
256Hz.  

Table 1: Data set. 

Patient 
Num of 
seizure 

segments 

Num of 
non-

seizure 
segments 

Total recording 
time in minutes 

1 30 43 73 
2 44 21 65 
3 51 24 75 
4 55 44 99 
5 7 15 22 
6 10 22 32 
7 31 33 64 
8 26 39 65 
9 22 26 48 
10 16 13 29 
11 21 15 36 

 
Electrographic seizures in each multi-channel 

recording were labeled such by an expert in neonatal 
EEG (author GBB).  

Recordings for each patient were then split into 
1-min single channel segments either containing 
seizure or non-seizure EEG. Only EEG channels that 
were determined (by the electroencephalographer) to 

contain definite seizure activity were included in the 
analysis.  

The data set employed was 608 min i.e. 10.13 
hours, containing 5.22 hours of seizure EEG and 
4.92 hours of non-seizure EEG. Table 1 summarizes 
the dataset for this study. 

4 ENTROPY MEASURES 

Four entropy/complexity measures were compared, 
namely Multiscale Entropy, Sample Entropy, 
Shannon Entropy and Lempel-Ziv complexity. 
Entropy and complexity are dependent on signal 
properties and each method quantifies randomness 
or complexity of a signal from a different 
perspective. 

4.1 Sample Entropy 

Sample Entropy (SampEn) is the negative natural 
logarithm of an estimate of the conditional 
probability that sub-series (epochs) of length m that 
match point-wise within a tolerance r also match at 
the next point (Richman and Moorman, 2000).  
 

SampEn = 
A
Bln  (1) 

 
where B is the total number matched m patterns, 

and A is the total number of matched m+1 patterns.  

4.2 Multiscale Entropy 

Multiscale Entropy (MSE) (Goldberger et al., 2000) 
is a modified version of Sample Entropy and 
quantifies the degree of regularity or conversely 
randomness.  

MSE calculation involves two main procedures: 
firstly the data (x) of length N is divided into smaller 
segments of length τ, and then the series of average 
of each data segment is computed and used to obtain 
the “coarse-graining” series yj

 (τ). 
 

∑
+−=

=
τ

τ

τ

τ

j
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ij xy
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 (2) 

 
Where j can take values between:  

 

τ
Nj ≤≤1  (3) 
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SampEn is calculated from this coarse graining 
series. 

4.3 Lempel-Ziv Complexity 

Lempel-Ziv (LZ) (Lempel and Ziv, 1976) quantifies 
complexity of a time series, by observing a number 
of unique sequences in a given dataset. One 
dimensional time series X(t) is converted into series 
P(n) of ones and zeros by comparing it to threshold 
Td. Then the transformed series is scanned from left 
to right and number of unique sequences c(n) is 
computed. 
 

Let 
)(log

)(
n

nnb
α

=  (4) 

 
Where n is the length of P and α is the size of 

alphabet, in zero-one conversion α = 2, .then the 
normalized LZ complexity =  

 

)(
)(

nb
nc  (5) 

4.4 Shannon Entropy 

Shannon Entropy (ShEnt) (Shannon, 1948) has been 
defined as a measure of uncertainty of a signal or 
degree of orderliness of the data. 

 

ShEnt =  ∑
=

−
n

i
ii pp

1

log  (6) 

 
Where pi is an estimate of the probability density 

function. A histogram of the signal with k bins is 
constructed and from this the probability distribution 
can be estimated. 

Entropy measures MSE, SampEnt, and LZ 
complexity all use sequences of data to determine 
complexity or regularity of the signal. Shannon 
entropy considers only signal amplitude in order to 
measure degree of regularity. 

5 METHODS 

To assess the applicability of each of these 
measures, a detection system was implemented, as 
shown in Fig. 1.  

Data acquired from the recording equipment was 
processed to extract each measure. Calculation of 

each entropy/complexity measure assumes that the 
number of data points is large, i.e. ∞⎯→⎯N . The 
International Federation of Clinical 
Neurophysiology (IFCN) recommends that 10 sec is 
the minimum electrographic seizure duration if the 
EEG background is abnormal (De Weered, 1999). 
This suggests a maximum deployable window 
length. A longer duration window may result in the 
detector missing short duration seizures. The length 
of the window was chosen to be 10 sec, similar to a 
study by Gotman (Gotman et al., 1997), the window 
employed in this study was non-overlapping. 

To assess the utility of each entropy feature, a 
Linear Discriminant (LD) classifier model was 
employed in this study. An LD classifier model finds 
the best linear combination that separates between 
two or more classes using Fishers discriminant ratio. 

Cross fold validation is used to provide an 
estimate of the potential utility of these complexity 
and entropy based features when employed in a 
patient independent seizure detection system. The 
classifier model is trained on (n-1) patients and 
tested on the nth patient. Each fold contains all 
features from a single patient i.e. given 11 patients, 
thus fold 1 corresponds to Patient 1 and fold 2 to 
Patient 2 etc. Four features are extracted from each 
10s EEG epoch. 

Experiments were carried out to determine the 
optimum values of parameters used in SampEnt and 
MSE calculations:  

5.1 Sample Entropy Parameter r 

For SampEnt a tolerance value for accepting 
matches, r, must be chosen. In literature (Costa et al, 
2005)  it is common to have parameters m = 2 and r 
between 0.1 and 0.2. in this study m = 2 and r = 0.2 
were chosen.  

5.2 Multi-Scale Entropy Parameters 

In Multi-scale Entropy (MSE) two parameters, scale 
τ and tolerance r must be chosen. 

5.2.1 Scale τ 

Scaling is averaging data points in non-overlapping 
windows of size τ. In other words when using 
scaling we reduce the number points on which 
Sample Entropy is calculated, i.e. when using τ = 10 
with a window size of 10 sec (2000 data points) 
SampEnt is calculated for 200 points only. In this 
study parameters m and r were fixed (m=2, r =0.2) 
and the scale τ = 10 was chosen. 
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5.2.2 Tolerance For Accepting Matches r 

In this study r = 0.2 was chosen. 

5.3 Lempel-Ziv Complexity 
Parameters  

In biomedical signal processing it is common to 
convert a time series into a series of ones and zeros 
by comparing it to a threshold Td. Td is commonly 
chosen as the median of the signal (Aboy et al., 
2006), thus in this study EEG signals were 
transformed into 1’s and 0’s by comparing it to the 
median of the signal. Converting to a binary 
sequence has the advantage of being simple to 
implement in hardware and software and 
computationally less expensive. 

5.4 Shannon Entropy Parameters  

The histogram method was used in order to calculate 
Shannon Entropy. The histogram count was 
constructed with nk =  bins, where n is the total 
number data points in each window. 

6 PERFORMANCE MEASURES 

The performance of each of the complexity and 
entropy based features employed in this study were 
determined using the following measures: Accuracy, 
Sensitivity, Specificity and ROC curve area. 

Accuracy (Acc) is the percentage of each 10 s 
EEG epoch correctly classified by an epoch based 
seizure detector. 

Sensitivity (Sens) is defined as the percentage of 
labeled 10s seizure EEG epochs correctly classified 
as a seizure epoch by the classifier. 

Similarly, specificity (Spec) is the percentage of 
labeled 10s non-seizure EEG epochs correctly 
identified as non-seizure epochs by the detection 
method. 

A receiver operating characteristic curve (ROC) 
(Zweig and Campbell, 1993) is a plot of sensitivity 
versus specificity for different thresholds. 
Trapezoidal numerical integration is used to 
calculate the area under the curve, this area gives an 
indication of how well a given feature discriminates 
between seizure and non-seizure epochs. An area of 
1 corresponds to a perfect discrimination, while a 
ROC area of 0.5 is a result of a random 
discrimination. The closer the ROC area value is to 
unity the better the discrimination between classes.  

7 RESULTS 

To obtain an estimate of the patient independent 
performance of the measures the classifier was 
trained on the data available and then tested on a 
data recorded from a patient that was not included in 
the training. 

The results in Table 2 shows that Shannon 
Entropy (ShEnt) gives the best performance out of 
the four entropy/complexity measures, however 
combining different entropy measures improves the 
detection scheme.  

Table 2: Patient independent results. 

Entropy 
/complexity 

Acc
(%) 

Sens 
(%) 

Spec 
(%) 

ROC  
Area 

ShEnt 69 71 66 0.73 

LZ 64 68 58 0.67 

MSE 57 58 56 0.59 

SampEnt 55 66 43 0.53 

Combination 
of all four 
measures 

73 75 71 0.80 

 

Table 3: Performance of individual patients. 

Patient Acc (%) Sens (%) Spec(%) 

1 79 79 78 

2 71 75 63 

3 63 59 75 

4 69 69 67 

5 44 45 43 

6 51 53 50 

7 97 99 94 

8 80 91 74 

9 87 98 78 

10 52 57 47 

11 82 83 81 
  

Table 3 shows the individual performances of 
each patient in the dataset when all four 
entropy/complexity measures are combined and fed 
to the classifier.  
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Figure 2: Histogram of entropy features (all patients 
combined). 

Figure 2 shows histograms for each 
entropy/complexity measures for all patients 
combined, providing a graphical comparison on how 
these measures discriminate between seizure and 
non-seizure EEG segments. 

The histograms show that the best separation 
between seizure and non-seizure EEG epochs 
through the application of Shannon Entropy to EEG 
data, the next best feature can be seen to be the 
Lempel-Ziv complexity, and thus these measures 
contribute the most in overall detection scheme. 

 

 
Figure 3: Patient independent ROC curves for individual 
features. ShEnt Roc area 0.73, LZ ROC area 0.67, MSE 
ROC area 0.59, SampEnt ROC area 0.53. 

 

 

Figure 4: Patient independent ROC curve (all features 
combined) ROC area 0.8. 

From the ROC curves in Fig. 3 it can be 
observed that SampEnt does not provide a good 
discrimination. We can omit Sample Entropy from 
the feature extractor in the patient independent test 
and obtain equal results based on the remaining 
three entropy measures. 

8 DISCUSSION 

In this study four Entropy/complexity measures 
were applied to neonatal seizure EEG. Results 
indicate that Shannon Entropy gives better 
performance than other entropy/complexity 
measures in discriminating seizure EEG from non-
seizure EEG.  

The main reason Shannon Entropy outperforms 
other entropy measures in neonatal seizure is 
probably due to the fact that Shannon Entropy 
considers amplitude of the signal when calculating 
entropy and so is suitable for detecting high 
amplitude seizures.  

The poorest performing entropy measure applied 
in this study was Sample Entropy. The patient 
independent results showed that if Sample Entropy 
is omitted from the feature extractor, equal results 
are obtained from the three remaining entropy 
measures. 

The results also showed that combining different 
entropy and complexity measures (with the 
exception of SampEn) improved the overall 
detection system Acc by 4% compared to the system 
when ShEnt is extracted alone.  The results also 
show that Sample Entropy gives the lowest Acc 
results of 55% and a ROC area of 0.53 which is not 
much better than a random detection. Thus we 
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conclude that SampEn does not provide a good 
discrimination.  

From Fig. 2 is can be observed that while Sample 
Entropy and Lempel-Ziv complexity values decrease 
as a seizure is occurring, Shannon Entropy and 
Multi-Scale Entropy increase as a seizure is taking 
place. Similar behavior of entropy measures were 
reported in (Costa et al., 2005) for ECG analysis and 
(Ferenets et al., 2006) for EEG analysis. Ferenets et 
al explain that ShEnt “is indifferent to the time order 
of the signal”, while SampEnt and LZ are dependent 
on the order of signal thus this might explain the 
behavior mentioned above.  

In a recently reported EEG based detection 
method (Greene, 2006) six features were extracted, 
one being Spectral Entropy. The patient specific 
results reported in (Greene, 2006) showed that the 
best performing feature was line length, while 
Spectral Entropy and Non-linear Energy were 
second best performing features. Therefore, it would 
be beneficial to investigate if adding Spectral 
Entropy to the list of features extracted in this study 
will improve the overall performance of the 
detection method. 

In this study, the total amount of data employed 
was 10.13 hours. In order to attain a clinically 
relevant performance estimate for the method 
proposed, a much larger data set would be required. 
Using the features, with the parameter values chosen 
from this study, on a new larger dataset containing 
multi-channel continuously recorded EEG, would 
further validate the effectiveness of these measures 
in neonatal seizure detection.  

9 CONCLUSIONS 

The conclusion drawn from this study is that out of 
the four entropy/complexity measures investigated. 
Shannon entropy provides the best discrimination 
between seizure and non-seizure EEG in the 
neonate. 
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Abstract: In this article we present the design of an EEG headset together with the context and vision that motivated 
us to undertake the described design work. There is a variety of potential advantages and potential 
difficulties associated with neurofeedback therapy. Both are analyzed informally and we argue in favour of 
a change in perspective, moving away from treatment of illness towards prevention and giving the user an 
active and responsible role. To structure the discussion we will deploy the closed loop diagram. We identify 
elements from the world of gaming that will have added value over a pure training approach, notably 
elements that improve enjoyment and motivation. We describe several of the design steps of the headset that 
has been designed to achieve enjoyable neurofeedback therapy in the home environment and conclude with 
an evaluation of this headset.  

1 INTRODUCTION 

With neurofeedback therapy we can make 
brainwave patterns explicit by for example a 
computer screen, patterns we normally cannot 
influence since we are unable to see or feel them. 
This feedback provides us the ability to influence 
and change them. With neurofeedback therapy we 
are literally reconditioning and retraining the brain 
(Hammond, 2007). 

In order to provide a structure and discuss the 
wide variety of potential advantages and potential 
difficulties associated with neurofeedback therapy, 
we start by introducing the closed loop diagram of 
Figure 1. In this diagram, G(s) is the user, patient, 
sportsman, etcetera and H(s) is the external training 
equipment together with services of the therapist.  
To give an easy biofeedback example, let u be a 
desirable value for the BMI (Body Mass Index) and 
let y be the patient's or user's weight.  Then H 
includes the calculation y/(length2), but also a 
display function.  By informing the user of the 
difference between desired and actual BMI, the user 
is supposed to eat and move wisely and adjust his 
weight. This example actually has been realized as 
the Smart Mirror by Philips Electronics (Van 
Splunter, 2002).  

 

Figure 1: Closed loop diagram with user G(s) and training 
equipment and services H(s). 
 

Feedback theory has been the backbone of 
mechanical and electrical engineering since almost a 
century - and it still is. It is outside the scope of this 
article to try and develop precise models of the 
controlled system and the feedback function, we just 
use it to structure the debate. One remark is in order: 
it is of the utmost importance to be aware of the 
complexity of the human mind-body system G(s).  
Its subsystems include the skeletal, digestive, 
muscular, lymphatic, endocrine, nervous, and 
cardiovascular, urinary and reproductive systems.  
The nervous system includes the brain and its higher 
functions such as perception, cognition, and control.  
The subsystems are not only coupled, they also have 
internal feedback loops. This being said, we can 
begin. 
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2 OPEN QUESTIONS 

In this section we begin with some preliminary 
observations and open questions regarding 
neurofeedback (NF). Some of the questions are 
speculative and possibly controversial. We take 
them as a source of inspiration; several of the issues 
embedded in these questions will be addressed more 
seriously in the subsequent sections. 

Neurofeedback therapy (Evans, 1999) is about 
training the mind in a non-intrusive way using EEG 
signals, stimulating or discouraging certain brain 
functions. Experiences with neurofeedback therapy 
might seem promising, however for some reason it 
hasn’t been adopted by the general public yet. One 
of the causes might be that in present day society, 
there seems to be a tendency to focus on the physical 
aspect of health and on curing the symptoms rather 
than fighting the cause. For example, people with 
ADHD are drugged with Ritalin, which reduces 
symptoms of hyperactivity, but doesn’t cure it. In 
contrast, the main focus of neurofeedback is on 
mental issues.  

Another problem might be that neurofeedback 
therapy is based on a ‘mind over matter’ perspective, 
implying that physical and mental wellbeing are 
interconnected (Fox, 1999; Kendell, 2001). 
However, for some reason it seems difficult to 
accept this perspective. Prejudices have been 
formed, perhaps as a result of the natural fear of the 
unknown. Still, although neurofeedback therapy has 
shown to have a positive influence on numerous 
disorders (Lubar, 1995), proof of absence of possible 
side-effects has not been supplied yet. Whether this 
is a potential issue for the therapy not to be accepted, 
remains open for debate. However, it has been said 
that if some or another medication could be as 
broadly and effectively applicable as neurofeedback 
therapy, it would already be available at every 
pharmacy in the world. (Roskamp, 2007). Maybe we 
should focus on a vision in which neurofeedback 
therapy could eventually become as easy as taking 
an aspirin. 

Professional athletes use neurofeedback to 
improve their already exceptional performances by 
entering a state of ‘relaxed focus’, a moment of 
optimal performance reached by this so-called peak-
performance training. This raises the question 
whether neurofeedback could actually be applied to 
elevate our general wellbeing in the way athletes do. 
Heinrich et al (2007) formulate the following 
promising statement: ‘In addition, ‘normal’ subjects 
may improve cognitive functions (e.g., attention and 

working memory) and performance in real-life 
situations by means of NF’.  

3 ANALYSIS 

EEG products are mainly distinct in the number of 
electrodes that are used for measurements. Products 
range from the ElectroCap with 19 sensors (Figure 
2) (ElectroCap International Inc., 2004), to two-
channel products only using 2 sensors and clips on 
each earlobe. However, in either case scalp contact 
is optimized by removing dead skin cells and parting 
hair out of the way. Conducting gel is applied in 
most cases, although products with dry sensors are 
being developed as well. Recent products include 
the g.EEGcap (Guger Technologies OEG, 2007) and 
other techniques for measuring, like Project Epoc 
(Emotiv Systems Inc., 2007) and SMART 
BrainGames PlayStation System (SMART 
BrainGames, 2007).  

 
Figure 2: ElectroCap (image courtesy of ElectroCap 
International Inc., 2004)  

Referring to Figure 1 we decompose both G(s) 
and H(s) to identify various difficulties and 
opportunities. This also allows us to position our 
own contribution, which includes the design of the 
headset reported in section 5. 

First we consider H(s), consisting of (1) the 
services provided by the therapist and (2) the 
training equipment. There are several good reasons 
why the therapist is involved. These include the 
professional judgment on the needs and on the 
progress of the patient, checking for counter-
indications together with the personal attention and 
motivation given to the patient by the therapist. But 
at present the therapist is also needed to (a) position 
the EEG cap or headset onto the patient's head, (b) 
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add conducting gel and (c) set-up the equipment. 
The latter reasons a-c, although indispensible at 
present, form at the same time a bottleneck.  They 
are a bottleneck in the following sense:  

 the therapist gets involved only after the user 
has been diagnosed to be ill or has been 
classified according to a certain disorder. The 
user has become a patient. In other words, 
feedback training is not used as a preventive 
tool, which could help a user to maintain a 
healthy equilibrium; 

 the therapist is needed to take care of 
positioning the cap, applying conducting gel 
and  setting-up equipment, in other words: 
without the therapist the neurofeedback 
training cannot happen. The user cannot train 
at home. This limitation in turn, limits the 
number of training sessions, both in frequency 
and duration; 

There is one conclusion which we draw 
immediately, namely that if the practical difficulties 
related to the cap, the gel and the equipment can be 
solved or relieved, home usage and preventive usage 
are much more likely to happen.   

But the contribution of the therapist is larger. 
There is no substitute for his or her professional 
judgment and personal attention. So the therapist 
keeps a role, although perhaps not during each 
session. This leaves a question about the 
unsupervised sessions. The question is how the user 
will keep him or herself motivated to train regularly. 
Our answer is simple: training should be fun. 
Phrased differently, there have to be motivational 
elements built-in to the training equipment (gaming, 
flow). We shall address this in the next section. 

Now let's have a closer look at the user. G(s) is 
an intertwined mind-body complex. The output of 
the training equipment enters the user through 
suitable interface elements first at his or her bodily 
level: ears, eyes, perhaps touch. This is not very 
problematic because excellent interface elements 
such as loudspeakers, earphones, video screens etc. 
are readily available. There is also no lack of 
pleasant and aesthetic audio-video content. The 
user's output, the EEG signal, is also wiretapped at a 
physical level. This is a source of difficulties, as 
already mentioned. That is why we consider the 
design of an easy-to-use headset to be an essential 
step.  

At a higher level inside the user there are 
processes of perception, cognition, volition and 
consciousness going on. It is at this level that issues 
of attention and attention deficit become noticeable, 

as in ADHD. But it is also at this level where fun, 
beauty and motivation occur.  

4 PRACTICAL AND 
MOTIVATIONAL ELEMENTS 

To enable neurofeedback training in the home 
context, the product should be designed according 
specific requirements, aiming at improving the 
training methods and enabling users to operate 
independently. These requirements should include 
the ability to (a) easily locate sensor positions, (b) 
apply sensors and gel without help, (c) measure 
electrode impedance and to act accordingly and (d) 
easily clean and reuse the system. 

Bringing neurofeedback training to the home 
environment would also benefit the financial aspect, 
reducing the cost of training as a result of decreasing 
expert involvement. Furthermore, only an EEG 
measurement device and software would have to be 
acquired, since we can assume that most households 
already have a computer. 

In addition to the requirements, the training 
software should be intrinsically motivating (playful) 
(Rauterberg, 2004) as mentioned before. For 
designing training software, we formulated the 
following assumptions based on observations and 
experiences:  

 A1: that it is helpful to give the user rewards 
based on performance; 

 A2: that it is helpful to simulate elements from 
an assumed context of use; 

 A3: that it is helpful to provide the user with 
quantitative performance data. 

 
Taking a closer look at these assumptions, we 

find several opportunities to apply concepts of 
gaming to the proposed neurofeedback training 
software, for example:  

 reward schemes with levels, credits, bonuses, 
etc. (A1); 

 sound generation and rendering of high-
resolution real-time environments (A2); 

 statistics and graphs etc. (A3); 
 
Acknowledging this overlap and the fact that 

intrinsic motivation is found in gaming (Malone, 
1980), implies stimulating concentration and 
motivation. We suggest to incorporate gaming 
aspects in neurofeedback training software (e.g. 
‘Brainball’ of Hjelm (Hjelm, 2003) is considered to 
be an interesting example). 
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We aim for neurofeedback training applied in 
such a practical and motivational way that it can be 
considered a game. In the next section we describe 
the creation of a product in which we applied the 
aforementioned shift from treatment to play, in an 
attempt to show it is not only desirable but also 
achievable. However, we have to consider the fact 
that the rich media and gaming experience people 
are used to, has its influence on the expectancy for 
neurofeedback software; we could say that 
neurofeedback training has to keep pace with 
gaming.  

5 DEVELOPMENT OF EEG 
HEADSET 

In order to reach the aims as discussed earlier, we 
developed a headset which gives the user the 
opportunity to retrieve EEG signals from his scalp in 
a convenient way. Combined with neurofeedback in 
the form of a 3D environment, this headset is the 
first step to the vision that combines gaming, EEG 
signals and therapy within the home environment. In 
contrast to the traditional ElectroCap, the headset 
(Figure 3) can be put on the head with ease and 
without professional help. Operations as locating 
contact points, attaching sensors and applying 
conducting gel are all integrated in the headset, 
enabling neurofeedback applications for non-expert 
users in the home environment. The product 
includes a headset, electronics, sensors, hard- and 
software.  

Figure 3: EEG headset. 

The headset has a flexible construction to adapt 
to a variety of head dimensions. The material 
flexibility enables a one-size fits all design, 
reckoning with a head breadth variety of 1.3 inch. 
This figure is based on difference in dimensions of 
children age 6 (5th percentile girls, 5.1 inch) to adults 
(95th percentile male, 6.4 inch) (Woodson, Tillman, 
& Tillman, 1992). The mechanical properties of the 
material make sure that the headset is stable on the 
head, which is necessary for the sensors to work 
properly. Soft cushion pads on the sides provide the 
headset with more stability and comfort.  

Embedded electronics take care of the 2-channel 
EEG signal amplification, enhancing signal strength. 
Two sensors (positioned on points C3 and C4 of the 
international 10-20 system) measure EEG signals 
while the sensor positioned on the Cz location acts 
as a ground (a common reference electrode 
placement). The fourth sensor is placed near the Fz 
position and acts as an active electrode, according to 
the ‘driven right leg’ (DRL) principle (Webster, 
1998) to minimise distortion. This position has been 
chosen for its symmetric location relative to points 
C3 and C4, preventing topographic distortion. 
Moreover, it increases the stability of the headset by 
restricting the headset to tilt when nodding or 
moving the head otherwise.  

The sensors (Figure 4) can be clicked in and out 
of slots in the headset. Those slots enable two 
degrees of freedom (translation and rotation), 
enabling the sensors to adapt to different head 
shapes and dimensions autonomously. A flexible 
material between the sensor and the headset allows 
for vertical sensor translation and applies a force, 
pushing the sensor on the scalp. Additionally, the 
shape of the sensor slots enables a 20˚ rotation to 
both sides. The combination of translation and 
rotation assures that the sensors can adapt to 
different head shapes and helps to maintain a stable 
signal.  

Figure 4: EEG headset sensor. 

The detachable sensors measure EEG signals on the 
scalp. Therefore the scalp has to be scratched in 
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order to gently remove dead skin cells that disturb 
the signals, this is achieved by simply twisting a part 
of the sensor called ‘scratcher’. Furthermore, a 
container for conducting gel is implemented in the 
scratcher. The gel can simply be applied by pushing 
a plunger. By doing so, the gel connects the tin (Sn) 
electrode with the scalp, bridging the gap caused by 
the hair. Currently, the sensors need to be filled with 
gel using a syringe, but in the future gel capsules or 
disposable sensors will be developed to nullify this 
inconvenience.  

The 2 channel EEG signal retrieved from the 
sensors is magnified by the analogue pre-amplifier 
in the headset. This signal is converted using an A/D 
converter, which is located in an external box. The 
box also contains a power source and an opto-
coupler for safety reasons. The signal is send to a 
computer, which feeds the retrieved bio-signals back 
through a 3D environment. This 3D environment 
includes different sessions for neurofeedback 
training, where the user learns to train specific brain 
capacities using goals and instant brain feedback 
(e.g. the intensity of a fire is related to the level of 
concentration, see Figure 5). 

Figure 5: Screenshot of 3D environment ‘AdventurePark’. 

6 EVALUATION 

To test the quality of the headset, we developed an 
initial functional prototype since the actual headset 
has not been manufactured yet. This prototype was 
used in an evaluation of the headset principle. 

6.1 Research Question 

An impedance limit of 5 kΩ is often mentioned for 
clinical use of the EEG, in order to prevent signal 
distortions (Heinrich, 2007). In this project however, 

we allow ourselves a 10 kΩ impedance limit 
because of two reasons. Firstly, we assume that the 
distortion level depends on the length of the wires, 
which is reduced by embedding the preamplifier in 
the headset. Secondly, the embedded DRL system 
filters a lot of distortion, ensuring a relatively high 
quality EEG signal. This leads to the following 
formulation of the research question: 

All sensors of the headset have impedance lower 
than 10 kΩ when placed on the head of the 
participants. 

6.2 Method 

We conducted an experiment in which we compared 
the impedance values of the sensors against the 
requirements of 10 kΩ. 

6.2.1 Apparatus and Measurements 

To prevent for extreme cases influencing the 
reliability of the experiment, head dimensions of the 
participants have been measured by the 
experimenters (Figure 6). A tape measurer has been 
used to measure the ear to ear distance along the 
skull (from the points of attachment of the ears along 
the centreline of the international 10-20 electrode 
placement system). For the head breadth, measured 
straight above the ears, a self-made sliding calliper 
has been used (Figure 7).  

Figure 6: Head dimension measurement method. 

Figure 7: Self-made sliding calliper. 

The impedance of the sensors C3, C4 and Fz were 
measured relatively to sensor Cz. For this, the 2-
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Channel EEG MindSurfer Standard hardware has 
been used. The value was determined by reading an 
analogue gauge implemented in the Jukebox mental 
training software installed on a notebook (NEC 
Versa P520). The gauge was calibrated on forehand 
with resistors with fixed values. 

The functional prototype (Figure 8) was made of 
4mm thick Plexiglass and shaped according the 
headset design.  

6.2.2 Participants and Procedure 

Twenty students (17 male, 3 female, age 20-24) 
participated in this test. The tests took place in an 
cutoff room. After welcoming the participants, they 
were asked to sit in a comfortable chair.  

Figure 8: Picture user test participant. 

After a short introduction the participant was 
asked to put on the headset. The experimenters 
assisted in positioning the headset and parting the 
hair out of the way. Participants gently scratched 
their own head with the sensor scratchers and 
applied the gel. The participants were able to see the 
impedance value on the notebook screen and were 
instructed to optimise the conductance by trying to 
bring this value down to less than 10 kΩ. They were 
told to achieve this by using the sensor scratchers 
and by shaking the headset slightly, allowing the gel 
to settle. After optimising the conductance for about 
one minute, the researcher recorded the impedance 
value of each sensor. This value indicates the 
impedance between sensor Cz and sensors C3, C4 
and Fz. 2-Channel EEG hardware was used, whereas 
three values had to be recorded. Therefore the C3 
sensor wire was connected to the Fz sensor after 
recording its value, the C4 wire was disconnected at 
that time.  

After each test, all gel was removed from the 
sensors and new gel was inserted, to ensure the same 
conditions for all participants. 

6.3 Results 

We calculated the mean and standard deviations 
of all measurements and report on them in Table 1 
and illustrate them in  
Figure 9.  

A t-test showed that the mean impedances for C3 
(t(19)=-4.616, p<.001), C4 (t(19)=-4.082, p=.001) 
and Fz (t(19)=-7,452, p<.001) were significantly 
lower than 10 kΩ. 

The head dimensions of the participants are 
within the 5th and 95th percentile as defined in the 
Human Factors Design Handbook (Woodson et al., 
1992). 

Table 1: Head dimensions and sensor impedances. 

 mean std dev 
Head breadth (cm) 15.01 0.52 
Ear to ear distance (cm) 31.75 1.40 
Sensor C3 (kΩ) 6.70 3.20 
Sensor C4 (kΩ) 7.10 3.18 
Sensor Fz (kΩ) 5.40 2.76 

 

Figure 9: Median, quartile ranges and outliers of result set. 

6.4 Conclusions 

Based on the results of this evaluation we can state 
that the functional prototype reaches impedances 
significantly lower than the desired 10 kΩ limit. In 
addition, based on our experience there seem to be 
some aspects that would probably decrease the 
impedance even more, although it should be 
mentioned that no extensive testing of these aspects 
has been done. Firstly, based on our own experience, 
it seems that having some experience with the 
headset plays an important role in creating good 
conductivity. Given a certain amount of training, 
most users are likely to achieve impedance levels 
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below 5k. Secondly, the impedance measurements 
were recorded after approximately one minute of 
having the gel applied on the head, yet our 
experience gives the impression that the impedance 
tends to decrease a bit over time.  

The results are considered promising and in 
manufacturing the headset, there should be aimed 
for the same characteristics as the functional 
prototype. However, this doesn’t imply that the 
manufactured headset will actually behave in the 
exact same way and therefore we propose an 
evaluation of the final product as well. 

7 DISCUSSION 

We identified several possible issues holding back 
the development and implementation of 
neurofeedback therapy. New aims of neurofeedback 
are suggested, including: 1) a focus 
shift in healthcare from cure to prevention, 
2) increasing the focus on mental wellbeing in 
healthcare, 3) elevating the standard of living by 
enabling users to consciously train brain signals 4) 
implementing gaming approaches in neurofeedback 
to increase intrinsic motivation.  

In an attempt to make neurofeedback training 
more accessible by combining the therapy with 
gaming in the home environment, we designed a 
headset that can be used all by oneself in 
combination with a 3D gaming environment for 
desktop pc. We evaluated a prototype of the headset 
and proved that the impedances of the sensors were 
significantly below 10 kΩ. Of course, future work 
will have to imply the actual realization and testing 
of this headset, more iteration steps will have to be 
made before starting large volume production.  

To our knowledge, this headset is one of the first 
attempts to apply enjoyable neurofeedback in the 
home environment. It can be used without 
supervision of a medical expert and can be operated 
by a single user, lowering the practical barriers of 
neurofeedback therapy, combined with motivational 
elements in the form of an entertaining 3D game. 
Hopefully, this will increase the societal acceptance 
of neurofeedback 

We argue to continue developing headsets 
implementing EEG sensors, in order to stimulate the 
ease of use. Future work could include gel capsules 
to prevent hassle with syringes and cleaning, or even 
dry EEG sensors. Furthermore, a focus should 
remain on using gaming as motivational tool in 
neurofeedback therapy and to support society 
adopting neurofeedback training to increase overall 

mental wellbeing. Neurofeedback therapy already 
exists for over a decade; still the general public is 
unaware of the broad spectrum of opportunities 
neurofeedback could provide. Curing mental 
illnesses is of course a big opportunity, but 
neurofeedback has the potential to go much further. 
Instead of curing, it could prevent mental illness to 
happen or even exceed current human capabilities. 
For this to be realized, the neurofeedback research 
community should focus on practical and 
motivational issues that hold back the 
implementation of neurofeedback therapy, and 
create a shift towards a society that greatly benefits 
from its possibilities.  
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Abstract: In this paper we present a rule optimizing technique motivated by the psychological studies of human 
concept learning. The technique allows for reasoning to happen at both higher levels of abstraction and 
lower level of detail in order to optimize the rule set. Information stored at the higher level allows for 
optimizing processes such as rule splitting, merging and deleting, while the information stored at the lower 
level allows for determining the attribute relevance for a particular rule.  

1 INTRODUCTION 

During the rule optimization process a trade-off 
usually needs to be made between the 
misclassification rate (MR), and coverage rate (CR) 
and generalization power (GP). MR corresponds to 
the number of incorrectly classified instances and it 
should be minimized. CR is the number of instances 
that are captured by the rule set and this should be 
maximized. Good GP is achieved by simplifying the 
rules. The trade-off occurs especially when the data 
set is characterized by continuous attributes where a 
valid constraint on the attribute range needs to be 
determined for a particular rule. Increasing the 
attribute range usually leads to the increase in CR 
but at the cost of an increase in MR. Similarly if the 
rules are too general they may lack the specificity to 
distinguish some domain characteristics and hence 
the MR would increase.  

In this paper we extend the rule optimizing 
method presented in (Hadzic & Dillon, 2005; Hadzic 
& Dillon, 2007). The method was used to optimize 
the rules learned by a neural network and in this 
work it is extended to be applicable to rules obtained 
using any knowledge learning methods. The 
extension allows reasoning to happen at both higher 
level of abstraction and lower level of detail. The 
information about the relationships between the 
class attribute and the input attributes will be 
available for determining the relevance of rule 
attributes at any stage of the rule optimizing (RO) 
process. The attributes irrelevant for a particular rule 
can then be deleted. Furthermore, attributes 
previously found as irrelevant can be re-introduced 

if found relevant at a later stage in the process. The 
proposed method is evaluated on the rules learned 
from publicly available real world datasets and the 
results indicate the effectiveness of the method.  

2 MOTIVATION  

Concept or category formation has been studied 
extensively in the psychology area. Generally it 
refers to the process by which a person learns to sort 
specific observations into general rules or classes. It 
allows one to respond to events in terms of their 
class membership rather than uniqueness (Bruner et 
al., 1956). This process is the elementary form by 
which humans adjust to their environment. Relevant 
attributes need to be identified and a rule has to be 
learned, developed or applied for formulating a 
concept (Sestito & Dillon, 1994). Human subjects 
consistently seek confirming information by actively 
searching they environment for appropriate 
examples which can confirm or modify the newly 
discovered concepts (Kristal 1981; Pollio 1974, 
sestito & Dillon 1994). Hence, there exists one level 
at which the concepts or categories have been 
formed and there is another level where the 
observations are used for confirming or adjusting the 
learned concepts and their relationships (Rosch 
1977). When a formed belief appears to be 
contradictory for some observations one may go into 
thinking at the lower level of detail to investigate the 
constituents of that belief and what example 
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observations formed it. An update of the belief can 
then occur whereby some pre-conditions are added 
or removed from the constituents of that particular 
belief. Re-introducing new features previously found 
as irrelevant or removing the irrelevant one, can 
occur quite frequently while learning occurs and 
until some reliable belief is formed.  

Being able to perform this type of task is 
desirable for the rule optimizing process. The higher 
level of abstraction would correspond to the rules 
with the attribute constraints and the predicting class 
values, while at the lower level the relationships 
between attribute values and the occurring class 
values are stored. This information can be used to 
determine the relevance of attributes in predicting of 
the class value that a particular rule implies. 
Integrating the feature selection criterion with the 
rule optimizing stage is advantageous since initial 
bad choices made about the attribute relevance could 
be corrected as learning proceeds. 

3 METHOD DESCRIPTION 

The method takes as input a file describing the rules 
detected by a particular classifier and the domain 
dataset from which the rules were learned. The rules 
are represented in a graph structure (GS) where each 
rule has a set of attribute constraints and points to 
one or more target values. The GS contains the high 
level information about the domain at hand in form 
of rules and is used for reasoning at the higher level 
of abstraction.  

3.1 Graph Structure Formation 

In order for the GS to be formed two files are read, 
one describing the rules detected by a classifier and 
the other containing the total set of instances from 
which the rules were learned. The rules are in form 
of attribute constraints while the implying class of 
each rule is ignored. The reason is that during the 
whole process of RO, the implying class values can 
change as some clusters will be merged or split. 
Rather the domain dataset is read according to which 
the weighted links between the rules and class 
values are set. The implying class value of a rule 
becomes the highest weighted link to a particular 
class value node. This class value has most 
frequently occurred in the instances which were 
captured by the rule. An example of the GS after a 
dataset is read in is shown in Figure 1. The implying 
class of Rule1 and Rule 3 would be class value 1 
while for Rule2 it is class value 2. Even though it is 

not shown in the figure, each rule has a set of 
attribute constraints associated with it, which we 
refer to as the weight vector (WV) of that rule. The 
set of attribute values occurring in the instance being 
processed are referred to as the input vector (IV). 
Hence, to classify an instance we match the IV 
against the WVs of the available rules. A constraint 
for a continuous attribute is given in terms of a 
lower range (lr) and an upper range (ur) indicating 
the set of allowed attribute values.  
 

 Rule1

Rule2

Rule3

Class

Value2

Value1

 
Figure 1: Example graph structure from high level. 

3.2 Storing Lower Level Information  

Previous sub-section has explained the GS formation 
at the top level which is used mainly for determining 
the implying class values of the rules.  In this section 
we discuss how lower level instance information is 
stored for each rule. This low level information is 
necessary for the reasoning at the lower level.  

As previously mentioned each rule has a set of 
attribute constraints associated with it, which are 
stored in its WV. For each of the attributes in the WV 
we collect the occurring attribute values in the 
instances that were captured by that particular rule. 
Hence each attribute has a value list (VL) associated 
with it which stores all the occurring attribute 
values. Furthermore, each of the value objects in the 
list has a set of weighted links to the occurring class 
values in the instance where that particular value 
occurred. This is necessary for the feature selection 
process which will be explained later.  For a 
continuous attributes there could be many occurring 
values and values close to one another are merged 
into one value object when the difference between 
the values is less than a chosen merge value 
threshold. Hence the numerical values stored in a list 
of a continuous attribute will be ordered so that a 
new value is always stored in an appropriate place 
and the merging can occur if necessary.  Figure 2 
illustrates how this low level information is stored 
for a rule that consists of two continuous attributes A 
and B. The attribute A has the lower range (lr) and 
the upper range (ur) in between which the values v1, 
v2 and v3 occur. The ‘lr’ of A is equal to the value 
of v1 or the ‘lr; of v1 if v1 is a merged value object, 
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while the ‘ur’ of A is equal to the value of v3 or the 
‘ur’ of v3 if v3 is a merged value object.  
 

 
A B

l r u r

v 1 v 2 v 3 v 1 v 2

C l a s s

V a l u e 2V a l u e 1

l r u r

 
Figure 2: Storing low level instance information. 

3.3 Reasoning at the Higher Level 

Once the implying classes are set for each of the 
rules the dataset is read in again in order to check for 
any misclassifications and update the rule set 
accordingly. When a rule captures an instance that 
has a different class value than the implication of the 
rule, a child rule will be created in order to isolate 
the characteristic of the rule causing the 
misclassification. The attribute constraints of the 
parent and child rule are updated so that they are 
exclusive from one another. The child attribute 
constraint ranges from the attribute value of the 
instance to the range limit of the parent rule to which 
the input attribute value was closest to. The parent 
rule adopts the remaining range as the constraint for 
the attribute at hand.   

After the whole dataset is read in there could be 
many child rules created from a parent rule. Some 
child rules may be merged together first but 
explanation of this is to come later once we discuss 
the process of rule similarity comparison and 
merging. If a child rule points to other target values 
with high confidence it become a new rule and this 
corresponds to the process of rule splitting, since the 
parent rule has been modified to exclude the child 
rule which is now a rule on its own. On the other 
hand if the child rule still mainly points to the 
implying class value of the parent rule it is merged 
back into the parent rule (if they are still similar 
enough). An example of a rule which has been 
modified to contain a few children due to the 
misclassifications is displayed in Figure 3.  The 
reasoning explained would merge ‘Child3’ back into 
the parent rule since it points to the implying class of 
the parent rule with high weight. This is assuming 
that they are still similar enough. On the other hand 
Child1 and Child2 would become new rules since 
they more frequently capture the instances where the 
class value is different to the implying class of the 

parent rule. Furthermore if they are similar enough 
they would be merged into one rule. 
 

 

Rule

Child1

Child2

Child3

Class
Value2

Value1

 
Figure 3: Example of rule splitting. 

In order to measure the similarity among the 
rules we make use of a modified Euclidean distance 
(ED) measure. This measure is also used to 
determine which rule captures a presented instance. 
An instance is always assigned to the rule with the 
smallest ED to the IV. Even though one would 
expect the ED to be equal to 0 when classifying 
instances this may not always be the case throughout 
the RO process.  The ED calculation is calculated 
according to the difference in the allowed range 
values of a particular attribute. The way that ED is 
calculated is what determines the similarity among 
rules, and therefore we first overview the ED 
calculation and then proceed onto explaining the 
merging of rules that may occur in the whole RO 
process. 

3.3.1 ED Calculation  

For a continuous attribute ai occurring at the position 
i of WV of rule R, let ‘ailr’ denote the lower range, 
‘aiur’ the upper range, and ‘aiv’ the initial value if 
the ranges of ai are not set.  The value from the i-th 
attribute of IV will be denotes as ivai. The i-th term 
of the ED calculation between IV and WV of R for 
continuous attributes is: 
 
- case 1: ai ranges are not set 

• 0 iff ivai = aiv 
• ivai - aiv if ivai > aiv 
• aiv - ivai if  ivai < aiv 

 - case 2: ai ranges are set  
• 0 iff ivai ≥ ailr and ivai ≤ aiur 
• ailr - ivai if ivai < ailr   
• ivai - aiur if ivai > aiur 
 

The input merge threshold used for continuous 
attribute (MT) also needs to be set with respect to the 
number of continuous attributes in the set. It 
corresponds to the maximum allowed sum of the 
range differences among the WV and IV so that the 
rule would capture the instance at hand.   
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When calculating the ED for the purpose of 
merging similar rules there are four possibilities that 
need to be accounted with respect to the ranges 
being set in the rule attributes, and the ED 
calculation is adjusted. For rule R1 let r1ai denote the 
attribute occurring at the position i of WV of rule R1, 
let ‘r1ailr’ denote the lower range, ‘r1aiur’ the upper 
range, and ‘r1aiv’ the initial value if the ranges of r1ai 
are not set.  Similarly for rule R2 let r2ai denote the 
attribute occurring at the position i of WV of rule R2, 
let ‘r2ailr’ denote the lower range, ‘r2aiur’ the upper 
range, and ‘r2aiv’ the initial value if the ranges of r2ai 
are not set. The i-th term of the ED calculation 
between the WV of R1 and WV of R2 for continuous 
attributes is: 

 
- case 1: both r1ai and r2ai ranges are not set 

• 0 iff r1aiv = r2aiv 
• r1aiv - r2aiv if r1aiv > r2aiv  
• r2aiv - r1aiv if  r1aiv < r2aiv  

 - case 2: r1ai ranges are set and r2ai ranges are not set   
• 0 iff r2aiv ≥ r1ailr and r2aiv ≤ r1aiur 
• r1ailr - r2aiv if r2aiv < r1ailr  
• r2aiv – r1aiur if r2aiv > r1aiur 

- case 3:  r1ai ranges are not set and r2ai ranges are set 
• 0 iff r1aiv ≥ r2ailr and r1aiv ≤ r2aiur 
• r2ailr – r1aiv if r1aiv < r1ailr  
• r1aiv – r2aiur if r1aiv > r2aiur 

- case 4: both r1ai and r2ai ranges are set 
• 0 iff r1ailr ≥ r2ailr and r1aiur ≤ r2aiur 
• 0 iff r2ailr  ≥ r1ailr and r2aiur ≤ r1aiur 
• min(r1ailr - r2ailr, r1aiur - r2aiur)   iff r1ailr > 

r2ailr and r1aiur > r2aiur  
• min(r2ailr - r1ailr, r2aiur -r1aiur  iff r2ailr > 

r1ailr and r2aiur > r1aiur  
• (r1ailr – r2aiur) iff r1ailr > r2aiur 
• (r2ailr – r1aiur) iff r2ailr > r1aiur 

 
For a rule to capture an instance or for it to be 

considered sufficiently similar to another rule the 
ED would need to be smaller than the MT threshold.   

3.3.2 Rule Merging  

As mentioned at the start of Section 3.3 the child 
rules may be created when a particular rule captures 
an instance that has a different class value than the 
implying class value of that rule (i.e. 
misclassification occurs). After the whole file is read 
in the child rules that have the same implying class 
values are merged together if the ED between them 
is below the MT. Thereafter the child rules either 
become a new rule or are merged back into the 
parent rule, as discussed earlier. Once all the child 

rules have been validated the merging can occur 
among the new rule set. Hence if any of the rules 
have the same implying class value and the ED 
between them is below the MT the rules will be 
merged together and the attribute constraints 
updated. After this process the file is read in again 
and any of the rules that do not capture any instances 
are deleted form the rule set.   

3.4 Reasoning at the Lower Level 

Once the rules have undergone the process of 
splitting and merging, the relevance of rule attributes 
should be calculated as some attributes may have 
lost their relevance through merging of two or more 
rules. Other attributes may have become relevant as 
a more specific distinguishing factor of a new rule 
which resulted from splitting of an original rule. For 
this purpose we make use of the symmetrical tau 
(Zhou & Dillon, 1991) feature selection criterion 
whose calculation is made possible by the 
information stored at the lower level of the graph 
structure. We start this section by discussing the 
properties of the symmetrical tau and then proceed 
onto explaining how the relevance cut-off is 
determined and the issue of choosing the merge 
value threshold for the value objects in a value list.  

3.4.1 Feature Selection Criterion 

Symmetrical Tau (τ) (Zhou & Dillon, 1991) is a 
statistical measure for the capability of an attribute 
in predicting the class of another attribute. The τ 
measure is calculated using a contingency table 
which is used in statistical area to record and analyze 
the relationship between two or more variables. If 
there are I rows and J columns in the table, the 
probability that an individual belongs to row 
category i and column category j is represented as 
P(ij), and P(i+) and P(+j) are the marginal 
probabilities in row category i and column category j 
respectively, the Symmetrical Tau measure is 
defined as (Zhou & Dillon, 1991): 
   

 
For the purpose of feature selection problem one 

criteria in the contingency table could be viewed as 
an attribute and the other as the target class that 
needs to be predicted. In our case the information 
contained in a contingency table between the rule 
attributes and the class attributes is stored at the 
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lower level of the graph structure as explained in 
Section 3.2. The τ measure was used as a filter 
approach for the feature subset selection problem in 
(Hadzic & Dillon, 2006).  In the current work its 
capability of measuring the sequential variation of 
an attribute’s predictive capability is exploited. 

3.4.2 Determining Relevance Cut-off 

For each of the rules that are triggered for multiple 
class values we calculate the τ criterion and rank the 
rule attributes according to the decreasing τ value. 
The relevance cut-off point is determined as the 
point in the ranking where the τ value of an attribute 
is less than half of the previous attribute’s τ value. 
All the attributes below the cut-off point are 
considered irrelevant for that particular rule and are 
removed from the rule’s WV. On the other hand, if 
some of the attributes above the relevance cut-off 
point were previously excluded from the WV of the 
rule, they are now re-introduced since their τ value 
indicates their relevance for the rule at hand.  

As mentioned in Section 3.2 when the occurring 
values stored in the value list of an attribute are 
close together they are merged and the new value 
object represents a range of values. The merge value 
threshold chosen determines when the difference 
among the value objects is sufficiently small for 
merging to occur. This is important for appropriate τ 
calculation. Ideally a good merge value threshold 
will be picked with respect to the value distribution 
of that particular attribute. However, this 
information is not always available and in our 
approach we pick a general merge threshold of 
around 0.02. This has some implications for the 
calculated τ value since when the categories of an 
attribute A are increased more is known about 
attribute A and the error in predicting attribute B 
may decrease. Hence, if the merge value threshold is 
too large many attributes will be considered as 
irrelevant since all the occurring values could be 
merged into one value object which points to many 
target objects and this aspect would indicate no 
distinguishing property of the attribute. On the other 
hand, if it is too small many value objects may exist 
which may wrongly indicate that the attribute has 
high relevance in predicting the class attribute. 

4 METHOD EVALUATION 

The proposed method was evaluated on two rule sets 
learned from publicly available real world datasets 

(Blake et al., 1998). The rule optimizing process was 
run for 10 iterations for each of the tested domains.  

The first set of rules we consider has been 
learned from the ‘Iris’ dataset using the continuous 
self-organizing map (Hadzic & Dillon, 2005) so that 
we can compare the improvement of the extension to 
the rule optimizing method. The merge cluster 
threshold MT was set to 0.1 and the merge value 
threshold MVT for attribute values was set to 0.02. 
The rules obtained using the CSOM technique 
(Hadzic & Dillon, 2005) are displayed in Figure 4. 
When the rules obtained after retraining were taken 
as input by our proposed rule optimization method 
the resulting rule set was different in only one rule. 
The rule 4 was further simplified to exclude the 
attribute constraint from sepal-width and the new 
attribute constraint was only that petal-width has to 
be between the values of 0.667 and 1.0 for the class 
value of Iris-virginica. Hence the process was able to 
detect another attribute that has become irrelevant 
during the RO process. The predictive accuracy 
remained the same.   

 

 
Figure 4: Iris rule set as obtained by using the traditional 
rule optimizing technique. 

With respect to using CSOM to extract rules 
from the ‘Iris’ domain we have performed another 
experiment. The initial rules extracted by CSOM 
without the network pruning and retraining of the 
network were optimized. When network pruning 
occurs the network should be re-trained for new 
abstractions to be properly formed. In this 
experiment we wanted to see how the RO technique 
performs by itself without any network pruning or 
retraining. 
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Rules Implying class 
0.33 < PL < 0.678 
0.375 < PW < 0.792 

Iris-versicolor 

0.208 < SW < 0.542 
0.627 < PL < 0.847 
0.54 < PW < 1.0 

Iris-virginica 

0.778 < SL < 1.0 
0.25 < SW < 0.75 
0.814 < PL < 1.0 
0.625 < PW < 0.917 

Iris-virginica 

0.0 < SL < 0.417 
0.41 < SW < 0.917 
0.0 < PL < 0.153 
0.0 < PW < 0.208 

Iris-setosa 

Figure 5: Optimized initial rules extracted by CSOM 
Notation: SL – sepal_length, SW – sepal_width, PL – 
petal _length, PW – petal_width. 

By applying the RO technique the rule set was 
reduced to four rules as displayed in Figure 5. 
However, not as many attributes were removed from 
each of the rules and two instances were 
misclassified. Hence, performing network pruning 
and retraining prior to RO may achieve a more 
optimal rule set. However, in the cases where 
retraining the network may be too expensive the RO 
technique can be applied by itself. In fact compared 
to the initial set of rules detected by CSOM, which 
consisted of nine rules with three misclassified 
instances this is still a significant improvement.  

The second set of experiments was performed on 
the complex ‘Sonar’ dataset which consists of sixty 
continuous attributes. The examples are classified 
into two groups one identified as rocks (R) and the 
second identified as metal cylinders (M). The 
learned decision tree by the C4 algorithm (Quinlan, 
1990) consisted of 18 rules with the predictive 
accuracy equal to 65.1%. These rules were taken as 
input in our RO technique and the MT was set to 0.2 
while the MVT was set to 0.0005. The optimized rule 
set consisted of only two rules i.e 0.0 < a11 <= 0.197 

 R and 0.197 < a11 <= 1.0  M. When tested on 
an unseen dataset the predictive accuracy was 82.2 
% i.e. 11 instances were misclassified from the 
available 62. Hence the RO process has again proved 
useful in simplifying the rules set without the cost of 
increasing the number of misclassified instances. 

5 CONCLUSIONS 

This paper has presented a rule optimizing technique 
motivated by the psychological studies of human 
concept information. The capability to swap from 
the higher level reasoning to the reasoning at the 
lower instance level has indeed proven useful for 

determining the relevance of attributes throughout 
the rule optimizing process. The method is 
applicable to the optimization of rules obtained from 
any data mining techniques. The evaluation of the 
method on the rules learned from real world data by 
different classifier methods has shown its 
effectiveness in optimizing the rule set. As a future 
work method needs to be extended so that 
categorical attributes can be handled as well. 
Furthermore, it would be interesting to explore the 
possibilities of the rule optimizing method in 
becoming a stand-alone machine learning method 
itself. 
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Abstract: Proportional noise, in which the standard deviation of signal noise is proportional to signal mean, is a 
fundamental constraint on human motor performance but why it occurs is unknown. We show that for 
neural networks with binary thresholded units, channel capacity is maximised with a recruitment strategy 
that produces PN. The size principle also emerges, in agreement with observation. We therefore argue that 
Fitt’s law, speed-accuracy trade-off, and the minimum variance trajectories (including minimum jerk 
trajectories for limiting brief movements), which are observed in most human point-to-point movements, 
have evolved as optimal strategies resulting from maximising channel capacity. We conclude that 
biomimicry of minimum variance and minimum jerk trajectories in robotics is probably only of aesthetic 
value when using standard technology. In contrast, biomimicry using neuromorphic technology in which 
networks are built from stochastic silicon ‘neurons’ with thresholds, is functional biomimetics and 
optimization of channel capacity will produce behaviours that are human-like. 

1 INTRODUCTION 

A fundamental tenet of biomimetics is that naturally 
occurring systems have intrinsically ‘good’ qualities. 
By mimicking natural systems, it is believed that 
these qualities will transfer to synthetic systems. 
While there are some positive examples (eg. ‘gecko 
tape’ Geim et al, 2003), it is not always obvious 
what true benefits accrue from biomimicry, and 
building copies of nature may become an aesthetic 
end in itself. Natural systems evolve and adapt to 
solve problems of survival and reproduction, often 
by optimizing performance and structure within a 
particular environment or constraint. Mimicking the 
behaviour or structure without understanding the 
natural constraints may not be beneficial and may be 
quite suboptimal if the context/constraints are not 
relevant to the synthetic system. To translate 
nature’s solutions to synthetic systems requires a 
scientific understanding of the problem nature is 
attempting to solve. 

Mimicking human movements in robots is a 
particularly pertinent example. It is well-known that 
human movements that redirect an effector (limb, 
eye, etc.) from one point to another in space, such as 
reaching or saccadic eye movements, are highly 

stereotyped with characteristisc ‘smooth’ 
trajectories. For brief (rapid) movements, velocity 
profiles tend to be symmetrical, ‘bell-shaped’ and 
rather straight. Historically, this behaviour was first 
captured by the ‘minimum jerk’ trajectory (MJ) 
(Hogan, 1984; Flash & Hogan 1985) which 
purported to show that observed trajectories 
minimised the square of jerk (derivative of 
acceleration) integrated over the movement duration. 
It was argued that the MJ trajectory was a maximally 
‘smooth’ trajectory.  Subsequently, the MJ has been 
mimicked as a control objective in numerous robotic 
systems, presumably because of the smoothness 
performance (it is also easy to compute). However, 
from a biological viewpoint, the MJ hypothesis has 
been criticised because of the lack of plausibility of 
smoothness as a biological relevant performance 
criterion. Much smoother trajectories are feasible 
(Harris, 2004) and the MJ model cannot explain why 
longer movements have asymmetrical velocity 
profiles. So why build robots with MJ trajectories? – 
is it aesthetic biomimicry or does it build ‘good’ 
robots? 

A more recent optimal control model of human 
movement is the minimum variance model (MV) 
(Harris & Wolpert, 1998) in which it is proposed 
that trajectories minimise the inaccuracies caused by 
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proportional noise (PN), which is a specific kind of 
signal-dependent noise where the standard deviation 
of noise on a signal is proportional to the mean of 
the signal.     

Kxx =σ     (1) 

where K is a constant. The MV model captures 
many features of observed trajectories including 
increasing asymmetry with duration and the 
ubiquitous Fitt’s law (see below). In this model, 
‘smoothness’ is a by-product - not an objective - of 
the optimization because rapid changes in effector 
position cause more output variance. We are now 
beginning to see the incorporation of MV objectives 
in robotic systems (Simmons & Demiris, 2005). 
Again though, why build robots with MV 
trajectories? – is it biomimicry for its own sake, or 
does it build ‘better’ robots? 

There is no doubt (mathematically) that the 
‘smoothness’ cost function is a by-product of the PN 
constraint, but why does PN occur in natural 
systems? Indeed is PN optimal itself for some 
deeper constraint, and for roboticists is this deeper 
constraint even relevant to robotics? This is the 
question we wish to address. 

Human movement appears to be tightly 
constrained by the effects of PN. Most point-to-point 
movements (such as arm reaching) can be described 
by the empirical Fitt’s law in which the duration of a 
movement depends only on the ratio of target 
distance to target width. This invariance implies that 
that the standard deviation of end-point error is 
proportional to target distance (ie. PN). 
Physiological measurements have confirmed the 
existence of PN in isometric force production 
(Schmidt et al., 1979; Jones et al, 2002). For low-
pass systems (such as muscles), PN on the input 
command leads directly to a speed-accuracy trade-
off. Faster transitions at the ouput require more 
intense commands which are noisier because of PN, 
which in turn lead to greater end-point error. For a 
given muscle plant, there is a unique trajectory that 
minimises end-point variance (for a given duration) 
which has been shown to be in close agreement with 
the observed bell-shape velocity profiles (Harris & 
Wolpert, 1998, 2006).  

It is important to distinguish PN from the noise 
encountered in renewal point processes (eg. Poisson 
process), which we call Renewal Noise (RN). The 
firing rate of neurons has often been modelled as a 
renewal point process, but in RN it is the variance 
that is proportional to the mean rate, where the 
constant of proportionality (Fano factor F) depends 
on the inter-spike interval distribution:  

( ) 2/1Fxx =σ    (2) 

PN does not emerge as a ‘natural’ property of a 
renewal process (Harris, 2002). Simple mixing of 
renewal processes does not produce PN, but tends to 
produce an ever more Poisson-like renewal process 
(Cox & Miller, 1977). PN must emerge in some 
other way. 

In this paper, we consider an idealised motor 
recruitment network, or ‘channel’, and show 
analytically that there is an optimal recruitment 
strategy to maximise the number of signals that can 
be transmitted for a given error probability. PN 
emerges as the optimal noise for binary sub-
channels. We then consider the implications for 
dynamic motor control. 

2 THE IDEALISED CHANNEL 

The idealised recruitment channel consists of a 
parallel network of a large number of noisy sub-
channels (eg. motor neurons) each driven by the 
same input, )(tx . The channel output, )(ty , is a 
linear weighted sum of the sub-channel outputs 
(fig.1). 

 
Figure 1: An idealised recruitment channel.  

Each sub-channel has a thresholded response 
function, so that when the instantaneous value of the 
input exceeds the threshold of the sub-channel, the 
sub-channel is switched on and generates a noisy 
signal. When the input is below threshold, the sub-
channel is switched off and generates no output and 
no noise. We denote the output of the ith sub-
channel ( Ni ,1= ) by  
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<
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where (.)if denotes the response characteristic of the 
ith sub-channel, and iθ is a constant threshold for 
that sub-channel.  

Each sub-channel generates noise when switched 
on, which we assume to be mutually independent 
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from the noise of any other channel. We denote the 
instantaneous noise variance at the output of each 
sub-channel by: 

i

iii
i tx

txtxg
t

θ
θθ

σ
<
>−

=
)(0
)())((

)(2
    (4) 

where (.)ig  denotes how noise variance depends on 
the sub-channel input. The output of the whole 
channel is then given by 

∑
=

=
N

i
ii tzwty

1

)()(    (5) 

where iw is a fixed positive weight. The total output 
variance is given by 

∑
=

=
N

i
ii twtv

1

22 )()( σ      (6) 

We assume that (.)if  and (.)ig  are pre-specified 
functions determined by the characteristics of the 
sub-channels. For convenience, we drop the time 
dependence and consider only steady-state responses 
(we will return to the dynamic case later). 

Because of the redundancy in the system, it is 
obvious that there are many ways we can generate a 
specified output value, y, for a given input value x, 
by suitable choice of weights and thresholds. 
However, in general, each way will produce a 
different )(tv . Therefore, our goal is to find the 
distribution of weights and thresholds that optimises 

)(tv according to some cost function. To do this we 
develop the problem using continuous functions to 
allow us to use variational calculus to find the 
optimal weights and thresholds. 

2.1 Continuous Recruitment Equations 

We approach this problem analytically by assuming 
that there are a large number of sub-channels so that 
we can approximate summations in equations 5 and 
6 with integrals. In anticipation of a possible 
singularity occurring at 0=x , we also assume that 
the input can range only over maxxx ≤≤ε whereε is 
a small positive constant max0 x<<≤ ε . We next 
assume that there is a ‘density’ of units with 
thresholds x=θ  denoted by )(xρ , which is 
constrained by: 

∫=
max

)(
x

dxxN
ε

ρ    (7) 

The weights of sub-channels are approximated by 
the continuous function )(xw . The output can then 
be written as a convolution integral:  

∫ −= ′

x

x dxxxfxxwxy
ε

ρ )'()'()'()(   (8) 

Where (.)xf  is the response characteristic of 
subchannels with threshold at x. The output variance 
is similarly:  

∫ −== ′

x

xy dxxxgxxwxxv
ε

ρσ )'()'()'()()( 22     (9) 

2.2 Channel Capacity 

We now consider how to optimise the channel’s 
performance when the expected value of channel 
output is required to follow the input (ie. a unity gain 
linear channel). 

maxmax       )( xxxyxxy ≤≤≤≤= εε    (10) 

The channel is required to transmit signals of 
different values at different times. We assume that 
these signal values are uniformly distributed over the 
range maxxx ≤≤ε , and that  the channel is 
memoryless with no expectation of which signal is 
to be transmitted.  

We consider the input to be deterministic, so that 
the noise perturbing the output is due to the internal 
noise of the recruited sub-channels, which we 
assume to be Gaussian. Let us now assume that we 
wish to transmit M signals spread across the range. 
Consider three adjacent input signals, 1−jx , jx 1+jx  

(fig.2). We can see that the output y  given jx  
could deviate sufficiently from the expected value 

)( jxy  such that a maximum likelihood detector 
could make an error by attributing the output  to be 
more likely to arise from 1−jx  or 1+jx  (shaded tails 
in fig.2). Assuming noise variance changes slowly 
with x, then the probability of the detector being 
correct is  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
≈

iy

i
c erfp

σ
2    (11) 

where iΔ is the width of the region of correct 
response. We argue that, of all the possible channel 
configurations, the one that maximises the number 
of signals that can be transmitted for a specified 
probability of correct detection per signal is the best 
configuration. 

Assuming iΔ  to be small so that we can 
make a continuous approximation, the number of 
signals that can be transmitted is: 
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∫ Δ
≈
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dx
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M
ε

   (12) 

It follows from eq.11 that for a fixed probability of 
correct response, we need to maximise the benefit 
function 

∫∫ =≈
maxmax

)()( 2/1

xx

dx
xv

bdx
x

bM
εε

σ
   (13) 

where )(/2 1
cperfb −= . This optimization is, 

however, constrained by the channel’s possible 
output variance functions, eq(9), which are 
determined  by the weighting function )(xw  and the 
threshold density function )(xρ which must also 
yield the desired output )(xy according to eq.10. 
Finally the density function must also be constrained 
by the total number of sub-channels according to 
eq.7. We solve this is variational problem 
analytically for simple binary sub-channels. 

 
Figure 2: Output of subchannels for deterministic input. 

3 BINARY CHANNELS 

We now consider a ‘neuromorphic’ example in 
which each sub-channel is a ‘neuron’ with an output 
signal given by a spike train with a mean firing rate 
of unity. We assume that the spike-train is a renewal 
point process so that its variance is proportional to 
the mean according to eq.2. We further assume that 
when the neuron is switched on, the mean firing rate 
does not change with increasing input, ie, the neuron 
response function is a step function (see figure 3). 

    
θ
θθ <

>=− t
ttu 0

1)(    (14) 

The recruitment equation (8) then simplifies to: 
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which has the solution 
1)()( =xxw ρ    (16)

 

The variance will be given by: 
2( ) ( ) ( )

x

v x F w x x dx
ε
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Fxv
ε
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Figure 3: Binary sub-channel. Signal and variance are 
step-functions. 

Differentiating we have 

)(
)(

xv
Fx
′

=ρ                  (19) 

where the dash means the derivative with respect to 
x. Substituting into eq.7, we have the constraint: 

∫ ′
=
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x

dx
xv

FN
ε

         (20) 

3.1 Isoperimetric Problem 

We recognise that maximising the benefit function 
(eq.13) subject to the integral constraint (eq.20) 
forms an isoperimetric problem in variational 
calculus. The Lagrangian is: 

v
F

v
bvvxL

′
+=′ λ

2/1),,(    (21) 

whereλ is a constant Lagrange multiplier. The 
Euler-Lagrange equation is  

( )
04

32/3 =
′

′′
−

v
vF

v
b λ                   (22) 

which has the solution of the form 

( )2)( Kxxv =                          (23) 

where K is a positive constant. This is a maximum 
and for positive v′  it satisfies the Weierstraussian 
condition for a strong extremum (not shown here). 
Since we have xy = , we can write the output 
variance as 

( )2Kyv =    (24) 
which is proportional noise. 
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3.2 Singularity 

The threshold density function can now be found by 
substituting eq.23 into eq20: 

xK
Fx 22

)( =ρ    (25) 

which will require an infinite threshold density at the 
origin. This is not physically realizable, so we 
consider max0 x<<< ε . In this case we see from 
eq.20 that  

⎟
⎠

⎞
⎜
⎝
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ε
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2
ln2

x
N

K
F                  (26) 

Thus it appears that we can come arbitrarily 
close to the origin if we are willing to devote a large 
enough number of channels. It also appears from 
eq.25 that reducing K, is very expensive in sub-
channels since 

⎟
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⎞
⎜
⎝

⎛
=

ε
max

2 ln
x

K N
F     (27) 

As a numerical example, consider ε to be 0.1% of 
maxx , then if we used a N=1000 sub-channels, then 

K~0.06 for a Poisson sub-channel renewal process 
(F=1). 

 An important property of this optimization is that 
a size principle emerges. From eq.25 we see that the 
number of sub-channels deceases with increasing 
output, but from eq.16 we have 

F
xK

x
xw

22
)(

1)( ==
ρ

.  (28)
 

The weights (or strengths) increase with increasing 
signal. In human movement physiology, the size 
principle is a well-known phenomenon, but we see 
that it an inevitable emergent property of optimizing 
the channel. 

Thus far we have only considered positive 
signals. To handle signals of either sign, we employ 
two channels of different polarities with a common 
origin, so that:  

xK=σ       (29) 

We note that there are other configurations in which 
the two channels could be active simultaneously by 
having shifted origins (co-activation). This could 
overcome problems with the singularity, but we do 
not explore this here.   

4 DYNAMICS 

We now consider the dynamics of the optimal 
channel. We will only give an outline to emphasise 

some remarkable emergent properties, as some 
aspects have already been dealt with in depth 
elsewhere and others have yet to be explored 
experimentally. 

4.1 Fano Factor and Bandwidth 

It can be seen from above, that the resources needed 
for the optimal channel also depend on the Fano 
factor F of the sub-channels. Thus fewer sub-
channels are needed if we can reduce F (eq.26). 
However, for spike trains, reducing F comes at a 
price, since it reduces bandwidth.  

So far we have dropped the dependence on time. 
Indeed, the above derivation is independent of time 
provided there are no bandwidth restrictions on the 
sub-channel response characteristics. However, for 
the neuromorphic embodiment of sub-channels, the 
output )(tzi  depends on the firing rate of a motor 
neuron (sub-channel). Modelling the motor neuron 
spike train as a renewal point process, the response 
of )(tzi  will therefore depend on the inter-spike 
interval probability distribution. For exponential 
interval distributions, the rate process is Poisson 
(F=1) with an autocovariance given by a delta 
function. Thus a Poisson process yields a fast 
temporal response, but requires a high F. In fact 
motor neuron firing rates are not Poisson, but have 
considerable lower Fano factors. This will result in a 
broader autocovariance function and hence more 
sluggish impulse response function (Cox & Miller, 
1977). The relationship between the impulse 
response function and the spike-interval distribution 
is complex and non-stationary, so we will 
approximate it by a first-order impulse response 
function with a time-constant τ : 

ττ /)( /t
z etR −=            (30) 

4.2 Linear Plant Considerations 

Assume that we use our optimal channel to drive a 
physical effector plant, such as a real muscle, a 
robotic arm, a prosthetic limb, etc.. We approximate 
the plant as linear 2nd-order with mass/inertia, 
viscosity, and elasticity. The drive to this plant is the 
output of our channel, )(ty  which is not only 
perturbed by PN, but also has its own dynamics 
because of the non-Poisson statistics of the firing 
rates. We must therefore consider an augmented 
plant with a higher order, which will be at least 3rd 
order (given eq.31) (fig.4).  
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Figure 4: Simplified lumped linear model of a motor 
system driven by the optimized recruitment channel. The 
channel generates a drive with PN which then is passed to 
a 3rd order system including the response function of the 
motor neuron renewal process and the actual 2nd order 
effector plant. 

Denote the augmented plant impulse response by, 
)(tp with Laplace transform given by: 

)1)(1)(1(
1)(

21 +++
=

sTsTs
sP

τ
  (31) 

Then the variance at the output of the plant is given 
by the convolution (Harris 1998): 

tdttptxKt
t

o ′′−′= ∫
0

2222 )()()(σ         (32) 

Note that the kernel is the square of plant impulse 
response, and causes the variance response to be 
more sluggish (and less intuitive) than the signal 
response.  

4.3 Optimal Trajectories 

PN and its transfer through a linear system (eq.33) 
has far reaching implications when we are required 
to move an effector from one point to another, as in 
reaching or saccadic eye movements. If we want to 
move more quickly then we clearly need a larger 
input signal, )(tx but this will lead to a larger output 
variance and hence larger pointing errors (end-point 
errors). Conversely, if accuracy is important then the 
input needs to be small and the movement will take 
a longer time. The speed-accuracy trade-off implies 
that for a given movement duration, there is a unique 
trajectory (velocity profile) that minimises end-point 
error. This has been found numerically and 
analytically (Harris & Wolpert 1998, 2006). In two 
dimensions trajectories tend to be straight. 

For very brief movements, a 3rd order system 
becomes dominated by the 3rd derivative (jerk) and 
the kernel in eq. 33 tends towards the square of jerk. 
Thus the variance at the end of the movement is 
given by: 
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Minimising jerk is therefore minimising variance in 
the limit for a 3rd order system. However, this is only 

approximate for brief movements. Careful analysis 
of data using Fourier analysis reveals that arm 
reaching and saccades are not MJ but closer to MV 
(Harris & Harwood, 2005; Harwood et al., 1999). 
For longer movements velocity profiles become 
quite asymmetric and cannot be fit by the MJ model. 

In summary, a vast amount of human goal-
directed dynamic motor behaviour is explicable as 
an optimal trade-off between speed and accuracy, 
which a direct result of PN. Perhaps most 
remarkable, is that this can all be attributed to 
maximising channel capacity! 

5 DISCUSSION 

If we start with a collection of noisy binary sub-
channels (units) with thresholds, then the optimal 
pattern of threshold levels and weights is to recruit 
sub-channels according to equations 25 and 28. This 
arrangement maximises the number of different 
signals we can transmit for a given error probability 
per signal. It emerges that the output signal of such a 
configuration exhibits proportional noise (PN) 
(eq.1). This result is consistent with known 
neurophysiology which has shown that PN emerges 
from the orderly recruitment of motor units in 
human arm movements (Jones et al, 2001). The 
configuration of thresholds and weights is also 
consistent with the well-known empirical size 
principle in which stronger motor units are recruited 
at higher thresholds. We have only considered 
binary sub-channels, but it appears that a similar 
result could occur for other types of rapidly 
saturating sub-channels away from the origin (not 
shown here). We propose, therefore, that PN is itself 
is an optimal strategy that has evolved to maximise 
channel capacity.  

Once PN has emerged, it places a trade-off 
between speed and accuracy for point-to-point 
movements, which leads to an optimal trajectory 
(the minimum variance trajectory), which fits 
observations remarkably well (Harris & Wolpert 
1998). For brief movements, the MV trajectory 
becomes bell-shaped and similar to (but not exactly 
the same as) the minimum jerk (MJ) profile. This is 
why the MJ trajectory seems to fit observation quite 
well (but only for brief movements). 

Our overall conjecture is that through 
evolution/adaptation multiple noisy sub-channels 
with thresholds will ultimately and inevitably lead to 
smooth straight movements. 
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5.1 The Biomimetic Question 

Clearly we could build synthetic systems (robots 
etc.) that mimic the smooth straight trajectories 
made by humans simply because they look like 
human movements. This is aesthetic biomimicry. 
Incorporating minimum jerk (MJ) trajectories in 
robots is probably as example of this kind of 
mimicry. It could be argued that smoothness is 
useful in reducing wear-and-tear, but there are much 
smoother trajectories than MJ (Harris, 2004). One 
would need to trade-off the cost of wear-and-tear 
against poor dynamic performance. In any case, 
human movements are not MJ, and are much better 
described by minimum variance (MV) trajectories in 
which PN inaccuracies are optimally traded against 
duration. MJ trajectories are just a limiting case of 
MV trajectories for brief durations. But copying 
human trajectories, albeit more precisely with MV 
profiles, is still aesthetic mimicry unless PN exists in 
the synthetic system.  

In contrast to aesthetic mimicry, functional 
biomimetics copies the control objective of human 
movement and incorporates it into the constraints in 
the synthetic system. For example if the control 
signal in a synthetic system were perturbed by 
stationary additive Gaussian noise, making an 
accurate and rapid movement would probably be 
achieved by a bang-bang control solution. It only 
makes sense to incorporate an MV controller if the 
synthetic control signal is perturbed by PN, which in 
our experience, is not common in conventional 
engineered systems. One could, of course, introduce 
PN deliberately, but this would just be aesthetic 
mimicry. 

5.2 The Neuromorphic Approach 

Building synthetic systems with artificial neurons is 
a fundamentally different proposition. 
Neuromorphic technology can now produce silicon 
neurons with thresholds and stochastic spike trains. 
When configured optimally for movement control, 
they should produce PN because, as we have shown 
here, PN emerges at the output of the optimal 
channel (at least for binary channels). For robots 
built on this technology, MV trajectories would be 
an optimal solution for speed and accuracy. This is 
functional rather than aesthetic biomimetics.  

But, why should synthetic systems employ 
artificial neurons? Is this not just another level of 
aesthetic mimicry? We suggest that the 
neuromorphic argument runs deeper. Over eons, 
biological functions and structures have improved 

survival through natural selection. Optimal solutions 
to problems emerge (without mathematical premise) 
that are not obvious to us, and not even achievable 
with current technology. In the case of neural 
systems, it is only by building them 
neuromorphically, that we can discover these 
solutions.  
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Abstract: Robust generation of motor commands for real-time control of locomotion with artificial means is crucial for
human safety. This paper addresses the combination of fuzzyinference for determination of rules with a non
linear oscillator system, as generators of motor commands for the control of human leg joints during walking,
by means of external gait compensators, e.g. exoskeletons,functional electrical stimulation or hybrid systems.
The response of the proposed method is evaluated for variations in stride frequency and step length. The
testing during gait conditions is performed considering inertial sensing as feedback in a simulation study. The
reference data considered is obtained in multiple experiments with healthy subjects walking with a control-
lable exoskeleton designed to compensate quadriceps weakness. A model of the operation of the knee joint
compensation provided by the exoskeleton is obtained as reference to evaluate the method based on real data.
The results demonstrate the benefits of both incorporating a) the fuzzy inference system in cyclical decision
making for generation of motor commands and b) the dynamic adaptation of the timing parameters of the
external compensator provided by the van der Pol oscillator.

1 INTRODUCTION

Robust generation of motor commands for real-time
control of locomotion with artificial means is cru-
cial for human safety. Broadly, current active ex-
ternal compensators of pathological gait under re-
search can be configured as functional electrical stim-
ulators (FES), (Popovic et al., 1999), (Skelly and
Chizeck, 2001) controllable leg exoskeletons or or-
thoses, (Blaya and Herr, 2004), (Irby et al., 1999),
(Moreno et al., 2005) or as a combination of both,
known as hybrid systems, (Gharooni et al., 2000),
(Goldfarb and Durfee, 1996). From the control point
of view, the design of robust controller of locomo-
tion with such devices, towards real life application,
must be easy to customise, adapt dynamically to typ-
ical variations in gait pase and preferably should in-
corporate a coordinated development with the user.

1.1 Gait Compensation

A wide range of external gait compensators, e.g. ex-
oskeletons, functional electrical stimulation or hybrid
systems, have been considered to restore human gait.
In particular leg exoskeletons or orthoses, can be pre-
scribed for cerebrovascular accident, polyo myelitis
or cerebral palsy patients with leg muscle weakness,
in order to provide knee stability, reducing falling risk
and enabling a certain degree of mobility.

In order to control an exoskeleton, it is not clear
the hypothesis that instantaneous control of trajec-
tory of the joint angle is essential for the lower limb
system, since the reduced mechanical output —joint
torque— limits its transitory response, in relation with
the inertial properties of the musculoskeletal system
(Franken, 1995). Velocity or position control loops
are more appropriate and safe in training and reha-
bilitation applications where controlled generation of
joint trajectories is required, with application of oscil-
latory signals and modulation techniques during gait
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Swing
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Figure 1: Mechanical adaptation for gait compensation dur-
ing one gait cycle at the knee joint.

cycles for training subjects following neural/motor in-
juries.

Our previous work has consisted in the implemen-
tation of intermittent control of resistance of the knee
joint with an unilateral exoskeleton applying selec-
tively different constant stiffnesses depending on gait
phase, to approach more natural profiles and avoid
collapsing of the knee and risk of falling, see fig. 2.

Linear solenoid

Sensor set

Ankle passive
actuator and
carbon fiber insole

Controller

Knee actuator

Figure 2: Controllable ambulatory exoskeleton.

Under this approach, a knee actuator is controlled
to apply a given impedanceK1 in the stance phase,
during a period of time ensuring the joint stability
and shift during swing phase releasing the joint for a
free swing while applyingK2 (K1 >> K2), for smooth
transition and storage/recover of energy to assist the
leg extension, see figure 1.

1.2 Rule based Control

Reliability of control in such a wearable solution for
pathological cases is a critical issue that has an impact
in human safety.

Figure 3: Typical normal gait pattern of foot and shank seg-
ments rotations and rotational velocities (sagittal plane) dur-
ing a walking task at 34 m/min speed, with the cable-driven
exoskeleton, after training of the subject. A system with a
cable triggers the knee mechanism (onset) depending on a
fixed degree of dorsiflexion.

The output of the controller is the motor com-
mand for the actuator, characterized by two param-
eters: activationonsetandperiod. The activation on-
sets during each stride are calculated by rule-based
conditions, evaluated according to segments orienta-
tion or rate velocity (See pattern during stance phase,
figure 3). The system is a reactive controller perform-
ing according to the motion of the leg. The criteria to
cyclically adapt the activation period (pulse width) of
the actuator is defined considering temporal parame-
ters relative to stance phase of current S(k) and past
S(k-1) strides, and initial conditions S(0), given by
average expected values.

Rule-based
condition

y
Intermittent
mechanism

Leg
dynamics

Linear solenoid
excitation

b(k)

wf sw

Figure 4: Control scheme for walking.

Experimental trials have demonstrated short-term
adaptation of human motor system when apply-
ing functional compensations with customized tun-
ning of the discrete rule-based controllers ,(Moreno,
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2006). The adaptation of cyclical activation, has
demonstrated proper results at self-preferred constant
speeds. The next proposed method is an improvement
intended to provide the required dynamical adaptation
to changes of step frequency/length by the user.

1.3 Bipedal walking with Central
Pattern Generators (CPGs):
Simulation

It has been demonstrated previously how the use of
the dynamical systems paradigm can realize a walk-
ing behavior in robotic walking platforms (Veskos
and Demiris, 2006). The neural architecture has
demonstrated successful operation in swinging and
planar walking in a bipedal platform, incorporating
van der Pol oscilators as generators of motor com-
mands.

Medium and short term application of a walking
real-time controller for the mentioned application sce-
narios, ought include mechanisms that provide adapt-
ability and stable response to variations of frequency
in the feedback signals, can led to an approach of co-
operative development with the user/environment. In
the following, the analysis of the response of the pro-
posed hybrid controller to variations in gait frequency
is evaluated with real data measured with the orthotic
walking platform.

2 METHODS

2.1 Gait Patterns with Knee Joint
Compensator

Subjects wearing an exoskeleton, need to adapt their
walking strategy to drive the system to successfully
switch between two knee spring damper configura-
tions. During the entrainment of the subject with the
controllable exoskeleton it is necessary to reach a cer-
tain ankle dorsiflexion angle which is variable during
normal gait. Although this angle is adjustable, sub-
jects change their gait pattern until they learn to use
the exoskeleton. The learning process (which can be
seen as an adaptation) in the use of the controllable
exoskeleton has been previously studied in (Forner-
Cordero et al., 2006). In order to obtain sampled
data of different gait speeds, experimental trials with
a healthy subject have been conducted after the adap-
tation process, consisting in walking back and forth
along a 10 meter path, with definition of the step
length with marks on the floor and the gait speed by
means of a metronome, and systematic adjustments

of the cable mechanism to provide a comfortable gait
pattern (see table 1). The gait velocity and step length
variations were defined according to average values
taken from Perry, (Perry, 1999), consisting in feasi-
ble combinations of 100%, 70%, 60% and 50%. Rate
gyroscopes fixed at the shank and leg segments of the
external device were used to measure rotational veloc-
ities along the sagittal plane. Motions of interest oc-
cur at normal (2.6 km/h) and low (2 km/h) gait speeds,
and therefore, signals outside the band frequency re-
lated to gait kinematics (0.3–20 Hz), are rejected from
the sensor outputs with -3 dB low pass filters, refer
(Moreno et al., 2006) to for details. A precision angu-
lar position sensor was fixed at the knee joint to track
the knee joint angle in the sagittal plane. A resistive
pressure sensor (5 mm in diameter active area, 0.30
mm thickness) is used to monitor the activation status
of the knee actuator.

Collection of input/ouput data is utilized to gener-
ate training and checking data sets, of both multiple
speed trials, and constant speed separated trials.

2.2 Validation Model

A robust Model describing the dynamics of the knee-
orthotic hinge system during cyclic walking condi-
tions can be used as a reference to analyze the per-
formance of the advanced control system. We pro-
pose the identification of the model the activation pat-
terns provided by the cable driven exoskeleton, with
time-series of kinematic data. A broadly used signal
processing paradigm is the state-space model. De-
fined by two equations, the state-space model has
been broadly applied in signal processing (Smith and
Brown, 2003). A first equation describes how the hid-
den state or latent process is observed and a second
(state) equation that defines the evolution of the pro-
cess through time. Based on the formulation given by
(Haverkamp et al., 1996), we propose identification of
a multiple-input single-output continuous-time model
from the experimentally collected input and output
data.

Considering the state-space model in the innova-
tions form

dx(t)
dt

= Ax(t)+Bu(t) (1)

y(t) = Cx(t)+Du(t) (2)

whereu(t) denotes the sampled inputs, being the
foot and shank rotations in the sagittal plane dur-
ing walking, for continuous measurements at 100 Hz
sampling frequency, with transitions from low to high
speed, and progressive variations in step length and
given the measured output reference;y(t), as the en-
trained knee joint status (actuator activation period)
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Table 1: Systematic variations of healthy subject walking with the cable driven prototype (* Not feasible combinations).

Percentage Step length[m] Stride length[m] Speed[m/s]

100 0.73 1.46 1.35 0.94 0.81 0.67*

70 0.51 1.02 0.94* 0.66 0.56 0.47

60 0.44 0.88 0.81* 0.56 0.48 0.40

50 0.37 0.73 0.67* 0.47 0.40 0.33

Cadence (step/min) 111 78 67 56

Metronome (bpm) 1.85 1.30 1.11 0.93

for normal walking,x(t) is the internal state of the
system and[A,B,C,D] are the deterministic system
matrices.

The reference sampled input and output datau(t)
and y(t) is obtained from experiments with healthy
subjects wearing a orthotic walking platform, manu-
ally adjusted at each velocity to trigger the knee actu-
ator based on the ankle dorsiflexion.

The goal of the state-space model identification
process implemented in MATLAB is to find the sys-
tem matrices[A,B,C,D] according to the model struc-
ture. This resulted in a second order model as the best
to the input-output behavior of the system, selected
upon the analysis of the singular values (1st order,
53.23; 2nd order, 3.77; 3rd order, 0.34; 4th, 0.30).

The continuous-time model describes the relation
between the foot and shank segments angular veloci-
ties and the output activation at the knee joint actuator
for the range of tested speeds, by the state differential
equation 1 and the output equation 2, where

A =

[

0.994 −0.063
−0.003 0.933

]

; (3)

B =

[

−3.05e−6 −8.28e−6

−2e−5 −3.39e−5

]

; (4)

C =
[

14.55 −0.009
]

; (5)

Assuming the initial state as zero, from the evalu-
ation of the transient (impulse) response of the second
order system, it can be concluded a stable system with
tp = 0.5 s, as the time to reach the peak value, and a
settling timetd of approximately 10 s, after persistent
excitation.

Evaluation of the response of the model compared
against the external compensator operation is then
performed, with the checking data set corresponding
to multiple speeds. The crossing zeros (time inter-
polation) of the oscillatory output signal during the
steady state are detected as equivalent onset and offset
timings of the measured events. The correlation coef-
ficient r2, calculated for the modeled and measured
outputs is 0.999.

2.3 Architecture

The control scheme consists of different modules (see
figure 6). A fuzzy inference system with two inputs
and a single output node is identified and trained to
map the inputs and trigger the actuator. The crisp out-
put of the fuzzy inference system during each cycle
is critical in providing transition between restrained
knee flexion in stance to a free swinging leg. The
activation period of the knee actuator (pulse width)
during the swing phase is cyclically adapted by a
second module composed by an nonlinear oscilla-
tor. This nonlinear system incorporates real-time es-
timated gait temporal parameters as feedback in the
generation of an oscillatory signal which adapts the
duty cycle of an external compensator.

2.3.1 Fuzzy Inference System

Conventional PID controllers have been applied in the
control of cyclical movements in legs of paraplegic
subjects (Franken, 1995). Introduction of dynamical
adaptation of the rules commanding FES systems has
been investigated, in order to cover a wider range of
unsafe and uncertain situations in application of stim-
ulation . A Sugeno system is suited for modeling non-
linear systems. A training scheme with a fuzzy mod-
eling network structure has been combined to develop
a gait synthesis learning scheme, (Horikawa et al.,
1990).

Obtaining a fuzzy system corresponds with ap-
proximated reasoning, which refers to methodologies
to describe physical systems which include complex-
ity due to nonlinearities and uncertainties. Let us sup-
pose that our unknown system is a black box only ca-
pable of measuring a set of inputsx1,...,xn and outputs
y1,... ,ym. A fuzzy system with a crisp output and the
following type of rules is to be obtained

Ri : IF x1 esSi1 and...andxm esSim, THEN andesci (6)

The fuzzy inference system is generated by means
of the grid partition method. For the identification a
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Figure 6: Hybrid architecture for control of gait external compensation at knee level, based on inertial sensing data. First
module contains the fuzzy inference system with a crisp output The second module contains a nonlinear system predicting
the activation period of the knee actuator as function of gait frequency (forced oscillator), with proprioceptive feedback.

training data set is generated from the experimenta-
tion. The identification method consists in the appli-
cation of the adaptive network fuzzy inference system
(ANFIS) proposed by Jang, (Jang, 1993), in order to
build the fuzzy rules with membership functions to
generate input/output data pairs. Iteratively, input pa-
rameters of the membership functions are learnt by
means of back-propagation in an adaptive network
and while the parameters of output functions are opti-
mized by the least squares fitting method. Theadap-
tive networkis a feedforward multilayered network,

with a supervised learning scheme. The functions of
given nodes in a layer are similar. For means of sim-
plicity, we consider a first order Sugeno type model,
as the inference system. Having the kinematic inputs,
the outputE(t) and n fuzzy rules:

Rn : IF θ̇s is An, AND θ̇ f is Bn

THEN E = p1θ̇s + θ̇ f + t

(7)

Gaussian membership functions have been se-
lected for smooth transition. A total of 4 Sugeno
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type fuzzy rules were defined, with a network with
21 nodes. These rules were of AND (minimum) type
antecedent. The defuzzification method, calculating
the output, is performed by the centroid method. The
clustering radiusr = 0.2 was adjusted for tunning.
The optimization process spanned 13 epochs, with the
training data set. The figure depicts the output surface
of the final identified system given the two inputs.
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2.3.2 Forced Nonlinear Oscillator

The dynamic robustness of a pattern generator to
noise and other external disturbances can be improved
by incorporating nonlinearities to the system. A van
der Pol oscillator, requires a reduced number of pa-
rameters, and has the advantages of robustness and
ease of computational implementation. Such nonlin-
ear system can be applied as an adaptive oscillator
during the swing phase to determine the time of acti-
vation of the external compensator. To unlock the fre-
quency of the oscillator and provide it with adaptabil-
ity to the leg motion, the nonlinear system is forced to
oscillate at a frequency, which depends on the spatio-
temporal behavior of gait. Let us consider the forced
nonlinear oscillator

[!top]ẋ = y (8)

ẏ = −µ(x2−1)y−ωx+Acosθt (9)

with ω as the natural frequencyµ as the damping
parameter,θ as the forcing frequency andA as the
amplitude of the forcing function. An approximate
solution of the non-linear system, satisfying the initial
conditions x = 0, y = 0 is calculated during each cycle
i with

θi =
TST

R
(10)

whereTST is the stance phase period in cycle i,
and R, a frequency scaling factor.TST is estimated
from consecutive local minima (peak) values from the
foot rotational velocity, as described in (Moreno et al.,
2006).

2.4 Hybrid Controller

Local minima values are detected from the output of
the fuzzy system, upon numerically integration. The
sensitivity of the local minima detector is given by
δ, which corresponds to the minimum difference in
amplitude with the neighbor samples. With the cali-
brated gyroscopes raw data, aδ = 40 was satisfactory
for all conditions. Thus, cyclically the fuzzy system
provides the activationonset, the controller incorpo-
rates the output of the nonlinear oscillator to predict
the width τ or duration period for the knee external
compensator, with

τ =
D
2ω

(11)

where D determines the duty cycle percentage. In-
corporating the prediction given by the forced oscilla-
tor, D = 0.8 was defined and remained constant in all
further experiments.

An example of the hybrid controller for cyclic gait
at 0.94 m/s (stride length, 1.46 m) is depicted in fig. 8

3 RESULTS

The performance of the hybrid controller is compared
with the validation model and the testing data set. The
mean errors and standard deviations are calculated,
considering 4 continuous gait cycles per each con-
dition, for the output of the fuzzy inference system
module and the nonlinear oscillator module (see Table
2). A negative error (in seconds) means anticipation
with respect to the reference. For the tested condi-
tions, the maximum average error for the fuzzy rule-
based detection was 0.19s demonstrating the robust-
ness of a single fuzzy model to drastic variations in
stride frequency. The discrete rule-based method, pre-
vious tests showed significantly better performance
for the application of thresholds, during slow gait ve-
locities in comparison with the results with higher
velocities. The response with the fuzzy rule-based
method can be regarded as uniform for the tested con-
ditions. The maximum average error for the oscillator
was 0.32s and therefore, the robustness to the varia-
tions in the timing of the generated motor commands
was observed. The evaluation with the continuous
data set provide a good indication of the accuracy and
robustness of the hybrid method.
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Table 2: Results of the hybrid controller for the 12 testing conditions. Mean errors and standard deviations with respect to the
evaluation model output are calculated taking 4 continuousgait cycles per each condition.

Fuzzy System Forced oscillator

Step length[m] Speed [m/s] Mean error [s] SD Mean error [s] SD

1.46 1.3505 0.0995 0.0123 0.005 0.0451

1.46 0.94535 0.041 0.0744 -0.025 0.0719

1.46 0.8103 0.154 0.1847 -0.245 0.0806

1.022 0.6617 0.0685 0.0296 -0.06 0.051

1.022 0.5672 -0.042 0.0238 -0.17 0.0497

1.022 0.4726 -0.13 0.1238 -0.1775 0.1072

0.876 0.56721 0.0335 0.023 -0.1275 0.0629

0.876 0.48618 -0.0125 0.0728 -0.1725 0.083

0.876 0.4051 -0.1075 0.12 -0.32 0.0668

0.73 0.47267 0.0025 0.031 -0.16 0.0462

0.73 0.4051 -0.1205 0.0689 -0.0625 0.0998

0.73 0.3376 -0.1915 0.1003 0.15 0.2149

4 CONCLUSIONS

The evaluation with the continuous data set provide a
good indication of the accuracy and robustness of the
hybrid method. For the tested conditions, the results
demonstrate a proper means to combine a learning
method which incorporates fuzziness with the adap-
tive nature of a non lineal oscillator, to generate mo-
tor commands to control gait. A validation model

has been used in order to simulate the real mechani-
cal system (human leg and exoskeleton) in this study.
Further work includes a simulation study of the re-
sponse of the methos to external perturbations (foot
contact with the ground during the swing and obsta-
cles) and testing with subjects of the embedded appli-
cation.
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Abstract: The aim of this study is to create a model which enables to explain the muscle fibre contraction due to various
stimulation programs. The model accounts forCa2+ release dynamics both as a result of an action potential
and of a stimulus shape, duration and frequency. It has been assumed that the stimulus can directly activate
the voltage-dependent receptors (dihydropiridine receptors) responsible for aCa2+ release. The stimulation
programs consisted of standard stimulation trains made of low and middle frequency square pulses. High
frequency modulating harmonic signals have been tested to investigate the fibre fatigue effect. It has been
observed that fatigue effect factors depend on the selectedstimulation program. The results reveal that the
fatigue effect could be minimized by changing the shape and frequency of the stimulation waveform. Such the
model could be useful for a preliminary selection and optimization of the stimulus shape and the stimulation
trains, thus reducing the number of in vivo experiments.

1 INTRODUCTION

Electrical stimulation is a rehabilitation technique ap-
plied to increase muscles force, reduce spasticity,
muscular atrophy and to decrease pain effects. It is
also used to restitute a motion in handycaped subjects
via Functional Electrostimulation (FES). In order to
get an efficient FES system, the optimal stimulation
programs have to be worked out. The former investi-
gations revealed that muscle fatigue effect is greater
as a result of electrical stimulation than as a result
of a voluntary contraction (Kostyukov et al., 2000;
Gissel, 2000). It has been reported that stimuli train
frequency and a single pulse shape have the signifi-
cant impact on the fatigue effect (Bennie et al., 2002).
Therefore, the optimization of the stimulation pro-
grams is one of the most important aspects of the FES
method. As far, the optimization has been limited to
the identification of the optimal frequency of a stimu-
lation pattern (Ding et al., 2003; Chou et al., 2005)
or to a search for variable frequency pulse trains.
(Mourselas and Granat, 1998).

The studies on the high frequency stimulation pro-
grams (>200Hz) as well as on the single pulse shapes

as related to the muscle fatigue effect are missing.

The dynamics ofCa2+ions transportation plays
an important role in the muscle contraction process
(Bottinelli and Reggiani, 2000; Benders et al., 1997;
Delbono and Meissner, 1996). The change of the
Ca2+release rate is an important factor of the fatigue
effect (Westerblad et al., 2000; Gissel, 2000). There-
fore a majority of models reflecting potentiation and
fatigue effects have been based on theCa2+dynamics.
(Otazu et al., 2001; Ding et al., 2003; Riener and
Quintern, 1997). In these models the impact of the
stimulus shape as well as of the pulse width on the
fatigue effect were not addressed. It is only assumed
there that a single stimulus evokes an action potential
(AP) in the muscle fibre, which activates a voltage-
dependent dihydropiridine receptor (DHPR) resulting
in Ca2+release from the sarcoplasmic reticulum (SR).
The amount and the release profile of the liberated
Ca2+ions are assumed to be constant, even though
the physiological variability of the AP amplitude and
shape (in the t-tubular system) is observed.

The in vivo experiments demonstrated that the
stimulus amplitude and duration affect the calcium
concentration ([Ca2+])(Delbono and Meissner, 1996;
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Bakker et al., 1996; Benders et al., 1997). However,
the direct influence of a neuro-muscular electrical
stimulation (NMES) on the DHPR receptor behaviour
was ignored in the models. Therefore the applicabil-
ity of these models for testing stimulation trains com-
posed of wider pulses is dubious and the trains fre-
quency should be restricted to the maximal physiolog-
ical frequency of the AP generation (fstim < 100Hz).

The aim of this work is to analyse the influence of
the stimulation parameters on the muscle contraction
and fatigue effect. We present a novel model of a mus-
cle fibre. The model is an extension of already known
models, by introducing the direct interaction between
the stimulus and the DHPR receptor activity as well as
by incorporating the calcium release dynamics. These
adds-on enable to study the muscle fatigue effect dur-
ing various stimulation programs. In particular we
analyse the influence of a train frequency and a single
pulse-duration on the dynamics of calcium concentra-
tion and on the fatigue effect.

2 PHYSIOLOGICAL
BACKGROUND

2.1 Excitation-Contraction Coupling

Depolarization of sarcolemma due to the physiologi-
cal action potential (AP) or to stimulation, activates a
sarcoplasmic reticulum (SR)Ca2+release. The volt-
age signal is transformed into theCa2+ release via
a voltage-sensitive dihydropiridine receptor (DHPR),
which activates some of theCa2+channels (ryanoi-
dine receptor - RyR) in SR. This process is called
Dihydripiridine-Induced Calcium Release (DICR).
The amount of the activated RyRs is dependent on
the stimulus intensity and the muscle fibre type. The
number of RyR coupled with DHPR depends strongly
on a fibre type, and is the largest for the slow fibres
(Delbono and Meissner, 1996; Benders et al., 1997).

The uncoupled RyRs are activated as a result of
the sarcoplasmic[Ca2+] increase. This effect, called
Calcium-Induced Calcium Release (CICR), generates
a positive feedback in theCa2+liberation process.
Ca2+ions are transported by aCa2+-ATPase pump
from cytosol into SR. The pump efficiency is depen-
dent on the[Ca2+] in the sarcoplasm. At the rest-
ing state the Ca-ATPase pump maintains theCa2+ions
concentration about 104 higher in SR than in cytosol
(Bottinelli and Reggiani, 2000).

Ca2+diffuses in cytosol from the proximity of SR
surface to the interior of the myofibrils, where a tro-
ponin (TN) is localized. TN is a part of a thin filament

proteins. Whenever TN binds toCa2+, actin (the part
of thin filaments) and myosin (the part of thick fila-
ments) are able to interfere resulting in the myofibril
contraction. In the sarcoplasmic space theCa2+can
be buffered also by parvalbumin (PARV). The CaTN
and CaPARV buffers decrease the concentration of
freeCa2+ions in cytosol.

2.2 Fatigue Effect

There is an experimental evidence that the muscles
are subject to the faster fatigue under the electri-
cal stimulation than during the voluntary contraction.
Moreover, the stimulation of muscles having majority
of the fast-type fibres induces stronger fatigue effect
than with the slow-type muscles (Delbono and Meiss-
ner, 1996; Gissel, 2000).

The following reasons of the muscle fatigue are
reported:

1. RyR receptor has an inactivating binding site for
Ca2+(Glukhovski et al., 1998) resulting in the in-
hibition of CICR during long-lasting stimulation
as well as in response to APs.

2. The AP amplitude and shape changes in the t-
tubular system under long-lasting AP (Wallinga
et al., 1999; Bakker et al., 1996).

3. TheCa2+liberation is inhibited due to the increase
of Mg2+ concentration and decrease of [ATP]
(Westerblad et al., 2000).

4. Calcium-phosphate precipitation in the SR (We-
sterblad et al., 2000)

5. Structural degeneration of the muscle fibres as a
result of the eccentric, low frequency contraction
(Westerblad et al., 2000).

In this paper only the two first factors will be dis-
cussed.

3 PROCESS MODEL

The proposed muscle fibre model is based on the
model of Otazu et al. (Otazu et al., 2001), origi-
nally applied to study a potentiation and a catch-like
effects in muscle fibres. It consisted of two blocks:
the activation dynamics block (AD) and the contrac-
tion dynamics block (CD). The input to the AD sub-
system is a potential of the sarcolemma activating the
voltage-dependent DHPR receptors. In the original
model it has been assumed that the muscle contrac-
tion is evoked only by APs. Each AP generates the
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same membrane potential profile and thus the ampli-
tude and dynamics of DCICR is kept constant during
simulation.

The model proposed here accounts for the depo-
larization of the sarcolemma under direct influence
of the stimulation pulses. Thereby it takes into ac-
count the fact that DICR profile and amplitude de-
pend on the stimulus shape, amplitude and train fre-
quency. Such a model let to study the muscle fibre be-
haviour under a high-frequency or a wide-pulse stim-
ulation, when APs are not generated. Such the model
could enable the preliminary optimization and selec-
tion of the stimuli and the stimulation trains reducing
the number ofin vivoexperiments.

The model of a voltage activated channel reflects
some properties of the DHPR receptor recordedin
vivoduring the stimulation with a high amplitude and
the long lasting depolarization pulses (Delbono and
Meissner, 1996; Bakker et al., 1996). The AD block
produces the concentration of the TN bounded to the
Ca2+ions ([CaTN]).

3.1 Activation Dynamics

In this section the description of the myofibril model
has been limited only to the aspects necessary for the
analysis of stimulation effects. The full model with
parameters values have been presented by Otazuet
al. (Otazu et al., 2001).

The intracellularCa2+concentration is described
by the stoichiometric equation:

d[Ca2+]PROX

dt
= γDICR+ γCICR+ γLEAK− γPUMP−

−
[Ca2+]PROX− [Ca2+]DIST

τPROX
, (1)

where: γDICR is the rate ofCa2+liberation pro-
cess elicited by the voltage-dependent DHPR re-
ceptor (see section 3.2),γCICR is a rate of the
Ca2+release from SR through uncoupled-RyR,γLEAK
denotes a constantCa2+efflux leakage, whileγPUMP
is a Ca-ATPase pump rate. [Ca2+]PROX de-
notes aCa2+concentration nearby SR surface, while
[Ca2+]DIST is aCa2+concentration in the interior of
the myofibrillar space,τPROX denotes a time constant
of a diffusion process.

Previous results (Glukhovski et al., 1998) revealed
that the RyR channel has two calcium binding sites:
the first one for coupleCa2+ ions (activating site) and
the second one for a singleCa2+ ion (inactivating
site). TheCa2+ release rate is described by the prob-
ability of binding of twoCa2+ions to the activation
site (a) and the probability that the inactivation site is

bound to a singleCa2+molecule (i).

γCa = fCa(1− i)a (2)
da
dt

= αa(1−a)[Ca2+]2−βaa (3)

di
dt

= αi(1− i)[Ca2+]−βii (4)

where fCa denotes the maximum rate ofCa2+ release
through the uncoupled-RyR. The probability of bind-
ing ofCa2+ ion to the activation or inactivation site is
represented by a coefficientα and depends on[Ca2+].
A durability of the bond is characterized byβ.

3.2 Voltage Activated Channel

It is difficult to evaluate unambiguously a relationship
between the sarcolemma potential and theCa2+ li-
beration rate (via the coupled RyRs) based on the re-
cent experimental evidence, because the CICR effect
is strictly dependent on the DICR effect. The inter-
action between the DICR and the CICR results in a
complex dynamical system, therefore the decompo-
sition of these two effects is difficult (Bakker et al.,
1996; Delbono and Meissner, 1996). For the sake of
simplicity, it is assumed that DICR release rate is pro-
portional to the depolarization potential. Model of the
RyR coupled with DHPR receptor reflects a voltage-
dependent factor generating a slow decline in the
Ca2+release rate as an effect of the long-lasting depo-
larization (Delbono and Meissner, 1996). Moreover,
the threshold depolarization potential (Vth), which re-
flects DHPR excitability, is taken into consideration
(Delbono and Meissner, 1996; Bakker et al., 1996).

γDICR = gDHPR(1− iV)(Vm−Erest) (5)
diV
dt

= αV(1− iV)(Vm−Erest)−βV iV (6)

whereVm is the sarcolemma potential,Erest denotes
a resting potential of the sarcolemma,gDHPR denotes
a proportional coefficient,i is related to the voltage-
dependent DICR decline.

The parameters in eq. (5) and (6) were estimated
based onin vivo results available for a soleus muscle
(Delbono and Meissner, 1996), under the assumption
that the refractory period of the DHPR is similar to a
refractory period of sarcolemma (8ms). The value of
gDHPR was calculated assuming that AP (which am-
plitude reaches 20mV (Wallinga et al., 1999; Bakker
et al., 1996)) generates theCa2+release according to
Otazu et al. (Otazu et al., 2001). TheVth is calcu-
lated from the Voltage dependent of SRCa2+release
results and the coefficientsαV andβV were estimated
by using least square method and digitalized results
of the time dependenceCa2+release. The obtained
estimates are presented in tab. 1
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Figure 1: The contraction profiles (A) and [Ca2+] concentration (B) recorded at the beginning and at the end of 100s stimu-
lation period for 10,50,100Hz trains of square-wave and modulated harmonically pulses (500Hz).

Table 1: Parameters of the voltage activated channel.

gDHPR αV βV Erest Vth

M(mV ·s)−1 (mV ·s)−1 s−1 mV mV
1.0e−3 1.29 125 −80 −50

3.3 Contraction Dynamics

The input to the block modelling the contrac-
tion dynamics is a concentration of TN bound to
Ca2+([CaTN]) (Otazu et al., 2001). The contrac-
tion dynamics is described by a linear second-order
element connected with two nonlinear elements: a
threshold-type (connected to the input) and a Hill-
type saturation (connected to the output). Such the
behavioural model, accounts for the following phys-
iological observations: the threshold level of the
[CaTN] above which the contraction occurs, and the
saturation of the [CaTN]-Force curve (Bottinelli and
Reggiani, 2000).

4 SIMULATIONS

4.1 Comparison of Two Modes of
Stimulation

In our experiment the fatigue effect was studied dur-
ing stimulation of the myofibril model lasting 100s.
The standard stimulation with short stimuli (0.1ms)
and frequency in the range of (2÷100)Hz was used.
Each pulse was assumed to trigger an AP. More-
over, the persistent stimulation by (250÷1500)Hz si-
nusoidal trains was investigated. It was assumed
that during transcutaneous NMES, the muscle fibre
was depolarized by both positive and negative half-

periods. The pulse polarity has a little influence on
muscle activation as compared to the pulse amplitude.
The intensity magnitude must be above the DHPR
threshold (Vth) (Green and Laycock, 1990). The stim-
ulation amplitude was selected in order to obtain my-
ofibril contraction at the level observed with a tradi-
tional stimulation at the range (50Hz÷100)Hz. It has
been assumed that the persistent stimulation inhibits
the generation of APs (as in a TENS effect)(Bakker
et al., 1996).

4.2 Evaluation of Fatigue Effect as
Related to the Pulse-width

The influence of the depolarization on the fatigue
effect was investigated in the following experiment.
First the square stimulation pulses at the frequency
10, 30 and 50Hz with varying width in the range
of 4÷20ms have been applied. Then, the modula-
tion of the corresponding stimulation pulses with the
harmonic 500Hz signal were applied with respect to
30Hz stimulation sequence. In both cases the genera-
tion of AP at the beginning of each stimulation period
(30Hz) was enabled. The aim of this study was to
determine whether the pulse-width or the pulse mod-
ulation can reduce the fatigue effect.

In our paper, the fatigue effect is characterized by
two parameters: the relative force decrease (RFD)
and the relativeCa2+concentration decrease (RCD).
These parameters are defined as:

RFD =
Fmax−Fmin

Fmax
·100% (7)

RCD =
[Ca2+]max− [Ca2+]min

[Ca2+]max
·100% (8)

whereFmax denote maximal force and[Ca2+]max is
a maxiumum calcium concentration, whileFmin and
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[Ca2+]min are maximal a force and a calcium concen-
tration, respectively at the end of stimulation experi-
ment lasting 100s.

5 RESULTS AND CONCLUSIONS

5.1 Frequencial Effects

The fatigue effect under the traditional square-wave
stimulation (1÷100)Hz is similar to the results of
in vivo experiments (Westerblad et al., 2000; Chou
et al., 2005). The relative force decrease (RFD) is
greater for sub-tetanic (50Hz) contractions than for
the fused tetani (100Hz) stimulation (fig. 1A and,
2A). However, this result does not reflect the change
in Ca2+concentration. The relative[Ca2+] decrease
(RCD) is greater for the 100Hz than for the 50Hz
stimulation (fig. 2B). The muscle stimulated with
100Hz pulses is more fatigue-resistant due to the non-
linear relationship between the [CaTN] and the con-
traction force. The saturation of this function ensures
that during fused contractions, the force changes are
small even if the calcium concentration changes are
significant (Westerblad et al., 2000). In the case of
unfused contractions (1-30Hz) the rise of the stim-
ulation frequency increases the fatigue effect (RFD)
and RCD as well (fig. 2). However the RFD and
the RCD values are lower in that case than during
sub-tetani contractions (50Hz). In each case, the cal-
cium concentration decrease is due to the inhibition
of uncoupled-RyR (see eq. 4). The inhibition level
depends on mean as well as on maximal calcium con-
centration. This can be observed in the frequency-
RCD relation (fig. 2). Moreover such a significant
force decrease in the case of sub-tetani contraction
(50Hz) is due to the decay of the potentiation effect
(Otazu et al., 2001). The results obtained with the har-
monic high-frequency stimulation (HFS) reveal that
the observed RFD is similar as for the 100Hz tra-
ditional stimulation (fig. 1A) and slightly depends
on the pulse base-frequency (fig. 2A). However the
RCD value is two times larger here than in the case
of the traditional stimulation (fig. 2B). The calcium
concentration decrease cannot be explained here as a
result of uncoupled-RyR inhibition, because the max-
imal [Ca2+] level is significantly lower than during
the traditional stimulation (fig. 1B), so the inhibition
level must be lower as well. Therefore the main factor
resulting in RCD increase must be the coupled RyRs
habituation (eq. 6).

Figure 2: A relative force decrease (RFD) (A,C) and
Ca2+concentration decrease (RCD) (B,D) as a function of
the stimulation frequency (A,B) and the pulse-width (C,D).

5.2 Pulse width Effect

The analysis of the pulse width influence on the mus-
cle fatigue does not reveal any significant differences
between the square pulses and the modulated sinu-
soidal stimulation (fig. 2B,C). However the sinus-
modulated trains seem to be slightly better. Fatigue
effect increases here as the pulse width grows, how-
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ever for short pulses (10-15ms) it is significantly
lower then for the traditional stimulation at 50Hz (fig.
2). In case of the modulated HFS, the RCD is over
five times lower in comparison to the results of the
harmonic persistent stimulation. This observation can
be explained on the basis of the DICR model, because
the modulated sinusoidal stimulation ensures the re-
fractory period for the DHPR receptor.

5.3 Discussion

Presented myofibril model reflects effects ofCa2+ re-
lease from SR as a result of sarcolemma depolariza-
tion. It does not take into consideration the proper-
ties of the sarcolemma and other tissues which are
stimulated during NMES. Thereby, the effect of di-
rect influence of a transcutaneous stimulus on DHPR
receptor can not be clearly established. It could be ex-
plained only on the basis ofin vivoexperiment results
and on a muscle model reflecting myofibril proper-
ties, muscle fibres recruitation during stimulation and
electrical properties of the skin and other tissues com-
bined.

Modulated HFS trains seem to do better than the
traditional stimulation programs, however the influ-
ence of such a stimulation on the fibre degeneration
process should be investigated. Although the ampli-
tude of repolarization pulses during HFS stimulation
are 50% lower as compared to the short-pulses stim-
ulation, the mean stimulation current is significantly
higher (Bennie et al., 2002). In comparison with the
wide-pulse stimulation the modulated HFS seems to
be less painful due to the lower tissue impedance at
a higher frequency. It should be mentioned that the
presented model and results can be useful to evalu-
ate stimulation programs under the hypothesis that the
transcutaneus stimulation can trigger the DICR effect.
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Abstract: In nature, a high number of species seems to have purely inhibitory neuronal networks called Central 
Pattern Generators (CPGs), allowing them to produce biological rhythmic patterns in the absence of any 
external input. It is believed that one of the mechanisms behind CPGs functioning is the Post-Inhibitory 
Rebound (PIR) effect. Based in the similarity between the PIR functioning and the Scheduled by Multiple 
Edge Reversal (SMER) distributed synchronizer algorithm, a generalized architecture for the construction of 
artificial CPGs was proposed. In this work, this architecture was generalized by integrating, in a single 
model, the axial and appendicular movements of a centipede in the fastest gait pattern of locomotion. 

1 INTRODUCTION 

Central Pattern Generators (CPGs) are neural 
circuits that can, without any sensory input, produce 
rhythmic patterned outputs (Marder et alli, 1995). 
These networks underlie the production, in a large 
spectrum of species, of a wide variety of rhythmic 
motor patterns such as walking, swimming or flying. 
For that reason, the scientific community devotes 
enormous efforts to full comprehend it and, as fast 
as new biological explanations are proposed to 
explain the mechanism underlying the functioning of 
CPGs, several mathematically strict models are 
developed with the purpose of encompass their 
effects to fields like robotics, computing and 
artificial intelligence. 

The most common approach to the development 
of models for CPGs is based on dynamical system 
theory (Golubitsky et alli, 1997). Usually, the 
behaviour of the neurons in CPGs is modelled 

through the help of non-linear coupled oscillators. 
As one may know, the strategies to solve those types 
of systems cover a vast and sophisticated 
mathematical ground governed by differential 
equations. The difficulty to analyse those systems 
increases even more when the biochemical processes 
involved in the modelling of CPG activity are 
considered. On the other hand, a discrete and 
generalized model approach could produce the same 
results with the advantage of modularity and quick 
development without any lost of accuracy. In this 
work, we intend to use one of these models to 
reproduce the locomotion of a centipede, hoping to 
demonstrate the power of such models.  

A special class of topology-independent graph 
dynamics called Scheduling by Multiple Edge 
Reversal (SMER), developed initially with the 
purpose of solve some problems in distributed 
computing, present itself as an interesting way of 
predict and reproduce the behavior of many 
biological oscillatory neuronal networks. 
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In the following sections we will try to briefly 
explain the SMER algorithm and show how, starting 
from it, we can develop a model for the inner 
biological behavior of CPGs. After that, we will 
hold some discussions on centipedes, its axial and 
appendicular movements, and lastly, an 
experimental model will be draw as much as the 
conclusions. 

2 SMER AND ARTIFICIAL CPGS 

SMER is an algorithm used in Distributed and 
Parallel Computation as a tool to allow a given 
number of processes sharing a finite number of 
resources among them, without the occurrence of 
deadlock or starvation. SMER is a generalization of 
the Scheduling Edge Reversal (SER) graph 
dynamics. In order to understand SER, consider a 
given number of processes and resources as part of a 
neighbourhood-constrained system represented by 
an acyclic graph. Processes are represented by nodes 
and resources by oriented edges. Each node will be 
in one of two possible states: operating or idle; also, 
each edge will be always point to the process that 
has the resource turn available to. So, when a node 
has all the shared edges pointing towards it, i.e., has 
all the resources turns available, it changes from the 
idle state to the operating state (in this case, this 
node is also called sink node). Once this operating 
process has finished operation, it reverses all its 
oriented edges to its neighbours. Although that is not 
the purpose of this work, it’s possible to prove that if 
the initial graph is acyclic, then no process will be 
idle forever and, more importantly, the system will 
oscillate (see Figure 1). More than that, at any cycle 
of oscillation, every process will operate the exactly 
same number of times (Barbosa, 1996). 

 
Figure 1: An example of the SER graph dynamics. Black 
nodes represent operating processes; white nodes represent 
idle processes. 

Note that, even though the above described SER 
mechanism is enough to solve much of the problems 

of resource sharing, there is no differentiation 
among the node’s time of task execution. It’s fair to 
imagine that under certain circumstances some 
processes will need of its shared resources for a 
longer period of time than the others. To encompass 
this scenario, the SMER algorithm was created as a 
generalization of SER. In this new algorithm, all the 
characteristics of the SER persist with the difference 
that each node will have associated with it an natural 
number r, called reversibility, and between any two 
nodes is allowed to exist any number of oriented 
edges. Once a node has pointing towards it, from all 
of its neighbours, a number at least equal to its 
reversibility, this node is allowed to operate. When 
operation has finished, a node will reverse a number 
of edges equal to his reversibility to all of its 
neighbours (see Figure 2). Among the characteristics 
of SMER, one very important is that for any system 
with arbitrary reversibilities of its nodes, there is 
always at least one possible periodic SMER 
solution. 

 
Figure 2: An example of a SMER graph. Note that to 
avoid the existence of several arrows connecting two 
nodes, a different representation of resource dependency is 
adopted. In this example the reversibilities are i=l=m=2, 
j=k=1. 

Once we have defined what SMER is and how it 
works, it’s important to clarify exactly how it 
connects with CPGs. As said before, CPGs are the 
underlying mechanism of a series of rhythmic 
patterns of locomotion. Although it is not 
completely clear how it exactly works, some 
biological mechanisms have been found and are 
credited as small units in the construction of CGPs. 
One of those real neuronal mechanisms is called 
post-inhibitory rebound (PIR) and is capable of 
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produce an alternate cycle of activity in a group of 
inhibitory neurons in the absence of external 
stimulus (Pirtle and Satterlie, 2007).  Although the 
PIR phenomenon is a complex subject, it is 
interesting to note that it matches perfectly to the 
mutual exclusion activity between neighbouring 
nodes coupled under SMER. It will be the theory 
behind the construction of modules that, in our 
model, will act just like a set of interconnected 
inhibitory neurons exhibiting PIR. These modules 
will be called Oscillatory Building Blocks (OBBs). 
So, instead of modeling electrophysiological 
activities of interconnected neurons based on 
membrane potential functions, we build an artificial 
CPG network with SMER-based OBBs for the 
exploration of the collective behaviour networks of 
purely inhibitory neurons. 

3 THE ARTIFICIAL CENTIPEDE 

Centipedes form a very special species of 
arthropods. They are capable of, combining axial 
and appendicular movements, attaining great speed 
with energetic efficiency. These unique 
characteristics of the centipedes stimulate a great 
number of biologists to study his static anatomy and 
the kinematics of his locomotion leading to a great 
amount of interesting information about this animal.  
For instance, biologists thru the use of high-speed 
cameras discovered that the number of legs touching 
the ground at a high-speed movement decreases 
when compared to the low-speed one , leading to a 
bigger distance between the supporting legs. In the 
extreme, a centipede can be supported for only four 
legs. Also, there is a direct correlation between the 
axial pattern of undulation and the speed. 
Nevertheless, whatever the speed is, in each segment 
contralateral legs will always step alternately 
(Anderson, Shultz and Jayne, 1995). All this aspects 
have to be taken into account while modeling the 
centipede’s movement. 

As a simple observation of a moving centipede 
may suggest, the challenge is the integration 
between two different components: the appendicular 
and the axial. It’s reasonable to infer that a good way 
of tackle this problem could be made through the 
analysis of each movement separately, defining its 
period and trying to construct a SMER-based OBB 
for a later synchronization between the two. 
Although it seems a good strategy, it lacks an 
important aspect of the problem: the two types of 
movements are connected in a much deeper level. 
For example, it’s impossible to see a real centipede 

to put two contralateral legs in any position different 
that the one caused by alternately stepping. 
Therefore, this approach would not reproduce that 
subtle aspect of the locomotion of the centipede.  

To correctly model the locomotion of a 
centipede, with the maximum similarity to its 
complex behavior, one has to construct the OBB 
with eight nodes, i.e., motor neurons, enclosing one 
whole segment. In this case, the network responsible 
for the connection of these OBBs has to be one that 
follows the full length of the animal, from the 
anterior to the posterior segment. But before we see 
in detail the whole model, let’s see more of each 
centipede’s movement as a way to understand how 
this OBB will be made and how the connections 
among them will be put. Consider in the following a 
scolopendromorph centipede in the fastest pattern 
gait of locomotion, i.e., the amplitude of lateral 
bending has the largest value and the fastest speed of 
dislocation is attained. Also, it is important to note 
that this kind of centipede has 21 leg bearing 
segments linked by flexible membranes serving as 
the only intersegmental articulation. 

3.1 Appendicular Movement 

As said before, in any given speed of the centipede, 
two legs from the same segment are always in 
opposite positions, i.e., when the left leg of a 
segment is flexing the other in that segment is 
extending. Also, it is important to note that the legs 
that are in the concave side of an undulating wave 
are always extending. The last statement is the most 
important one since ties the axial and the 
appendicular movements.  

For the sake of simplicity and without any loss 
of generality, let’s assume the appendicular 
movement being defined as the action of two 
antagonic muscles: flexor and extensor. The first one 
is responsible for lifting a leg from the ground and 
the later one for doing the opposite. In this 
simplification, let’s also assume that when a leg is 
touching the ground it is also pushing it backwards, 
allowing the effective movement of the animal. 

3.2 Axial Movement 

In the fastest speed a centipede can attaining 
approximately 1.5 times his length per second 
( 15.1 −Ls ) with a correspondents Hzf 45.3=  and 

11=λ  (Anderson, Shultz and Jayne, 1995). As a 
result, we infer that each concave section of the 
undulating wave it is composed for approximately 5 
body segments. Also, for the sake of simplicity and 
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without any lose of generality, let’s suppose the 
lateral bending of a centipede as the result of a pair 
of antagonic muscles: one causing the left and the 
other causing the right bending. 

4 EXPERIMENTAL 
EXPLORATIONS 

Our artificial centipede was designed to reproduce 
the macroscopic features of its real counterpart. 
Following the before mentioned characteristics and 
simplifications, each segment will have six artificial 
muscles: two pairs of extensors and flexors (one pair 
per leg), one muscle responsible for the lateral 
bending to the right and another for the left. As a 
didactic resource, Figure 3 shows the schematic 
representation of our artificial centipede’s segment 
taking into the account the artificial muscles 
mentioned before. The intersegmental articulation is 
represented by a single pivot. Once more, note that 
we consider that the extensor muscle is in action, the 
respective leg is producing traction. 

 
Figure 3: The Artificial Centipede design. In the left it is 
displayed 6 of the 21 segments of the model. In the right, 
the degrees of freedom in one segments is showed. 

4.1 The Centipede OBB 

As we saw before, to integrate the two types of 
movements, the OBB has to enclose the whole 
animal’s segment. So, in this model we have to 
generate a SMER-based network capable of 
reproducing all the intermediate positions that each 
muscle assumed during the periodic movement. At 
this point, all the information retrieved during the 
analyses of real centipedes comes together. 

In this OBB there are also two additional nodes, 
represented in the middle of Figure 4, that are 
responsible for the connection among the OBBs, 
represented by the dotted line, and for the activation 
of the others nodes, the artificial muscles. Note also 
that the reversibility of those two connection-nodes 
is 5, meaning that both of them are only activated 
when each connected edge is fully directed to them. 
Under another point of view, this also means that the 
others nodes, the artificial muscles, will be activated 
for a period of time five times longer them those 
two, since its reversibility is one.  

The above mentioned reversibility, i.e., r = 5, 
was obtained from the analysis of the undulating 
wave that covers the centipede from the anterior to 
the posterior segment (see Figure 5.b). It is half of 
the wavelength. 

 
Figure 4: The resulting Oscillatory Building Block (OBB). 
C1 and C2 are the inter-segment connection nodes; dotted 
lines display the connection to other OBBs. Lb and Rb are 
nodes representing the artificial motor neurons/muscles 
responsible for the left and right bending, respectively. Le 
and Re are nodes representing the artificial motor 
neurons/muscles responsible for the extension of the left 
and right legs, respectively. Finally, Lf and Rf are the 
nodes representing the artificial muscles responsible for 
the flexion of left and right legs, respectively. 

4.2 The SMER Network 

Now that the OBB is built, it is necessary to connect 
them in a network that will reproduce the body 
behaviour of the animal. Since the locomotion 
pattern of the centipede is an undulating wave 
covering the whole body, the design of the network 
started with this perception and tried to reproduce 
this characteristic. Fortunately, this proposition 
proved correct and the SMER-based network, 
responsible for the connection of the OBBs is one 
that produces the activation of each OBB in the 
same direction as the travelling wave (see Figure 5). 

.
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Figure 5: (a) The artificial centipede scheme (only 11 segments shown); (b) The functioning axial SMER-based network 
(without the OBB details); (c) SMER-based OBBs (3 OBBs shown). 

5 CONCLUSIONS 

Since the beginning of the study of Central Pattern 
Generators, one of the most critical problems was to 
understand and to model the biological macroscopic 
cyclic behaviour observed in terms of small 
nonlinear units. As an alternative to the usual 
continuous numerical methods applied in this field, 
the use of a discrete and generalized model to mimic 
the cyclic behaviour of CPGs was proposed in this 
work. In this aspect, the use of distributed 
algorithms avoids the usual complexity of the usual 
approach without losing expressivity or generality. 

The present work shows the application of one 
of these algorithms (SMER) to model the complex 
locomotion of a centipede at its fastest gait pattern 
speed. Although others ways of reaching that 
objective may exist, we believe that our approach 
showed significant advantages in aspects like time 
consumed, facility and acceptable correlation with 
the reality. We believe that the strategy adopted in 
this work could help biologists and 
neurophysiologists to not only test the current 
theories in Central Pattern Generator’s functioning, 
but also develop new points of view in the 

construction of complete explanations to the 
phenomenon of the generation of rhythmic patterns 
in animals. 
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Abstract: We present in this paper a system conceived to perform a bioinspired image processing and different output 
encoding schemes, oriented to the development of visual aids for the blind or for visually-impaired patients. 
We remark some of its main features, as the possibility of combining different image processing modalities 
(colour, motion, depth, etc.) and different output devices (Head Mounted Displays, headphones, and 
microelectrode arrays), as well as its implementation on a reconfigurable chip (FPGA) or a specific VLSI 
chip, which allows working in real time on a portable equipment. A software design environment has been 
developed for the simulation and the automatic synthesis of the processing models into a hardware platform. 

1 INTRODUCTION 

Visual impairment is considered as one of the 4 
main causes for the loss of self-sufficiency among 
elderly people. With different affection degrees, 
visual impairment affects about a 25% of persons 
over 65 years old, and a 15% of adults between 45 
and 65 years old. In addition, the progressive ageing 
of the population in developed countries makes these 
numbers grow forth, propitiating a remarkable loss 
in visual acuity and a reduction of the visual field. In 
this context, retinal degenerations (especially the 
age-related macular degeneration, ARMD), 
cataracts, glaucoma, diabetic retinopathy, optic 
nerve damage, and ocular traumas, yield a relevant 
amount of blindness cases, often non-curable. 

Visually impaired patients require optical aids 
(microscopes, magnifiers, telescopes, optic filters) to 
enhance their quality of life, exploiting their 
remaining functional vision.  However, there is no a 
unique aid able to provide this enhancement under 
any circumstance. Electronic aids, as (LVES, 1994) 
V-MAX, or the recent (JORDY, 2007) provide a 
more efficient use of the visual functional remains of 
the patient by magnifying images, enhancing 
light/darkness and colour contrasts, but none of 
these systems are able to implement an efficient 
control of local gain to produce clear and sharp 

images in a variety of lighting situations. These 
devices also use to be relatively heavy (0.5 to 1 Kg.), 
quite expensive and difficult to manipulate during 
motion. These reasons led us to propose the system 
described in this paper, which is inspired by the way 
the biological retina works, and is fully adaptable 
and configurable to each patient. 

The retina-like design, not only at a functional 
level, but also at an architectural level, is a key 
aspect in the development of a robust and efficient 
system able to apply in real time local spatio-
temporal contrast processing of the visual 
information. The final system has been developed on 
a reconfigurable hardware platform in order to 
provide real-time and portable solutions for visual 
processing that fit to the particularities of the visual 
impairment of every person, and which can be tuned 
according to its evolution with time. According to 
diversity of affections, different output encoding 
modalities have been considered, including acoustic 
encoding, high resolution image for Head Mounted 
Displays and neuromorphic encoding for 
neuroprostheses. 

The next section is devoted to explain the 
bioinspired image processing in the system we 
present, and its main architecture. In section 3, a 
spike event encoding method is detailed, that is able 
to produce trains of electrical signals intended to 
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stimulate neurons of the human visual system. 
Section 4 describes an acoustic signal generation 
module, that allows to the blind to localize those 
objects in the visual environment that produce 
higher activity levels. Finally real-time hardware 
implementation is presented and conclusions are 
summarized. 

2 BIOINSPIRED IMAGE 
PROCESSING 

The development of a bioinspired system for visual 
processing is being pursued by several research 
groups, as the tuneable retinal encoder, by 
(Eckmiller, 1999), or the computational models of 
retinal functions described by (Koch, 1986). The 
CORTIVIS (Cortical Visual Neuroprosthesis for the 
Blind) consortium has also implemented a 
bioinspired retinal processing model as part of a 
system designed to transform the visual world in 
front of a blind individual into multiple electrical 
signals that could be used to stimulate, in real time, 
the neurons at his/her visual cortex (Cortivis, 2002; 
Romero, 2005). 

Video
input

Temporal 
filtering

Spatial 
filtering

Stereo 
processing

Linear 
combination

Automatic 
synthesis

Receptive field 
mapping

Perceptual 
image

Neuromorphic 
coding

Activity 
matrix

Visualization
& analysis

‘Graded
output'

Neuro-stimulation Configuration

Acoustic 
signal 

generation

Video
input

Temporal 
filtering

Spatial 
filtering

Stereo 
processing

Linear 
combination

Automatic 
synthesis

Receptive field 
mapping

Perceptual 
image

Neuromorphic 
coding

Activity 
matrix

Visualization
& analysis

‘Graded
output'

Neuro-stimulation Configuration

Acoustic 
signal 

generation

 
Figure 1: Reference architecture of the bioinspired image 
processing system for the development of visual aids. 
After obtaining a linear combination of spatial, temporal 
and depth-related features, different outputs for a variety 
of applications are possible. The choices include automatic 
synthesis for programmable devices; sending the 
information to the patient by means of HMD, headphones 
for acoustic signalling, or delivering neurostimulation to 
the neural tissue to evoke visual perceptions. 

Even though the main objective of the 
CORTIVIS project, in which our research group has 
been involved, was the design of a complete system 
for neurostimulation, a part of the system is useful as 
a processing scheme which can be adapted to match 
the requirements aforementioned, and, this way, 
develop non-invasive aids for visualization, or 
sensorial transduction to translate visual information 
into sound patterns. 

Figure 1 shows the reference architecture 
illustrating all the capabilities developed up to this 
moment. The input video signal is processed in 
parallel by three modules for the extraction or 
enhancing of image features, according to different 
processing modes. The first module performs a 
temporal filtering, as natural retinae also respond 
and remark temporal changes in the visual input; see 
for example (Victor, 1999). In our platform this 
temporal enhancement is implemented by remarking 
the differences between two or more consecutive 
frames, and with different strength in the periphery 
of the visual field (foveated model) as in natural 
retinae (Morillas, 2007). 

For the spatial processing, an intensity and 
colour-contrast filtering is applied to different 
combinations of the three colour planes (red, green 
and blue) composing a frame. This spatial filtering 
emulates the function of bipolar cells in the retina, in 
the form of difference of Gaussians filters. 

Our platform offers a variety of bioinspired 
predefined and parameterized filters, including 
Gaussians (1), difference of Gaussians (2) and 
laplacian of Gaussians (3). Even more, we can 
include new filters in the form of any Matlab 
(Mathworks, 2007) expression over the colour or 
intensity channels. 
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The stereo processing module obtains disparity 
maps at different resolutions, starting from image 
pairs captured by two head mounted cameras. Figure 
2 shows examples of application where disparity 
maps are used as a weighting term for the output of a 
spatio-temporal filtering combination, emphasizing 
closer objects which produce a higher activity levels. 

The next stage in figure 1 gathers the results 
obtained by each of the processing modalities. Its 
objective is to integrate as much information as 
possible into a single compact representation, so it 
requires a maximum degree of compression to allow 
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the integration of the most relevant features. Given a 
real scene, we intend to remove all the background 
content, so only the closest objects are remarked, 
which are considered to be the most relevant 
information for an application like the one described 
in this paper, conceived for basic visual exploration 
tasks and obstacle-avoidance navigation. After some 
initial experiments with a portable prototype, we 
considered the need for incorporating an ultrasonic 
range finder, which provides a measurement of the 
distance to the closest object that can be used to 
ponderate the output of later stages, based on 
proximity. 

According to the kind of application, the 
resolution for the output will be different; however, 
we can consider a general reduction of the 
resolution. For a neuroprosthesis, this resolution will 
match the number of available electrodes in the 
physical interface, which is currently in the order of 
hundreds of channels (Fernández, 2005). If we apply 
this scheme for a sensorial transduction system for 
the translation of visual information into audible 
patterns, we will be restricted by the amount of 
different sounds that the patient is able to distinguish 
without interfere his/her normal perception 
capabilities. 

The reduction of spatial resolution is based on 
the concept of receptive field, which can be defined 
as a zone of the image (set of pixels) that contribute 
to the calculation of the value resulting in the 
reduced representation, which we call “activity 
matrix”. 

The default configuration performs a partition of 
the image into rectangular non-overlapping areas of 
equal size, however we have also developed a tool 
for the definition of more complex structures, 
allowing even different sizes and shapes, which also 
can be variable, depending on its localization, from 
the centre of the visual field to its periphery. 

Once the system has computed the activity 
matrix, depending on the specific application we 
will use it in a different way. In the case of a 
neuroprosthesis, the next stage is the recoding of this 
information into a neuromorphic representation, as a 
sequence of stimulation events (spikes), which will 
be later used to drive a clinical stimulator. Another 
possible use is the display of this information by 
means of specialized portable screens as HMD 
(Head Mounted Displays), to assist low-vision 
patients suffering a visual deficiency but still 
holding a functional remain of his/her vision. 

 
Figure 2: Stereo processing results obtained with the hardware implementation described in section 5. (a) Left and right 
images from the stereo cameras. (b) Activity matrices for a combination of spatial filters on the left input (left), right input 
(centre) and disparity weighting (right), the door is detected as relevant for spatial filters, but the chair, that is closer, is 
enhanced by the disparity computation. (c) A new closer object (the hand) appears in the visual field. (d) The disparity filter 
(on the right) detects this new object as the most relevant, due to its higher activity at the output matrix. The disparity output 
image is referred to the filtered left image in all cases. 
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The information provided by the activity matrix 
has been also employed in our system to locate the 
most relevant zones of the scene and translate them 
into sound patterns that include 3D spatial 
information. This way, the system can point out the 
location of the highest activity levels in the scene for 
the patient. 

3 NEUROMORPHIC ENCODING 

Features extracted by the image processing stage can 
be used in a complete neural stimulation system, 
being transformed by a spiking neuron model that is 
able to translate numerical activity levels into spike 
trains that the stimulation device can handle. 

Different neuron models can be found in the 
literature (Gerstner, 2002), and we decided to 
implement an integrate-and-fire spiking neuron 
model, including a leakage factor, because of the 
simplicity to be implemented in a discrete system. 

The selected spiking neuron model, depicted in 
figure 3, needs a set of accumulators which gather 
activity levels resulting of the current frame 
processing. When a value is integrated, the result is 
compared to a previously defined threshold, and if 
reached, the accumulator is initialized and a spike 
event is raised. The leakage factor avoids 
unexpected events due to ambient noise or residual 
activity from previously processed frames. 

Each spike event generated is delivered to the 
stimulation device which has to form the 

corresponding electric waveform to be applied to the 
neural tissue. 
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Figure 3: Block diagram of the neuromorphic coding 
subsystem for a sequential implementation. 

All the events generated during a stimulation 
session can be stored for analysis. Figure 4 shows a 
graphic representation of all the events produced by 
a white horizontal bar moving from bottom to top on 
a black background, considering a 10 by 10 channels 
stimulation device. In this example the retina 
function is approximated by a simple model 
described by the expression (4): 

tempFIretina +⋅=
5
1      (4) 

where I is the input pixel intensity and the temporal 
filter Ftemp compares, for each pixel, the current 
intensity value with the average of the five previous 
frames.
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Figure 4: Spike event trains produced by a horizontal bar pattern moving from bottom to top of the image, and illustration 
of stimulation channels numbering (see text for details). 
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Figure 5: Image processing and coding example, including the inverse activity restoration stage. First row shows four 
instants of a video sequence. In the second row we can see the corresponding activity matrix obtained with a certain spatial 
filtering combination. Graphics shows the representation of the spike events produced by the image sequence, and finally, 
the bottom row represents the reconstruction of each activity matrix. 

In order to test the effectiveness of this 
information coding method, we have developed a 
procedure for restoring activity matrix values from 
the temporal sequence of spike events (i.e. an 
inverse spike to activity conversion). Each spike 
produces an increment of the accumulated value of 
the corresponding activity matrix component, while 
a leakage factor is applied every simulation time 
step. A visual comparison between original and 
restored activity matrices was done, reporting 
successful results. However, a better evaluation 
method was implemented. Restored activity matrix 
was applied again to the neuromorphic pulse coding 
stage, producing very precise results with almost 
imperceptible differences. Results obtained from the 
restoring stage are illustrated in figure 5 
 
 
 
 
 
 
 

4 GENERATION OF ACOUSTIC 
SIGNALS 

As we have mentioned above, an object detected by 
the image processing stage can be encoded by a 
sound that will represent the position in which it has 
been detected (see figure 1). 

We will represent the position of an element in 
the visual space by means of a sound pattern coming 
(apparently) from the actual spatial location of that 
element. This location is determined by three 
parameters (see figure 6): straight-line distance 
between the observer and the object, d, elevation of 
the object over the horizontal plane containing the 
head, e, and azimuth or horizontal angle between the 
front and the sides of the head, a. 

The mechanism of spatial sound location carried 
out by the binaural biological system is highly 
dependent on the individual, making difficult the set 
up of an artificial system for universal filtering 
(Algazi, 2001). As a first approach, we have made 
use of the results obtained by (Gardner, 1994) in 
order to create sounds including spatial localization 
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information. In their study, they placed a KEMAR 
(Knowles Electronics Manikin for Acoustic 
Research) model inside a soundproof cabin. Then, 
the authors played pseudo-random sound stimuli, 
and measured the response at the input of each of the 
pinnae. 

(a) (b)

d

e

a
d

(a) (b)

d

e

a
d

 

Figure 6: Basic parameters for the 3D location of sounds. 
See text for more details. 

This way, they obtained an ample set of 
measurements of the HRTF (Head-Related Transfer 
Functions) which model the physical and 
mechanical features of the head acoustic system. 
These functions are described as a set of multiple 
pairs of coefficient sets of a FIR filter, one for each 
spatial location and auditory channel. 

This technique is expressed in (5): 

( ) ( ) ( )∑
=

−=
N

i
itxihty

1
·  (5) 

where h is the set of coefficients of the FIR filter, x 
represents the samples of base sound to which we 
want to add spatial information, and y is the 
resulting sound. 

5 REAL-TIME HARDWARE 
IMPLEMENTATION 

This section describes the implementation of our 
system into a programmable circuit. This choice is 
based on the customization needs of the application. 
The kind of processing to be carried out depends 
strongly on the specific features of the disability of 
the patient, which also can vary with the evolution 
of the illness, so the system requires being able to 
adapt its configuration to those changes. 

Furthermore, the systems that are based on 
reconfigurable logic chips (FPGA) present some 
other features that make them suitable for this field 
of development, as the short time required to obtain 
a working prototype, its small size, allowing for 

portability and the integration of some other 
interfacing circuitry. 

The description of the different modules has 
been written in Handel-C language, from (Celoxica, 
2007), within its DK synthesis environment. 

The prototyping platform selected for our tests is 
the Celoxica’s RC300 board, which incorporates a 6 
million gates FPGA and all the peripherals required 
for our application, as a dual video capture system to 
grab input images for each visual channel, VGA 
video outputs, and specific circuitry to obtain stereo 
audio. Figure 7 shows the experimental setup based 
on the RC300. 

 
Figure 7: Experimental hardware prototype composed by 
two cameras, an ultrasonic range finder, headphones and a 
RC300 board. 

This kind of devices let us implement a high 
degree of parallelism, so that most of the modules 
can process in parallel. The design has been made to 
exploit this capability, and a pipelined architecture 
has been implemented, with a high number of stages 
that operate concurrently. 

Figure 8 shows the schematic organization of the 
building blocks for the image processing subsystem. 

The combination of an image grabbing process 
to store the frame, and another process to read this 
information feeds constantly the computational 
pipeline, and achieves an uncoupling between the 
image capture rate and the processing carried out by 
the rest of the system.  The information read from 
the memory banks is delivered to the spatial filtering 
module, which performs the convolution over the 
input images with different masks. The outputs from 
this stage are put together by a weighting module. 
The results obtained with this module will be used to 
perform the receptive field based mapping, in which 
the mean value of all the pixels in the contributing 
zone is stored for every point of the activity matrix. 

Once the activity levels are computed for every 
zone of the image, the maximum values are 
identified, as they indicate the presence of the most 
relevant objects in the scene, which need to be 
reported to the patient. The user can select the 
amount of information that he/she is receiving 
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through this system by varying the number of 
different zones (K) of the image that he/she prefers 
to be reported about. This means that we will 
generate K audible patterns, modulating each of 
them to include information regarding the location 
of the image from which it has been extracted, so the 
patient can perceive their origin. 
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Figure 8: Architecture for the implementation of the image 
processing system in a Celoxica RC300 Board. The output 
of this common sub-system can be used for sensorial 
transduction, low-vision enhancing, or neurostimulation, 
as depicted in figure 1. 

Although the working frequency for the global 
system is not very high, about 40 MHz, the 
performance-oriented design architecture allows 
reaching a 60 fps rate of processing, more than 
enough to consider the system is working in real 
time. 

6 CONCLUSIONS 

Image processing is a key stage for any device 
conceived to provide an aid to visually-impaired 
persons. We present a system that incorporates a 
bioinspired vision preprocessing stage which selects 
the most relevant objects in a visual scene to 
perform later processing that can be applied to 
different impairments. When this later translation is 
encoded into a stream of events for electrode 
addresses, the system can be applied for a visual 
neuroprosthesis. If we perform a sensorial 
transduction, the results can be translated into sound 
patterns, providing 3D binaural information related 
to the location of obstacles in the visual field. In any 
case, the system is highly flexible and parametric, 
and can be synthesized to fit into a portable, 
restricted power consumption board, which is 
suitable for a wearable aid. Our system is able, as 
described, of integrating different aspects of the 
image, as depth, colour and luminance contrast, and 
temporal changes detection. 

We show some results on how the image analysis 
is performed for a variety of tuneable aspects, and 
specific data related to the synthesis of the 
processing scheme on a FPGA. 

ACKNOWLEDGEMENTS 

This work has been supported by the National 
Spanish Grants DPI-2004-07032 and IMSERSO-
150/06, and by the Junta de Andalucía Project: P06-
TIC-02007. 

REFERENCES 

Algazi, V.R., Duda, R.O., Thompson, D.M., Avedano, C., 
2001. ‘The CIPIC HRTF Database’, 2001 IEEE 
Workshop on the Applications of Signal Processing to 
Audio and Acoustics, pp. 99-102. 

Celoxica. http://www.celoxica.com [2007]. 
Cortivis website. http://cortivis.umh.es [2002]. 
Eckmiller, R., Hünermann, R., Becker, M., 1999. 

Exploration of a dialog-based tunable retina encoder 
for retina implants. Neurocomputing 26-27: 1005-
1011. 

Fernández, E., Pelayo, F., Romero, S., Bongard, M., 
Marin, C., Alfaro, A., Merabet, L., 2005. Development 
of a cortical visual neuroprosthesis for the blind: the 
relevance of neuroplasticity. J. Neural Eng. 2: R1–
R12. 

Gardner, B., Martin, K., 1994. HRTF Measurements of a 
KEMAR Dummy-Head Microphone, Media Lab 
Perceptual Computing Technical Report #280. 

Gerstner, W. and Kistler, W., 2002. Spiking Neuron 
Models, Cambridge: Cambridge University Press. 

JORDY, Enhanced Vision. [2007]. 
http://www.enhancedvision.com  

Koch, C., Torre, V. and Poggio, T., 1986. Computations in 
the vertebrate retina: motion discrimination, gain 
enhancement and differentiation. Trends in 
Neuroscience 9: 204-211. 

LVES, University John Hopkins, Baltimore in 
collaboration with NASA. [1994] 
http://www.hopkinsmedicine.org/press/1994/JUNE/199421.HTM 

Mathworks website, The. [2007]  
http://www.mathworks.com. 

Morillas, C., Romero, S., Martínez, A., Pelayo, F., 
Reyneri, L., Bongard M., Fernández, E., 2007. A 
Neuroengineering suite of Computational Tools for 
Visual Prostheses. Neurocomputing 70(16-18): 2817-
2827. 

Romero, S., Morillas, C., Martínez, A., Pelayo, F., 
Fernández, E., 2005. A Research Platform for Visual 
Neuroprostheses. In SICO 2005, Simposio de 
Inteligencia Computacional, pp. 357-362. 

Victor, J., 1999. Temporal aspects of neural coding in the 
retina and lateral geniculate. Network 10(4): 1-66. 

 

BIO-INSPIRED IMAGE PROCESSING FOR VISION AIDS

69



BI-LEVEL IMAGE THRESHOLDING
A Fast Method

António dos Anjos and Hamid Reza Shahbazkia
Faculty of Sciences and Technology, University of Algarve,DEEI - ILab 2.57, 8005-139 Faro, Portugal

aanjos@ualg.pt, hshah@ualg.pt

Keywords: Bioinformatics, Medical image processing, Image thresholding.

Abstract: Images with two dominant intensity levels are easily manually thresholded. For automatic image thresholding,
most of the effective techniques are either too complex or too eager of computer resources. In this paper we
present an iterative method for image thresholding that is simple, fast, effective and that requires minimal
computer processing power. Images of micro and macroarray of genes have characteristics that allow the use
of the presented method for thresholding.

1 INTRODUCTION

It is known that, in the context of image process-
ing, thresholding (Sezgin and Sankur, 2004) is a
simple, but powerful tool to separate objects from
the background. There is a vast number of ap-
plications for thresholding such as document image
analysis (Kamel and Zhao, 1993), map processing
(cad, ), scene processing and quality inspection of
materials (Sezgin and Tasaltin, 2000). Gene im-
ages (Diachenko, 1996)(Zhang, 1999) of micro and
macro-arrays, where dots of cDNA need to be ex-
tracted from the background and electrophoresis and
two-dimensional electrophoresis (Dowsey and Yang,
2003) gels, where blots need to be extracted from
the background, to determine protein expression, are
more recent applications for image thresholding. The
quality of the subsequent steps (e.g. spot detection,
quantification) will often depend on the quality of the
image thresholding.

In this paper it is presented a method of image
thresholding that aims to be simple – allowing a rapid
implementation in any computer programming lan-
guage, fast – requiring low computing power – and
effective – giving results that can be compared with
other reference methods of image thresholding. First
it will be presented an overview of what lead us to
the proposed method, then, the method itself will be
described. Finally, there will be presented some re-
sults and comparative data with reference methods of
thresholding.

2 STATISTICAL APPROACH

After statistically (Kilian, 2001) analysing several
histograms of genomic images with two dominant in-
tensity classes, the background intensity class and the
foreground intensity class, with one of them being
dominant over the other, for example, the background
class being dominant over the foreground class (see
fig. 1), it was noticed that when the histogram grows
substantially near the dominant peak, the variance,
from the lowest intensity level to the intensity level
where the big growth happens, decreases relatively to
the variance from the lowest intensity level to that in-
tensity level minus one.

In the case of figure 1, the decrease on vari-
ance, obviously, happens because the background is
highly dominant. From the intensity level where that
change occurred to a very fair threshold level there
is a distance of about minus one standard deviation
of the whole image histogram. With images with a
great contrast between background and foreground,
the standard deviation is bigger, and the contrary also
happens. Thus, the goal was to find where the de-
crease of variation occurred and then subtract one
standard deviation of distance. Very good results were
achieved with images where the background was the
dominant class but, as long there is one dominant
class, it doesn’t matter which is the dominant one.

If the variance is measured starting on the first in-
tensity level to any level before the least dominant
peak, a decrease on the variance may happen be-
fore reaching the most dominant one. Ideally, the

70



(a) Macroarray dot.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 20  40  60  80  100  120  140  160  180

C
ou

nt

Intensity

(b) Histogram of 1(a).

Figure 1: Two-dominant intensities image.

decrease should be measured having, as first ending
level, the level where we find the depression between
the two peaks, but, if that could easily be found, there
wouldn’t be needed to proceed, because that is what
we are trying to find. For that reason, the mean in-
tensity level of the image was used as the first ending
level.

Clearly, if the mean is above the point where the
variance starts to decrease, which happens if the least
dominant class (peak) has very little representation in
contrast with the dominant class, the method will not
work, even if there is an important contrast between
classes. Nevertheless, for images where the mean was
below the point of decrease on variation, this solution
finds a fairly good threshold level. So, the variance
was measured, starting from the first intensity level
until the mean intensity, towards the dominant peak,
comparing the result of each step with the previous
one.

Knowing that an image is a 2D grayscale intensity
function with N pixels with graylevels from 1 toL

and the number of pixels of grayleveli is denoted by
fi , we can define the mean until levell as:

µl =
l

∑
i=0

i× fi

∑l
i=0 fi

; (1)

and the variance until levell as:

σ2
l =

1

∑l
i=0 fi

l

∑
i=0

fi× (i−µl)
2. (2)

Assuming that the dominant peak is on the right
side of the histogram (as in image 1(b)), the level
l whereσ2

l will decrease relatively toσ2
l−1, can be

defined as the first occurrence of:

l∗ = {l | σ2
l < σ2

(l−1)∧µL ≤ l < L}; (3)

then, the threshold levelT, would be:

T = l∗−
√

σ2
L. (4)

where
√

σ2
L is the standard deviation of the whole im-

age.
As an example, take the case of the imageI in fig-

ure 1(a). The mean intensity ofI is µL = 130 and the
standard deviation isσL = 43, with L = 256. Calcu-
lating the variancesσ2

l with l being the ending lev-
els for calculation of the variance andµL ≤ l < L, all
the variances will rise until the gray level is 153 (see
fig. 2), whereσ2

154 < σ2
153. Consequently,l∗ = 154,

and the estimated threshold level is calculated by sub-
tracting the standard deviation of the image froml∗.
In this way, we get a threshold value ofT = 111 (see
fig. 3). Applying the well known Otsu (Otsu, 1979)
thresholding method, the achieved threshold level was
of 100. Taking in consideration that in many circum-
stances an acceptable threshold level for this image
could be between the intensities 40 and 140, 111 is
a good threshold level. For the specific case, any
threshold level between 60 and 120, would be a very
good threshold level. When manually thresholding
the same image, the optimum threshold was found as
76. WithT = 76, the diffuse area that separates back-
ground and foreground was almost completely elimi-
nated.

As can be seen on figure 2, the variance decreases
when the selected part of the histogram starts to grow
more in height than in spread, meaning that all the
intensity values untill∗ or higher will be closer to
the mean. On a histogram with both intensity classes
equally expressed, the growth of any of the existing
intensities will decrease the variance. Observing fig-
ure 2, it can be stated that the variance decreases af-
ter the histogram is more or less balanced between
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Figure 2: Calculation of T.

Figure 3: Image 1(a) thresholded with T=110.

the first intensity level and levell∗. Also, consider-
ing a histogram with only two intensities, the maxi-
mum variance will be reached when both intensities
are equally expressed. Any increase or decrease to
any of the intensities of the histogram, will result in
the decrement of the variance, because one of the in-
tensities will be dominant.

As stated before, the previous approach would
need images with very specific characteristics and,
that is not allways possible. Although this was not
a good technique for image thresholding it gave us
some ideas on how to find a good thresholding level,
as explained on the next section.

3 WEIGHTING A HISTOGRAM

If a perfect balanced histogram, i.e. a histogram that
has the same distribution of background and fore-
ground, could be placed over a lever, it wouldn’t fall
for any side (see fig. 4). Also, notice that the opti-
mum threshold level would be right in the centre of
the lever.

Looking at figure 5, which represents an unbal-
anced histogram, it can be observed that the lever falls

(a) Balanced Histogram.

(b) Histogram over a lever.

Figure 4: Perfectly balanced histogram.

to the side where the histogram is heavier. The idea
is to try to balance the unbalanced histogram. Once
again, there is the assumption that the image has two
dominant classes (peaks), one representing the fore-
ground and the other representing the background. In
this case, there is no need of one being highly domi-
nant over the other. So, how can an unbalanced his-
togram be balanced? The proposed way of doing it
is to figuratively put the unbalanced histogram over a
lever, as in figure 5, and then start to remove the ex-
cess weight from the heavier side. The next step is to
adjust the base triangle to the new middle position.

Is

Im Ie

Figure 5: Unbalanced Histogram.
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Let Is (Intensity Start) be the first graylevel inten-
sity occurrence andIe (Intensity End) the last. Now
the position of the base triangle can be defined as:

Im =
Is+ Ie

2
. (5)

Remembering that an image is a 2D grayscale in-
tensity function with N pixels with graylevels from 1
to L and the number of pixels of grayleveli denoted
by fi , we can define the weights of the left and right
sides as:

Wl =
Im

∑
i=Is

fi (6)

and

Wr =
Ie

∑
i=Im+1

fi (7)

so that initiallyWl +Wr = N, we can define the
following algorithm:

Algorithm
3.1: GET-THRESHOLD( f , Is, Ie)

Im←
Is+Ie

2
Wl ← ∑Im

i=Is fi
Wr ← ∑Ie

i=Im+1
fi

while Wr > Wl

do































Wr ←Wr − fIe
Ie← Ie−1

if Is+Ie
2 < Im

then







Wl ←Wl − fIm
Wr ←Wr + fIm
Im← Im−1

return (Im)

The same algorithm will apply when the dominant
peak is on the left side, only mirrored. Another solu-
tion is to invert the histogram and apply the algorithm
the same way. But for now, it will be assumed that
the most dominant peak (heaviest) is at the right side
of the least dominant one. What happens in this algo-
rithm is that after determiningIs andIe, Im, the posi-
tion of the base triangle is calculated (see eq. 5). After
that, two classes are created,Wl with all the intensi-
ties at the left ofIm (see eq. 6) andWr with all the
intensities at the right ofIm (see eq. 7). Now, while
the heaviest class (Wr in this case) weights more than
the lightest, columns are subtracted from the heaviest
peak, starting at the outer side of it. Then, if there is a
need to adjust the position of the base triangle, mov-
ing it to the left, both classes are adjusted accordingly,
Wl loosing one bar toWr . The result of applying the

algorithm on the histogram represented by figure 5
can be seen on figure 6(a).

At the end,Im is the position which is in between
the two peaks that may work as a threshold level.
Another estimate for the threshold can be the lowest
value between the highest peak at the left ofIm and the
highest peak at the right ofIm or, by other words, the
lowest value between the two peaks. That in not very
hard to find now that we haveIm. There is another ap-
proach that generally seams to produce better results.
That approach consists of drawing a horizontal line
over the top of the lowest of the two dominant peaks
and determine its intersection with the highest peak.
Then the middle distance between the top of the low-
est dominant peak and that intersection, can be used
as a threshold, as demonstrated by figure 6(b).

Is Im

Ie

(a) Threshold isIm.

T

Im

(b) Threshold isT.

Figure 6: Processed Histogram.

If the image is noisy, the histogram may have
some intensities represented with very low frequency
and usually they will be noticed in the histogram as
tails before the first peak and after the last one. In
this case, using the approach presented by algorithm
3.1 to find a threshold level may fail. For example, if
the least dominant peak has a big tail (see fig. 7),Is
will be placed very far away from the representative
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area of the least dominant peak, movingIm closer to
the least dominant peak. The approach represented on
figure 6(b) can correct this problem only if the result-
ing Im is still between the two peaks. In the case that
it’s the most dominant peak that has the big tail, that
may cause the side that should be the lighter one, to be
the heavier, not allowing to find the right thresholding
level. In order to solve this problem, there have been
found two main approaches. One consists of pass-
ing a parameter to the algorithm that will work as the
least quantity that will be representative and, thus, ac-
counted for the calculation ofIs andIe. The other ap-
proach consists of performing a mean smoothing of
the image. This may eliminate all the intensities that
have almost no representativity.

Is Im

Ie

Figure 7: Big tail at the left of least dominant peak.

4 PROPOSED METHOD

The method presented in the previous section (see
alg. 3.1) has a caveat that makes it unreliable in some
cases. This algorithm will tend to approachIm to the
lowest peak, proportionally to the degree of grow-
ing and height of the highest peak. That happens,
of course, because each bar of the highest peak will
correspond to more than one of the lowest peak bars.
This may be a minor problem if the contrast is very
high, but will be noticed in low contrast images with
one of the peaks much higher than the other and with
high accentuation of growth. To solve this problem
it was applied the same reasoning presented in sec-
tion 3. For example, if the right side of the histogram
is the heavier, we will remove bars from the right side
of the histogram. The stop condition for algorithm 3.1
is when the right side gets lighter then the left side. At
this point, the histogram will have its left side heavier
than the right side and, thus, it’s unbalanced. Apply-
ing the same algorithm (mirrored) to the histogram,
the right side will become the heaviest side again, and
so on. The result is thatIs andIe will get closer until

they are equal toIm. This approach is represented by
algorithm 4.1.

Algorithm
4.1: GET-THRESHOLD-FINAL ( f , Is, Ie)

Im←
Is+Ie

2
Wl ← ∑Im

i=Is fi
Wr ← ∑Ie

i=Im+1
fi

while Is 6= Ie

do



































































































if Wr > Wl

then































Wr ←Wr − fIe
Ie← Ie−1

if Is+Ie
2 < Im

then







Wl ←Wl − fIm
Wr ←Wr + fIm
Im← Im−1

else if Wl ≥Wr

then































Wl ←Wl + fIs
Is← Is+1

if Is+Ie
2 > Im

then







Wl ←Wl + fIm+1
Wr ←Wr − fIm+1
Im← Im+1

return (Im)

In this wayIm will tend to move to the lowest area
of the depression in the histogram. With this approach
it won’t matter how fast the highest peak grows be-
causeIm will be centred, once again, ifIm’s initial
position is located in between the two peaks. There
is still the concern of the big tails in the histogram, if
Im’s initial position is outside of the depression in the
histogram.

As a final matter, there is the situation when there
is very low contrast between background and fore-
ground. In this case we only have a peak. This will
result on a all or nothing threshold, because the his-
togram will allways be heavier from the same side.
Is will still get to be equal toIe, but the threshold
level may not be correct. When the histogram has
two peaks, bars will be removed from both sides of
the histogram, so, the solution that was found to this
problem was to place a flag in each of the places
where bars removal occurs. This way we know if it’s
a one or two peaks histogram or if it’s a one peak his-
togram only. In the case of a one peak histogram, a
good approximation for the threshold level may be the
mean of the original histogram minus some constant
or some percentage.
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5 RESULTS

For test and comparison of the presented method,
there were used scanned radioactive images of gene
macro arrays. Due to the existence of gradient in
the global image, obviously there could not be used
an optimum global threshold level, so the image was
split in to tiles of spot images (see fig. 8).

Table1, presents the result of applying this al-
gorithm to those images and compares it to the re-
sult of applying various reference methods. Results
are presented in the following order: Manual thresh-
old, Otsu’s, IsoData, Maximum Entropy, Mixture
Modelling and the proposed method’s threshold lev-
els. For the IsoData, Maximum Entropy and Mixture
Modelling threshold methods, it was used ImageJ’s
(Rasband, 2006) implementation.

Table 1: Results of the various thresholding methods.

Spot Man Otsu Iso Max Mix Pro

1 66 80 78 101 113 69
2 60 68 66 89 12 50
3 59 66 64 85 13 55
4 58 83 81 101 118 67
5 80 90 88 107 118 77
6 55 68 66 89 12 54
7 92 92 90 105 116 84
8 57 69 67 94 104 50
9 60 73 71 96 111 59
10 65 78 77 96 112 72

As can be seen in table 1, the proposed method is
the one that, generally, finds lower values for thresh-
olding. As the spot starts to blend with the foreground
(the diffuse area) there will be the depression in the
histogram. That diffuse area increases in intensity
level and in quantity of pixels as it goes from the spot
to the foreground. It is normal, then, that the proposed
method will find the lower threshold levels because,
as stated before,Im will tend to move to the lowest
area of the depression of the histogram. Figure 8 is
shown just to present an idea of the criteria that was
used in the manual threshold calculation (the ground
truths).

6 CONCLUSIONS

This is a very fast method that works very well on im-
ages that have a fair amount of background and fore-
ground representation, and with a reasonable contrast
between both, as is the case of scanned radioactive
images of macroarrays. It is a good approach when

(a) Spot 1. (b) Spot 2.

(c) G. t. of 1 (d) G. t. of 2

(e) Spot 3. (f) Spot 4.

(g) G. t. of 3 (h) G. t. of 4

Figure 8: First four of the tested sample images and their
ground truths.

the objective is to find the spot without the diffuse
area. If the diffuse area is to be included, Otsu or Iso-
data may be better. The presented method is already
being used on a bioinformatics software (Anjos and
Ascenso, 2007) for analysis of gene expression data
of macroarray images.
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Abstract: The mechanical processes of the cardiac cycle generate vibratory and acoustic signals that are received on 
the chest wall. We describe signal processing and feature extraction methods utilizing these signals for 
continuous non-invasive monitoring of cardiac systolic function. Vibro-acoustic heart signals were acquired 
from eleven subjects during a routine pharmacological stress echocardiography test.  Principal component 
analysis, applied to the joint time-frequency distribution of the first heart sound (S1), revealed a pattern of 
an increase in the spectral energy and the frequency bandwidth of the signal associated with the increase of 
cardiac contractility during the stress test. Novel acoustic indices of S1 that compactly describe this pattern 
showed good linear correlation with reference indices of systolic functionality estimated by strain-
echocardiography. The acoustic indices may therefore be used to improve monitoring and diagnosis of 
cardiac systolic dysfunctions.    

1 INTRODUCTION 

The human heart is a mechanical system whose 
primary function is to pump blood throughout the 
body in order to provide adequate perfusion of 
organs. This function is achieved by a complex 
interplay between the cardiac muscle, the vascular 
system and the blood, highly regulated by 
mechanical and neural control mechanisms. 
Cardiovascular diseases, such as coronary artery 
disease, hypertension and cardiomyopathy, may 
impair the mechanical functionality of the heart, 
leading to the clinical syndrome of heart failure 
(HF). As these diseases are major public health 
problems worldwide, technologies for improving 
early diagnosis and patient monitoring are essential.  

The low-frequency vibratory and acoustic 
signals, produced by the mechanical processes of the 
cardiac cycle and received on the chest wall, provide 
a direct and simple way for assessing the mechanical 
functionality of the cardiovascular system (Tavel, 
1978). However, the utilization of these signals in 
the clinical setting has been mostly limited to 
qualitative assessment by manual methods, as 

research and development efforts in recent years 
focused on modern imaging technologies such as 
echocardiography and cardiac computerized 
tomography. These valuable techniques require 
complex equipment, as well as expert operators and 
interpreters. In particular, these imaging tools can 
not be used continuously or outside of the hospital 
environment. Consequently, long-term non-invasive 
monitoring of mechanical functionality remains 
unavailable in the common medical practice. 

In this work, we revisit the problem of 
quantitative analysis of mechanical vibro-acoustic 
heart signals using modern signal processing tools. 
In an earlier study, we have shown the feasibility of 
using vibro-acoustic signals to extract temporal 
information about the phases of the cardiac cycle 
(Amit, 2005). In the current study, we address the 
potential of continuously assessing the global 
systolic functionality of the left ventricle using 
indices extracted from the first heart sound, S1. 
According to Rushmer’s theory of the origin of heart 
sounds, S1 is generated by the vibrations of the 
entire cardiohemic system, as a result of blood 
acceleration and deceleration following the onset of 
ventricular contraction and the closure of the 
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atrioventricular valves (Rushmer, 1978). The 
amplitude of S1 has been previously shown to be 
related to the pressure gradient (dP/dt) developing in 
the left ventricle during isovolumetric contraction 
(Sakamoto, 1965). A good correlation was also 
reported between dP/dt and the instantaneous 
frequency of S1 (Chen, 1997). While these previous 
studies were performed on anesthetized dogs, the 
relation between the characteristics of S1 and global 
left-ventricular systolic functionality has not been 
studied in humans in routine clinical settings.  

We study the relationship between acoustic 
indices, extracted from the time-frequency energy 
distribution of S1, and reference echocardiographic 
indices that are related to left-ventricular systolic 
functionality. To achieve dynamic, yet controllable, 
hemodynamic conditions, we used clinical settings 
of a routine echocardiography pharmacological 
stress test.  In the following sections, we describe the 
signal processing and feature extraction methods 
applied to the vibro-acoustic heart signal, introduce 
novel acoustic indices of systolic functionality and 
present quantitative results on the correlation 
between these indices and echocardiography-derived 
measures. We conclude by discussing the potential 
applicability of our methods for continuous non-
invasive monitoring of cardiac systolic function. 

2 METHODS 

2.1 Patients and Protocol 

The study was approved by the local ethics 
committee for medical research. Data was acquired 
from eleven male subjects of ages 36-79 (mean 
60±14), referred to a routine Dobutamine stress echo 
test (DSE) for assessment of ischemic heart disease. 
The referral indications included positive ergometry 
stress test, atypical chest pain and chest pain during 
physical activity. Two of the subjects had a history 
of coronary artery disease. These two subjects were 
diagnosed as positive for myocardial ischemia in the 
DSE test. The remaining nine patients were 
diagnosed as negative for ischemic heart disease. 
Prior to data recording, the patients signed an 
informed consent form. The standard DSE protocol 
consisted of four 3-minute stages of increasing 
Dobutamine dosage, from 10 to 40µg/kg/min. If the 
target heart rate, defined as 0.85 * (220 – Age), was 
not achieved at the end of the final stage, 0·25 mg 
boluses of atropine were given at 1-min intervals, up 
to a maximum of 1 mg.  

2.2 Data Acquisition 

Vibro-acoustic heart signals were recorded using a 
digital data acquisition system constructed in our 
lab. The system consisted of 4 piezoelectric contact 
transducers (PPG Sensor Model 3, OHK Medical 
Devices, Haifa, Israel), an ECG sensor (EKG-BTA, 
Vernier Software & Technology, Beaverton, OR), a 
preamplifier with high input impedance and a linear 
frequency range of 1Hz – 4KHz (A.S. ZLIL, Bnei-
Brak, Israel), a 16-bit analog-to-digital converter 
(PMD-1608FS, Measurement Computing Corp., 
Norton, MA), and a designated signal recording 
software running on a portable personal computer.  

The transducers were placed at the apex area, the 
aortic and pulmonary areas (second intercostal 
space, right and left sternal border, respectively) and 
at the right carotid artery, and were firmly attached 
using either elastic straps or adhesive bands. The 
patients were lying on their left side. Vibro-acoustic 
and ECG signals were continuously recorded during 
the stress test (30-45 minutes long) at a sample rate 
of 4KHz. Echocardiography images were acquired 
using a GE Vivid 7 ultrasound machine (General 
Electric Healthcare, Wauwatosa, WI). Two-
dimensional echo cine loops of a single heart beat 
were captured before the beginning of the stress test 
(baseline), during each stage of the test and 
following the test (recovery), from three apical 
views (4-chamber, 2-chamber and apical long axis) 
at a high frame rate of 70-100 FPS.  

2.3 Echo Data Processing 

The captured echo cine loops were post-processed 
using EchoPAC Dimension ’06 software (GE 
Healthcare Wauwatosa, WI) in order to extract 
quantitative echocardiographic indices of systolic 
functionality. The indices used were peak systolic 
velocity (PSV) and peak systolic strain rate (PSSR), 
shown to be strongly correlated with left-ventricular 
systolic functionality (Greenberg, 2002). These 
indices were first calculated separately for each 
cardiac wall (septal, lateral, inferior, anterior, 
posterior, and anteroseptal) and for three segments 
per wall (basal, middle and apical), and then 
averaged to obtain a global functionality index. 
Index calculation was done using 2D strain analysis, 
based on speckle tracking technique. This modality 
allows objective analysis of the entire myocardial 
motion throughout the heart cycle by tracking 
natural acoustic markers in the image. It was shown 
to provide accurate strain measurements, compared 
with tagged MRI (Amundsen, 2006). Strain indices 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

78



 

were successfully calculated for 10 patients. One 
patient was excluded due to inadequate quality of 
the captured echo images. 

2.4 Acoustic Signal Processing 

Each of the four recorded signal channels was first 
pre-processed by a applying a digital band-pass filter 
in the frequency range of 20-250Hz (Figure 1a). The 
signal was then partitioned into cardiac cycles using 
the peaks of the ECG-QRS complexes as reference 
points (Figure 1b). Signal segments with noisy ECG 
were excluded from the analysis. The signal cycles 
were aligned by their starting points and their 
amplitudes were color-coded to create a two-
dimensional signal map, showing the time-domain 
dynamics of the first and second heart sounds 
throughout the stress test (Figure 1c). Fast Fourier 
transform (FFT) was applied to each cycle of the 
first heart sound (S1), defined as the cycle segment 
from 50ms before the QRS peak to 200ms after the 
QRS peak. The logarithm of the power spectrums 
was color-coded to generate a spectral map of S1 
throughout the recording (Figure 1d). 

(a) 

(b) (c) (d) 

Figure 1: Generation of time-domain and frequency-
domain signal maps in a healthy subject: (a) the heart 
sound signal (blue), segmented using the ECG (red). (b) 
aligned multiple sound signal cycles throughout the test 
(left y-axis), with heart rate (red labels) and test staged 
(white labels and colored segments), (c)  continuous color-
coded map of segmented sound signals (d) continuous 
color-coded power spectrum of the first heart sound (S1). 

In order to characterize the joint time-frequency 
energy distribution of S1, S-transform was applied 
to each cycle of S1. S-transform (Stockwell, 1996) is 

a linear transform that provides frequency-dependent 
resolution, while maintaining a direct relationship 
with the Fourier spectrum. It is defined by: 

2 2( - )- - 22( , ) ( )
2

t f
i f tf

S f s t e e dt
τ

πτ
πℜ

= ∫  

Where s(t) is the original signal, τ is the time delay 
and f is the frequency. The progressive resolution of 
the transform provides a time-frequency resolution 
superior to Fourier-based techniques, while its 
linearity ensures accurate decomposition without 
artifactual cross-terms that are typical to quadratic 
transforms. S-transform is therefore suitable for 
analysis of non-stationary multi-component signals 
such as heart sounds. 
After applying S-transform to each cycle of S1, the 
resulting time-frequency representations were 
grouped by the stages of the stress test and averaged   
to produce a small number of representative time-
frequency maps (Figure 2).  
 

 
Figure 2: S-transform time-frequency representation of S1 
acoustic signal obtained in a representative healthy subject 
during the stages of the stress test. Each plot represents an 
average of the S-transform of all S1 cycles over a 
specified period of the test. 

2.5 Acoustic Feature Extraction 

The purpose of feature extraction is to find a 
compact representation of high dimensional data, 
without significant loss of information content. 
Principal component analysis (PCA) is a well-
known statistical technique for dimensionality 
reduction (Duda, 1973). The principle of PCA is to 
project the data on a new orthogonal basis, such that 
the variances of the linearly transformed data are 
sorted in descending order along the coordinates, 
with the maximal variance on the first coordinate 
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(first principle component), the second largest 
variance on the second coordinate, and so on. The 
projection of the original data on the first few 
principal components provides a low-dimensional 
representation of the data, which emphasizes the 
significant features (in terms of statistical 
variability) in the data. The choice of the significant 
principal components is done by examining their 
associated eigenvalues. 

PCA was applied on the aggregation of 
segmented S1 signals. The analysis was performed 
on both the frequency domain spectral maps (Figure 
1d) and on the time-frequency representations 
produced by the S-transform (Figure 2), vectorized 
by concatenating adjacent columns. The most 
significant principal components, having 
eigenvalues greater than 10% of the first eigenvalue, 
were selected and weighted by their relative 
eigenvalues. The projection of the data on this 
weighted combination of the significant principal 
components was chosen as a one-dimensional 
feature representing the dynamic characteristics of 
the acoustic signal during the stress test. To obtain 
an interpretable trend line, this feature was 
normalized by the median value of the baseline stage 
and smoothed by a moving average filter. The 
resulting index, denoted acoustic variability index 
(AVI) is interpreted as the trend of relative change in 
the spectral energy distribution of S1. 

 
Figure 3: Principal component analysis applied to the 
vectroized time-frequency representation of S1 cycles 
during a stress test. The bottom plots show the coefficients 
of the first 3 principal components (PC), and their linear 
combination, weighted by the eigenvalues (shown in 
parenthesis). The upper plots show the AVI index during 
the entire stress test, obtained by projecting the data on the 
respective PC. The red lines are the result of smoothing 
the projected data with a moving-average filter. 

Figure 3 illustrates an example of applying PCA to 
the time-frequency data shown in Figure 2, and 
calculating the time-frequency AVI.  

A second feature extracted from the spectrum of 
each cycle of S1 was the frequency bandwidth of the 
signal, defined by the highest frequency with 
significant energy content. Prior to calculating this 
feature, signal cycles with a high wide-band energy 
content, compared to their local environment, were 
classified as noise and excluded from further 
processing. The bandwidth feature was calculated 
for each cycle by searching the spectrum for the first 
frequency whose energy is at least 10dB below the 
maximal energy. The feature trend line obtained 
from all cycles was normalized by the median value 
of the baseline stage, and denoted Acosutic Spectral 
Index (ASI). 

3 RESULTS 

The color-coded signal map in figure 1c illustrates 
the time-domain characteristics of the heart sound 
signal during the stress test.  As expected, there are 
noticeable changes in the duration of ventricular 
systole and diastole, as the heart rate increases in 
exercise and decreases in recovery. However, there 
are no apparent morphological changes in the signal 
that can be associated with the stress response.  
Fourier analysis uncovers a pattern of an ascent in 
the spectral energy of the first heart sound as the 
Dobutamine dose is increased, and a descent back to 
baseline levels during recovery figure 1d. In addition 
to the overall energy rise, there is also an increase in 
the frequency bandwidth of S1, as higher frequency 
components in the range of 50-150Hz emerge and 
strengthen. The time-frequency representation, 
obtained by S-transform, enables localization of 
these spectral changes in time (Figure 2): the high-
frequency components are centered about 80ms after 
the beginning of the signal (30ms after the peak of 
ECG-QRS complex), growing up to 150Hz in the 
highest Dobutamine dose, then falling back to the 
baseline upper-limit frequency of 50Hz in the 
recovery phase. There is no apparent time shift of 
the signal’s energy distribution throughout the test. 

Principal component analysis, applied to the 
spectral maps of S1, was able to identify the major 
frequency bands that contribute to the data 
variability. When applied to the vectorized time-
frequency distributions, PCA also pointed out the 
temporal location of these frequency bands. Figure 3 
shows a representative example of the coefficients of 
the first three principal components (PC), and the 
projection of the time-frequency data on these 
principal components. The first PC, representing the 
axis with the largest data variability, captures the 
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pattern already observed qualitatively in the time-
frequency distributions in Figure 2: it varies from 
30ms to 120ms relative to the beginning of the 
cycle, and from frequency of 20Hz to 70Hz, thus 
showing the strengthening of the signal’s low-
frequency components. The second PC captures the 
variability of the high frequency components 
between 110 to 150Hz for the entire duration of the 
S1 signal. The third PC shows a wide-band 
variability of frequency ranging from 40Hz to 
150Hz, localized in time around 80ms from the 
beginning of the cycle. This component strengthens 
during the peak stress response. A combination of 
the most significant principal components, weighted 
by their eigenvalues, and the projection of the data 
on this combined PC provide a one-dimensional 
feature, denoted time-frequency acoustic variability 
index (TF-AVI), which summarizes the dynamics of 
the joint time-frequency energy distribution of S1 
throughout the stress test.  

The TF-AVI trend lines, extracted separately 
from each of the four transducers in two 
representative subjects are plotted in Figure 4, along 
with the stages of the stress test, the heart rate and 
blood pressure trends and the relative change in the 
echocardiographic indices of peak systolic velocity 
(PSV) and peak systolic strain rate (PSSR). While 
the TF-AVI provides a continuous line with one 
point per cardiac cycle, the reference 
echocardiographic indices are available only at 
discrete time points of each stage in the stress test. 
Nevertheless, there is a noticeable correlation 
between the two indices: for the plot in Figure 4a 
(subject #5), the correlation coefficients between the 
echo indices PSV and PSSR and the corresponding 
TF-AVI, averaged over all transducers were 0.91 
and 0.89 respectively. For the plot in Figure 4b 
(subject #6) the correlation coefficients were 0.97 
and 0.83 (p < 0.05 in all cases). 

Both paired and unpaired t-test showed that the 
absolute values of the acoustic spectral index (ASI) 
at the end of low-dose Dobutamine induction were 
significantly higher than the baseline values  (p<0.04 
for the 10ug stage, p<0.003 for the 20ug stage,  
Figure 5). The correspondence between the ASI and 
the echocardiographic indices in all of the subjects 
was tested by comparing the values of the relative 
index change at the end of the low-dose Dobutamine 
stages. These points were selected since the 
inotropic effect is more prominent at the early stages 
of the test. In addition, the higher heart rates at later 
stages of the test reduce the reliability of the tissue 
tracking procedure used to extract the reference 
echocardiographic indices. As shown in Figure 6, a 

good linear correlation (r=0.78, p<0.01) was 
observed between ASI calculated from the apex 
signal and the relative PSSR at the end of the 20ug 
stage. At the end of the 10ug stage the correlation 
coefficient between the two indices was 0.68 
 (p< 0.03).  

(a)

(b)

 
Figure 4: TF-AVI indices of subjects #5 (a) and #6 (b). 
Each plot displays the trend lines of TF-AVI from the 
transducers at the apex (acg), aortic area (hsr) pulmonary 
area (hsl) and carotid artery (cp), along with the relative 
echo indices PSV and PSSR, trend lines of heart rate and 
blood pressure, and color-coded stages of the stress test. 
See text for details. 

 
Figure 5: Absolute ASI values of all subjects at baseline 
and after low-dose Dobutamine induction (10 and 20 
ug/kg/min). The box plot displays the median, lower 
quartile, upper quartile and data extent. Each marker 
symbol represents a different subject. The p-values 
represent a t-test comparison to the baseline values. 
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Figure 6: The correlation and regression line between 
relative PSSR index and relative ASI at the end of first 
(10ug) and second (20ug) low-dose Dobutamine 
induction. Each marker symbol represents a different 
subject.  

4 DISCUSSION 

More than 40 years ago, Sakamoto et al. reported a 
nearly linear relationship between the amplitude of 
the first heart sound, S1, and the maximum of the 
time derivative of the left ventricular systolic 
pressure (dP/dt) in dogs (Sakamoto, 1965). Later it 
was shown that myocardial infarction in humans 
caused a shift of the maximum energy of S1 to a 
lower frequency range (Adolph, 1970), and that a 
reduction in the spectral energy of S1 correlated well 
with the presence of significant coronary artery 
disease (Clarke, 1978). More recently, Chen et al. 
showed a good cross-correlation between the 
instantaneous frequency of S1 and dP/dt of dogs in 
various contractile states (Chen, 1997). They 
suggested that the resonant frequency of S1 is 
proportional to the fractional power of the tension of 
the left-ventricular myocardium during contraction, 
which relates to the left ventricular pressure gradient 
by Laplaces’s law. The results of the current study 
are in agreement with these previous studies 
regarding the relation between the amplitude and 
frequency spectrum of the first heart sound and the 
dynamics of left ventricular contraction. The 
acoustic indices developed in the current study 
exhibited a marked correlation with the pattern of 
inotropic and chronotropic changes throughout the 
Dobutamine stress test. The increase in the spectral 
energy, along with the emergence of higher 
frequency components was consistently observed in 
multiple recording locations in all of the subjects. 
Although the study was conducted on a small group 
of subjects, statistically significant differences were 
observed across-subjects between baseline and low-
dose Dobutamine stages, confirming the reliability 
of the results. The good correlation obtained with the 
reference strain echocardiography indices suggests 
that the acoustic indices truly characterize the 

variations in the myocardial systolic functionality. 
The relationship between the cardiovascular 
physiological processes and their acoustic 
manifestation on the chest wall is complex and most 
probably non-linear. This relationship is affected by 
neurohormonal modulation of the heart’s inotropic 
and chronotropic states, as well as by changes in the 
properties of the thoracic cavity conducting the 
acoustic vibrations. Nevertheless, this work provides 
a framework and a set of computational tools for 
robust quantitative analysis of vibro-acoustic heart 
signals that can be utilized for non-invasive, 
continuous monitoring of cardiac functionality.  

The capability of this framework to diagnose a 
pathologic functionality reduction could not be 
addressed quantitatively in this work, due to the 
small number of subjects and the fact that the great 
majority of the subjects had normal cardiac 
functionality. Interestingly, the single subject that 
was diagnosed in the echocardiography examination 
with a reduced segmental wall motion during stress, 
due to myocardial ischemia (subject #10) had the 
lowest values of absolute and relative ASI, as well 
as the lowest values of PSSR, indicating that the 
compromised wall motion might result in a 
frequency reduction of the first heart sound. 

The usage of strain-echocardiography indices for 
evaluation of left-ventricular function is still not a 
part of the common clinical practice. Nevertheless, 
there are strong research evidences for the relation 
between peak strain rate and the invasive 
contractility measure of peak elastance (Greenberg, 
2002), and for the ability of global strain indices to 
detect left-ventricular systolic dysfunction. (Reisner, 
2004). Strain echocardiography was therefore used 
in this research as a quantitative ‘gold-standard’ 
reference, which can be obtained non-invasively 
during the routine protocol of the stress test. 

One of the major challenges of extracting 
meaningful physiological information from signals 
acquired in routine clinical settings is noise 
robustness. The data used in this work was 
contaminated with various types of noise, including 
body movements, interferences of the ultrasonic 
transducer and audible sounds. The signal analysis 
methods used in this work were specifically 
designed to cope with these types of noise. In 
particular, the statistical approach of transforming 
the data to a new orthogonal basis of the principal 
components was able to accentuate physiologically 
meaningful patterns, while diminishing noisy-related 
components. 
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5 CONCLUSIONS 

We have described a signal analysis framework for 
robust extraction of systolic functionality indices 
from acoustic heart signals. The developed tools 
were constructed and tested on data from a 
pharmacological stress test, with strain 
echocardiography as the gold standard reference.  
Using principal component analysis on the time-
frequency representation of the first heart sound we 
have characterized the pattern of spectral changes 
occurring during the stress test, and associated this 
pattern to the alternations in systolic functionality by 
showing it is linearly correlated to echocardiography 
derived indices of cardiac contractility.  Our analysis 
framework and proposed indices can be applied to 
real-time continuous monitoring of cardiac 
functionality, thus enabling improved diagnosis and 
management of cardiac dysfunction. 
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Abstract: The band pass filter is used to attenuating breathing originated signal from the heart originated BCG signal. 
The bandwidth of the both signals slightly overlap, hereby the complete attenuation of the breathing is not 
possible without also altering the heart originated BCG waveforms and the parameters which are obtained 
from the BCG. In our study we investigated the optimal lower cut-off frequency, and 1.3 Hz was found as 
the reasonable compromise between the attenuation of the breathing and the altering of the heart originated 
BCG.  

1 INTRODUCTION 

The developments in sensors, recording devices, and 
signal processing techniques, experienced over the 
past two decades, significantly increase the analysis 
possibilities of the ballistocardiogram (BCG). The 
potential of BCG to provide valuable information 
about the condition of the heart was clearly 
demonstrated even from early stages, when it was 
used to predict the evolution of ischemic myocardial 
diseases. Other clinical studies in which BCG 
proved useful include prognosis, monitoring, 
physical conditioning, stress tests, evaluation of 
therapy, and cardiovascular surgery (Marinelli 
1991). The use of BCG has also been reported in 
epidemiological and cardiovascular screening 
studies (Star and Wood, 1961; Kiessling, 1970; 
Lynn and Wolf, 1974). Because during the signal 
measurement stage, no electrodes need to be 
attached to the body of the subject, BCG presents 
great potential for modern healthcare, especially in 
the case of home care monitoring. 

The majority of modern BCG analysis methods 
rely on two separate stages, the signal measurement 
and the offline signal analysis with the help of a 
digital computer. When this is the case, one can 
closely look into the measured signal and decide 
about the filtering methods appropriate for each 
particular measurement. Such offline or visual 

analysis of BCG signals is time consuming and the 
costs associated with it are considerable. A better 
solution was offered by the advances of computers 
and electronic technology that provide a good basis 
for automatic cardiac performance monitoring and 
heart disease diagnosis, by assisting clinical practice 
and thus saving diagnosis time. 

Because the raw BCG signal is usually corrupted 
with breathing and movement artifacts, a pre-
processing of the raw data is necessary before the 
interpretation stage can take place. For a real-time 
automatic BCG analysis system, one should know in 
advance how this preprocessing will affect the BCG 
waveform.  In the mid sixties the subjects were 
asked to hold their breath for some part of the 
recording, in order to eliminate the respiration effect 
on the BCG signal. Although this technique 
increases the quality of the raw BCG signal, it 
cannot be performed over long periods of time and it 
is rather uncomfortable for the subject. For these 
reasons digital filtering was proposed as an 
alternative, but was not pursued until recently due to 
the limitations of computing power at that time. 

This study was made to investigate how 
bandpass filtering the raw BCG signal at different 
cut-off frequencies affects the BCG waveform, with 
respect to the BCG waveform parameters usually 
taken into consideration as meaningful diagnostic 
information.  
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Figure 1: One dimensional BCG (top) and ECG (bottom) 
signals from a normal healthy subject during breath 
suppression. 

2 THE BALLISTOCARDIOGRAM 

BCG is a measure of the heart’s mechanical activity 
associated with the flow of blood out of the heart’s 
chambers. It was studied very actively from the 
1940s until the mid-1970s when research activity in 
this area ended almost completely due to the 
technical limitations of sensors, signal conditioning 
electronics, recording devices and the high 
diagnostic value of the already available 
electrocardiogram (ECG). With the advance of 
technology, BCG signals can now be easily 
recorded, unobtrusively, both on supine and sitting 
positions using noninvasive modern techniques. 

The idealized BCG waveform consists of seven 
components, labeled the H through N wave (Starr 
and Noordergraaf, 1967) with the IJK-complex 
being the predominantly identifiable segment (see 
Fig. 1). In time, typically the BCG will trail the ECG 
by about 0.1-0.3s (Braunstein and Thomas, 1953). 

A simple spectral analysis of the BCG signal 
shows that the spectra power of the BCG waveform 
is mostly within 20Hz (see Fig. 2) but in literature is 
was reported that the BCG waveform lies between 
0.1 Hz and 40 Hz. 

BCG waves change with respiration and from 
one patient to another  making BCG analysis a rather 
difficult task. Moreover, usually the raw BCG signal 
is also corrupted with movement artifacts, which 
makes the recognition of characteristic BCG 
waveforms almost impossible (see Fig. 3). In order 
to eliminate the respiration effect, seen as a drift 
from the baseline of the signal, various bandpass 
digital filters have been used and reported in 
literature with the most common frequency range 
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Figure 2: Power spectrum of the BCG wave shown in Fig. 
1. As it can be seen, the spectra power are mostly within 
20Hz. 
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Figure 3: One dimensional BCG (top) and ECG (bottom) 
signals from a normal healthy subject. Notice the 
breathing effect on the BCG signal as a drift from the 
baseline and the movement artifact that causes 
abnormalities in the signal and makes the detection of the 
BCG peaks difficult. 

being between 1 Hz and 20 Hz. Filtering above 1 Hz 
should eliminate the respiration effect but as 
different people have different respiration 
frequencies the filter could be selected at a lower or 
higher cut-off frequency, depending on the 
parameters studied. Because the BCG signal has 
components below 1 Hz as well and any kind of 
digital filtering will affect those components, it is 
important to know how the BCG waveform will be 
affected by filtering at different cut-off frequencies 
in order to know the tradeoff between the selected 
cut-off frequency and the changes suffered by the 
BCG waveform due to filtering. 

Traditionally the physicians interpret different 
parameters of the measured BCG waveforms and 
calculate relevant indicators to determine whether or 
not the heart shows signs of cardiac diseases. 
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The various reported off-line analysis methods 
use different relations between the BCG peaks to 
classify the waveforms. The average cardiac stroke 
volume can be estimated as follows (Starr et al 
1940): 

 
3/ 27 (3 2 )ACSV I J AC= +  (1) 

 
where I and J are the BCG waves (in mm),  A the 
subject’s aortic internal diameter (in cm2) and C the 
duration of the cycle (in seconds). From the ACSV, 
the cardiac output can be further calculated (Brown, 
Hoffman and De Lalla 1950, Starr et al 1940 ). 

The amplitudes of the H-I, I-J, and J-K segments 
and their expiratory and inspiratory ratios HIE/HII, 
IJE/IJI, JKE/JKI were used to express respiratory 
variation in BCG waves and the HIM/IJM and 
JKM/IJM ratios of the averaged mean amplitudes 
were used as amplitude ratios (Onodera 1964, 
Scarborough 1953, March 1955). The time 
amplitudes (TA) obtained by dividing the amplitude 
of a segment by its interval measured in expiratory 
and inspiratory phases investigated on H-I, I-J, and 
J-K intervals have also been reported. Other 
intervals measured in the literature are: the P-H 
interval measured from the beginning of the P wave 
of the electrocardiogram to the tip of the H of the 
Ballistocardiogram the Q-H, Q-I, Q-J and Q-K 
measured from the beginning of the Q wave of the 
electrocardiogram to the H, I, J, and K tips of the 
Ballistocardiogram (Onodera 1964). 

3 PATIENTS AND METHODS 

In this study we used a subset of 15 subjects from 
the signal database recorded during the ProHeMon 
project (Koivistoinen et al. 2004). All the 
measurements were conducted by an experienced 
research nurse at the Department of Clinical 
Physiology of the University Hospital from 
Tampere, Finland. The study protocol was approved 
by the Ethical Committee of Tampere University of 
Tampere and a written consent was obtained from 
each subject measured. Part of the measurement 
protocol included the parallel measurement of ECG, 
impedance cardiogram (ICG) and two BCG 
channels. The subjects were divided into three 
groups (5 subjects in each group):  

1. 20-30-year old healthy students  
2. healthy 50-70-year old men 
3. 50-70 year old men with myocardial infarct 

in their medical history 

 
Figure 4: Recording setup. In this case, no ICG leads were 
connected. 

All measurements were done with CircMon™, a 
commercially available circulation monitor (Jr 
Medical Ltd). The ECG and ICG leads were 
connected to their own dedicated channels of 
CircMon and two BCG signals were connected to 
auxiliary input channels. A measurement chair with 
electromechanical film (EMFi™) (Kirjavainen 
1987) foils and a dedicated BCG amplifier specially 
designed and built for this study were used to record 
and amplify the BCG signals from the back and the 
seat of the chair (Junnila et al 2004, Barna et al 
2005, Junnila et al 2005). The quality of the signals 
was visually inspected and assessed by specialist 
medical doctors. In this setup CircMon functioned as 
an A/D converter and a sampling frequency of 200 
Hz was used for each recording. The recordings 
lasted for about 13 minute per subject. At the 
beginning of the recording, the subject was placed in 
supine position and no BCG signal was recorded. 
This study does not include the study of the ICG 
signals obtained. The gain of the BCG amplifier was 
increased after the first group was recorded, so the 
absolute signal values between groups are not 
comparable. 

The BCG signal, was filtered offline with a 
Parks-McClellan optimal equiripple band-pass Finite 
Impulse Response (FIR) filter designed in Matlab® 
7.2 (The MathWorks Inc.). The advantage of using 
an FIR filter is that the phase of the input signal is 
not distorted and the delay introduced by the filter 
can be easily calculated, the information about the 
time location of the BCG waveform being 
preserved. The lower cut-off frequency of the pass-
band was varied between 0.7 Hz and 4.6 Hz with a 
step of 0.1 Hz and the upper cut-off frequency was 
fixed at 20.5 Hz. A ripple of 0.1 dB was set for the 
pass-band and attenuation of 60 dB for both stop- 
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Figure 5: One FIR filter used in study. This filter have 
passband from 4.6 to 20.5 Hz. 

bands. The transition band width was set to 0.6 Hz 
(see Fig. 5 for example). The order of the filters used 
was rather high (N = 848), which resulted in a high 
computation time at filtering.  

After filtering, the locations of the BCG 
waveforms were determined using the R spikes of 
the parallel ECG tracing. The BCG signal was 
divided into sections of 151 samples. A mean BCG 
waveform (BCGMNB) was calculated as the mean of 
50 % of the most similar BCG waveforms found 
from the artifact free epochs of the recording. Cross 
correlation was used as the measurement of the 
similarity, and no visual inspection was involved. 
For each mean BCG waveforms the following 
parameters were calculated: 

- the amplitudes of the mean H-I and I-J waves 
- HIM/IJM ratios of the mean H-I and I-J waves 

4 RESULTS 

In this section, a sample recording is first analyzed, 
followed to an overall assessment for all the 
recordings involved in this study. 

In the Figure 6, the original signal (A01) with six 
heartbeats is shown. The respiratory signal can be 
clearly seen as a low frequency drift from the 
baseline of the signal. In this example, the 
measurement of characteristic BCG waveforms is 
not difficult, because the heart originated component 
has relatively high amplitudes compared to the 
respiratory signal. Figure 7 shows the same section 
of the BCG signal, band-pass filtered at different 
cutt-off frequencies. When the lower cut-off 
frequency is between 1.3 Hz (row one, column two) 
and 2.5 Hz (row four, column four), the shape of the 
signal is almost constant. Therefore, an optimal 
lower cut-off frequency of about 1.3 Hz is 

recommended. By studying the changes in 
amplitudes of the different waveforms and HIM/IJM 
ratio, we can find a more accurate cut-off frequency.  
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Figure 6: Raw BCG signal (subject A01). 

The changes of different parameters resulted from 
filtering, and expressed as function of the lower cut-
off frequency are shown in figure 8. As seen from 
the previous graphics, the parameters remain 
relatively constant between 1.3 Hz and 2.5 Hz, with 
significant changes occurring between 1 Hz and 1.2 
Hz, and after 2.6 Hz. A lower cut-off frequency can 
be therefore selected between 1.3 Hz and 2.5 Hz 
without greatly compromising the BCG parameters. 

 
Figure 7: The section of the BCG-signal filtered with 40 
different band pass filter. In the upper left corner is the 
output of the filter with pass band from 0.7 Hz to 20.5 Hz, 
and in the lower right corner is the output of the filter with 
pass band from 4.6 Hz to 20.5 Hz. 
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Figure 8: The different parameters as the function of the 
lower cut-off frequency. Up: mean I-J amplitude (red) and 
mean H-I amplitude (blue). Down: HIM/IJM ratio.  

Figure 9, shows the HIM/IJM ratios of the all 
recordings used in this study. In the most cases, 
HIM/IJM ratios present a flat section between 1.3 Hz 
to 2.2 Hz, the mean HIM/IJM ratio and approximate 
derivative of the mean HIM/IJM, shown in Figure 10 
supporting this observation.  
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Figure 9: HIM/IJM ratios of the recordings used in this 
study. Although up to 1Hz the ratios remain rather flat and 
between 1Hz and 1.3Hz they get significantly changed, 
when filtering at 1Hz the effect of respiration is still 
visible in the signal, but at 1.3Hz this effect gets 
eliminated (this being better for a visual inspection of 
Starr classes). 

Based on the observations made upon the entire 
set of BCG recordings employed, the optimal lower 
cut-off frequency recommended is of 1.3 Hz. For 
this value, most of the signal remains unaltered, and 
the major effects of the respiration are removed. 
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Figure 10: Up: the mean HIM/IJM ratio. Down: 
Approximate derivative of the mean HIM/IJM ratio.  

5 DISCUSSION 

Setting the cut-off frequency of the BCG band-pass 
filter is a trade-off between attenuating breathing 
and altering the heart-originated components of the 
raw BCG signal. Individual cut-off frequencies 
might be optimal, but that would make the 
comparison between patients more difficult. By 
using a cut-off frequency 1.3 Hz, a reasonable 
compromise was found.  

Our results also show that changes of BCG 
components as a result of filtering can be estimated 
and accounted for in reporting BCG derived 
measures and ratios. By analyzing BCG data from 
recordings involving breath suppressed epoch, we 
expect to refine our results in a future study. 

In this study no attempts have been made to link 
the amplitudes and ratio calculated from the BCG 
signal to any of the cardiovascular variables such as 
stroke volume  

The equation presented in section “The 
Ballistocardiogram” for the average cardiac stroke 
volume was not feasible because no calibration has 
been performed for the BCG system used and the 
subjects were recorded in sitting position, unlike 
Starr et al, in which the recordings were performed 
in supine position. As future improvements, we plan 
to combine the information available in the ECG and 
ICG recordings with the one obtained from BCG.. 
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Abstract: Nature inspired metaheuristics have interesting stochastic properties which make them suitable for use in
data mining, data clustering and other application areas, because they often produce more robust solutions.
This paper presents an application of clustering method inspired by the behavior of real ants in the nature to
biomedical signal processing. The main aim of our study was to design and develop a combination of feature
extraction and classification methods for automatic recognition of significant structure in biological signal
recordings. The method targets the speed-up and the increase in objectivity of identification of important
classes and may be used for online classification, so it can beused as a hint in the expert classification process.
We have obtained significant results in electrocardiogram and electroencephalogram recordings, which justify
the use of such kind of methods.

1 INTRODUCTION

This study aims at design and development of fea-
ture extraction and classification methods for auto-
matic recognition of important patterns in biological
signal recordings. The doctors often work under pres-
sure (time and fatigue) and the error ratio of the expert
increases when working under high load (both psy-
chical and physical fatigue). Automated methods are
designed to speed up and objectify the identification
of relevant classes and may be used for online classi-
fication. However, they should be provided as a hint
to the doctor only, as they do not consider many other
aspects (medication, diagnosis, treatment, patient his-
tory, etc.).

With the oncoming boost in personal medical
electronics and portable monitoring technology, there
is still growing amount of data which must be pro-
cessed and evaluated by the physicians.

Nowadays, many data-mining algorithms with
still growing number of modifications exist, see for
example (Abraham et al., 2006) or (Panos M. Parda-
los, 2007). Such modifications aim at speeding up
the data mining process, increase its robustness and

stability. But even with rapidly increasing compu-
tational power of modern computers, the analysis of
huge databases is very expensive (in terms of com-
puter time and/or memory and therefore also finan-
cially). This is why scientists instantly search and
develop novel and robust techniques to analyze and
process large amount of data.

Biological signal processing workflow consists of
the following main processes: signal pre-processing,
signal transfer and/or storage, digital signal process-
ing and feature extraction, clustering of the similar
data (mainly in long-term recordings), signal inter-
pretation (classification) and expert validation. In the
majority of the processes mentioned, the ant-colony
inspired methods can be used with more or less suc-
cess (Bursa et al., 2006). Usually some kind of
suitable feature processing and filtering is also per-
formed.

1.1 Clustering

In many industrial, business and scientific areas we
can see still growing use of computers and com-
putational appliances, and a huge amount of vari-
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ous data must be stored, processed and evaluated.
Such data are often mixed from different sources,
containing many different data types, unusual cod-
ing schemes, and seldom come without any errors (or
noise). Datamining is not only an important scientific
area, but also an important tool in industry and busi-
ness and still gaining its importance in healthcare and
biomedical applications.

This is where data clustering can significantly
help. By clustering we mean constructing partitioning
scheme on the data set while minimizing the distance
inside each cluster (intra-cluster distance) and max-
imizing distance between clusters (inter-cluster dis-
tance). Note that a similarity (or distance) measure
must be specified in order to the clustering being ap-
plicable.

Data clustering, referred ascluster analysis
(Rousseeuw and Kaufman, 1990), numerical taxon-
omy, typological analysis, etc., is a common unsu-
pervised learning technique aimed at accumulation
of similar patterns into groups (clusters): partition-
ing of a data set into subsets (clusters), so that the
data in each subset (ideally) share some common as-
pect. Review of main clustering methods (partitioning
methods, hierarchical methods, density-based meth-
ods and grid-based methods) can be found in (Jain
et al., 1999).

If the final (correct) classification is not known,
different techniques for measuring cluster validity
exists: Dunn index (Dunn, 1974), Davis-Bouldin
index (Davies and Bouldin, 1979), Silouhette in-
dex (Rousseeuw, 1987), etc.

1.2 Electrocardiogram

The electrocardiogram (ECG) analysis is still one
of the most important non-invasive diagnostic tech-
niques used in patient diagnostics process.

Figure 1: Electrical recording of a heart action (an elec-
trocardiogram, ECG). The most important features are
marked. The graph shows amplitude dependency on time
(record samples).

With Holter ECG recordings (long-term ECG

recordings, lasting usually 24 and more hours), wear-
able medical electronics and patient auto-diagnostic
(and monitoring) appliances, also a huge amount of
data has to be transferred and furthermore processed.

In clinical praxis it is hardly acceptable for the
physician to accept longer than five minutes for
the patient long-term recording (Holter) to be pro-
cessed (Chudacek and Lhotska, 2006). Thus efficient
and robust algorithms must be used, opening wide
area of application for nature inspired methods and
artificial intelligence methods which can be used in
exploratory analysis.

1.3 Electroencephalogram

Electroencephalogram (EEG) is one of the most im-
portant methods for studying maturation degree of hu-
man brain. A newborn infant typically sleeps approx-
imately 70 % of an 24 hour interval. In adult sleep,
the characterization of recorded bioelectrical signals
is mainly performed using spectral frequency analy-
sis. In the case of newborns, different methods have
been often used (Scher, 2004), e.g. fractal analysis,
dimensional analysis and nonlinear analysis.

Figure 2: Electrical recording of human brain (an electroen-
cephalogram, EEG). Three channels are shown. The graph
shows amplitude dependency on time (record samples).

Active newborn sleep is characterized by irregu-
lar breathing, saccadic eye movements, small body
movements and twitches. In contrast to adult REM
sleep, peripheral motor pathways are not depressed
during active sleep in neonates, making movements
possible. During quiet sleep, breathing is regular, and
eye and bodily movements are absent. These states
have EEG correlates: EEG in quiet sleep shows ei-
ther continuous high-voltage low-frequency (HVLF)
activity or trace alternant, where HVLF activity al-
ternates with quiet periods in cycles of few seconds
duration. In active sleep, the EEG is relatively quiet
(Teofilo and Lee-Chiong, 2006).
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2 METHODS

2.1 Methods Inspired by Ant Colonies

The inspiration of the ant inspired algorithms comes
from the foraging behavior of real ant colonies
(Deneubourg et al., 1990) which has been observed
in nature and which has been studied by biology sci-
entists. The idea of ant colony technique for optimiza-
tion was introduced in the early 1990s by M. Dorigo
and the ant colony metaheuristics has been thoroughly
studied (Dorigo et al., 1999).

The Ant Colony Optimization metaheuristic tech-
nique (Dorigo et al., 1999) is a model of the ant be-
havior used for combinatorial problems. This method
is inspired by the process the real ants use to con-
struct a path using chemical substance (pheromone).
A modification of Ant Colony Optimization can also
be used for dynamic optimization such as network
routing (R. O. Schoonderwoerd, 1996). Review of
ant colony inspired methods can be found for exam-
ple in (Dorigo and Blum, 2005).

The method for optimization in continuous space
has been also developed. It uses probabilistic den-
sity function with Gaussian kernel which represents
the spatial distribution of pheromone has been pro-
posed (Bilchev and Parmee, 1993), (Socha, 2004).
The method presented by K. Socha (Socha, 2004) is
the most related with ant-inspired techniques.

2.1.1 Ant Based Clustering

Also a method for data clustering inspired by ant
cemetery organization of some ant colonies has been
studied (Dorigo et al., 1999) and implemented. It
models the way the ants search the space and col-
lect similar objects together. For example, theMessor
sanctaants organize dead corpses into clusters; brood
sorting has been studied in ant colony ofLeptotho-
rax unifasciatus. This approach has been modeled
(Lumer and Faieta, 1994), (Deneubourg et al., 1990)
to perform a clustering of data. It is very sensitive to
the similarity measure used (e. g. Euclidean distance,
etc.) and the range of agent perception. Note, that no
pheromone is used in this method. Also some meth-
ods using pheromone exist, namely A2CA (Vizine
et al., 2005).

Another approach can be seen the work of
J. Handl in (Handl et al., 2006) (an ATTA al-
gorithm), which introduce modified neighborhood
function (penalizing high dissimilarities), short-term
memory with lookahead (jumping ants), increasing
radius of perception, time-dependent modulation of
the neighborhood function. The work also introduces

modified threshold function for picking and dropping
the data. The work is followed by the work of Tan et
al. (Tan et al., 2006) which removes the ant metaphor
from the method and presents a deterministic version
of ant-clustering algorithm.

2.2 ACO DTree method

As described in (Abraham et al., 2006), nature in-
spired methods can be successfully used in data min-
ing process. The method ACODTree (Bursa et al.,
2007) uses an evolutionary approach combined with
ant colony optimization approach. The ACODTree
method works with a population of classifier trees
(a decision-tree like structure): a hierarchical bi-
nary structure of nodes where each node divides data
set into two parts using a single if-rule (e.g.if
(feature(i) < value) thenpass data left else
pass data right). The population is continuously
evaluated, new individuals are continuously added
and worst solutions removed. Only the best individ-
uals can contribute in pheromone laying process (in
compliance with (Dorigo et al., 1999)). New individ-
uals are inductively created using the pheromone ma-
trix, preferring important features (features selected
by the best individuals).

2.2.1 Decision Tree Construction

By a classification tree we mean hereby a tree-like
structure composed of similar nodes. Each node can
have left and right sub node. Each node is represented
by a decision rule with two parameters (feature index
f eaturej and decision valuedecVal) which can be de-
scribed in the following way for an itemsi :
1 if (s(i).getFeature(j) < decVal)
2 classifyToLeftBranch
3 else
4 classifyToRightBranch

The same applies to the root node. The tree is
constructed as follows: first, a random feature index
is selected (for the root node). The decision value is
also chosen randomly. Then, for each subnode, its
subnode is created with certain probability (inversely
proportional to the level in the tree). The feature in-
dex is selected using the pheromone matrix: success-
ful edges are strongly preferred. The decision value is
determined randomly. The random selection of deci-
sion value does not present a problem, because even
the randomly selected values perform acceptable so-
lution. However, the population is then trained (the
decision values are optimized). See section 2.2.5.

By level in the tree we mean the distance from the
given node to the root node. Tree height is a maxi-
mum level in the tree. Depending on the classification
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tree, the data are divided into subgroups which should
have similar properties (minimization of intra-cluster
distance) and the classes should be different as much
as possible (maximization of inter-cluster distance).
This process is known as data clustering.

2.2.2 Decision Tree Evaluation

Each tree can be assigned a real number which can
be called fitness function. This number represents the
classification efficiency of the tree. In the presented
method this number is determined by the ratio of in-
correctly classified data over the total data in the class
(in this paper it is called error ratio). The goal of our
method is to obtain tree with the lowest error ratio on
the given dataset.

For method evaluation, the training data set is
used. The testing data set is used to evaluate the tree
on the unknown data (data which have never been pre-
sented to the tree). If the classification of the testing
data is not known, cluster validation techniques can
be used. See section 1.1 for more details.

2.2.3 Parameter Estimation

The following parameters are the most important pa-
rameters of the proposed method: population size,
number of new solutions added in each step, maximal
number of iterations, max. tree height, pheromone
lay/evaporate rate and the percent of ants which can
deposit pheromone (elitist ratio). The overall results
are better when the first four parameters increase, but
the computational time rises. For other parameters,
an optimum must be determined.

Based on the results of preliminary experiments,
population size and number of new solutions added
has been fixed to reflect the number of features
and 1/2 of the solutions respectively. These param-
eters actually increase/decrease the number of solu-
tions generated over time. Similar effect can be ob-
tained by adjusting the maximum iteration limit. Eli-
tist ratio (number of best solutions which can deposit
pheromone has been also fixed to the value of 1/2 of
the population (with minimum of 5).

2.2.4 Parameter Adaptation

In order to avoid premature convergence and main-
tain diversity in the population of solutions, adap-
tive techniques have been used. First, the pheromone
amount on the edge is limited and can be in the range
〈0.05;1.05〉, the evaporation rate and lay rate is adap-
tively changed to maintain an average pheromone
value over the whole pheromone matrix (if the av-
erage pheromone drops by 10 % the pheromone

lay rate is increased, similar policy is applied to
the pheromone evaporate rate; both the values are
bounded by the minimum and maximum value). This
could lead to saturation of pheromone values, thus
a countermeasure to maintain number of saturated
edges on the minimum is also used. The balanced
process diversifies the population and avoids getting
stuck in local minima.

As a measure to speed up the process and to in-
crease the preference of trees with lower height, the
maximum height parameter is continuously increased
with the iterations (at about 1/4 of total iterations the
parameter is increased up to its maximal value).

2.2.5 Tree Optimization

In the ACODTree method we have presented an op-
timization strategy (local search) which optimalizes
the decision value of each node in the tree. Newly
added solutions are first optimized. This improves the
overall fitness of the population.

Also after certain period (experimentally deter-
mined 1/10 of total iterations), the population is re-
optimized (not the structure, but decision values in
the nodes). The method used is Particle Swarm Opti-
mization (Kennedy and Eberhart, 1995), but any other
kind of local search can be used. The use and degree
of the optimization has to be considered, because it
can lead to over-training of the tree: the tree adapts to
the training data set and performs badly on the valida-
tion (and testing) set, thus reducing robustness of the
solution.

3 DATA

This section describes data (biological signals), which
have been used in this study: Electrocardiogram
(EEG) and Electroencephalogram (EEG).

3.1 Electrocardiogram

Extracted features are the basic ECG parameters. In-
put signals are taken from a MIT-BIH database (Gold-
berger et al., 2000), which contains annotated records.
In (Goldberger et al., 2000), certain description of
the data can also be found (together with some ba-
sic anonymous description of the patients, their med-
ication and treatment). The classification into more
classes is nearly impossible due to lack of the data
(mainly abnormal heart action signal) in some sig-
nals. By using only PVC (Premature Ventricular Con-
traction) beat as abnormal heart actions, more records
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Table 1: The table shows results for the the ACODtree al-
gorithm for generating classification trees.

Task ACO Dtree
ECG Classification 97.11 %
EEG Classification 71.30 %
EEG Active/quiet sleep 96.38 %
EEG Noise removal 91.02 %

from the MIT-BIH database can be correctly pro-
cessed. Another approach can be to divide all heart
actions in two classes: normal and abnormal.

From the ECG signal, the following eight features
have been automatically extracted, see (Chudacek and
Lhotska, 2006): amplitudes of Q, R, S, positive T and
negative T wave, amplitude ratio of Q/R, R/S and R/T
waves. For processing, the features have been nor-
malized into the interval of〈0.0;1.0〉.

3.2 Electroencephalogram

All recordings used in this work contain eight EEG
channels (these are FP1, FP2, T3, T4, C3, C4,
O1, O2), Electrooculogram (EOG), Electromyogram
(EMG), Respiratory channel (PNG) and Electrocar-
diogram (ECG). All the data have been annotated by
an expert into four classes (wake, quiet sleep, active
sleep, movement artifact).

For accurate classification it is necessary to de-
termine and/or calculate the most informative fea-
tures. In our previous study a method based on power
spectral density (PSD) has been applied to each EEG
channel. Features derived from EOG, EMG, ECG
and PNG signals have been also used. The most in-
formative one is the measure of regularity of respira-
tion in PNG signal. The following methods, which
have been used for feature extraction, are in detail de-
scribed in (Gerla et al., 2006).

4 RESULTS

Using the presented method with Particle Swarm Op-
timization, we have obtained 97.11 % accuracy over
the training set (training set has been randomly se-
lected from the whole data set in the ratio of 66 %
and 33 % of training respective testing data vectors).

Using the EEG recordings of patients we obtained
an accuracy of 82 % in the artifact removal process.
The overall classification accuracy is 71.3 %.

The results are summarized in Table 1 and Table 2.
The ACODtree method outperformed the Random
Tree method in all cases.

Table 2: The table shows results for the WEKA Random
Tree algorithm for generating classification trees.

Task WEKA Rand. Tree
ECG Classification 96.53 %
EEG Classification 66.21 %
EEG Active/quiet sleep 95.37 %
EEG Noise removal 90.80 %

5 CONCLUSIONS

In this paper we have presented a hybrid method
which can be used for data partitioning, data clas-
sification and also feature selection. The method is
based on the hybrid combination of evolutionary al-
gorithm with ant colony optimization. This combina-
tion allows better convergence and leads to increased
robustness. The method has been compared with a
simple evolutionary algorithm, which does not use
pheromone and with Random tree generation method
(from the WEKA (Witten and Frank, 2005) toolkit).
The hybrid method outperformed the other method
in all cases. The method has been (after prelimi-
nary tests on smaller datasets) applied to the MIT-BIH
database with more than 80.000 records. The EEG
data contains about 450.000 instances.

Certain parameters of the method have been ex-
perimentally determined. The population size should
equal the number of features in the signal (the square
root of the size of pheromone matrix). PSO re-
optimization of the individuals is very important,
however with vigorous optimization, the advantage of
robustness is lost (the results on training data set are
excellent, but very poor on the testing data set).

Lower accuracy on the EEG set is manly due to
high amount of expert misclassification in the data
(the neurologists obtain classification consensus in
about 70 % of the cases).

The results show that the approach is suitable for
biological data clustering. The advantage is that it
produces clear structure with clinical use.
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Abstract: We propose a low-complexity encoding strategy for efficientcompression of biomedical signals. At the heart
of our approach is the combination of non-uniform signal sampling together with sample quantization to
improve the source coding efficiency. We propose to jointly extract and quantize information (data samples)
most relevant to the application processing the incoming data in the backend unit. The proposed joint sampling
and quantization method maximizes a user-defined utility metric under system resource constraints such as
maximum transmission rate or encoding computational complexity. We illustrate this optimization problem
on electrocardiogram (ECG) signals, using the Percentage Root-mean-square Difference (PRD) metric as the
utility function measuring the distortion between the original signal and its reconstructed (inverse quantization
and linear interpolation) version. Experiments conductedon the MIT-BIH ECG corpus using the well-accepted
FAN algorithm as the non-uniform sampling method show the effectiveness of our joint strategy: Same PRD
as ’FANalone’ at half the data rate for less than three times the (low) computational complexity ofFANalone.

1 INTRODUCTION

Remote Health Monitoring is an emerging technol-
ogy allowing medical practitioners to extend their ser-
vices to patients outside of traditional hospital set-
tings. Common remote health monitoring systems are
leveraging pervasive devices such as cellular phones
to collect biomedical readings on patients and relay
the data to servers while being non-intrusive and not
restricting the mobility of patients (Mohomed et al.,
2006). This usage of pervasive devices differ sig-
nificantly from traditional client server usage mod-
els where the pervasive device acts as a clientreceiv-
ing data from a more powerful server. In the cur-
rent model, the roles are reversed. Pervasive devices
are used tostreamdata to back-end servers. Their
resource scarceness creates interesting research chal-
lenges dictating the need for efficient, low complex-
ity signal encoding schemes. This work proposes a
generic method for streaming continuous signals un-
der very strict resource constraints while minimizing
the loss in valuable information the original signals
carry.

While our method is applicable to a wide vari-
ety of signals, we describe it in the context of effi-
cient, low complexity compression of electrocardio-
gram (ECG) signals. An ECG signal provides es-
sential information to the cardiologist and is used for

both monitoring and diagnostic purposes. An ECG
monitoring device essentially measures the electrical
impulses that stimulate the heart to contract. Be-
tween 125 and 500 sample points are collected every
second, each coded on 8 or 12 bits (Nygaard et al.,
2001). Thus, a single-lead uncompressed ECG sig-
nal requires between 1 kbps and 6 kbps of sustained
wireless bandwidth. Any application based on wire-
less transmission of even moderate amounts of data
must deal with the reality that usage of wireless spec-
trum will always incur some monetary cost. Efficient,
low complexity compression is thus crucial to make
remote health monitoring via low-end pervasive de-
vices a reality.

The main goal of any compression technique is
to achieve maximum data volume reduction while
preserving the significant signal morphology fea-
tures upon reconstruction (Jalaleddine et al., 1990).
In ECG signal compression algorithms the goal is
to achieve a minimum information rate, while re-
taining the relevant diagnostic information in the
reconstructed signal. Compression techniques for
ECG waveforms can be broadly classified into two
main groups: direct time-domain techniques (Barr,
1988; Cox et al., 1968), and transform-domain tech-
niques (Bradie, 1996; Hilton, 1997; Addison, 2005).
Transform-based methods (e.g., wavelet-based) usu-
ally outperform time-domain techniques but require
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a computational power beyond what a mainstream
pervasive device can handle. Instead, well-accepted
time-domain techniques, such as FAN (Barr, 1988)
and AZTEC (Cox et al., 1968), rely on simple heuris-
tics so as to non-uniformly sample the original wave-
form and retain only those data samples that con-
tribute the most to the quality of the reconstructed (in-
terpolated) signal.

Another well-known compression strategy is
quantization. There are two types of quantization.
Vector quantization, where the input symbols are
gathered together in groups called vectors and pro-
cessed to give the output, and scalar quantization,
where each input symbol is treated separately in pro-
ducing the output. Scalar quantization has a low com-
putational complexity, is easy to implement and can
achieve reasonably good compression performance if
applied properly. There has been recent interests in
the scientific community to design schemes perform-
ing jointly both quantization and uniform sampling in
order to match the underlying system resource con-
straints (Derpich et al., 2006). Uniform sampling in-
volves discarding samples of the data regularly to re-
duce the data rate. While uniform sampling can re-
duce the stream rate appropriately it does not guaran-
tee the retention of all samples of interest (features),
especially when the frequency characteristics of the
signal are not well-behaved, which is clearly the case
for ECG waveforms.

This work investigates the benefit of jointly
performing non-uniform sampling (e.g., FAN or
AZTEC) and quantization operations in the context
of remote health monitoring. The paper is organized
as follows: Section 2 introduces some notations and
describes, in generic terms, the concept of joint non-
uniform sampling and quantization. This concept ap-
plied to signal compression is the subject of Section 3,
while Section 4 formulates the problem specifically
for ECG compression under resource constraints us-
ing FAN (Barr, 1988) as the non-uniform sampling
technique. The problem is posed as an optimization
problem. The optimization problem is solved in Sec-
tion 5. Finally, our strategy is validated in Section 6.
And, Section 7 gives concluding remarks.

2 SIGNAL COMPRESSION: NON
UNIFORM SAMPLING AND
QUANTIZATION

Let x[k],0 ≤ k < N denote a discrete time signal
represented withbu bits per sample.

2.1 Non Uniform Sampling

Non uniform sampling ofx[k] extractsNSOI ≤ N sam-
ples of interests (SOI) fromx[k]. We denote such
sampling by the operatorS : x[k]→x[ki ] whereki cor-
responds to the location of the retained samples of
interest. The operatorS is often lossy, and only an
approximation to the original signalxr [k] may be re-
covered by interpolatingx[ki ] appropriately. If, af-
ter sampling, we retainNSOI out of N samples, the
achieved compression ratio is isNSOIbu

Nbu
, correspond-

ing to a rateNSOIbu
N bits per sample. Additionally, in

the compressed rate we also need to include the bits
required to encode the locations of the retained sam-
ples, i.e. an additionalbloc bits per sample. The se-
lectivity of the sampling operatorS is controlled by a
sampling sensitivity parameterε, with low values of
ε corresponding to low selectivity, i.e. most samples
from x[k] are retained. To explicitly indicate the de-
pendence ofS on ε, we present it asSε.

2.2 Quantization

Quantization is another well known lossy technique
used to reduce the signal rate, when applications can
tolerate the resultant distortion. We denote the quan-
tization operator asQ : x[k]→x̂[k] where x̂[k] uses
bq < bu bits per sample, thereby reducing the average
data rate of the stream by a factorbu

bq
.

Given a periodic signal such as ECG, with rela-
tively stationary probability density function (under
known context, i.e. physical activity, health state
etc.) the quantizer sensitivity is controlled only by
the number of desired reconstruction levels1 L = 2bq.
As before, to explicitly indicate the dependence ofQ
onL, we represent it asQL.

2.3 Joint Non-uniform Sampling and
Quantization

Quantization, when used in conjunction with non-
uniform sampling can further reduces the rate of the
stream. When quantization is applied prior to sam-
pling we have the resultant signalSε(QL(x[k])) and
when the signal is sub-sampled before quantization,
the resultant signal isQL(Sε(x[k])). Note that these
operators are not commutative, and the two cases are
likely to achieve different compression factors. The
compression gain is multiplicative, i.e. the corre-
sponding rate of signalQL(Sε(x[k])) is NSOIbq

N + bloc
bits per sample.

1The optimal values of these reconstruction levels are
known for a standard MSE quantizer
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3 DESIGN OF JOINT
NON-UNIFORM SAMPLING
AND QUANTIZATION BASED
COMPRESSION

We can exploit the multiplicative gain in compres-
sion achieved by joint sampling and quantization to
design better signal compression schemes. However,
different types of signals and applications can toler-
ate different levels of quantization noise and require
different numbers of samples of interest. Hence the
joint design of quantization and non-uniform sam-
pling needs to be performed carefully. Consider the
two different operator optionsSε(QL) and QL(Sε),

and let the corresponding rates be
N
Sε(QL)
SOI b

Sε(QL)
q

N +

bSε(QL)
loc and

N
QL(Sε)
SOI b

QL(Sε)
q

N + bQL(Sε)
loc . In order to de-

sign a good compression scheme, we also need
to formally define a distortion metric. Letxr [k]
represent the reconstructed signal, after decompres-
sion, i.e. xr [k] = S −1

ε (Q −1
L (QL(Sε(x[k])))) or xr [k] =

Q −1
L (S −1

ε (Sε(QL(x[k])))). Then the utility associated
with the compression may be defined in terms ofx[k]
andxr [k] asU (x[k],xr [k]). The goal of designing the
right compression scheme is to maximize this utility
under a rate constraint. If the desired rate constraint
is bcon (in bits per sample), the optimal compression
scheme may be designed by solving the following
constrained optimizations:

{Qopt,Sopt} = argmax{QL,Sε} [U (x[k],xr [k])]

subject to
NQ (Sε)

SOI (bQL(Sε)
q )

N
+bQL(Sε)

loc ≤bcon

(1)

and

{Sopt,Qopt} = argmax{Sε,QL}
[U (x[k],xr [k])]

subject to
NSε(QL)

SOI (bSε(QL)
q )

N
+bSε(QL)

loc ≤bcon

(2)

As mentioned earlier, designing the quantizerQL re-
quires determining the number of quantization lev-
elsL and designing the non-uniform samplingSepsilon
strategy requires determining the optimal value forε
for a given non uniform sampling scheme. We thus re-
duce the problem of findingQopt andSopt to the iden-
tification of the values ofL andε that maximizes the
utility. Consequently, sinceb

QL(Sepsilon)
q = ⌈log2L⌉,1

and 2 can be rewritten as:

{εopt,Lopt} = argmax{L,ε} [U (x[k],xr [k])]

subject to
NQ (Sε)

SOI (⌈log2L⌉)

N
+bQL(Sε)

loc ≤bcon

(3)

and

{εopt,Lopt} = argmax{ε,L} [U (x[k],xr [k])]

subject to
NSε(QL)

SOI (⌈log2L⌉)

N
+bSε(QL)

loc ≤rcon

(4)

If the order of the quantization and non-uniform
sampling also needs to be determined, we may com-
pare the optimal utilities in the two cases to deter-
mine the best order. Solving the joint optimization
presented in equations 4 and 3 is non-trivial. This
optimization is heavily dependent on the relationships
betweenU andNSOI and the pair(ε,L). For a generic
sampling algorithm, for a signal with arbitrary char-
acteristics, it is likely to be very difficult to determine
the optimal solution without some form of computa-
tionally complex exhaustive search. In some cases,
however, for sampling algorithms such as FAN, and
for well-behaved signals such as ECG, we show that
these relationships can be estimated experimentally,
and modeled using simple parametric functions. This
enables tractable, and low complexity algorithms to
solve the optimization in real time. In the following
sections, we present several parametric model based
approaches to trade-off computational complexity for
accuracy, while solving this optimization for the FAN
algorithm with MSE quantization for the ECG signal.

4 ENCODING ECG SIGNALS FOR
REMOTE HEALTH
MONITORING

We illustrate our approach to jointly quantize and
sample non uniformly waveforms by focusing on the
representation of electrocardiogram (ECG) signals.
This proposed technique implements adaptive sam-
pling before quantization (i.e.S beforeQ ).

4.1 Brief Background on ECG Signals

A typical electrocardiogram monitoring device gen-
erates large volumes of digital data. Depending on
the intended application, the sampling rate may range
from 125 to 1000 Hz, with each data sample digitized
to a 8-16 bit value. This translates to a minimum data
rate of 15 KB per minute. Transmitting this signal
over a low-bandwidth channel, especially when ag-
gregating data from multiple sensors, requires com-
pression. The data needs to also be recorded over long
periods, often as much as 24 hours, and doctors may
wish to build a database of ECG recordings for their
patients. Minimizing the storage resources also re-
quires data compression.
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4.2 Adaptive Sampling

FAN (Barr, 1988) is a standard sampling technique
for ECG signal compression and was reported in 1964
by (Gardenhire, 1964). It extracts samples of inter-
est by approximating the signal using a piecewise lin-
ear representation, and discards all but the terminal
points along these line segments. More precisely,
the FAN algorithm replaces the signal with straight
line segments such that none of the original points
lies further from the line segment than some prede-
termined maximum deviation thresholdτ. Figure 1
visually describes the algorithm. The first pointx[k0]
is accepted as non-redundant (permanent sample).
Two slopes{L1,U1} are drawn betweenx[k0] and
{x[k1]− τ,x[k1] + τ}. The third sample pointx[k2)]
falls within the area bounded by the two slopes. Thus
new slopes{L2,U2} are calculated betweenx[k0] and
x[k2]± τ respectively. Then the two pairs of slopes
are compared and the most restrictive are retained:
U2 = min(U2,U1) andL2 = max(L1,L2). Since sam-
ple x[k1] lies inside the range it is thus discarded;
while x[k2] is accepted as a permanent sample and the
procedure above is repeated, comparing future sam-
ple values to the most restrictive lines. During signal
reconstruction, the discarded samples are linearly in-
terpolated from their neighboring retained samples.

0k 1k 2k 3k

t

Discard

t

Keep

Keep

4k 5k

Discard

Keept
t

U1

L2

U2
L1

t

Figure 1: FAN algorithm for non-uniform sampling.

The deviation thresholdτ determines the quality
of the approximation with largeτ leading to more
samples being discarded, and coarser signal approx-
imation. In our setting, this thresholdτ maps directly
to the sampling sensitivityε, and we use the two inter-
changeably. The FAN algorithm has been used widely
for ECG signal compression as it is extremely com-
putationally lightweight (O(N) for N samples), and
performs reasonably well in practice, in terms of re-
taining samples and features of interest. However, for
small target bit-rates (under 2 bits per sample), the
FAN algorithm often underperforms computationally
more complex (O(N2)) algorithms such as Cardinal-
ity Constrained Shortest Path (CCSP). In this bit-rate
range, we wish to improve the performance of FAN
by combining it with quantization. Combination with

a simple quantization can retain the low-complexity
nature of FAN, while improving its compression qual-
ity.

4.3 Joint FAN Sampling and
Quantization

The reconstruction quality of compressed ECG sig-
nals is often captured using the percentage root-mean-
square difference (PRD) between the original signal
and its reconstructed (inverse quantization and linear
interpolation) version. The reconstructed signalxr [k]
is determined from the sampled and quantized signal
by inverse quantization and linear interpolation.

Hence, the utility function is defined as:

U (x[k],xr [k]) = −100∗

√

√

√

√

∑N
j=1(x[ j]−xr [ j])2

∑N
j=1x[ j]2

(5)

Finally the joint sampling and quantization prob-
lem, given a rate constraintbcon (in bits per sample),
may be written as the following optimization:

{εopt,Lopt} = argmax{ε,L} [U (x[k],xr [k])]

subject to
NSε(QL)

SOI bSε(QL)
q

N
+bSε(QL)

loc ≤bcon

(6)

The search complexity for a naive implementa-
tion of the solution to this problem isO(|Ωτ|× |ΩL|)
whereΩε is the set of possible values forε, ΩL is
the set of possible values forL and | • | is the car-
dinality operator. This is a constant factor that mul-
tiplies the complexity of the FAN algorithm (thereby
linearly increasing the complexity). However, this is a
worst case metric as it assumes no apriori knowledge
of the underlying ECG signal. Due to the periodic na-
ture of the ECG signal, the designed answer is likely
to change slowly with time (across consecutive win-
dows ofN samples each), and hence we can distribute
this complexity over several windows. This may be
done by either solving the optimization once everyZ
windows, thereby reducing the overhead complexity
to O( |Ωε|×|ΩL|

Z ) or by reducing the space of possible
search values, i.e. the number of elements in each set
(allowing only for small variations in the previously
designed values).

Additional improvement in performance may be
obtained by actually designing the complete quantizer
(including the design of the optimal resonstruction
levels) dynamically. This however comes at a cost of
increased complexity. In the worst case, a standardk-
means based implementation of quantizer design has
complexityO(NL). Of course, this cost may also be
distributed across several windows (due to the nature

ADAPTATIVE SIGNAL SAMPLING AND SAMPLE QUANTIZATION FOR RESOURCE-CONSTRAINED STREAM
PROCESSING

99



of the ECG signal) to reduce the computational com-
plexity. The design of optimal low-cost quantizers in
conjunction with the sampling is an interesting direc-
tion of future research.

5 MODEL BASED SEARCH
STRATEGY

A model based search strategy is enabled by the rea-
sonably stationary characteristics of the ECG signal,
and the somewhat predictable behavior of the FAN
algorithm. Specifically, we observe, that in a partic-
ular operating region (defined by the rate constraint,
e.g. number of bits per sample, and the correspond-
ing quality metric, i.e. PRD) we may develop simple
parametric models that capture the effect ofL andε
on the utility (PRD) and the rate (bits per sample). As
an example, we run the FAN algorithm several times
on a real ECG signal with different values ofε and
plot the resulting numberNSOI of samples retained,
and the corresponding distortionPRD in Figure 2.
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Figure 2:NSOI andPRDas functions ofε.

As is clear,NSOI has an almost exponentially de-
caying relationship withε, while thePRDhas a near-
linear relationship withε, and we can capture these
relationships very simply as follows

NSOI(ε) = µe−νε (7)

and
PRD(ε) = α+ βε (8)

whereµ, ν, α, andβ are the model parameters. If we
now combine this sampling with quantization using
L levels, we can derive the resulting bit-rate for the
compressed signal (in bits per sample) as

bQL(Sε)
q =

NSOIlog2(L)

N
(9)

Using Equation 7, we may rewrite this as

bQL(Sε)
q =

µe−νεlog2(L)

N
. (10)

In order to build a similar model for thePRDas a joint
function ofε andL, we plot the resulting PRD (after
FAN followed by quantization) in Figure 3. Clearly,
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Figure 3:PRDas function ofε andL.

the slope and intercept of the line relatingPRD to ε
change withL. After further investigation, we find
that this relationship may be captured as

α(L) = γe−ρL (11)

and
β(L) = η×log(ξLQ). (12)

Combining these equations, we may rewrite the
model forPRDafter joint sampling followed by quan-
tization as

PRD= γe−ρLQ + ηεlog(ξLQ) (13)

These models forPRD andbQL(Sε)
q are validated for

a real ECG signal in Figure 4 and Figure 5. While
the models tend to underestimate the real values (es-
pecially for smallε), the shapes of the curves re-
main similar allowing for a search strategy using this
model.

5.1 Three Times FAN Strategy

In order to compress the ECG signal under a rate
constraint, we first partition it into fixed size windows
(each withW samples2). Then per window, we run

2Note that since we process the window independently,
we haveN = W
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Figure 5:bq: Real value versus model prediction.

the FAN algorithm for two different values ofε (a
high value and a low value), to determine two values
for NSOI followed by quantization with two different
numbers of levelsL (a high value and a low value)
to determine four values ofPRD. The four values
of PRD provide us with four equations to solve for
parametersγ, ρ, η andξ. Similarly, the two values
of NSOI provide us with two equations to solve for
parametersµ and ν. Once we determine the model
for a given window, it is straightforward to determine
the optimal parameter settings forε andL under any
specified rate constraint. Once we determine the
optimal parameter settings, we then need to run FAN
once with the selectedεopt followed by quantization
with Lopt levels. Hence, per window we run the FAN
algorithm three times.

5.2 Two Times FAN Strategy

We exploit the near stationarity of the ECG signal
characteristics to reduce the complexity of the Three
Times FAN strategy. Specifically, while for the first
window we employ the same approach (with two
times FAN followed by two times quantization) for
every subsequent window we run the FAN algorithm
for only one additional value ofε followed by quan-
tization with two different values ofL. This provides
us with two values ofPRD and one value ofNSOI.
In order to compute the model parameters, we then
combine this with two values ofPRD and one value
of NSOI computed from the previous window. We al-
ternate between recomputing thePRD and NSOI for
the highε, and thePRDandNSOI for the lowε (corre-
spondingly reusing these for the lowε and highε, re-
spectively, from the previous window), for every suc-
cessive window. Note that it is possible to easily ex-
tend this approach to recompute the model parameters
only once everyZ windows, to further reduce com-
plexity. We examine some of the tradeoffs between
complexity and accuracy by comparing the perfor-
mance of these algorithms, and using that to identify
trends for other extensions.

6 EXPERIMENTAL RESULTS

We evaluate the performance of these algorithms on
ECG signals from the MIT-BIH database. Specif-
ically, we use a subset of this database, consisting
of 10 different ECG signals, of duration 8000 sam-
ples each. For these signals we evaluate the different
strategies described in Table 1. We compare FANEX,
FANQEX, FANQMS-3 and FANQMS-2 in terms of
their distortion (PRD)-rate (bits per sample) curves,
and also in terms of their computational complex-
ity. We present results for different processing win-
dow sizes (W) to identify the general performance
trend variations. Each window consists ofW sam-
ples of the signal, and is analyzed and processed in-
dependently by the different algorithms, specifically
in terms of computing the optimal parametersε and
L, and using the FAN algorithm with these param-
eters. We limit the search space for the exhaustive
search strategies by considering a finite small set of
possible values thatε andL can take. For our experi-
ments we haveε∈{0.002,0.004, · · · ,0.04,0.05,0.06}
andL∈{4,8,16,32,64}. We first consider a process-
ing window of sizeW = 1000 samples, and present
the distortion-rate (D-R) curve averaged across these
signals (across the 8 windows per signal) for the four
different algorithms in Figure 6.

In Figure 6 we observe that the schemes with joint
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Table 1: Algorithms Considered.

Name Uses Quantization ε only or (ε,L) search strategy
FANEX No Exhaustive
FANQEX Yes Exhaustive
FANQMS-3 Yes Model Based - Three Times FAN
FANQMS-2 Yes Model Based - Two Times FAN
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Figure 6: D-R Curves:W = 1000.

quantization and FAN significantly outperform the
FAN only scheme, a compression factor of 2 for the
same PRD. This makes the performance of the FAN
algorithm comparable to the state-of-the art compres-
sion algorithms (with significantly higher complex-
ity). Furthermore, we find that the model based
searches FANQMS-3 and FANQMS-2 have perfor-
mance very close to that achieved by the exhaustive
search for target bit-rates less than 2 bits per sample.
As the target bit-rate starts to approach 2 bits per sam-
ple, the model based search strategies underperform
the FANEX strategy, as the models are inaccurate3 for
this range. However, note that for this higher bit-rate
range, the performance of the FAN algorithm by it-
self is comparable to the best ECG compression algo-
rithms presented, thereby limiting any gains obtained
by additionally quantizing the signal. We also repeat
these experiments for a smaller window (W = 500)
and a larger window (W = 2000, and the results are
presented in Figure 7.

From Figure 7, the same performance trend is ob-
served as in Figure 6 for the four algorithms, how-
ever it is clear that the performance of FANQEX,
FANQMS-2, and FANQMS-3 are closer to each other
for largerW. This may be explained by the fact that a

3Assumptions on linear, exponential and log-linear rela-
tionships are violated in this range.
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Figure 7: D-R Curves:W = 500(left),W = 2000(right) .

larger window size allows the model based algorithms
to fit better parameterized curves, improving the per-
formance of the model based search schemes. This is
also evident from the fact that on average, the PRD
for the same target bit rate decreases with increasing
W. We also compare the computational complexity of
these algorithms in terms of the amount of CPU time
consumed per window. These CPU times are labeled
tFANEX, tFANQEX, tFANQMS−2 and tFANQMS−3 respec-
tively. We also label the time taken to run the FAN al-
gorithm on one window ast. Instead of presenting ab-
solute numbers, we present relative ratios of the com-
plexity of these algorithms to hide the dependency on
the underlying computer architecture, operating sys-
tem etc. These complexity ratios for the different al-
gorithms are presented in Table 2.

It is evident from Table 2 that FANQMS-3 has 29
(FANQMS-2 has 45 times) lower complexity than
FANQEX and 4 times (FANQMS-2 has 7 times)
lower complexity than FANEX. Further, as expected,
FANQMS-2 has lower complexity than FANQMS-3.
This observation holds across the two different win-
dow sizes considered. Furthermore, FANQMS-3 has
4 times the complexity of FAN, while FANQMS-2
has 3 times the complexity of running FAN one time.
This implies that the search for the optimalε andL
has the complexity 1.5 times that of the FAN algo-
rithm. Note that by reusing the model parameters
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Table 2: Complexity Comparison.

W
tFANQEX

tFANQMS−3

tFANEX
tFANQMS−3

tFANQMS−3
t

tFANQEX
tFANQMS−2

tFANEX
tFANQMS−2

tFANQMS−2
t

500 29.18 4.50 4.18 47.75 7.35 2.80
1000 29.06 4.49 4.21 46.07 7.12 2.64

across more windows (updating model infrequently),
this overhead can also be significantly reduced. This
is also indicated by the comparing the rows of Table 2,
as the complexity gains for FANQMS-2 increase as
W increases from 500 to 1000 (the ratio

tFANQMS−2
t de-

creases from 2.80 to 2.64).

7 CONCLUSIONS

We present a low-complexity joint non-uniform sam-
pling and quantization based strategy for signal com-
pression. Specifically, we combine the FAN algo-
rithm with a minimum mean-squared error quantiza-
tion strategy to compress ECG signals. We first for-
mulate the joint design of non-uniform sampling and
quantization for compression, as a constrained opti-
mization problem in terms of maximizing the relevant
distortion metric given the desired compression rate.
The solution of this optimization yields the optimal
sampling sensitivity, and the number of levels to be
used by the quantizer. In general, and for arbitrary
signals, it may not be possible to solve this optimiza-
tion efficiently. However, for ECG signals, we show
that we can develop simple parametric models to cap-
ture the impact of the FAN algorithm and quantiza-
tion on the resulting distortion (PRD) and rate, es-
pecially in very low bit-rate operating regions. Us-
ing these models we can efficiently determine the op-
timal FAN selectivity parameterε and quantization
levelsL to minimize the PRD for a given rate con-
straint. We design two model based algorithms, one
that re-estimates model parameters for every window
(W samples), and another that updates model parame-
ters every alternate window. We show that with these
strategies, we can achieve up to 2 times the compres-
sion rate of FAN (for the same PRD) with a com-
plexity less than 3 times that of FAN alone. We also
show that the performance of these algorithms ap-
proaches (within 10% in rate whenε < 1.8) an ex-
haustive search based strategy for different signals,
and window sizes. Given the low complexity of FAN
our algorithms still remain significantly lower com-
plexity than state-of-the-art transform based compres-
sion schemes, while achieving comparable perfor-
mance. Directions for future research include design
of the optimal search strategy to re-estimate model pa-
rameters (how often, optimal window size etc.), the-

oretical analysis of the signal frequency and statis-
tical properties as well as algorithm complexity for
rate-distortion-complexity optimal joint sampling and
quantization, and application of these ideas for other
multi-dimensional medical signals.
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Abstract: The representation of data in some visual form is one of the first steps in a data-mining process in order to gain
some insight about its structure. We propose to explore wellknown visualization and unsupervised learning
techniques, namely clustering, to improve the understanding about the data and to enhance possible relations
or intrinsic similarity between patterns. Specifically, Clustering Ensemble Methods are exploited separately
and combined to provide a clearer visualization of data organization. The presented methodology is used to
improve the understanding of ECG signal acquired during Human Computer Interaction (HCI).

1 INTRODUCTION

Critical to the understanding of data is the ability to
provide its pictorial or visual representation. This pro-
cess is particularly relevant for analyzing large vol-
umes of complex data (e.g. multidimensional) that are
available from a variety of sources. The human visual
system has an enormous capacity for receiving and
interpreting data efficiently (Treinish and Goettsche,
1989).

There are many numerical and statistical tech-
niques that can be used to analyze structural infor-
mation from multidimensional data. Discovery and
understanding of the structure in the data has many
applications in science and business. Examples of
structure include clusters, regular patterns, outliers,
distance relations, proximity/similarity of data points,
etc... (Post et al., 2003).

The underlying tool for most of the pattern recog-
nition methods is a distance function, or more gener-
ally a similarity or dissimilarity measure. In the liter-
ature there are many proposed similarity/dissimilarity
measures (see (Fred, 2002) and the references
therein). Moreover each clustering algorithm induces
a similarity measure between data points, according
to the underlying clustering criteria (Fred and Jain,
2006). The representation of such similarities is the

focus of this paper.
Multidimensional scaling (MDS) techniques en-

able the representation of multidimensional data (em-
bedded in ann-dimensional space) in lower dimen-
sional spaces such that the structural properties of the
data are preserved. Given a dissimilarity (or simi-
larity) pairwise matrix (containing pairwise informa-
tion), MDS techniques represent the objects in a low-
dimensional space, preserving all pairwise, symmet-
ric dissimilarities between data objects (Pekalska and
Duin, 2003).

Data clustering and Unsupervised learning is used
in many disciplines and contexts, as an exploratory
data analysis (EDA) tool. Ensemble methods, namely
the evidence accumulation clustering (EAC) tech-
nique (Fred and Jain, 2005), represent state of the art
in data clustering methods, and a way of learning the
pairwise similarity between the data in order to proper
partitioning the data points (Fred and Jain, 2006).

In this paper we present a methodology based on
data Clustering techniques, aiming at improving the
understanding about the data, enhancing its intrinsic
structure. We apply this methodology to electrophys-
iological data, namely ECG, provided under the scope
of a HCI study.

The paper is organized as follows: in section 2
we briefly present the MDS techniques; in section 3
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we formalize the clustering problem and present sev-
eral methods to enhance the intrinsic data structure:
in subsection 3.1 using the dissimilarity matrix; and in
subsection 3.2 mapping the associations in a new sim-
ilarity measure using the evidence accumulation clus-
tering method. Finally, in section 4, this methodology
is presented in the analysis of ECG data. Throughout
the paper we present illustrative examples.

2 MULTIDIMENSIONAL
SCALING

Multidimensional scaling (MDS) in wide sense refers
to any technique that produces a geometric repre-
sentation of data, on a low dimensional space, usu-
ally Euclidean, where quantitative or qualitative re-
lationships in data are made to correspond with ge-
ometric relationships in the geometric representation
(Cox and Cox, 1994) (de Leeuw, 2000). Data objects
judged to be similar to one another result in points
being close to each other in this geometric represen-
tation (Pekalska and Duin, 2003). For more technical
details about MDS techniques consult Cox and Cox
(Cox and Cox, 1994) or Pekalska and Duin (Pekalska
and Duin, 2003).

As input for these techniques it is required a mea-
sure of similarity (or dissimilarity - inversely related
to similarity) between objects in the high-dimensional
space. Considerδi j a measure of dissimilarity (usu-
ally calleddisparity) between the data objectsi and
j, anddi j the estimated geometric distance in the low
dimensional space used to represent data objectsi and
j. The raw stress, is the most elementary MDS loss
function, which quantitatively characterizes a given
geometric configuration for the data representation:

Sraw(X) =
n−1

∑
i=1

n

∑
j=i+1

(δi j −di j )
2 (1)

An iterative optimization process can be used to
find a geometric configuration that minimizes the loss
function presented above (or other given in the litera-
ture).

Consider as an illustrative example of the MDS
technique a 2-dimensional representation of a set of 4-
dimensional gaussian data (R4), with identical covari-
ance matrices (Σ = 0.5I4), and centered, respectively
in µ1 = [3,0,0,0], µ2 = [0,3,0,0], µ3 = [0,0,3,0] and
µ4 = [0,0,0,3]. Figure 1(a) represents the matrix plot
of the multidimensional data (that is: the i-th row and
j-th column of this matrix is a plot ofXi variable ver-
susXj variable; the main diagonal represents the his-
tograms of each variable). Figure 1(b) presents the
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Figure 1: Multidimensional data representation. Projec-
tions in 2-D dimensional spaces. MDS configuration.

obtained configuration in the 2-D euclidean space, us-
ing as optimization criteria the Kruskal’s normalized
stress1 criterion (equation above). For better under-
standing of the obtained representation, different col-
ors and shapes where used to represent each of the
different gaussians. In the next section we will briefly
review the methods that unsupervisely group data ob-
jects.

3 CLUSTERING

The goal of clustering is to enhance the interpretabil-
ity of the data by organizing data in meaningful
groups (or clusters) such that the patterns in a clus-
ter are more similar to each other than patterns in
different clusters (Jain and Dubes, 1988), (Pekalska
and Duin, 2003). Each clustering algorithm visual-
izes data in a different way, inducing different simi-
larity measures between data points according to the
underlying clustering criteria (Fred and Jain, 2006).

There are a number of problems with clustering
methods. The most important one is that there are

Clustering is a difficult problem, hundreds differ-
ent techniques have been proposed in the literature,
yet no single algorithm is able to identify all sorts of
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cluster shapes and structures that are encountered in
practice.

A recent trend in clustering, that constitutes the
state-of-the art in the area, are the clustering com-
bination techniques (also called ensemble methods).
They attempt to find a robust data partitioning by
combining different partitions produced by a single
or multiple clustering algorithms. Several combina-
tion methods have been proposed (Fred, 2001; Strehl
and Ghosh, 2002; Fred and Jain, 2002; Topchy et al.,
2004) to obtain the combined solution.

3.1 Dissimilarity Matrix

There is some work in visual approaches for assess-
ing cluster tendency (Bezdek and Hathaway, 2002)
based directly on visualizing the dissimilarity matrix
obtained from the data. In (Bezdek and Hathaway,
2002) Bezdek andal. presented an algorithm - the
visual assessment of cluster tendency (VAT) - which
reorders the dissimilarity data so that possible clusters
can be enhanced.

The images in Figure 2 are intensity image, where
the intensity or gray level of the pixel (i,j) depend
on the value ofδi j , the dissimilarity between sam-
ple i and j. The value 0 corresponds to pure black;
and the pure white represent the maximum dissimi-
larity. They were obtained with Euclidean distance
for the gaussian data set presented previously. The
figure 2(a) represents the obtained dissimilarity im-
ages when the samples are randomly positioned, and
the figure 2(b) when the samples are re-organized so
that the samples that are close together are as near
as possible (as described in VAT (Bezdek and Hath-
away, 2002)). By analyzing this dissimilarity image
we identify dark rectangular areas, characteristic of
items that are close together and that could constitute
a cluster.

3.2 Evidence Accumulation Clustering

The Evidence Accumulation Clustering (EAC), pro-
posed by Fred and Jain in (Fred, 2001) (Fred and Jain,
2005), is one of the clustering combinations tech-
niques proposed in the literature. This method com-
bines different visions over the data set, obtained by
different algorithms or a single algorithm with differ-
ent initializations, aiming to find the intrinsic simi-
larity of the data. The different partitions obtained by
the clustering algorithms, are called theclustering en-
semble.

The EAC is based on the mapping of the rela-
tionships between pairs of patterns into an× n co-
association matrix,C . This matrix accumulates the
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Figure 2: Dissimilarity Images.

co-occurrence of pairs of samples in the same cluster
over theN clusterings of the clustering ensembleP

according to the equation:

C (i, j) =
ni j

N
, i, j ∈ 1, ..,N (2)

whereni j represents the number of times a given sam-
ple pair (i, j) has co-occurred in a cluster over theN
clusterings. Assuming that patterns belonging to a
”natural” cluster are very likely to be co-located in the
same cluster in different clusters of the partitions of
the clustering ensemble, the co-occurrences of pairs
of patterns summarizes the inter-pattern structure per-
ceived from these clusterings. Each co-occurrence of
a pair of samples in the same cluster are taken as a
vote for the association of those samples. For that
reason this method is also known as majority voting
combination scheme. In order to recover the natural
clusters, and to emphasize the neighborhood relation-
ships, in (Fred, 2001), the Single-link hierarchical al-
gorithm (Jain and Dubes, 1988) is applied on the new
feature space represented by the co-association ma-
trix, yielding the combined data partitionP∗. Other
algorithms may be applied in this final step (Fred and
Jain, 2005).
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Figure 3: Individual clusterings and combination results on
the cigar data-set using a k-means ensemble.

Figure 3 presents a typical application of the EAC
method on an artificial data set (cigar data-set). An
ensemble of 25 partitions was produced using the k-
means algorithm with random initialization and with
k randomly chosen in the interval [10,30]. Examples
of obtained partitions are illustrated in (c) and (d).
The combination result is presented in (e). Theco-
associationmatrix (illustrated in (b)), corresponds to

a new similarity between samples based on the infor-
mation accumulated from the partitions in the cluster-
ing ensemble. In figure the axis represent the samples
of the data set, organized such that samples belonging
to the same cluster are displayed contiguous (as de-
scribed in section 3.1). The color scheme in the figure
ranges from red to blue, corresponding to a gradient in
similarity. Pure Red corresponds to the highest sim-
ilarity. It can be seen that, although individual data
partitions are quite different, neighboring patterns oc-
cur in the same cluster in most of the partitions. As a
result, the true structure of the clusters becomes more
evident in the co-association matrix: notice the more
clear separation between clusters (large blue zones)
and more evident block diagonal structure in figure
3(b) as compared to the original dissimilarity matrix
in figure 3(a).

In the described method each partition is given an
equal weight in the combination process and all clus-
ters in each partition contribute to the combined so-
lution. Other approaches were taken, for example,
weighting/selecting the partitions based on the qual-
ity of the overall partitions. More recently, instead of
evaluating the overall performance of a clustering al-
gorithm based on the final partition produced by it,
in (Fred and Jain, 2006) it is assumed that each al-
gorithm can have different levels of performance in
different regions of the multidimensional space. It is
proposed to learn pairwise similarity based on mean-
ingful clusters, which can be identified based on clus-
ter stability criteria. Thus only those clusters passing
the stability test will contribute to the co-association
matrix an to the learned similarity matrix yielding a
more robust solution. Figure 4 presents this matrix
for the same data set as above. We observe that the
rectangular areas are perfectly defined clearly distin-
guishing the underlying clustering structure. When
represented via MDS this matrix yields 4 separate
points in the 2-dimensional space.
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4 ECG ANALYSIS

We applied the previous methodology to the analysis
of ECG recordings, performed during the execution
of a cognitive task using the computer, based on the
work on (Silva et al., 2007). The ECG acquisition
was part of a wider multi-modal physiological signal
acquisition experiment aiming personal identification.
The task consisted on a concentration task where two
grids with 800 digits were presented, with the goal
of identifying every pair of digits that added 10 and
was designed for an average completion time of 10
minutes. A collection of 53 features were extracted
from mean ECG waves for groups of 10 heart-beat
waveforms (without overlapping): 45 amplitude val-
ues measured at sub-sampled points and 8 latency and
amplitude features were also extracted (for more de-
tails see (Silva et al., 2007)).

Instead of using the ECG features for personal
identification, herein we study the data in a data-
exploratory perspective, trying to find its underlying
time evolution. The task was designed to induce stress
in the subject (for more details see (Silva et al., 2007))
thus the ECG characteristics should vary over time.
The aim of this preliminary analysis is access typical
patterns of temporal evolution over the subjects based
on the ECG extracted features.

For each subject, the temporal evolution of the
ECG characteristics was performed as follows: each
time window, represented by the 53 features, con-
stitutes a sample; the application of clustering over
these samples reveals groups of samples represent-
ing ’stable’ phases of temporal behavior over the
ECG. According to the previous ensemble methodol-
ogy, we constructed a clustering ensembles ofN = 75
K-means partitions with varying number of clusters,
k∈ [2,30], applying the EAC approach and analyzed
the induced similarity matrix.

We applied this technique over the 26 subjects that
performed the task. Figure 5 presents one example of
the typical structures obtained in the analysis. Figure
5(a) represents the obtained co-association matrix. In
this co-association matrix adjacent patterns (in rows
and columns) represent time aligned samples (0 repre-
sents the beginning of the test) of the ECG recording.
It is interesting to note its block diagonal structure re-
vealing time relationships between the patterns. This
structure is not so evident as in the previous toy ex-
ample, but a similar diagonal pattern can be inferred.

Using the Ward’s link and the life time criteria for
choosing the number of clusters, 6 clusters are ob-
tained. In figure 5(b) we present the temporal evo-
lution of such clusters: x-axis correspond to the sam-
ples order by time; and the y-axis the discovered clus-
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(b) Cluster Temporal-Evolution.

Figure 5: ECG Analysis based on induced similarity using
the EAC algorithm over an ensemble of 75 k-means partions
(with varying number of clusters).

ters{1,2, . . . ,6}. Analyzing this figure, we can per-
ceive that over the time the changes in cluster are only
between adjacent clusters: cluster 1 evolutes only to
cluster 2; cluster 2, evolutes only between clusters 1
or 3, ..., clusteri evolutes only betweeni−1 andi +1.
Note that this adjacent clusters are more similar that
not adjacent ones. If we consider that each cluster
represent a temporal behavior, this reveals a contin-
ual evolution of these behaviors, not observing drastic
changes over time. These changes in the temporal be-
havior of the features could have been caused by the
increasing stress levels induced by the test that was
being resolved by the subjects.

Figure 6 presents the MDS representation of the
data, based on the EAC induced similarity. The repre-
sented clusters (in different colors and shapes) are the
same presented in figure 5(b). It is possible to note
that samples of adjacent clusters are represented adja-
cently as previously discussed in the temporal evolu-
tion of clusters.
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Figure 6: MDS representation of the data based on the EAC
induced similarity. The clusters were obtained using the
Ward’s link and the life time criteria for choosing the num-
ber of clusters.

5 CONCLUSIONS

We presented a short overview of state of the art
in data visualization and unsupervised learning tech-
niques, to improve the understanding about the data.

Examples shown that the visualization either by
dissimilarity matrix observation (using VAT), or co-
association observation (obtained via EAC) or using
Multidimensional Scalling (MDS), provide pictorial
or alternative visual representations of multidimen-
sional data important to gain insight about the data.

The preliminary analysis of the ECG signal
demonstrates the potential of these visualization tech-
niques in biosignal analysis. The results have shown
typical patterns of time evolution of clusters which
can be related with increasing stress levels.
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Abstract: Digital signal processing techniques have been used to perform an acoustic analysis for vocal quality 
assessment due to the simplicity and the non-invasive nature of the measurement procedures. Their 
employment is of special interest, as they can provide an objective diagnosis of pathological voices, and 
may be used as complementary tool in laryngoscope exams. The acoustic modeling of pathological voices is 
very important to discriminate normal and pathological voices. The degree of reliability and effectiveness of 
the discriminating process depends on the appropriate acoustic feature extraction. This paper aims at 
specifying and evaluating the acoustic features for vocal fold edema through a parametric modeling 
approach based on the resonant structure of the human speech production mechanism, and a nonparametric 
approach related to human auditory perception system. For this purpose, LPC and LPC-based cepstral 
coefficients, and mel-frequency cepstral coefficients are used. A vector-quantizing-trained distance 
classifier is used in the discrimination process.  

1 INTRODUCTION 

A great range of diseases causes modifications in the 
voice. These are related to the vocal tract 
pathologies, as well as many others which are 
provoked by neuro-degenerative diseases (Davis, 
1979; Quek et al, 2002).  

Voice quality of patients have been evaluated by 
several techniques, most of which are based on 
listening to the patient's voice and on the inspection 

of the vocal folds through laryngoscopy. The first 
method is subjective, which could provide different 
results, depending of the professional experience.  
The second one has the advantage of being more 
accurate, but it requires high cost tools such as 
special light sources and specialized video-camera 
equipments. In addition, it is considered an invasive 
technique, which may cause discomfort to the 
patients 

Non-invasive techniques based on acoustic 
analysis of the speech signal can be used to 
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diagnosis and evaluation of medical treatments of 
diseases which provoke vocal disorders. Moreover, 
acoustic analysis can be employed to the precocious 
detection of pathologies in the vocal folds or the 
evaluation of the vocal quality of patients subject to 
surgical processes in the vocal folds.  

Some researchers have dedicated their efforts for 
obtaining efficient methods to discriminate normal 
and pathological voices using acoustic analysis 
(Godino-Llorente et al, 2006; Shama et al, 2007; 
Murphy and Akande, 2007; Dibazar et al, 2006; 
Umapathy et al, 2005). Those methods have 
employed techniques based on the estimation of 
glottal noise, feature extraction from decomposed 
time-frequency parameters, linear prediction 
modeling-based measures and measures based on 
auditory modeling. However, there is limited 
agreement on which parameters are more suitable 
for acoustic modeling of particular pathology. An 
efficient and reliable acoustic modeling of the 
pathology is necessary, when pattern classification 
of vocal disorders is being used. Thus, the vector of 
acoustic characteristics of the pathological voice 
should be carefully chosen to be quite 
representative. 

In this research, techniques of digital signal 
processing are used to carry out an acoustic analysis 
of pathological voice. The study is focused on the 
case of voice disorders provoked by edemas in the 
vocal folds, using the evaluation of following 
features: LPC coefficients, LPC-based cepstral 
coefficients and mel-frequency cepstral coefficients. 
The irregularities in the features of the normal voice 
in comparison with the pathological voice are 
observed and analyzed. A vector quantization 
technique (VQ) was used associated with a 
distortion measurement to classify the speech signal. 
The VQ was trained with voices affected by the 
considered pathology. 

The results can be used in order to build an 
effective method basis for detecting pathological 
voices. The outline of the paper is as follows: basis 
for an acoustic modeling of disordered voices, 
database and methods, results and conclusions.  

2 ACOUSTIC MODELING BASIS 

Feature extraction of speech signals is frequently 
employed to acoustic evaluation of pathological 
voices. Specific statistical parameters based on the 
linear model of speech production can be used as 
significant acoustic features. It is known that the 
voice signal is produced as a result of glottal pulses 

or a signal varying randomly, like noise excitation 
filtered by the vocal tract (Rabiner and Schafer, 
1978). 

Vocal fold pathology such as vocal fold edema 
affects the vocal fold or other components of the 
vibratory system, producing an irregular vibration. 
In fact, it is widely known that pathological vocal 
folds can present variation in the cycle of the 
vibratory movement because of changes in the vocal 
folds elasticity. This occurs due to incomplete 
closure of the vocal folds in all glottal cycles. The 
changes in the vocal folds morphology can provoke 
significant modifications to the acoustic signal. 
Although the pathology is located in the vibratory 
system it can affect the regular articulatory 
movement during the speech production. 
Furthermore, components of the resonating system 
can be affected, resulting in changes of the vocal 
shape, producing irregularities on the spectral 
properties. A modification in the fundamental 
frequency and on the spectral shape can be observed 
as a result of the vocal disorders (Godino-Llorente et 
al, 2006).  

The understanding of changes in the acoustic 
features involving excitation and resonance effects is 
the key to an efficient disordered voices modeling. 
The speech signal contains information about both 
vocal tract and excitation source. 

The handle of the variability present in the 
speech signal is one of the main challenges of 
acoustic modeling. The variability arises from the 
dynamic nature of the vocal tract. Thus, speech is 
dynamic or time-varying and the modeling needs to 
consider two aspects: 1) the explicit temporal 
dependencies of the pathological voice, and 2) the 
estimation of the features have to be based on 
statistical short-time analysis. The model has to 
represent the irregularities behaviour introduced by 
the pathology itself.  

 Two parametric methods based on the linear 
model for the human speech production mechanism 
approaches have been considered on the literature so 
far: 1) linear predictive coding (LPC) analysis; 2) 
LPC-based cepstral analysis  (Godino-Llorente et al, 
2006, Marinaki et al, 2004, Parsa and Jamieson, 
2001; Gavidia-Ceballos, 1996). 

The LPC estimates each speech sample based on 
a linear combination of the p previous samples; a 
larger p enables a more accurate model. It provides a 
set of speech parameters that represent the vocal 
tract (Rabiner and Schafer, 1978). It is expected that 
any change in the anatomical structure of the vocal 
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tract, because of pathology, affects the LPC 
coefficients.  A linear predictor with p prediction 
coefficients, αk is defined as a system whose output 
is 

1
( ) ( ) ( )

p

k
s n k s n kα

=

= −∑%          (1) 

  In the LPC-based cepstral analysis is considered 
that speech signal is the result of convolving 
excitation with vocal tract sample response by 
cepstral analysis, and it is possible to separate the 
two components. One step in cepstral deconvolution 
transforms a product of two spectra into a sum of 
two signals. In practice, the complex cepstrum is not 
needed. The real cepstrum suffices, obtained with 
digital algorithm as follows (Rabiner and Schafer, 
1978; O’Shaugnessy, 2000): 
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Cepstral coefficients can be computed 

recursively from the linear predictor coefficients, αi, 
by means of (Furui, 1981): 

 
(1) (1)

1
( ) ( ) (1 ) ( ) ( )     1

1

c
i kc i i k c i k i p

ik

α

α α

⎧ =−
⎪

−⎨
=− − − − < ≤∑⎪

=⎩

        (3) 

 
Other authors have investigated the use of mel-

frequency cepstral (MFC) analysis which is a 
measure based on the human auditory perception 
system (O’Shaughnessy, 2000). A nonparametric 
MFC-based approach can be derived from fast 
Fourier transform (FFT-MFC) (Godino-Llorente et 
al, 2006, Dibazar et al, 2006,  Murphy and Akande, 
2007, Bou-ghazale and Hansen, 2000). 

Cepstrum analysis is based on the human 
auditory perception system, which incorporates 
some aspects of audition. This method provides a 
logarithm relationship between the real and the 
perceived frequency scales (mels). Mel-frequency 
cepstral coefficients c(n) are calculated by means of 
(O’Shaughnessy, 2000): 
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where M is the number of mel bands in the mel scale 
and S(k) is given by 
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1
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where Wk(j) is the triangular weighting windows 
associated with the mel-scales, and X(j) is the NFFT-
point magnitude spectrum (Godino-Llorente et al, 
2006, O’Shaughnessy, 2000). 

A common model for the relationship between 
frequencies in mel and linear scales is as follows 
(O’Shaughnessy, 2000): 
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where Flinear  is the linear frequency (in Hertz), and 
Fmel is the perceived frequency (in Mel). 

3 DATABASE AND METHODS 

The database used in this work was recorded by the 
Massachusetts Eye and Ear Infirmary (MEEI) Voice 
and Speech Lab (Kay Elemetrics, 1994). It includes 
more than 1,400 voice samples (i.e., sustained /a/) 
from approximately 700 subjects. The database 
including samples from patients with a wide variety 
of voice disorders, was collected in a controlled 
environment with the following features: low-noise-
level, constant microphone distance, direct digital 
16-bit sampling and robust signal conditioning. 
Sampling rates of 25 kHz  (pathological voices)  or  
50 kHz (normal voices) were employed. The normal 
voice signals were downsampled to 25 kHz, to 
maintain the same sample frequency to all signals. 

The selected cases of people presenting edemas 
in the vocal folds are: 33 women (17 to 85 years old) 
and 11 men (23 to 63 years old), most of them (32) 
with bilateral edema. The database of normal voices 
is composed of 53 patients - 21 male (26 to 59 years 
old), and 32 female (22 to 52 years old). We also 
used 23 signals, under other pathologies, such as 
cysts, nodules and paralysis (07 male and 16 female 
voices).   

First, a 20 ms Hamming window with an overlap 
of 50% is employed to obtain frames from the 
dataset for the short-term voice analysis.  

A Vector Quantization technique is employed in 
the classification process, associated with a 
distortion measurement to discriminate among 
voices affected by vocal fold edema, normal voices 
and voices presenting other vocal fold pathologies. 
The Vector Quantization is carried out individually 
for each feature using just voices under vocal fold 
edema. Thus, different VQ-trained distance 
classifiers are obtained by the discrimination 
process. The VQ-classifiers are applied to static 
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feature vectors, which are computed for every 10 ms 
frame of the speech samples over a dynamic input 
sustained vowel /a/. 

A codebook is generated, after the feature 
extraction, consisting of N discrete level generation 
that each input vector could assume. An N-level 
vector quantizer can be defined as a mapping Q of a 
K-dimensional Euclidean space RK into a finite 
subset W of RK, such as Q:RK→W.       

The codebook W={wi ; i=1, 2, ….N} is the set of 
codevectors, K is the dimension of the quantizer and 
N is the number of codevectors in W.   

The mapping Q assigns to a K-dimensional real-
valued input vector x a K-dimensional codevector 
wi=Q(x). VQ defines a partitioning of the K-
dimensional Euclidean space into non-intercepting 
cells Si = {x : Q(x) = wi}, i = 1, 2, …, N. 

As the Voronoi cell, Si, collects together all input 
vector mapping to the i-th codevector, the 
codevector wi may be viewed as a pattern-class label 
of the input patterns belonging to Si. 

The mapping of the input vector x to a 
codevector wi occurs if the distortion function is 
such as d(x,wI) <  d(x,wi), ∀i  ≠ I.                     

It follows the nearest neighbour rule is applied to 
find the codevector that presents the greatest 
similarity to x.  In this work, LBG algorithm and the 
least mean square distance were used (Linde et al, 
1980). 

4 RESULTS AND DISCUSSION 

To reduce the dimensionality of feature vectors, a 
Vector Quantizer (VQ) to each parameter was 
employed, using dimension K=12 and N=64 levels. 
The VQ was trained with 20 voice signals under 
vocal fold edema. In the test phase 53 normal voices, 
24 signals under vocal fold edema and 23 speech 
signals of speakers, affected by other vocal fold 
pathologies as nodules, cysts and paralysis, were 
used. The Euclidean distance measure to classify the 
signals was used to analyze the effect of pathologies 
in vocal tract response. For this purpose, LPC, 
cepstral and mel-cepstral coefficients were extracted 
from the database signal. 

A predictor order p=12 was applied the LPC 
analysis. The LPC coefficients were obtained using 
the autocorrelation method by Levinson-Durbin 
algorithm (Rabiner and Schafer, 1978). Figure 1 
shows the distribution of vocal fold edema, normal 
voices and other pathologies. It is clear the excellent 
separation of the two classes analyzed: normal 
voices and voices affected by vocal fold edema. This 
results in a high correct rejection rate. In 
comparison, the edema behaviour and the other 

pathologies have a certain similarity that suggests 
difficulties in recognizing each pathology.  

A threshold value to provide the best separation 
between the classes in the classification process was 
chosen. For cepstral analysis it was used an 
algorithm based on Eq. (3).  A number of 12 
coefficients were obtained and the same process of 
quantization used to LPC method was employed. 

 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

Di
st

or
tio

n 
Voice signals

other pathologies normal vocal fold edema

 
Figure 1: Distortion behaviour for normal, vocal fold 
edema and other pathologies, obtained by Euclidian 
distortion on LPC method. 

The behaviour of classes, on cepstral 
analysis, is shown in Figure 2. The graphic provides 
a great way to observe the relevance of each 
parameter in classifying a pathological voice. The 
good separation of normal and pathological voices is 
well defined as in LPC method. 
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Figure 2: Distortion behaviour for normal, vocal fold 
edema and other pathologies obtained by Euclidian 
distortion on cepstral method. 

The number of filter bank bands employed to 
MFCC method was 30 (3ln(Fs), where Fs is the 
sampling frequency (Fs = 25kHz)  and a number of 
12 MFC coefficients were obtained as described in 
section 2. An algorithm of Voicebox - Speech 
Processing Toolbox for MATLAB 
(http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox) was 
used.  
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The behaviour of classes in mel-cepstral method is 
presented in Fig. 3. In this method, as in the others, it has a 
good separation of normal and pathological voices. 
However, the differences among the pathologies are not 
evident. LPC and cepstral methods seem to be better in 
representing the pathologies specificities. 
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Figure 3: Distortion behaviour for normal, vocal fold 
edema and other pathologies obtained by Euclidian 
distortion on mel-cepstral method. 

The evaluation of performance was made by the 
use of the following measurements: 1) Correct 
acceptance rate (CA), in which the presence of the 
pathology is detected when that is really present; 2) 
Correct rejection (CR), that gives the rate of the 
detection of the correct absence of the pathology; 3) 
False acceptance rate (FA) that detects the presence 
of the pathology when it is not present; 4) False 
rejection rate (FR), that quantifies the rejection of 
the presence of the pathology when, in fact, it is 
present. 

Related to the rates mentioned it was computed: 
• Specificity - SP: represents the likelihood that 

the pathology is detected when it is present, 
given by SP=CR/(CR+FA)x100. 

• Sensitivity – SE: represents the likelihood that 
the pathology is detected when it is present, 
obtained by  SE(%)=(CA/(CA+FR)x100. 

• Efficiency-E: gives the correct classification of 
a given class when that is present given as 
E(%)=(CR+CA)/(CR+CA+FA+FR)x100. 
 

Figure 4 presents results to the measurements 
above obtained for the three applied methods 
considering other pathologies as a separate class of 
edema. It is seen that LPC gives the best method. 
However, the false rejection rate obtained for this 
method was 27%. It is important to emphasize that 
the classifier was trained to accept vocal fold edema 
signals and reject any other signal as being 
pathological. 

It is also observed that mel-cepstral method was 
not efficient in discriminating each pathology class. 

Mel-cepstral analysis represents the perceptual 
auditory aspect that is similar in some vocal fold 
pathologies as nodule, cyst and edema.   

0
10
20
30
40
50
60
70
80
90

100

E (%) SE (%) SP (%) 

LPC

CEP

MEL

 
Figure 4: Performance evaluation considering vocal fold 
edema and the other pathologies as different classes. 

The hoarseness and severely noisy-speech are 
some of common aspects that occur to speakers 
affected by the mentioned pathologies. The ability of 
MFCC method in representing the irregular 
vibration of vocal folds is common in the 
pathologies in this study and it is reflected on the 
results. The behaviour of the pathological signals is 
similar in mel-cepstral domain. Therefore, to 
discriminate pathologies occurring on vocal folds is 
not an easy task. 

Figure 5 shows a comparison of the LPC, 
cepstral and mel-cepstral methods, when using the 
classifier to all pathologies in the same classes. It is 
clear that mel-cepstral method is better than the 
other methods in representing the behaviour 
differences of the pathological signals relating to 
normal cases.  
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Figure 5: Performance evaluation considering vocal fold 
edema and the other pathologies in the same class. 

The ability of methods employed in rejecting 
correctly the classes out of classifier training class is 
excellent (SP). 

Figure 6 shows results obtained for Specificity, 
Efficiency and Sensitivity comparing pathological 
voices under vocal fold edema and normal voices. 
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The other pathologies are not considered here. The 
ability of FFT-MFCC in modeling the irregular 
vibration of the vocal folds provoked by the 
pathology is shown in the results. Good results are 
also obtained to LPC and cepstral analysis. 
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Figure 6: A comparison of the performance evaluation of 
LPC, cepstral and mel-cepstral analysis to the cases of 
vocal fold edema and normal voices. 

5 CONCLUSIONS 

The changes on LPC, cepstral and mel-cepstral 
coefficients describe the abnormal behaviour of the 
vocal folds movements caused by the pathologies.  
The efficiency in characterizing pathological voices 
using short-time cepstral analysis is well described 
by results.   

It is noted that mel-cepstral coefficients are very 
good to detect the presence of pathology. They 
provide a good separation of normal and 
pathological voices.  However, this method is not 
efficient in discriminating distinct pathologies. The 
differences among pathologies which belong to 
similar class of diseases are not evident. LPC and 
cepstral methods seem to be better in representing 
the pathologies specificities.    

In order to improve the performance of the 
classification process, two aspects are suggested: 2) 
the use of non-linear analysis to improve the 
acoustic modeling of non-linear characteristics 
inherent to speech signal, and 2) the employment of 
other classifiers based on Artifitial Neural Networks 
or Hideen Markov Models, for example.  
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Abstract: This paper proposes a robust segmentation method for differentiating consecutive inspiratory/expiratory
episodes of different types of tracheal breath sounds. This has been done by applying minimal Walsh ba-
sis functions to transform the original input respiratory sound signals. Decision module is then applied to
differentiate transformed signal into respiration segments and gap segments. The segmentation results are
improved through a refinement scheme by new evaluation algorithm which is based on the duration of the seg-
ment. The results of the experiments, which have been carried out on various types of tracheal breath sounds,
show the robustness and effectiveness of the proposed segmentation method.

1 INTRODUCTION

For early detection of diverse illnesses, accurate es-
timation of respiratory rate is very important (Sierra
et al., 2005). Many adventitious lung sounds, which
are indications of infectious and respiratory diseases,
can be clinically characterized by their duration in
respiratory cycle and relationship to the phase of res-
piration (Meslier et al., 1995). Therefore, segmenta-
tion of respiratory sound into individual respiratory
cycles and further subdividing into its inspiratory and
expiratory phases is necessary in quantifying adventi-
tious sounds.

Generally, phonopneumography or spirometer to-
gether with sound recording devices are always used
in respiratory sound analysis, in which amplitude of
the sound signal is displayed simultaneously with
the airflow as a function of time. Signals can
be segmented into consecutive inspiratory phase,
end-inspiratory pause, expiratory phase, and end-
expiratory phase according to the provided Forced
Expiratory Volume (FEV) readings (Taplidou and
Hadjileontiadis, 2007)(Cortés et al., 2005). However,
it could be difficult to carry out a spirometric test
for patients with high obstruction in tracheal (Cortés
et al., 2005).

Acoustical flow estimation is one of the first at-
tempts to relate respiratory sounds and flow. In (Hos-
sain and Moussavi, 2002) and (Golabbakhsh, 2004),
airflow has been estimated using the respiratory
sounds by applying different models, while exponen-
tial model between flow and averaged sound power
has been found with the highest estimation accu-
racy. The model coefficients calculation in the above
mentioned methods require samples of breath sound
with known flow. However, the calibration process is
not always possible. Therefore, a modified entropy-
based linear model describing relationship between
flow and tracheal sound has been derived in (Yadol-
lahi and Moussavi, 2006) without prior acoustical
flow knowledge. Also, other segmentation methods
using spectral and temporal analysis of transformed
respiratory sounds have been developed in (Hult et al.,
2000)(Sierra et al., 2004). As these researches are still
in preliminary stage, the segmentation is restricted
to normal tracheal breath and the accuracy depends
mainly on signal-to-noise ratio (SNR) for various
types of tracheal breath sounds.

In this paper, an automatic and robust respiratory
sound signal segmentation method is developed. The
proposed method is based on the modification of input
sound signal using a modified analysis and synthesis
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scheme based on Walsh basis functions. Without the
aid of any other features, a decision module is then
applied on the modified signal by adaptive threshold-
ing for segmentation. The preliminary segmentation
result is optimized lastly by the refinement scheme
based on the segment duration. This scheme ensures
the segmentation process to perform equally accu-
rate irrespective of flow and types of tracheal breath
sounds. The proposed method is tested to be effec-
tive for both normal tracheal breath sounds as well as
adventitious respiratory sounds such as, wheeze and
stridor.

2 BACKGROUND

The Walsh transform is a matrix consisting of a com-
plete orthogonal function set having only two values
+1 and -1 over their definition intervals (Beauchamp,
1984). The motivation for using Walsh transform
rather than other transforms is its computational sim-
plicity giving a realistic processing time. The Walsh
function of order N can be represented as

g(x,u) =
1
N

q−1

∏
i=0

(−1)bi(x)bq−1−i(u) (1)

where u = 0,1, ...,N − 1, N = 2q and bi(x) is the i-
-th bit value of x. In this context, the Walsh functions
are arranged into sequential order, the number of zero
crossings of Walsh function per definition interval, to
obtain a set of basis functions. The number of zero
crossings increases with the order of basis functions
W = [φ0, φ1, · · · ,φN−1].

3 PROPOSED SEGMENTATION
METHOD FOR RESPIRATORY
SOUND SIGNAL

The proposed respiratory sound signal segmentation
approach is based on segmentation of the respira-
tory sounds using Walsh functions. The segmentation
method is based on the reconstruction/modification of
the analyzed signals by efficient linearly combined
Walsh functions. A simple decision scheme is then
followed for segmentation of our recorded respira-
tory sound signals based on the statistics of the mod-
ified/reconstructed signal. The details of our minimal
Walsh functions based segmentation method is pre-
sented here.

3.1 Modification of Signal

The modification of the input signal consists of two
stages - sinusoidal signal analysis (Arfib et al., 2002)
followed by our signal reconstruction scheme using
minimal Walsh functions.

3.1.1 Signal Analysis

The input signal x(n) is multiplied by a Hann win-
dow to yield successive windowed segments of xs(n).
These window segments are mapped into the spec-
tral domain by using FFTs. In this way, a time
varying spectrum Xs(n,k) = |Xs(n,k)|e jϕ(n,k) with n =
0,1, ...,N − 1 and k = 0,1, ...,N − 1 for each win-
dowed segment is obtained. Here, Xs(n,k) denotes
the spectral component of the input signal at fre-
quency index k and time index n, while |Xs(n,k)| and
ϕ(n,k) denote the time-varying magnitude and phase
responses, respectively.

3.1.2 Modified Signal Synthesis

The recorded input respiratory signal is reconstructed
as a modified sequence based on our modified anal-
ysis/synthesis approach. Prior to synthesis, each s-
-th windowed segment is modified as the weighted
sum of the magnitude |Xs(n,k)| using binary Walsh
basis functions. Using basis functions, the number of
parameters required to track along the variations of
the inspiration and expiration phases of the noisy sig-
nal can be reduced. For this reason, SVD (Singular-
Value Decomposition) is used to determine the mini-
mal number of Walsh basis functions to be applied.
The detailed procedure for the identification of the
minimal number of Walsh basis functions and the new
modified basis function used based on the selected
basis functions, are described in the following sec-
tion. Applying the i-th basis function φi, a modified
sequence, ys(n), for each windowed segment is then
obtained as

ys(n) =
N−1

∑
k=0

|Xs(n,k)|.φi(k) (2)

All the modified segments are finally concatenated
to generate an output signal y(n) having the time-
varying magnitude responses.

y(n) =
S−1

∑
s=0

ys(n− sN) (3)

3.1.3 Selection of Minimal Walsh Functions for
Modified Synthesis

It is very important to select appropriate basis func-
tions so that variations between the dynamics of
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the two phases can be captured more precisely. A
method used to select the global natural scale in dis-
crete wavelet domain (Quddus and Gabbouj, 2002)
is adopted to determine the minimal number of basis
functions. This method adaptively selects the optimal
scale using SVD, while decomposition is being car-
ried out. Consider an input noisy respiratory signal x
of length V , and yd(ν) be its modified sequence ob-
tained by applying the basis functions of order d into
Eq(2) and Eq(3). Modified sequences {yd(ν)}D−1

d=0 can
be represented as a matrix of size D×V . To de-
termine the order of basis functions with dominant
eigenvalues, the SVD of the D×V matrix is calcu-
lated adaptively begin with the first two orders (i.e.
φ0 and φ1) while adding the Walsh functions of higher
orders.

Here, the proposed algorithm defines the minimal
order of basis functions Nmin as 3 throughout the sim-
ulations and found very robust against various situa-
tions. In the original algorithm (Quddus and Gabbouj,
2002), optimal scale is defined as the average of the
details from the first level to the natural scale, the level
associated with the dominant eigenvalue. However,
this averaging may introduce clipping effect for the
signals at low signal level. To avoid this effect, a shift-
ing operator which swaps the right and left halves of
the basis function coefficients is applied first. Then a
good estimate of a modified binary Walsh basis func-
tion within dominant eigenvalues is defined as

φm =
φ0−

Nmin
∑

i=1
CS(φi)

max{|φ0−
Nmin
∑

i=1
CS(φi)|}

(4)

where Nmin = 3 is the largest order referring to the
most prominent eigenvalues and CS(·) is the shifting
operator. This new basis function φm provides sharper
representation and higher discriminating features.

3.2 Decision Strategy

3.2.1 Preliminary Decision Module

First, 0-order basis function, φ0 is used to produce a
modified sequence, y0(ν), to get the global informa-
tion of the original sample signals. This modified se-
quence is used as a reference or pilot sequence as used
in the areas of telecommunication. Containing the
local characteristics, another modified signal, ym(ν),
is formed using the new basis function φm. From
this new sequence, locations and durations of inspi-
ration and expiration phases can be located more pre-
cisely even for adventitious respiratory sounds such

as wheeze and stridor. In this way, approximate loca-
tions of inspiration and expiration segments are first
determined from the modified signal, y0(ν). Then,
the results to determine respiratory phases can be im-
proved by using the second modified signal, ym(ν),
which contains the detailed information. Applying
the reconstructed signals y0 and ym, the procedure of
detection scheme can be described as below:

• Extract two sequences of local minima, {α0i}L
i=1

and {αmi}L
i=1, where L is the number of frames,

from every 4 ms frame of y0(ν) and ym(ν).

• Set thresholds, τ0 and τm, for each minima se-
quence which are obtained using a simple statis-
tics: τ0 = µ0−κδ0 and τm = µm−κδm , where µ0
and δ0 are the mean and the standard deviation of
the first set of local minima, and µm and δm are
those of the second set of local minima while κ
is a positive value which depends on the dynamic
range of modified sequence y0(v).

• Set threshold coefficient, κ, which is the same for
τ0 and τm. As shown by Eq(5), κ is proportional to
global average of y0(v), and a is a constant value.
After experimenting with 10 reconstructed wave-
forms of different respiration types (stridor and
wheeze, normal tracheal breath for adult and in-
fant), a is found to be 3.4, and universal for all
types of tracheal breath sounds.

κ = a× 1
N

N−1

∑
v=0

y0(v) (5)

• Declare a frame as an respiration frame if either
α0i<τ0 or αmi<τm. As it is mentioned earlier,
respiratory cycle is divided into four consecutive
phases: inspiratory phase, end-inspiratory pause,
expiratory phase, and end-expiratory pause. Res-
piration frames is defined in this context as the
frames belong to either inspiratory or expiratory
phases. In this way, the respiration frame indices
are obtained from y0(ν) and ym(ν) as R and T :

R = {r1,r2, ...,rP} (6)
T = {t1, t2, ..., tQ} (7)

• Combine the two initial boundary decisions as fol-
lows:

C = R ∩T (8)

where C={c1,c2, ...,cJ} is the set of elements
common to R and T . Considering that the mem-
bers of C are the indices of either inspiration or
expiration frames, the final decision for detecting
respiration frames are obtained.

In the above, we decide that there exist respiration
frames whenever some or all of the prominent local
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minima obtained from the first modified signal y0(ν)
would coincide with the local minima found from
the second modified signal ym(ν). For those detected
frames when their corresponding local minima are not
obtained from both modified sequences of y0(ν) and
ym(ν), are discarded as outliers.

3.2.2 Refinement Scheme

Due to the quasi-stationary nature of the adventitious
respiratory sounds and their relatively small dynamic
range due to shallow breath, there are chances where
frames are wrongly identified because of the inflexi-
bility of the global threshold value used: small spikes
happen during end-inspiratory/expiratory pauses be-
ing wrongly identified as respiration segments which
are denoted by peaks; and small fluctuations during
inspiration/expiration might be wrongly identified as
pause segments which are denoted by troughs as in-
dicated in Fig.1(c). In order to ensure the accuracy of
the segmentation, the results obtained from the pre-
liminary decision module will be fine-tuned by the
refinement scheme to avoid wrong identification of
the respiratory frames. The scheme consists of two
stages:

• Identify error segments with durations shorter
than threshold σt , where σt varies for patients
with different respiratory rate. Since the duration
of end-inspiratory/expiratory pauses range from
0% to 30% and inspiration time range from 10%
to 80% of a complete breath cycle (Li, 2004), we
defined error segment to be with duration less than
5% of individual’s averaged breath cycle. There-
fore σt is defined as:

σt = 5%× 60
RR

×Fs (9)

where RR as Respiration Rate, is the number of
breath cycle per minute and Fs is the sampling rate
of the signal. Since the averaged RR is the high-
est for infant which is 44 breaths/min (Keszler and
Abubakar, 2004), the scheme adopts this value to
minimize the wrong identification. The selected
parameter values are listed in Table 1. The er-
ror segments are then divided into error respira-
tion segments and error pause segments, where
the number of segments for each error segment
type is counted.

Table 1: Values of parameters for refinement scheme.

Parameter Value
Fs 8000 Hz
RR 44 breaths/min
σt 545 samples

• Evaluate the error segments based on segment du-
ration. This process is applied for evaluating error
respiration segments first. The procedure can be
described using our following pseudo code, where
respiration segment is denoted by R(s) and pause
segment by P(s) and s is the positional index of
the segment along time line.

Begin
T = threshold;
Pd(s) = duration of P(s);
Rd(s) = duration of R(s);
I = number of error R(s);
for i=1:I,

locate first error R(s);
if duration of Pd(s-1) & Pd(s) < T

if Pd(s) > Pd(s-1)
R(s) combine with R(s-1);

else
R(s) combine with R(s+1);

else if Pd(s-1) < T or Pd(s) < T
R(s) combine with R(s-1) or R(s+1);

else
R(s) is considered as pause segment;

end
end

End.

This procedure is then applied for the second time to
evaluate error pause segments by interchanging R(s)
with P(s) in the pseudo code.

4 EXPERIMENTAL RESULTS

4.1 Data and Parameter Selection

Five different types of tracheal sound signals are cho-
sen from (Lehrer, 1993) and (Wilkins et al., 2004).
Tracheal breath sound is chosen due to its relatively
larger amplitude compared with the sounds recorded
over chest. Also, it has distinct inspiratory/expiratory
phases and is related closely to respiratory flow.

The segmentation algorithm has been tested on to-
tal 10 sound signals, each consists of 8 breathing cy-
cles. Four phases are distinct in every breathing cycle
for all signals chosen. Since the segmentation method
is working based on the overall trend instead of the
detail fluctuations of the signals, the order m for re-
constructed signal ym(v) should be kept low. There-
fore, m = 3 is used in the experiments.

4.2 Illustrative Results and Analysis

Fig.1 illustrates the outputs of individual segmenta-
tion steps on a signal of inspiratory stridor and expi-
ratory moderate wheeze. Fig.1(a) shows the original
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signal containing wheeze and stridor whereas Fig.1(b)
shows its transformed version, the reference modified
sequence y0(v), together with the reference threshold
τ0. In Fig.1(c), output of preliminary decision mod-
ule is depicted. As indicated by arrows A, B, C, D,
there are 4 locations of preliminary results containing
error segments. Being optimized by the refinement
scheme, the final segmentation result is displayed in
Fig.1(d).

Also, the results for infant normal tracheal breath
are shown by Fig.2. By comparing these two figures,
no error segments are detected in Fig.2(c). This is
due to the different nature of the signals: The quasi-
stationary nature of wheeze and stridor signals gives
them more prominent components at low frequency,
while the fast transient nature of the normal tracheal
breath makes it emphasize more on the high fre-
quency components. Since y0(v) focusses on the sig-
nal trend which is represented by the low frequency
components, it captures more spikes (low frequency
details) for wheeze and stridor, but provides smoother
waveforms for normal breath sound signal. There-
fore, after thresholding by τ0, segments with short
duration are detected for abnormal breath sound sig-
nals. However, due to the optimization by refinement
scheme, the final segmentation results are equally ac-
curate for both normal tracheal breath sounds and ad-
ventitious breath sounds.

Moreover, illustrative results of the segmentation
algorithm for different types of respiratory sound sig-
nals are shown by Fig.3(a)-(e). These results demon-
strate the robustness of our proposed method on dif-
ferent types of tracheal breath.

5 DISCUSSION

In this paper, we have presented an algorithm to locate
and differentiate inspiratory/expiratory phases with
end-inspiratory/expiratory pauses for different types
of tracheal breath sounds. The use of binary Walsh
transform simplifies the proposed algorithm to a large
extend and left only few parameters for adjustment.
This makes the algorithm fast and automatic even in
the absence of any a priori information of the input
signal types. It performs equally accurate for both
normal as well as adventitious sounds due to the in-
corporation of refined decision module. Thus it is
more robust compared to existing methods as by using
these conventional methods, accurate segmentation is
still restricted within normal breath sounds.

As the only limitation, the proposed method does
not perform well on raw recorded tracheal breath
sound signals. This is due to the presence of the
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Figure 1: (a) Original signal waveform; (b)0-order modified
sequence y0(v) with threshold τ0; (c) preliminary segmenta-
tion result; (d) final segmentation result for inspiratory stri-
dor and expiratory moderate wheeze.
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Figure 2: (a) Original signal waveform; (b)0-order modified
sequence y0(v) with threshold τ0; (c) preliminary segmen-
tation result; (d) final segmentation result for infant normal
tracheal breath.

prominent heartbeat. Since the frequency range of
heartbeat is below 300Hz, it interferes with the nor-
mal breath sounds and contaminates the signal with
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large amount of low frequency components. This can
be solved by taking recording at positions with low
heart sound to respiratory sound amplitude ratio, or
preprocessing using a notch filter to suppress the ef-
fect of heartbeat. However, the algorithm is immune
to other ambient noises due to the wide spectrum oc-
cupied by the noises.
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Figure 3: The segmentation results displayed with original
signal waveform for (a)-(b) normal tracheal breath of adult/
infant; (c) expiratory mild wheeze; (d)-(e) inspiratory stri-
dor and expiratory moderate/ severe wheeze.
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Abstract: In this paper, a new approach to automatically segment noisyrespiratory sound signals is proposed. Segmen-
tation is formulated as an optimization problem and the boundaries of the signal segments are detected using
a genetic algorithm (GA). As the estimated number of segments present in a segmenting signal is initially
obtained, a multi-population GA is employed to determine the locations of segment boundaries. The seg-
mentation results are found through the generations of GA byintroducing a new evaluation function, which
is based on the sample entropy and a heterogeneity measure. Illustrative results for respiratory sound signals
contaminated by loud heartbeats and other high level noisesshow that the proposed genetic segmentation
method is quite accurate and threshold independent to find the noisy respiratory segments as well as the pause
segments under different noisy conditions.

1 INTRODUCTION

Respiratory rate (RR) monitoring plays an important
role in many clinical situation. Correct timing of in-
dividual respiratory phases can be useful in study-
ing flow in the heart (Hult et al., 2000), quantify-
ing adventitious respiratory sounds and many other
situations. Different airflow measurements, such as
mouthpiece pneumotachograph or chest movement
measurement, are the most widely applied methods
in monitoring RR and respiratory phases. However,
it would be difficult to apply such methods under cer-
tain circumstances, especially when studying children
with neurological impairments (Yadollahi and Mous-
savi, 2006). Hereby, acoustical analysis of respiratory
sounds has recently provided an alternative way to de-
tect respiratory phases and therefore RR.

Tracheal breath sound refers to respiratory sound
recorded over suprasternal notch. It can be segmented
into four successive phases: inspiratory phase, expi-
ratory phase, end-inspiratory pause, expiratory phase,
and end-expiratory pause. It is chosen due to its
distinct phases and relatively larger amplitude com-
pared with sounds recorded over chest, as well as
its close relationship to respiratory flow. A few at-

tempts have been done to estimate flow for segmen-
tation through tracheal sounds in the past. Among
all, one of the effective method is the signal analy-
sis approach uses the temporal and frequency vari-
ables of tracheal sounds as well as disturbance char-
acteristics (Hult et al., 2000). It is able to identify
different respiratory phases but it requires more than
one microphone to capture the ambient noise and it
is sensitive to disturbance. To avoid such problems,
in (Yadollahi and Moussavi, 2006), flow estimation
using Shannon entropy of the bandpass filtered tra-
cheal sounds is proposed.

Both the above mentioned methods are generally
effective on preprocessed tracheal sounds which are
free of heartbeats and ambient noise. However heart-
beat as one of the most influential noise for respi-
ratory sounds are usually unavoidable during signal
recording. It has the frequency range of [0 300]Hz
which interferes with that for respiratory sounds; and
it masks the respiratory sounds because of its high
intensity. When the recorded signals which are cor-
rupted by heartbeats or other unknown types of high
level noises, the segmentation becomes tough and
thus it is difficult to locate the boundaries of respi-
ratory phases accurately. To deal with this problem, a
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genetic algorithm (GA) is employed for the first time
to segment accurately the noisy respiratory signal.

The aim of this paper is to propose an genetic al-
gorithm for automatic phase segmentation of respi-
ratory sounds corrupted by heartbeats and other un-
known types and levels of noises. The segmentation
method described here is based on a stochastic global
search method. To guide the search space of generic
algorithm, an evaluation function combined sample
entropy and heterogeneity measure is introduced.

2 GENETIC ALGORITHM BASED
RESPIRATORY PHASE
SEGMENTATION

As for our phase segmentation, the locations of the
segment boundaries are detected using our genetic al-
gorithm. Depending on the total number of segments
as prior information or estimated using any existing
technique(e.g. using an onset detection algorithm),
an initial population is randomly generated.

To guide the search space of GA, a new eval-
uation function is introduced. First the irregularity
in the time series (i.e. input sequence) is investi-
gated usingsample entropy(SampEn). Measuring
the homogeneityand heterogeneityof the candidate
segments, the fitness of the evaluation function is de-
signed. Through the generations of GA, the locations
of segment boundaries are then optimized.

2.1 Sample Entropy

In this GA based segmentation method, a similarity
measure of times series (sample entropy) is employed
to determine the boundaries of respiratory segments.
Sample entropy (SampEn) is applied here to measure
the complexity and regularity of time series signals’
similarities.SampEn(m, r,N) is chosen as it does not
count self-matches of the time series. This ensures the
consistency of the measurement and reduces the de-
pendency on the signal length. It is defined in (Rich-
man and Moorman, 2000) as the negative natural log-
arithm of the conditional probability that a data set of
lengthN, having repeated itself within a tolerancer
for m points, will also repeat itself form+ 1 points,
without allowing self-matches.

For an input signalu of lengthN, {u( j) : 1≤ j ≤
N} forms theN−m+ 1 vectorsxm(i) for {i|1≤ i ≤
N−m+1}, wherexm(i) = {u(i +k) : 0≤ k≤ m−1}
is the vector ofmdata points fromu(i) to u(i+m−1).
In this context, only the firstN−m vectors of length
mare considered to ensure that,xm(i) andxm+1(i) are

defined for 1≤ i ≤N−m. LetBm(r) is the probability
that two sequences will match formpoints andAm(r)
is the probability that two sequences will match for
m+1 points.Bm

i (r) is defined as(N−m−1)−1 times
the numbers of vectorsxm( j) within r of xm(i), where
1 ≤ j ≤ N− m, and j 6= i to exclude self-matches.
ThenBm(r) is defined as

Bm(r) = (N−m)−1
N−1

∑
i=1

Bm
i (r) (1)

Similarly, Am
i (r) is defined as(N− m− 1)−1 times

the numbers of vectorsxm+1( j) within r of xm+1(i),
where 1≤ j ≤ N−mand j 6= i. Then setAm(r) as

Am(r) = (N−m)−1
N−1

∑
i=1

Am
i (r) (2)

Finally, sample entropy (SampEn) is calculated by

SampEn(m, r,N) = − ln
Am(r)
Bm(r)

(3)

SampEnmeasures the regularity of data sequence.
A low value ofSampEnreflects a high degree of self-
similarity in time series. With increasing irregularity,
a larger value ofSampEnis obtained. TheSampEn
increases for respiratory segments and decreases dur-
ing the appearance of pause segments. Hence, the
dynamics of segmenting respiratory signal can be in-
vestigated through the sample entropy sequence. And
sample entropy can be applied as a useful tool to de-
termine the locations of the respiratory segments as
well as pause segments for a noisy respiratory sound
signal.

2.2 Genetic Algorithm

GAs are numerical optimization algorithms inspired
by both natural selection and natural genetics (Coley,
2001). GAs operate on a population of strings, that is,
a group of potential solutions of a problem. To mea-
sure how good or bad the solutions within the popu-
lation, fitness of each string is calculated in decoded
form (solution vector) applying an evaluation func-
tion. At each generation, a new set of solutions are
produced by selecting the fittest strings in the prob-
lem domain and through the application of the genetic
operators such as crossover and mutation. A review
for the fundamental operations of a simple GA can be
found in (Tang et al., 1996). The procedure of a sim-
ple GA can be described as follows, where the pop-
ulation of candidate solutions at timet is represented
by P(t):
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begin
t = 0;
initialize P(t);
while not termination criteria do
begin

t = t + 1;
select P(t) from P(t-1);
reproduce pairs in P(t);
evaluate P(t);

end
end

2.2.1 Initial Population

In order to detect both start and end locations of each
segment, a population of GA is generated with strings
whose length is two times the total number of seg-
ments as obtained earlier. A string is a real-valued
string representing the locations of the candidate seg-
ment boundaries in increasing order. Although the
binary-coded GAs are the most commonly used rep-
resentation, a more natural real-valued representation
is used in this system to increase the efficiency of GA.
Using the real-valued strings, there is no need to con-
vert strings to solution vectors to evaluate their fitness.
Thus it would be faster in computation.

2.2.2 Evaluation Function

In GAs, an evaluation function or fitness function is
usually used to evaluate the performance of the strings
in the problem domain. In order to obtain accurate
boundaries of each segment, an evaluation function is
designed using the heterogeneity measure and sample
entropy. This function simultaneously maximize the
homogeneity within the segments and heterogeneity
among different segments using sample entropy.

In this context,SampEnof the original segment-
ing signal is calculated first to investigate the dynam-
ics. To prevent the requirement of large computa-
tional time (to obtain the feasible computation time
and to make the proposed algorithm to be tractable),
SampEnis calculated on each data set of length 100
(i.e. N=100) within a tolerancer of 0.15×SD for 1
point (i.e.m=1). Here,SDis the standard deviation of
the data set. LetHw be the total within-segment ho-
mogeneity andHb denotes the total between-segment
heterogeneity, a segmentation evaluation function is
defined as

H =
Hb +1

Hb +Hw+1
(4)

where total within-heterogeneityHw is defined as

Hw =

S
∑

i=1
Liσ2

i

L
(5)

whereL is the total length of the segmented signal,
Li is the length ofi-th segment,σ2

i is the variance of
the sample entropy of thei-th segment andS is the
number of segments in the segmented signal. The
between-segment heterogeneity,Hb, is defined as the
average Euclidean distance between the mean value
of the sample entropy of any two adjacent segments.

Hb =

∑
(i, j)∈ad jacent,i6= j

‖µi −µj‖
2

ns
(6)

wherens is the total number of the adjacent segments
in the segmented signal,µi andµj are the mean value
of the sample entropy of thei-th and j-th segments.
H becomes one when the internals of all segmented
respiratory signals are completely homogeneous.

2.2.3 Evolution Procedure

In order to effectively search the solution space, and
to take advantage of the parallelism of GAs, the pro-
posed algorithm applies the multiple subpopulations
approach provided by (Chipperfield et al., 1995) for
the evolutionary process. Using multiple populations
the quality of the results obtained can be improved
compared to GAs with single population. This ap-
proach divides the population into a subpopulations
where each of them can evolve independently using
parallel processing technique. It can search in parallel
different subspaces of the search space, thus making
it less likely to become trapped by low-quality sub-
spaces. Multiple populations GA is a widely used par-
allel GA model where multiple subpopulations evolve
independently toward different optima. More diverse
subpopulations can be maintained by exchanging ge-
netic materials between subpopulations. The prema-
ture convergence effect of simple GA can then be mit-
igated by this approach. To reduce the required com-
putational time, it is implemented through the use of
high-level genetic operator functions and exchanging
individuals between subpopulations.

Over generations, each subpopulation is evolved
as in traditional simple genetic algorithm (SGA) us-
ing the basic operators:crossoverandmutation. De-
pending on the migration interval (i.e. the number
of generations between successive migration) and the
migration rate (i.e. the number of individuals to be
migrated from one subpopulation to another), individ-
uals from one subpopulation migrate to another from
time to time. The initial population is created using
8 subpopulations containing 20 individuals each. At
each generation, 90% of the individuals with higher
fitness values within each subpopulation are selected
for breeding using astochastic universal sampling
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function which has minimum spread and zero bias.
In GAs, the recombination operator is usually

used to produce the new offsprings. By applyingdis-
crete recombination crossover, a uniform crossover
for real-valued representation, the new offsprings
within each subpopulation are produced. Normally,
offsprings are mutated after recombination to prevent
the population from converging to local minima. And
the new possible solutions can be introduced to the
population by mutating the offsprings. In this system,
a mutation rate of 1/nvar is used, wherenvar is the
length of an individual.

When the offsprings produced are less than the
size of the original population, the new offsprings
have to be reinserted into the population to maintain
the size of the original population. Similarly, when
not all the offsprings are to be used at each generation,
or if the offsprings produced are more than necessary,
a reinsertion scheme must be used. This scheme de-
termines which individuals should be replaced by the
offsprings produced and which individuals should be
inserted into the new population.

In this segmentation method, offsprings are in-
serted into the appropriate subpopulations depending
on fitness-based reinsertionwith a rate of 0.9. In this
multi-population GAs, migration of individuals be-
tween subpopulations is performed at every 20 gener-
ations with a migration rate of 0.2. After GA iterates
for maxgentimes (heremaxgen=80), the evolution of
this GA stops. The best individual with the maximum
fitness value presents the optimized solution for the
boundaries of the segments of the segmented signal.

3 SIMULATION RESULTS

In this section, performance of the method is
presented for the noisy respiratory sound signals.
Both the standard preprocessed normal tracheal
breath sound from (Lehrer, 2002; Tilkian and
Conover, 2001; R. L. Wilkins and Lopez, 2004)
and normal recorded data as corrupted with heart-
beats(Phonocardiogram, PCG) and ambient noise, are
used to test the segmentation method.

3.1 Acquisition of Respiratory Sounds

The recording environment and equipments are cho-
sen based on the standard given by (Rossi et al.,
2000). Short-term recordings have been done in sit-
ting position in audio laboratory which provides a
quiet environment. One electret condenser micro-
phone (ECM-77, Sony, Inc., Tokyo, Japan) has in-
serted into a hemispherical rubber chamber 2cm in

diameter, and placed at suprasternal notch of the test
subjects to record the tracheal breath sounds. Record-
ing software WAVEPAD (V3.05, NCH Swift Sound
Software) has been used and the signal clips have
been recorded and saved as mono-channel *.wav file
at sampling frequency of 8 kHz. Test subjects have
been asked to breath normally, and 20s recording are
saved each time.

3.2 Test Respiratory Data

Tracheal breath sounds signals from 10 healthy stu-
dents of Nanyang Technological University have been
used as the dataset of the performance test. The sam-
ple size of 10 consists of 6 females and 4 males,
each producing two clips of 20s recording. All clips
have been testified to be normal tracheal breath by Dr.
Daniel Goh from National University Hospital of Sin-
gapore.

3.3 Results

This section presents the simulation results using
noisy respiratory sound signals. Four different exam-
ples regarding segmentation of normal noisy breath
sounds are given below. The sampling frequency used
is 8 kHz.

Example 1: In this example, the segmentation re-
sults for a normal infant tracheal sound from the stan-
dard data set, are demonstrated. In contrary to the
existing phase segmentation methods, the proposed
method is able to function with the presence of heart-
beats and provides accurate segmentation results at
different levels of PCG (varying with a scaling factor
of α)(See Fig. 1). Fig. 1(a) shows the segmentation
result for 3 cycles of infant tracheal breath, whereas
Figs. 1(b)-(c) show the results with the superimposed
PCG. Comparing the results in Fig. 1, it is found that
the present method performs well irrespective of PCG
level without using any threshold parameter.

Example 2: In this example, segmentation results
for the recorded adult normal tracheal breath sound
are shown. Both the original signal and the noisy
recorded signal interfered with heartbeats, are con-
sidered here for illustration. Unlike the infant breath
(Fig. 2(a)), the adult breath in Fig. 2(a) has differ-
ent time evolution (i.e. slower respiration rate) and
shallow. The segmentation results in the presence of
heartbeats are still found effective like the previous
case.

Example 3: In this example, segmentation results
are shown for a signal of noisy recorded respiratory
sound due to background White Noise (WN) of vary-
ing noise variance as ambient noise (see Fig. 3(a)-
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Figure 1: Segmentation results of the standard infant tra-
cheal breath sound: (a) without PCG sound; (b)-(c) with
PCG sound added with scaling factorα=1 and 2, respec-
tively.

(b)). Also, simulation result in the presence of both
white noise and PCG (heartbeats) is illustrated in Fig.
3(c). As it is seen in Fig. 3 that the segmenation
method provides good results for white background
noise and heartbeats.

Example 4: In this example, segmentation results
are presented, Fig. 4(a)-(b), for the noisy recorded
signal corrupted by background Colored Noise (CN)
with varying noise level. Also, a simulation example
for both ambient colored noise and PCG interference
is shown in Fig. 4(c). The colored noise is realized
as EEG noise,v(n), which is simulated by an ARMA

process described asv(n) = C(z−1)
A(z−1)

e(n) wheree(n) is

the zero-mean white Gaussian noise andC(z−1) and
A(z−1) are third-order polynomials in the backward
shifting operatorz−1. The coefficents ofC(z−1) and
A(z−1) are chosen in a way that makes the spectrum
of the ARMA precess approximates the EEG process.

The estimation error is defined as

ε =
1
N

N

∑
n=1

|
Pn

est−Pn
re f

Pn
re f

| (7)

wherePn
est is the starting/ end position of thenth seg-

ment for a noisy signal andPn
re f is that for a prepro-

cessed signal without white noise, colored noise, and
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Figure 2: Segmentation results of: (a) preprocessed
recorded tracheal breath sound; (b) original recorded tra-
cheal breath sound with heartbeats; (c) recorded tracheal
breath sound with superimposed PCG for scaling factor
α=0.5.

PCG. For performance of segmentation method on
real Recorded Tracheal Sound (RTS) with different
types of noises imposed onto it as indicated in Figs. 2-
4, the error is calculated for each subject using Eq. 7
and then averaged between the subjects.

Table 1: The estimation errors of the segmentation method
for different types of noisy signals.

Type of Signal Segmentation Error

RTS (Fig. 2(b)) 0.014±0.011

RTS with PCG (Fig. 2(c)) 0.016±0.010

RTS with WN (Fig. 3(a)) 0.016±0.013

RTS with WN & PCG (Fig. 3(c)) 0.015±0.009

RTS with CN (Fig. 4(a)) 0.013±0.009

RTS with WN & PCG (Fig. 4(c)) 0.018±0.018

4 CONCLUSIONS

In this paper, effective segmentation of noisy respi-
ratory sound signals is introduced based on genetic
(GA) approach. Using sample entropy, a regular-
ity measure of the time sequence and heterogeneity
measure, the evaluation function of GA is designed.
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Figure 3: Segmentation results of the noisy recorded breath
signal together with (a)-(b) varying white noise;(c) white
noise and PCG.
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Figure 4: Segmentation results of the noisy recorded breath
signal together with (a)-(b) varying colored noise;(c) col-
ored noise and PCG.

The segmentation results for normal tracheal breath
sounds corrupted with heartbeats and ambient noise
are found quite accurate, especially when the existing
methods only perform well on the processed signals
without these noise. The method is found effective in
the presence of various types and levels of noise.

Furthermore, many approaches for initial segment
number estimation (e.g. onset or other detection tech-

niques) are suitable for the proposed segmentation
method. As the performance of the proposed method
does not depend heavily on the accuracy of the total
segment number estimated, only a rough estimation
by using any detection technique is required. More-
over, the independency on threshold values makes the
method very robust and suitable for segmentation of
recorded respiratory sound signals.
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Abstract: Many biological hearing systems perform much better than existing signal processing systems in natural set-
tings. Two biologically inspired adaptive beamformers, one mimicking the mammalian dual-delay-line local-
ization system, show SNR gains in challenging cocktail-party scenes substantially exceeding those of con-
ventional adaptive beamformers. A “zero-aperture” acoustic vector sensor array inspired by the parasitoid
fly Ormia ochracea and accompanying algorithms show even better performance in source recovery than the
binaural beamformers, as well as the ability to localize multiple nonstationary sources to within two degrees.
New experimental studies of the performance of the biologically inspired beamformers in reverberation show
substantial reduction in performance in reverberant conditions that hardly affect human performance, thus
indicating that the biologically inspired algorithms are still incomplete.

1 INTRODUCTION

Many biological hearing systems exhibit remarkable
performance that greatly exceeds that of current en-
gineered systems. An example is the parasitoid fly,
Ormia ochracea, which orients toward its cricket prey
to within two degrees by use of an ear about a mil-
limeter in maximum extent (Robert et al., 1996). The
dominant frequency of the cricket’s call is about 5
kHz, so Ormia achieves this remarkable accuracy
with an aperture that is well less than 1/50th of a
wavelength, and at a range exceeding that of cricket
females.Ormia thus exceeds the traditional Rayleigh
resolution by well more than an order of magnitude.

The human hearing system also demonstrates re-
markable performance in many respects. With only
two ears, it achieves lateral directional accuracy simi-
lar to Ormia and considerable ability to localize com-
plex natural sounds in elevation as well. Its ability
to recover a desired speech source in the presence of
multiple simultaneous speech interferers (the “cock-
tail party” environment) with only two ears is un-
equaled by conventional signal processing methods;
current beamforming or source-separation algorithms
fail when the number of sources exceeds the number
of sensors. The human hearing system is also remark-
ably tolerant to reverberation and time-varying envi-
ronments.

For comparison, consider that conventional engi-
neered beamforming systems require a many-element

array of about half-wavelength spacing between el-
ements to achieve the high directional accuracy
demonstrated byOrmia. An array of at least as many
sensors as sources, again with an appropriate aperture,
would be required to perform acceptable signal recov-
ery at a cocktail party in an anechoic chamber; tens
of elements would be required to accomplish this in
the presence of the modest reverberation in a typical
room.

Clearly, the performance of these biological sys-
tems far exceeds that of current electronic systems,
at least for their specific biological application. By
drawing ideas and inspiration from these systems,
we have developed new algorithms that greatly ad-
vance the state-of-the-art in acoustic signal recov-
ery of speech and similar natural systems in com-
plex real-world environments. These new methods
show promise for many applications, including hear-
ing aids, hands-free telephony in noisy or reverberant
environments, and surveillance.

2 CONVENTIONAL BINAURAL
BEAMFORMERS

Acoustic beamforming for hearing aids presents a
special challenge because the total aperture on a sin-
gle behind-the-ear (BTE) array is well less than two
centimeters. This is well below half a wavelength for
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the audio frequencies with most speech energy; ar-
rays of only two, or at most three, microphones can be
used, and resolution well beyond the Rayleigh limit is
required for significant directionality.

The minimum-variance distortionless response
(MVDR) (also known as linearly constrained mini-
mum variance (LCMV)) methodology introduced by
Capon (Capon, 1969) is the most common approach
for super-resolution adaptive beamforming. MVDR
beamformers minimize the output energy of the best
linear combination of the microphone inputs, subject
to the constraint that any signal from the desired tar-
get (or “look” direction) is exactly preserved. The
minimum-energy objective causes maximal rejection
of unwanted sources from other directions or noise,
while the distortionless response constraint prevents
the beamformer from attenuating or otherwise dis-
torting the desired signal. The distortionless-response
constraint is captured in a “steering” vector,e, which
represents the relative magnitudes and phases of a sig-
nal from the target look direction, and the linear con-
straint equation on the beamformer weights,wopt, is
eHwopt = 1. Capon derived the constrained optimal
linear weights for scalar (instantaneous mixing or nar-
rowband signals) beamforming:

wopt =
R−1e

eHR−1e
(1)

Capon’s method has several major limitations.
The beamformer will work successfully only if the
number of interfering sources is less than the num-
ber of sensors. It requires accurate knowledge of
the steering vector; errors ine cause the beamformer
to cancel the desired signal as well as the interfer-
ence. The super-resolution capability of Capon’s
beamformer also amplifies this problem, because
even small errors can be sufficient to allow self-
cancellation. In particular, any reverberation mani-
fests itself in this framework as a single source with an
altered, composite steering vector; self-cancellation is
usually so severe as to render Capon’s adaptive beam-
former unusable in hearing aids. Finally, Capon’s
original approach applies only to narrowband sources
or instantaneous mixtures.

Frost (Frost III, 1972) and later Griffiths and Jim
(Griffiths and Jim, 1982) overcame this last limita-
tion by applying the Capon MVDR criterion to beam-
formers with filters, rather than just scalar, weights on
each array channel. These algorithms avoid the com-
putational complexity and numerical instability of in-
verting large matrices by applying the LMS algorithm
to iteratively converge toward the optimal constrained
filter weights. Griffiths’ and Jim’s GSC algorithm is
generally used for wideband adaptive beamforming,
and several attempts have been made to apply it to di-

rectional or binaural hearing-aid arrays. In carefully
controlled laboratory settings with a single interferer,
it has shown considerable gain, but with additional
interferers or even modest reverberation, the perfor-
mance collapses, often producing a negative signal-
to-noise (SNR) gain.

Figure 3 summarizes the performance of a care-
fully optimized GSC beamformer in anechoic condi-
tions for speech recovery in the presence of one, two,
three, and four speech interferers from different di-
rections in the front half-plane. (Use of Greenberg’s
adaptive step-size was essential to avoid misconver-
gence during intervals of silence in the target speech
and to obtain positive SNR gain (Greenberg, 1998).)
As can be seen in the figure, the beamformer per-
forms well for a single interference, but the perfor-
mance drops dramatically when the total number of
sources exceeds the number of sensors. For appli-
cations such as hearing aids that are limited to two
or three microphones and must perform well in the
cocktail-party context, the conventional beamforming
approach is inadequate.

3 BIOLOGICALLY INSPIRED
BINAURAL BEAMFORMERS

The GSC beamformer performance is perfectly con-
sistent with beamforming theory, but psychophysi-
cal studies, as well as the personal experience of ev-
ery human being with normal hearing, show that hu-
mans perform much better in the cocktail-party en-
vironment. Using only two ears, humans can local-
ize as many as six simultaneous sources (Bronkhorst
and Plomp, 1992) and gain a very significant binau-
ral advantage in terms of ability to understand a de-
sired speech source among multiple spatially sepa-
rated interferers. Clearly, biology holds some secrets
unknown to engineering for improved performance
with small arrays in crowded acoustic environments
for speech sources.

3.1 A Biologically Inspired Beamformer

The remarkable performance of the human binau-
ral hearing system in the cocktail-party environment
has prompted us to develop new biologically inspired
beamforming algorithms. The mammalian hearing
system has been extensively studied by physiologists;
while a great deal remains to be deciphered, much
is now known. Mammals’ brains use several cues
to determine direction, including the interaural time
difference (ITD), which is equivalent to phase delay
for narrowband signals, interaural intensity (or level)
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difference (IID), and spectral shaping for elevation
(Yost and Gourevitch, 1987). The cochlea act as filter-
banks that separate the signals at each ear into differ-
ent frequency bands, which are processed in parallel.
Based on physiological studies that have located and
identified the specific neural circuitry, Jeffress (Jef-
fress, 1948) modeled the mammalian interaural time-
difference mechanism as a dual delay-line circuit as
illustrated in Figure 1.

Figure 1: The mammalian interaural time-delay dual delay-
line circuit.

The neural response to the sound passes, in oppo-
site directions and in parallel for each frequency band,
through counter-flowing delay lines. The signals at
corresponding positions in the delay lines are in effect
cross-correlated over short time intervals, and the de-
lay yielding the peak coincidence produces a strong
response, indicating a dominant source in the corre-
sponding direction at that frequency and time. It is
less well understood how higher stages of the neural
processing use this information.

Based on this model, we developed a biologically
inspired binaural beamforming algorithm with much
better performance in the cocktail-party scenario than
the conventional GSC. Following the mammalian
ITD system, the method in Liuet al. (Liu et al., 2000)
transforms the signal to the short-time frequency do-
main via an overlapped FFT filter-bank (this differs
somewhat from mammalian ears, in which the filter
bandwidths vary across frequency). Independently at
each frequency and delay-line pair, a running short-
time sum-of-absolute-differences (SAD) is computed
to create a frequency-delay map of the strength of co-
incidence. The neural system sharpens the directional
responses via inhibition of weaker neighboring re-
sponses; the algorithm mimicks this by locating local
peaks and thresholding to create a binarized, sparse
map of the dominant signal directions as a function of
both frequency and direction. For broadband sources
such as speech, integrating this map across frequency
provides a composite graph that clearly indicates the
directions of several simultaneous sources active at
that time. The peaks in this composite directional map
are thresholded to determine the number and direction
of all significant active sources. This completes the
“localization” step of the method.

The desired source is recovered, or “extracted”
from the interference, via guided frequency-domain
null-steering beamforming (Liu et al., 2001). The

source (as identified from the localization step) clos-
est in direction to that of the target is recovered by ap-
plying a different constrained beamformer in each fre-
quency band that passes the desired source and nulls
the dominant interferer in that band. Figure 2 illus-
trates the method.

Figure 2: A block diagram of the biologically inspired lo-
calization/extraction beamformer.

Liu et al. report excellent performance; for four
simultaneous speech sources in an anechoic environ-
ment, intelligibility weighted SNR gains ranged from
8 to 9.1 dB (Liu et al., 2001). The SNR gain ranged
from 4.6 to 6.7 dB in a test room with a reverberation
time of 0.4 sec. These performances far exceed that
of the conventional GSC beamformer for such condi-
tions.

3.2 A DSP-friendly Biologically
Inspired Beamformer

While closely resembling the biological system, the
localization/extraction method described above is
computationally expensive when implemented on a
conventional electronic computer. The characteristics
of neural systems (massively parallel and relatively
slow) and current electronic hardware (much less par-
allel and extraordinarily fast) differ enough that di-
rect mapping of the neuronal algorithm to electronics
may not be the most effective engineering solution.
Accordingly, we developed an alternate biologically
inspired algorithm that captures some of the essen-
tial features of the mammalian hearing system while
being much more amenable to real-time DSP imple-
mentation.

The mammalian auditory system exhibits key
characteristics, exploited by the biologically inspired
algorithm, that allows its excellent performance. The
mammalian hearing system processes auditory sig-
nals within frequency bands and dynamically over
short-time intervals; that is, it performs some type
of rapidly adapting time-frequency processing. It is
essential to note that the mammalian auditory sys-
tem is not designed for the narrowband signals or
white Gaussian noise for which most signal process-
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ing algorithms are optimized; such signals are rare in
natural environments. The signals, and the interfer-
ence, of most relevance to humans are transients and
speech, which are rapidly time-varying, have consid-
erable harmonic structure, and are relatively sparse
in time-frequency. For example, even continuous
speech has many short intervals of silence, and speech
has formants, at many times strong harmonic struc-
ture (voiced speech), and other distinct and relatively
sparse structure in frequency as well. In the short-
time-frequency domain, the average number of inter-
ferers in any time-frequency bin is much less than
the number of sources. Thus, while beamforming
theory shows that only fewer interferers than sen-
sors can be cancelled for narrowband frequency or
broadband noise sources, with frequency decomposi-
tion and rapid adaptivity, the inherent time-frequency
sparseness can be exploited to cancel most of several
“simultaneous” interferers.

With this biologically inspired insight, new ap-
proaches better matched to implementation with cur-
rent DSP hardware can be derived that still demon-
strate performance approaching that of the more bi-
ologically faithful algorithm of Liu et al. Time-
frequency decomposition to expose the sparsity of the
sources and interferers, and rapid adaptation to take
advantage of it, are the key elements that allow a
binaural system to overcome multiple interferers in a
cocktail-party environment. We have developed a par-
ticular frequency-domain MVDR beamformer imple-
mentation (FMV) that provides similar interference
rejection and is easily implementable in a low-power,
fixed-point, real-time DSP system such as a digital
hearing aid (Lockwood et al., 2003). Like the L/E al-
gorithm described earlier, the algorithm begins with
overlapped short-time FFTs of the individual input
channels, and subsequently processes each channel
independently. This exposes the time-frequency spar-
sity of the interference. This transformation produces
the added advantage that the beamformers in each
frequency bin are scalar. Running short-time cross-
correlation matrices are computed at each frequency
via an efficient recursive update. In most frequency-
domain MVDR implementations, the GSC algorithm
is used to slowly adapt the beamformer due to the
O(N3) complexity and stability challenges of the ma-
trix inverse. However, for abinaural beamformer, im-
plemented in the frequency domain,N = 2 in each in-
dependent channel, and direct solution for the optimal
Capon weights according to (1) requires only a few
operations after algebraic simplification. We also ap-
ply a multiplicative (energy-normalized) regulariza-
tion to provide some robustness to the short-time cor-
relation estimates (Cox et al., 1987). Just as in the

first algorithm, the optimal beamforming weights are
applied at each frequency and the extracted signal of
interest is recovered via an inverse FFT.

Figure 3 shows the performance in terms of SNR
gain of a 15 cm two-element free-field array in an
anechoic environment with one through four interfer-
ers. The initial SNR for the desired source was about
-3 dB, representing a challenging cocktail-party sit-
uation at about the lower threshhold at which peo-
ple with normal hearing can follow conversational
speech. Each of these conditions summarizes many
runs with at least four different configurations of po-
sitions of the interferers (the target was always po-
sitioned at broadside, or perpendicular to the line of
the array), and at least eight combinations of differ-
ent male and/or female talkers for each configuration.
For comparison, the performance of our best imple-
mentation of the conventional GSC beamformer is
also shown. As is clear from the figure, the perfor-

Figure 3: SNR gains for one, two, three, and four simulta-
neous speech interferers of the FMV (dark) and GSC (light)
adaptive beamformers.

mance of the biologically inspired FMV beamformer
substantially exceeds that of the GSC, particularly (as
expected) for cases with more than one simultaneous
interferer. The FMV algorithm’s performance may be
somewhat inferior to the L/E method (which is too
expensive to perform the complete battery of tests for
direct comparison), but FMV clearly captures some
of the strengths of the biological system. The slow
convergence of the LMS-based iterative GSC adap-
tation prevents it from reacting fast enough to ex-
ploit the time-frequency sparseness of the interfer-
ence. (Each test is only 2.4 seconds long and both
beamformers are initialized to a conventional sum-
ming beamformer, so GSC’s somewhat inferior per-
formance even for one source also reflects slower
convergence. For one source and after convergence,
the performance of both beamformers is compara-
ble.) The results strongly suggest that the FMV beam-
former, like the L/E method, has captured at least one
of the special “tricks” that the human hearing sys-
tem uses to perform well with only two ears in the
cocktail-party context.
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4 BIOLOGICALLY INSPIRED
BEAMFORMING WITH A
ZERO-APERTURE ArrAy

Miles et al. have found thatOrmia ochracea ob-
tains its amazing directional accuracy of less than two
degrees with an ear about a millimeter across by a
precise mechanical coupling of the common (omni-
directional) and differential modes of oscillation be-
tween the left and right sections of the ear (Miles
et al., 1995). A unique connecting structure with pre-
cise mechanical tuning causes even slightly off-center
sound direction to induce much larger vibrations in
the nearer ear-plate. Inspired by this system, Miles
and collaborators are developing single-chip silicon
MEMS arrays of two orthogonal differential and one
omni-directional microphones (Miles et al., 2001),
each only slightly larger thanOrmia’s ear. The total
aperture of this array is only a few millimeters on a
side. An array with a similar acoustic response but in
all three dimensions can be constructed out of three
gradient (figure-8 pattern) hearing-aid microphones
arranged orthogonally in three dimensions (X,Y, and
Z axes) and one omni-directional microphone to form
an acoustic vector sensor with a total extent of well
less than a centimeter in any dimension (see (Lock-
wood and Jones, 2006) for a photograph of such an
array used for the experiments reported below.)

The relative gains of a signal from directionθ and
elevationφ on the three directional (X,Y, and Z) and
one omni-directional (O) microphones are

gO = 1 (2)

gX = cos(θ)cos(φ) (3)

gY = sin(θ)cos(φ) (4)

gZ = sin(φ) (5)

and are unique for any arrival direction. Since this
array requires no spatial separation to distinguish the
direction of arrival, is small, and the microphones are
located right next to each other, we colloquially refer
to this as a “zero-aperture” array.

4.1 Super-Resolution Direction-Finding
With a Zero-Aperture Array

A unique mechanical structure combines the common
(omni) and differential (directional gradient) modes
of Ormia’s ear to form a highly directional response.
Inspired by this remarkable biological system, we
can combine these modes electronically to form a
super-resolution beamformer. While Capon’s MVDR
beamformer is usually applied to spatially separated

arrays with equal gains and for which relative phase
differences between elements distinguishes the source
direction, Capon’s formulation applies as well to am-
plitude and phase or amplitude-only differences in di-
rectional response, a fact which has been exploited
in underwater acoustic vector sensor arrays (Nehorai
and Paldi, 1994) (D’Spain et al., 1992), and which
has been shown to improve the performance of the
FMV binaural beamformer on the head (Lockwood
and Jones, 2006).

For narrowband or broadband noise sources, the
MVDR beamformer can only localize fewer sources
than sensors. Many engineering applications may re-
quire more, so we have combined the biological inspi-
rations ofOrmia’s directional microphone array and
the mammalian hearing system to develop a method
for doing so. With the acoustic vector sensor array,
we imitate the interaural level difference system in
the mammalian brain. As described above, the mam-
malian system exploits the time-frequency sparsity
of natural sources to localize more sources than sen-
sors by identifying the locations of sources in time-
frequency bins in which only one source dominates.

Mohanet al. have developed a signal-processing-
friendly approach for achieving the same goal (Mo-
han et al., 2003a) (Mohan et al., 2003b). As in
the FMV algorithm described earlier, the inputs from
all microphones are short-time Fourier transformed
and cross-correlated within each frequency band. A
sinple rank test is performed on each short-time-
frequency correlation matrix to estimate the number
of significant sources in that bin. Any bin of full
rank (equal or more sources than sensors) is ignored;
any bin of lower rank (more sensors than sources)
can be used to estimate the direction of its dominant
sources. To each low-rank bin we apply either an
MVDR or MuSIC (Schmidt, 1986) beamformer us-
ing the directional array responses in (2), (3), (4), (5)
to form the steering vectors, and form a composite
localization map by summing (usually with normal-
ization) these individual high-resolution directional
maps. The number of sources and their locations are
then determined in the usual manner by finding and
threshholding the peaks of this composite response.

In both simulation and with real data, this al-
gorithm achieves directional accuracy comparable to
Ormia (less than two degrees of error variance) and
locates more sources than sensors (Mohan et al.,
2003a). It can be applied to, and performs similarly
with, binaural arrays (Mohan et al., 2003b).
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4.2 Speech Source Recovery With a
Zero-Aperture Array

The Ormia-inspired acoustic vector sensor array can
also be combined with the FMV algorithm for higher
performance speech source recovery in the cocktail-
party scenario with a much smaller aperture than even
the binaural array. Since Capon’s formulation sup-
ports steering vectors with direction-dependent am-
plitude, as well as phase, differences, FMV can be ap-
plied almost without modification other than forming
steering vectors according to the relative responses of
the directional microphones in the target direction.

Figure 4 shows the performance in terms of SNR
gain of a 15 cm two-element free-field array in an
anechoic environment with one through four interfer-
ers. The physical experiments from which these data
are created are identical to those used to create Figure
3. Since all sources were in the horizontal plane, we
used only three microphones, the X and Y directional
microphones and the omni.

Figure 4: SNR gains for one, two, three, and four simulta-
neous speech interferers of binaural and XYO arrays with
the FMV adaptive beamformer.

The performance of the FMV beamformer with
the XYO microphone array is considerably better than
with the binaural array. We believe that this is mainly
because the relative difference in the response of the
directional microphones is relatively independent of
frequency and is greater at the lower frequencies com-
prising most of the speech signal energy; at these
frequencies, the separation of the binaural array is
much less than half a wavelength, and separation of
the sources becomes progressively more difficult. The
extra microphone may also play a lesser role.

5 ADAPTIVE BEAMFORMER
PERFORMANCE WITH
REVERBERATION

The human hearing system performs well in com-
plex natural environments, which usually include at

least modest, and sometimes quite substantial, rever-
beration. As described earlier, adaptive beamform-
ing algorithms are particularly sensitive to reverbera-
tion, which alters the effective steering vectors of the
source. This makes the desired source appear to come
from a different direction, and the super-resolution
interference suppression of the adaptive beamformer
then allows it to cancel the target even if these errors
are small. It is essential to evaluate our biologically
inspired algorithms, which only capture some of the
features of the complex biological system, for their
robustness to the reverberation found in typical lis-
tening situations.

Figure 5 shows the performance of the binaural
beamformer in the presence of reverberation for the
same set of tests shown above. The “anechoic” steer-
ing vectors were obtained by measuring impulse re-
sponses from microphones near the center of a sound-
treated room and truncating these after the initial re-
sponse was complete and before arrival of the first
reflections. The steering vectors thus capture the re-
sponse of the microphones and recording electronics
but not the room. The impulse responses in multiple
rooms, such as typical and large conference rooms
and offices, were measured at various distances at
fifteen-degree increments, to allow the synthesis of
many realistic scenes with various positions and num-
bers of interferers.

Figure 5: SNR gains for one, two, three, and four simultane-
ous speech interferers of the FMV beamformer in anechoic
and reverberant conditions.

Figure 5 shows the performance in terms of SNR
gain for the FMV algorithm in a typical medium-sized
conference room, with a reverberation time (T60) of
less than 0.4 seconds, for target and interfering speech
sources at a 1 meter distance, at which the direct
sound substantially exceeds the reverberation. Even
in these relatively benign conditions, the performance
of the beamformer, while still positive, drops dramat-
ically in the presence of reverberation. The reduced
performance even with a single interferer indicates
that it is mostly due to mismatch of the steering vec-
tor for the target source, rather than changes in the
response to the interferers; other tests too numerous
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to describe here support this diagnosis. Humans per-
form as well or even slightly better under conditions
of modest reverberation compared to anechoic condi-
tions, so this performance loss is due to limitations of
the algorithm rather than the intrinsic difficulty of the
problem.

Robust beamforming methods attempt to over-
come this problem. Cox,et al. show that several
criteria for robustness are optimized by regulariza-
tion of the correlation matrix in Capon’s formula-
tion (Cox et al., 1987). This has the effect of con-
trolling self-cancellation for small deviations in the
steering vector, but at the price of reducing the in-
terference suppression. Many other methods have
been introduced that minimize the worst-case perfor-
mance or introduce additional constraints to prevent
self-cancellation over an uncertainty region, but again
these methods sacrifice interference cancellation to
obtain robustness. As mentioned earlier, the human
hearing system’s performance has been shown toim-
prove somewhat with modest reverberation, which in-
dicates that it works on very different principles. We
speculate that it learns, adapts to, and exploits the ac-
tual room response, thus avoiding the trade-off be-
tween performance and robustness of current signal-
processing approaches. We are currently working on
practical techniques to do the same.

6 CONCLUSIONS

The excellent performance of the biologically in-
spired binaural adaptive beamformers with more
speech sources than microphones strongly suggests
that the biologically inspired algorithms capture some
of the essential features of the mammalian hearing
system that allow humans to perform so well in these
conditions. These key elements are exploitation of the
time-frequency sparseness of natural source signals
via short-time frequency decomposition and rapid,
separate adaptation in each band to take maximal ad-
vantage of it. Similarly, the comparable performance
in directional localization accuracy of the binaural
algorithm based on the Jeffress auditory model to
that of humans, as well as that of the acoustic vec-
tor sensor array of collocated directional microphones
with that of the parasitoid flyOrmia ochracea, sug-
gests that these localization algorithms have identified
some of the key principles of the biological systems.

The substantial degradation in performance of the
FMV beamformer with levels of reverberation easily
tolerated by humans suggests, on the other hand, that
key features of human auditory processing of great
importance to real-world application are missing from

the model. Preliminary evidence that the localization-
extraction method (which is based more directly on
the physiological model) degrades less under rever-
berant conditions may eventually yield some hints as
to what is missing. Current robust beamforming algo-
rithms tolerate reverberation by limiting the damage
to performance due to errors in the steering vector (of-
ten at substantial sacrifice to performance under good
conditions); biological systems, on the other hand,
seem to adapt to and even exploit the real-world con-
ditions. We are currently exploring new strategies for
robust beamforming that attempt to learn and exploit
the variations in response introduced in real-world
conditions, with the ultimate goal of building algo-
rithms approaching the remarkable robustness shown
by biological signal processing systems.

The characteristics of biological and electronic de-
vices are very different, particularly in terms of com-
plexity of function, parallelism, and speed, so the
best biologically inspired signal processing systems
may involve different implementations at the “hard-
ware” level. We thus believe that biologicalinspira-
tion, based on discernment of the underlying phys-
ical or signal processing principles exploited by the
biological system, usually yields better results than
biological imitation. However, physiology only in-
directly indicates the signal processing principles ex-
ploited by the auditory sensors and the brain, so the
development of effective and efficient biologically in-
spired signal processing algorithms is rarely straight-
forward. Close collaboration between physiologists,
psychophysicists, and signal processors can yield in-
sights and ultimately signal processing systems that
would be difficult to conceive individually.
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Abstract: Cardiac beat detector, which is an analogue circuitry installed in a novel non-invasive system for measuring 
heart rate in mice by using a piezoelectric transducer (PZT) sensor, performs an critical role in detecting the 
first heart sound (S1) in heart sounds. The PZT sensor detects heartbeat vibration and converts it to an 
electrical signal, namely the heart sounds. The measurement in intervals of S1s in the heart sounds is 
required to calculate heart rate, however, it is not simple because a S1 is a vibrating signal and has multiple 
peaks, which fluctuate in interval and in magnitude. In addition, respiration sound noise, which has 
frequency components similar with that of S1, makes S1 detection difficult and complex. The cardiac beat 
detector made it possible to overcome these problems by transforming multi-peaked S1 signal into a quasi-
digital pulse. This technique is also available for the use in humans. Thus, the cardiac beat detector would 
contribute to the progress in the non-invasive heart rate measurement when it is installed in various, novel 
phonocardiogram-based equipments for the use in the fields of clinical and basic science in medicine. 

1 INTRODUCTION 

In experiments using small animals such as mice, a 
clip ECG electrode is often used for ECG recording 
(Yamada et al., 2001). However, investigators often 
encounter the problem with ECG signal 
deterioration or instability during long recording due 
to the hairy limbs and drying up of electrolytic paste 
between the limbs and the clip electrodes 
particularly in small animals. Moreover, there is an 
undeniable possibility that the pain induced by the 
electrode attachment might activate the sensory 
neurons and influence on the physiological state 
even in an anesthetized animal (Sato, 2007).  

To overcome these problems, we recently 
developed a non-invasive cardiorespiratory monitor 
system for small animals using a piezoelectric 
transducer (PZT) sensor, which converts cardiac 
beats into an electrical signal when a small animal 
was simply placed on it (Sato et al., 2006; US patent 
7174854). The PZT cardiorespiratory monitor 
enables stable and long measurement of heart rate of 
sleeping or anesthetized animals. Only placing an 
animal on the PZT sensor is required to monitor 
heart rate, and therefore, it gives no pain to animals. 
To calculate the heart rate, it is required to detect the 
first heart sound (S1) in a heartbeat signal detected 
by the PZT sensor. However, it is not simple to 

detect S1 constantly by distinguishing from noises of 
a frequency range similar to that of S1 because a S1 
is composed of multi-peaked vibrating signal 
(Rangayyan and Lehner, 1988) and its magnitude 
decreases in anesthetized animals and humans 
(Manecke et al., 1999). A cardiac beat detector, 
which is made of a custom-designed analogue 
circuitry for S1 detection, was strikingly effective 
for detecting S1 and the second heart sound (S2) and 
for computing heart rate with a simple 
microprocessor algorithm.  

2 METHOD 

2.1 PZT Cardiorespiratory Monitor 

The PZT cardiorespiratory monitor system consists 
of a PZT sensor device and a main unit, which 
contains two band-pass filters, a cardiac beat 
detector, a breathing movement detector, 
microprocessors and a temperature controller for the 
PZT sensor device. The sensor device consists of a 
disk-shaped thin PZT placed in a hole cut in a 
copper plate and covered by 0.5 mm-thick insulating 
sheets, which all were mounted on an electronic 
controlled heater (Sato et al., 2006) (Fig. 1). 
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Figure 1: Block diagram of PZT cardiorespiratory monitor. 

2.2 Signal Separation by Filters 

Heart sound and breathing movement signals were 
separated from the PZT output signal by filters with 
pass band of 280-1000 Hz and 0.4-2.6 Hz for heart 
sounds and breathing movements, respectively, as 
shown in Fig. 2. 
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Figure 2: PZT output signal, Heart sounds, breathing 
movement signal, ECG and thermistor airflow sensor. 

However, it was found that the presence of 
respiration sound noise, which was produced by 
airflow in airway, disturbs the detection of S1 (S2) 
when the magnitude of S1 (S2) declined in 
anesthetized mice (Fig. 3; upper trace). In addition, 
airway secretion produced marked, large-amplitude 
respiratory noise (Fig. 3; lower trace). These 
respiration-related noises were hardly possible to be 
removed by a filter because the frequency 
component of them were similar to that of S1; the 
period of vibrating signal of S1 (Ts) and respiration 
sound noise (Tr) was ranged between 1.4 and 4.0 ms 
(average = 2.4 ms, n = 50) and between 3.5 and 7.7 
ms (average = 5.4 ms, n = 50), respectively. The 

frequency components of both S1 and respiration 
sound noise fluctuated, and therefore, they ranged 
widely and overlapped each other.  
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Figure 3: Representative traces of respiration sound noise 
(open circles; upper trace) and large-amplitude respiratory 
noise (open triangles; lower trace). Arrows and 
arrowheads indicate S1 and S2, respectively.  

2.3 Cardiac Beat Detector 

Since it was difficult to accomplish effective 
removal of the respiration sound noise from heart 
sounds by a filter because they have similar 
frequency components and fluctuate, we have 
developed a novel cardiac beat detector circuit, 
which consists of two diode detectors connected to a 
differential amplifier, an AC amplifier, and a 
hysteresis comparator (Fig. 4a). This circuit has 
three functions; (1) S1 emphasizing, (2) 
transforming S1 into a quasi-digital pulse and (3) 
automatic threshold controlling (Sato et al., 2006). 

2.3.1 S1 Emphasizing Function 

As described above, frequency components of S1 
are at slightly higher range than those of respiration 
sound noise, although the both components 
fluctuate and overlap in part. To overcome the 
fluctuation, the cardiac beat detector was designed 
to emphasize always a higher frequency sounds 
over relatively lower frequency sounds. The S1 
emphasizing function is produced by the 
combination of two diode detectors, which work as 
envelop detectors, and a differential amplifier (Fig. 

Figure 4: Function of the cardiac beat detector. 
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4a). 
The two-diode detectors produce positive and 

negative envelopes with ripples when a sine wave is 
input. The voltage of the positive envelope during 
the declining phase (V(t)) is determined by a time 
constant RC as 

 
V(t) = Vp e−t/RC (1)

 
where R and C are the resistance and the capacitance 
of the diode detectors and t is the time after a time of 
positive peak in the input and Vp is the voltage of the 
peak.  
Output voltage difference between the two diode 

detectors at t = T/2 (V(T/2)) is calculated as 
 

V(T/2) = Vp (1 + e−T/2RC) (2)
 
where T is the period of the input signal. Therefore, 
the higher input signal frequency, the larger voltage 
difference the diode detectors output. In fact, output 
voltage difference for an input sine wave of higher 
frequency (Vs(t0+Ts/2); Fig. 4b) is larger than that 
of lower frequency (Vr(t0+Tr/2); Fig. 4c). 

This voltage difference appears equally in the 
differential amplifier output. Responses of the diode 
detectors to an input of a synthesized waveform, 
which consisted of alternating 4 cycles of a 500Hz 
sine wave (artificial S1) and 10 cycles of a 100Hz 
sine wave (artificial respiration sound), are shown in 
Fig. 4d and e. The artificial S1 is enhanced as 
compared to the artificial respiration sound when 
amplitudes of both inputs are almost the same (Fig. 
4d), while the artificial S1 is largely enhanced when 
it is slightly larger than the artificial respiration 
sound in input signal (Fig. 4e). Fig. 4d demonstrates 
that the diode detectors have the S1 emphasizing 
function, while Fig. 4e shows an additional 
contribution of a rectifying property of diode, which 
abruptly reduces its resistance to the signal that 
exceeds about 0.3V, to the S1 emphasizing function.  

Fig. 5 shows an example of quasi-digital pulses 
output from the differential amplifier when a real 
filtered heart sound signal was input ((A); Fig. 4a). 
The amplitude ratio of the S1 signal (filled circle) to 
the respiration sound noise (open circles) was 
enhanced from 3-fold in the input (broken lines; 
upper trace) to 10-fold in the output (lower trace) 
(Fig. 5). In addition, the cardiac beat detector 
combines the multi peaks of S1 into a quasi-digital 
pulse, which is helpful for the comparator to detect 
S1 easily. The unique combination of these effects 
enabled the emphasizing of S1 of higher frequency 

over the respiration sound noise of lower frequency, 
thus enabling a great improvement in the S/N ratio 
of the quasi-digital pulse.  
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Figure 5: S1 emphasizing function of cardiac beat detector. 

 
Figure 6: Automatic threshold adjustment controlled by 
the cardiac beat detector. 

2.3.2 Automatic Threshold Controlling 
Function 

The quasi-digital pulse (Fig. 5; lower trace) output 
from the differential amplifier was fed into the AC 
amplifier. The AC amplifier lowers the baseline of 
the differential amplifier output (quasi-digital pulse) 
to the negative direction when the magnitude of the 
quasi-digital pulse becomes larger (Fig. 6a), while 
the baseline approaches 0V when the pulse height 
declines (Fig. 6b). These responses of the AC 
amplifier to the change in magnitude of the quasi-
digital pulse act as an automatic threshold control, 
which help comparator to detect the S1 signal with a 
higher sensitivity (Fig. 6).  

2.4 Heart Rate Calculation by 
Microprocessor Program 

The cardiac beat detector improved the incidence of 
S1 detection by removing the influence of 
respiration sound noises, however, large-amplitude 
respiratory noises, which were elicited by an airflow 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

138



 

in airway with airway secretion, still remained and 
induced errors in S1-S1 interval detection for heart 
rate calculation. Discrimination between S1 and S2 
is also required for the heart rate calculation. I made 
a microprocessor program to overcome these 
problems. The major algorithms adopted in the 
program are; (1) to calculate the correct HR by 
selecting four S1-S1 intervals of less error from 
eight consecutive intervals and (2) to set a non-
detection period of 75 ms after a S1 (or S2) for the 
discrimination of S1 from S2 (Sato et al., 2006). 

  
Figure 7: Comparison between the heart rate calculated by 
the PZT system and ECG for 30 min. Output of the PZT 
system (lower trace) and the heart rate calculated from the 
R-R intervals in ECG (upper trace) (a), their difference 
plot (b) and cross-correlogram (c). Black bar in (a) 
indicates the duration where large-amplitude respiratory 
noise appeared. Lower trace in (a) is lowered to show 
almost complete agreement between the two traces. 

3 RESULT 

Heart rate output from D/A converter in the PZT 
system (PZT-HR) and that calculated from ECG 
reading (ECG-HR) averaged over every 1 s were 
compared using 6 anesthetized adult C57BL/6 mice.  

The PZT-HR and the ECG-HR were highly 
correlated (Fig. 7a). Difference plot between them 
also showed good correlation (Fig. 7b) even during 
the period when large-amplitude respiratory noise 
appeared (open circles; Fig. 7b). The difference plot 
demonstrated the highly reliable detection of HR by 
the PZT system; 96.2% (1,729/1,798) of total points 
fell within ±2 SD of the mean value. The PZT-HR 
also closely followed a rapid decrease in HR at a 
rate of 33 b/m/s (arrow in Fig. 7a). Cross-correlation 
coefficient between PZT-HR and ECG-HR was 
0.995±0.003 (mean±SD, n = 6; Table 1, Fig. 7c). 

Table 1: Correlation between PZT-HR and ECG-HR. 

mouse r difference (%) 

1 0.995 1.9±0.5 
2 0.990 1.8±1.7 
3 0.992 2.9±1.6 
4 0.997 1.3±0.6 
5 0.999 2.4±1.3 
6 0.997 2.1±0.6 

4 DISCUSSIONS 

Since the high-frequency component of S1 is 
comprised of multi peaks of vibrating signal, the 
program code for heart rate calculation would be a 
complex one in the case without the use of the 
cardiac beat detector although recent developments 
in digital signal processing of the phonocardiogram 
have been reported (Durand and Pibarot, 1995; 
Wang et al, 2001). All intervals between peaks of S1 
and S2 in addition to respiration sound noises, which 
are all composed of multi-peaked signal and 
fluctuate in interval and/or in magnitude, should be 
measured quickly and the initial point of the S1 
should be properly identified almost instantaneously 
during each heart cycle of less than 100 ms. In 
contrast to such considerably complex digital signal 
processing, making the quasi-digital pulse from 
vibrating S1 signal with enhancing S/N ratio using 
the cardiac beat detector ensures the easier digital 
conversion of the S1 signal for the heart rate 
calculation. 

In conclusion, the present study demonstrated 
that the cardiac beat detector has a performance 
suitable for the non-invasive detection of S1 in the 
heart sounds of small animals. It should be noted 
that the cardiac beat detector is available not only for 
anesthetized small animals but also unanesthetized 
animals and humans at sleep or rest. Indeed, the PZT 
system can be applied to unanesthetized newborn 
mice (Sato et al., 2007), human infants (Sato et al., 
2006) or bedridden patients after some alteration to 
the sensor construction. As the cardiac beat detector 
greatly reduces the program code for S1 detection, it 
would help us to create novel phonocardiogram-
based equipments for a wide range of fields in 
clinical and basic sciences in medicine. 
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OBSERVED IN A COUPLED NEURAL OSCILLATOR NETWORK

FOR IMAGE SEGMENTATION
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Abstract: We consider image segmentation using the LEGION (Locally-Excitatory Globally-Inhibitory Oscillator Net-
work), and investigate dynamical properties of a modified LEGION, described by noise-free or deterministic
continuous ordinary differential equations. We clarify a phenomenon of image segmentation corresponds to
the appearance of a synchronized periodic solution, and theability of segmentation depends on its symmet-
ric properties. We study bifurcations of periodic solutions by using a computational method based on the
qualitative dynamical system theory.

1 INTRODUCTION

Image segmentation technique underlies perceptual
processes such as identification, recognition, and sep-
aration of different objects in a natural image. Vari-
ous methods of image segmentation based on statis-
tic, filtering, and machine learning techniques were
presented (Russ, 2002). A practical image seg-
mentation technique using the LEGION (Locally-
Excitatory Globally-Inhibitory Oscillator Network)
has also been proposed (Wang and Terman, 1995; Ter-
man and Wang, 1995). It can segment different areas
in an image, and then the segmented areas are rapidly
exhibited in time-series. Because of the high ability
of LEGION, there has been a lot of research on appli-
cation to medical images (Shareef et al., 1999), im-
plementation of analog electronic circuit (Cosp et al.,
2004), and so on.

The LEGION is a coupled oscillator network con-
sisting of oscillators, each of which has an excitatory
unit and an inhibitory unit, and a global inhibitor. The
dynamics of LEGION is described by nonlinear or-
dinary differential equations with a noise term. It is
know that LEGION segments different image areas
temporally and spatially, based on its own dynamics.
Although its fundamental dynamics has been stud-
ied (Terman and Wang, 1995), there are no investi-
gations for detailed dynamical structure and property
of oscillations observed in the coupled oscillator net-

work. Properties of the oscillations observed in LE-
GION are related to its fundamental ability for im-
age segmentation, therefore analysis of the dynamical
properties enable us to design the parameters of LE-
GION so that it achieves optimal image segmentation.

In this paper we study dynamical properties of os-
cillations observed in LEGION. Because the dynam-
ics of the original LEGION (Wang and Terman, 1995)
is a stochastic dynamical system with noise terms, in
order to simplify our discussion, we study a noise-free
LEGION, which is a deterministic dynamical system.
Bifurcation analysis is useful for designing system pa-
rameter. Through the bifurcation analysis, we clar-
ify that a phenomenon of image segmentation corre-
sponds to the appearance of a synchronized periodic
solution, and the ability of segmentation depends on
its symmetric properties.

2 MODEL DESCRIPTION

The LEGION consists of a global inhibitor and oscil-
lators which are arranged in grid; and the number of
oscillators corresponds to the number of pixels in tar-
get image. We illustrate single oscillator which con-
sists of an excitatory unitEUi and an inhibitory unit
IUi in Fig.1 (a). The excitatory unit couples with
the other excitatory units in its four-neighborhood
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each other, and all excitatory units also connect to
the global inhibitor. The architecture of LEGION is
shown in Fig.1 (b). Figure 1 (c) illustrates the behav-
ior of LEGION and schematic diagram of an image
segmentation procedure. The dynamics of an oscilla-
tor indexed byi (i = 1,2, . . . ,n) is described by

dxi

dt
= 3xi −x3

i +2−yi + Ii +Ci (1)

dyi

dt
= η [γ(1+ tanh(xi/β))−yi] . (2)

We eliminated noise terms from the original LE-
GION (Wang and Terman, 1995) so that the system
becomes a deterministic dynamical system. The vari-
ablesxi andyi represent the states of the excitatory
and inhibitory units, respectively. The symbolIi de-
notes external stimulation to the oscillator. Its value is
determined by thei-th pixel value. The symbolCi rep-
resents the summation of the coupling strength among
oscillators, which is defined by

Ci = ∑
k∈N(i)

WikS(xk,θx)−WzS(z,θxz) (3)

where

S(x,θ) =
1

1+exp(−K (x−θ))
. (4)

HereN(i) indicates the four-neighborhood of thei-th
oscillator,Wik denotes the coupling strength between
the i-th oscillator and the otherk-th oscillator inN(i),
andWz denotes the coupling strength between thei-
th oscillator and the global inhibitor. Using the sig-
moidal function, described by Eq.(4), instead of the
Heaviside function in the original LEGION, the dy-
namics of the global inhibitor is defined by

dz
dt

= φ

(

S

(

n

∑
k=1

S(xk,θzx),θzx

)

−z

)

(5)

whereγ, β, θx, θxz, θzx, K, andφ indicate parameters,
which are fixed as the same values of the original

γ = 6.0, β = 0.1, θx = −0.5

θxz = θzx = 0.1, K = 50, φ = 3.0 (6)

andη is a bifurcation parameter.
We treat binary images shown in Figs. 2–3; the in-

dexes of the pixels are also shown in the same figures.
For the binary images, the value ofIi is determined by

{

Ii > 0, if the i-th pixel is white
Ii < 0, if the i-th pixel is black. (7)
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Figure 1: (a), (b) Architecture of LEGION, and (c) behavior
of LEGION and schematic diagram of image segmentation.
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Figure 2: (3×3)-pixel image and its index number of each
pixel.

3 METHOD OF ANALYSIS

We summarize methods for calculating bifurcations
in the deterministic LEGION defined in the preceding
section. Let us consider anN-dimensional general au-
tonomous differential equation consisting of Eqs.(1)–
(5) such that

dx
dt

= f (x). (8)

1

2

3

4

5

6

9

8

7

10

12

11

13

14

16

15

(a) Input image (b) Index number of each pixel

Figure 3: (4×4)-pixel image and its index number of each
pixel.
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Figure 4: Waveforms of stable periodic solutions underη = 0.02. The thin solid curve indicates the states of the oscillators
x1 andx2; and the heavy solid curve and the dashed curve denote the states of the oscillatorsx7 andx9, respectively.
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The state vector x∈ RN corresponds to the set
{x1,y1,x2,y2, . . . ,xn,yn,z} ∈ R2n+1, wheren denotes
the number of oscillators. Note thatf (x) is C∞-class
function for all state variables and all parameters. We
assume that there exists a solution with initial condi-
tion, x= x0 at t = t0, described by x(t) = ϕ(t;x0) for
all t.

We consider a local manifoldΣ in the N-
dimension state space with the scalar condition
g(x) = 0, which is described by

Σ =
{

x ∈ RN | g(x) = 0, g : RN → R
}

. (9)

We arrange a local sectionΠ ⊂ RN−1 in Σ called the
Poincaré section. Using the coordinate transforma-
tion h described by

h : Σ → Π ⊂ RN−1; x 7→ u, (10)

we define the Poincaré mapT as

T : Π → Π; u 7→ h◦ϕ
(

τ(h−1(u));h−1(u)
)

(11)

whereτ(h−1(u)) is the time in which the trajectory
emanating from a point u∈ Π at t = t0 will go across
the Π again. Then anm-periodic solution in Eq.(8)
corresponds to a fixed point ofTm, i.e., m-periodic
point ofT. Hence, one of analyses ofm-periodic solu-
tions observed in Eq.(8) can be reduced to an analysis
of a fixed point ofTm.

Let u∗ ∈ RN−1 be a fixed point ofTm such that

u∗−Tm(u∗) = 0. (12)

Then the characteristic equation of the fixed point is
defined by

χ(µ) = det

(

µIN−1−
∂Tm(u∗)

∂u

)

= 0 (13)

where IN−1 is the (N − 1) × (N − 1) identity ma-
trix. By using the Poincaré mapTm we totally have
2(N−1)-different-type hyperbolic fixed points. The
topological property of a hyperbolic fixed point is de-
termined by the value of characteristic multipliersµi ,
(i = 1,2, . . . ,N − 1): if all characteristic multipliers
are in the unit circle on the Gaussian plane, then the
fixed point is stable; the fixed point is unstable if one
or more characteristic multipliers are outside the unit
circle. Hence, we can discuss topological property of
the fixed point based on the value of the characteris-
tic multipliers. Let us classify fixed points into two
typeskD andkI , wherek is the number of characteris-
tic multipliers outside the unit circle; it also represents
the dimension of unstable subspace. The typesD and
I correspond to the even and odd numbers of charac-
teristic multipliers in the range of(−∞, −1) on the
real axis, respectively. Bifurcation of a fixed point oc-
curs when its topological property is changed by the

variation of a system parameter. The types of bifur-
cations are tangent bifurcation, period-doublingbifur-
cation, the Neimark-Sacker bifurcation, andD-type of
branching. Bifurcation sets of a fixed point are com-
puted (Kawakami, 1984) by solving the simultaneous
equation which consists of Eqs.(12)–(13).

Now, let us discuss a symmetrical property of the
system in Eq.(8). Assume that there exists a trans-
formation Q satisfying Q( f (x)) = f (Q(x)). Then
such a system may have a periodic solution satisfy-
ing Q(ϕ(t;x0)) = ϕ(t + L;x0) for all t, whereL ≥ 0
is a phase difference. We call it a(Q,L)-symmetric
periodic solution.

4 RESULTS AND DISCUSSION

This section is devoted to show and discuss numerical
results obtained from bifurcation analysis of a couple
of examples.

4.1 Example 1

We investigate periodic solutions observed in the de-
terministic LEGION for 3× 3 pixel image shown in
Fig.2. Each external stimulusIi , i = 1,2, . . . ,9, is de-
fined as
{

Ii = 0.2, if the i-th pixel is white
Ii = −0.02, if the i-th pixel is black.

(14)
Because the pixels indexed by 1, 2, 7, and 9 are white,
we observe oscillatory responses from the oscillators
with the same indices, and non-oscillatory responses
from the other oscillators. Note that, because the set
satisfyingx7 ≡ x9 andy7 ≡ y9 is an invariant subspace
in the state space, the system is symmetric with re-
spect to the transformation, sayQ1, swapping(x7,y7)
and(x9,y9).

For oscillatory solutions we use symbolic se-
quence of strings representing the continuation of in-
phase firing assigned by the oscillator indices and
non-firing assigned by dot (“.”). For example, the set
of (12.79.7.9) indicates a sequence in the order of fir-
ing: oscillators 1 and 2 (instantaneously in-phase), os-
cillators 7 and 9 (instantaneously in-phase), oscillator
7, and oscillator 9, periodically.

Figure 4 shows waveforms of stable periodic so-
lutions observed in the system atη = 0.02. The sym-
bolic sequences corresponding to Figs.4 (a)–(d) are,
respectively, as follows: (a)(12.79.79.12.79); (b)
(12.7.9.7.12.9.7.9); (c) (12.7.9.7.9.12.7.9); and (d)
(12.9.7.9.7.12.9.7). The solutions shown in Figs.4
(a) and (b) are(Q1,0)- and(Q1,τ/2)-symmetric two-
periodic solutions, respectively, whereτ denotes the
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period of solution. While, each of the solutions shown
in Figs.4 (c) and (d) has no symmetric property itself,
however, it is reflectional with respect to the trans-
formationQ1 each other. We show the time-series of
output images from LEGION in Fig.5, which corre-
sponds to the solution of Fig.4 (b). The connected
white pixels, the first pixel and the second pixel, al-
ways appear instantaneously in-phase. Then three dif-
ferent image areas are segmented temporally and spa-
tially.

Figure 5: Snapshots of time-series output in LEGION
which corresponds to the periodic solution shown in Fig.
4 (b). These output images sequentially appear from on the
top-left to the bottom-right; then its appearance in each line
starts from the left.

We investigate bifurcations of periodic points
based on the Poincaré section defined by

Π =

{

x ∈ RN | x1−1.5= 0,
dx1

dt
< 0

}

. (15)

Figure 6 shows a one-parameter bifurcation dia-
gram of a(Q1,0)-symmetric two-periodic solution as
shown in Fig.4 (a). In the bifurcation diagram, the
heavy curve denotes stable(Q1,0)-symmetric two-
periodic solution, and the dashed curve indicates its
destabilized solution. The circled point labeled byI2

denotes the parameter valueη = 0.08098952872, at
which we observe a period-doubling bifurcation. By
decreasing the value ofη across the point, the follow-
ing bifurcation formula occurs:

1I2 → 0D2 + 1D
4 (16)

where the left- and right-hand sides of the arrow indi-
cate the periodic points before and after the bifurca-
tion, respectively. Hence, a stable two-periodic solu-
tion 0D2 and a saddle-type four-periodic solution1D4

simultaneously occur, i.e., they coexist in a certain pa-
rameter region. Let us discuss the basin of the stable
solution. Figure 7 (a) shows periodic points of the
Poincaré map atη = 0.0808, projected to the(x7,x9)-
plane. The pointsa andb indicates two-periodic point
0D2, and the pointsc andd correspond to a (Q1,τ/2)-
symmetric two-periodic solution, which is irrelative
to the bifurcation in Eq.(16). The periodic points of
the coexisting1D4 are near the pointa. It can be con-
firmed by the phase portrait shown in Fig.7 (b), an en-
larged figure of Fig.7 (a); the pointse and f denote a
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Figure 6: One-parameter bifurcation diagram ofx7 for the
parameterη. The thin solid curve, the heavy solid curve,
and the dashed curve denote the unstable four-periodic
point, the stable two-periodic point, and its destabilized
two-periodic point, respectively.
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Figure 7: Phase portrait of periodic points on the(x7,x9)-
plane underη = 0.0808. The right figure is the enlarged
figure around the pointa in the left figure.

part of four-periodic points1D4. The period-doubling
bifurcation of1I2 occurs so that its symmetry is bro-
ken, then the placement of the periodic points are re-
flected in the topological property which can be ex-
plained by its eigenvector. Besides, the basin bound-
ary of0D2 is separated by the stable manifold of1D4.
That is, we can observe0D2 when the initial value is
placed only near its periodic point.

4.2 Example 2

As the second example we treat 4× 4 pixel image
shown in Fig.3. The value of each external stimu-
lus Ii , i = 1,2, . . . ,16, is defined by Eq.(14); its in-
dex numberi is shown in Fig.3 (b). Due to the pix-
els indexed by 1, 2, 4, 8, 9, 11, 13, 14, and 15
are white, the dynamical system has two symme-
tries for two swapping operators. One is described
by Q2( f (x)) = f (Q2(x)) whereQ2 is the transfor-
mation that swaps(x1,y1,x2,y2) with (x4,y4,x8,y8),
respectively. The other symmetry is described by
Q3( f (x)) = f (Q3(x)) whereQ3 is the transformation
that swaps(x11,y11) with (x16,y16). In this exam-
ple, we investigate periodic solutions with the follow-
ing relations: (x1,y1) = (x2,y2), (x4,y4) = (x8,y8),
and (x9,y9) = (x13,y13) = (x14,y14). Periodic solu-
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tions in Table 1 are observed underη = 0.02. Note
that we employed the symbolsa,b,c, . . . ,g instead of
the double-digit index numbers 10,11,12, . . . ,16, re-
spectively. Besides, the symbolsA, B, C, D, and
E represent kinds of periodic solutions. All solu-
tions in the categoryA are (Q2,0)-symmetric two-
periodic solutions; the solutionsA1 and A2 are re-
flectional symmetry forQ2, thenA3 andA4 are also
reflectional symmetry forQ3. The categoryB indi-
cates(Q3,0)-symmetric two-periodic solution, then
B1 andB2 are reflectional symmetry forQ2. The cate-
goryC denotes(Q3,τ/2)-symmetric two-periodic so-
lution, thenC1 andC2 are also reflectional symmetry
for Q2. Each periodic solution inD has two sym-
metries. The categoryD1 is a two-periodic solution
with (Q2,0)- and (Q3,0)-symmetric properties; the
othersD2, D3, andD4 are two-periodic solutions with
(Q2,0)-symmetric and(Q3,τ/2)-symmetric. All so-
lutions in E are asymmetric two-periodic solutions,
however, respective pairs of solutions (E1,E2) and
(E3,E4) are reflectional symmetry forQ3. The solu-
tions (E2,E3) and (E1,E4) are also reflectional sym-
metry forQ2, respectively. Besides, in the solutions
A3, A4, B3, B4, C3, C4, D1, D4, andE5, the image
area connected white pixels, indexed by 9, 13, and 14,
synchronously fire with the other white area, e.g., the
pixels indexed by 1, 2, 4, or 8. This synchronization
is interesting from a viewpoint of nonlinear science.
However, it is inappropriate for image segmentation.

5 CONCLUDING REMARKS

We have investigated dynamical properties of peri-
odic solutions observed in the deterministic LEGION,
which is a modification from the original one by elim-
inating noise terms and replacing the Heaviside func-
tion with a sigmoidal function, in order to investi-
gate dynamical properties and ability of LEGION.
The main results obtained from the analysis using our
method for computing bifurcation sets, are summa-
rized as follows: (1) The dynamical system has var-
ious kinds of symmetric properties corresponding to
the input image. Indeed we see that symmetric and
asymmetric periodic solutions can be observed. Its
patterns are based on the symmetric dynamical struc-
ture of LEGION; (2) A stable symmetric periodic so-
lution bifurcates under a certain parameter. Moreover,
then its basin boundary is determined by the stable
manifolds of the coexisting saddle-type periodic solu-
tion; and (3) We also observed periodic solutions such
that different image areas fire synchronously. The in-
trinsic objective of image segmentation in LEGION
is that different image areas are not exhibited at the

Table 1: Periodic solutions by symbolic sequences.

Category Periodic solutions
A1 (1248.b.g.9de.b.g.1248.b.g.9de)
A2 (1248.g.9de.b.1248.g.b.9de.g.b)
A3 (12489de.g.b.g.b.12489de.g.b)
A4 (12489de.b.g.b.g.12489de.b.g)
B1 (12.48.bg.9de.12.bg.48.9de.bg)
B2 (12.9de.bg.48.12.bg.9de.48.bg)
B3 (129de.bg.48.129de.bg.48.bg)
B4 (12.bg.489de.12.bg.489de.bg)
C1 (12.g.9de.b.48.g.12.b.9de.g.48.b)
C2 (12.g.48.b.9de.g.12.b.48.g.9de.b)
C3 (129de.g.b.48.g.129de.b.g.48.b)
C4 (12.g.b.489de.g.12.b.g.489de.b)
D1 (12489de.bg.12489de.bg.bg)
D2 (1248.g.9de.b.g.1248.b.9de.g.b)
D3 (1248.b.g.9de.b.1248.g.b.9de.g)
D4 (12489de.g.b.g.12489de.b.g.b)
E1 (12.g.b.48.9de.g.b.12.48.g.b.9de)
E2 (12.b.g.48.9de.b.g.12.48.b.g.9de)
E3 (12.b.g.9de.48.b.g.12.9de.b.g.48)
E4 (12.g.b.9de.48.g.b.12.9de.g.b.48)
E5 (12.b.g.489de.12.b.g.489de.b.g)

same time. Therefore, the appearance of the periodic
solutions is inappropriate for this objective.

Their analyzed dynamical properties are directly
related to fundamental abilities of LEGION. For
higher quality of the segmentation, a mechanism for
desynchronizing in-phase periodic solutions is re-
quired in the coupling system.
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Abstract: This paper presents a historical overview of intelligent tutoring systems and describes an adaptive 
instructional architecture based upon current instructional and adaptive design theories. The goal of such an 
endeavor is to create a training system that can dynamically change training content and presentation based 
upon an individual’s real-time measure of cognitive state changes. An array of physiological sensors is used 
to estimate the cognitive state of the learner. This estimate then drives the adaptive mitigation strategy, 
which is used as a feed-back and changes how the learning information is presented. The underlying 
assumptions are that real-time monitoring of the learners cognitive state and the subsequent adaptation of 
the system will maintain the learner in an overall state of optimal learning.  The main issues concerning this 
approach are constructing cognitive state estimators from a multimodal array of physiological sensors and 
assessing initial baseline values, as well as changes in baseline. We discuss these issues in a data processing 
block wise structure, where the blocks include synchronization of different data streams, feature extraction, 
and forming a cognitive state metric by classification/clustering of the features. Initial results show our 
current capabilities of combining several data streams and determining baseline values. Given that this work 
is in its initial staged the work points to our ongoing research and future directions. 

1 INTRODUCTION 

The design of metrics to determine cognitive state 
changes in real-time of persons performing tasks in 
their work environment is an emerging field of 
research. For example, Human Factors and 
Augmented Cognition research endeavors suggest 
the use of psychophysiological measures to 
determine best practices when developing trainers 
for military (Nicholson et al., 2006) and medical 
(Scerbo, 2005) occupations in an effort to optimize 
the learning state of the user. Further, a valid and 
reliable metric of cognitive state has far reaching 
utility in the field of intelligent tutoring, which has 
further implications for cognitive rehabilitation and 
assistive brain-computer interfaces.  

This type of research is not possible without 
portable, unobtrusive psychophysiological sensing 
devices. However, utilizing physiological metrics 

such as electroencephalography (EEG) is difficult 
due to the many factors that influence cognitive 
processes intra and interpersonally. Some such 
factors include external demands (e.g., loud noises), 
trait characteristics (e.g., personality), and physical 
states (e.g., levels of fatigue). More importantly, the 
neurobiology underlying constructs defining 
cognitive states (e.g. working memory) are not fully 
elucidated (Cabeza & Nyberg, 2003), thus 
operationally defining “cognitive state” is difficult 
as is identifying a theoretical approach for studying 
it. Thus, the most straight forward approach to 
developing these metrics is by establishing a 
convergent methodology that is multimodal in 
nature (Karamouzis, 2006).  

In this paper, we discuss the historical aspects of 
developing adaptive intelligent tutoring using 
psychophysiological metrics. Additionally, we 
describe our Adaptive Instructional Architecture, 
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which features multimodal sensors. We discuss 
challenges in developing a convergent methodology 
for using multimodal sensors. Finally, we present 
initial work on data fusion techniques necessary for 
driving the adaptive tutoring system. 

2 ADAPTIVE TUTORING 
SYSTEMS 

In 1958, Skinner challenged educators to become 
more efficient and effective in their teaching 
strategies by using “teaching machines”. These 
machines would not only deliver learning content, 
but also allow the learner to interact with the system 
in a manner appropriate for learning to occur. The 
strength of this approach was the potential for 
customized instruction in an anytime anywhere 
format. However, teaching machines from this era 
neglected the knowledge base of the learner and 
focused more on “contingencies of reinforcement” 
or the presentation of learning material (Wenger, 
1987).  

 “Intelligent Tutoring Systems” (ITS) was first 
coined by Sleeman & Brown (1982); however, it 
was Wenger (1987) who advocated for cross-talk 
among education, cognitive, and artificial 
intelligence researchers to shape the future of ITS 
design. This collaborative approach shifted emphasis 
from purely computational solutions to those that 
integrated Cognitive Psychology constructs (e.g., 
working memory) and new research in Education 
Psychology (e.g., experiential learning). The 
improved flexibility of these designs supported the 
successful transition of some adaptive systems into 
classrooms and workplaces (Anderson, et. al., 1995; 
Parasuraman et. al., 1992).  

While previous ITS theories emphasized the 
knowledge state of the learner, current instructional 
design methods consider the learner’s cognitive 
state, (i.e., cognitive load state) as more predictive of 
learning outcomes (Paas et. al., 2004). Cognitive 
load theorists contend that learning complex tasks 
(e.g., performing surgery) is optimal when the 
learning environment matches the cognitive 
architecture of the learner (Sweller, 1999). Thus, the 
learning environment should account for individual 
differences in the unique ways that individuals 
cognitively process data.  

Physiological metrics of cognitive load such as 
pupil dilation and heart rate may map a learner’s 
cognitive state to the learning task (Paas et al, 2003, 
p. 66). Another suggested use of psychometric data 
is to drive the adaptive response in the ITS 

(Karamouzis, 2006; Scerbo, 2006). In previous 
work, we have proposed an Adaptive Instructional 
Architecture (AIA) that merges the constructs of 
experiential learning, cognitive load, and adaptive 
trainers into a testbed simulation capable of 
measuring multimodal psychophysical responses 
(Nicholson et al., 2007). In the next sections we 
provide an overview of the AIA and give a 
description of the sensors used within the training 
environment. In addition, we provide pilot data from 
current studies which use multiple sensors to 
determine the learner’s cognitive states. These 
studies are discussed in the context of data fusion 
strategies and point to future work in the field 

3 OVERVIEW AIA, SENSORS, 
FEATURE EXTRACTION & 
DATA FUSION 

3.1 Adaptive Instructional 
Architecture Overview 

Figure 1 provides an overview of the Adaptive 
Instructional Architecture (AIA) within a simulator 
testbed. As shown the learner interacts with context 
based stimuli that follow the continuum from real 
world to simulated real world multi-sensory content. 
The psychophysiological sensors (e.g., heart rate) 
attached to the learner collect information about the 
learner’s cognitive state. The sensor data streams are 
sent through a signal processing block (Figure 3) 
where data fusion techniques determine such 
constructs as learner engagement, arousal, and 
workload.  

 
Figure 1: Adaptive Instructional Architecture Overview. 

If the learner is experiencing higher than 
baseline values of these state references, the system 
chooses an appropriate mitigation strategy from a 
database of options. The system interface is then 
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adapted to adjust to the learner and the training 
scenario continues. This decision tree cycle is 
continued until the training session ends.   

The novel features of the AIA are the potential to 
assess the cognitive state changes of the learner in 
real-time, change the learning scenario as the learner 
transitions in knowledge states, and assess 
performance outcomes concomitantly with the 
cognitive state assessment. Two main design issues 
faced are: 1) defining metrics derived from the 
mutimodal data streams that reliably predict the 
learner’s cognitive state and 2) determining the 
relationship of the metric and that of mitigation 
selection.  Our current focus is on deriving 
meaningful metrics from the multimodal data 
stream. In the next sections, we introduce the 
psychophysical sensors and measures that we are 
currently exploring.  

3.2 Physiological Sensors and 
Cognitive State Estimation 

Various proposed cognitive states such as arousal, 
and workload are quantified in terms of 
physiological parameters. For example, heart rate 
variability (HRV) can provide a measure of arousal 
(Hoover & Muth, 2005). Eye position tracking may 
indicate visual attention and stress. The EEG can 
provide brain based measures of psychological 
constructs such as cognitive workload. Thus, a 
multi-modal data acquisition strategy may be 
necessary for accurate cognitive state estimation 
(Erdogmus et al., 2005; Cerutti et al., 2006). 
However, synchronizing and determining relevant 
meaning of the multiple data streams is an ongoing 
issue.  

Figure 2 represents examples of state-of-the-art 
psychophysiological sensing devices within our lab. 
The ASL 6000 eye tracker (www.a-s-l.com) shown 
in Figure 2 utilizes a head tracker with pan tilt 
capabilities to track the corneal reflection of the 
user. The B-Alert EEG (www.b-alert.com) provides 
classifications for engagement, mental workload, 
distraction and drowsiness (Berka et al., 2005). The 
Wearable Arousal Meter (WAM, 
www.ufiservingscience.com) also measures arousal 
however does so by utilizing inter-heartbeat interval 
(IBI) changes associated with task performance. 
Changes in IBI reflect the Respiratory Sinus 
Arrhythmia (RSA), which correlates with autonomic 
nervous system states (Hoover & Muth, 2004). Also 
shown are the respiratory, temperature, and GSR 
sensors of Thought Technologies InfinitiPro wireless 
system (www.thoughttechnologies.com). Overall, 

the sensors provide a portable solution for capturing 
real-time neural and behavioral responses training in 
a naturalistic environment. 

 
Figure 2: Sensor suite examples. 

3.3 Block-wise Multimodal Signal 
Processing/ feature Extraction 

The data generated from various sensors over time is 
enormous. To draw meaningful conclusions and to 
classify cognitive state in real-time, while also 
providing the feedback to the learner, the data may 
be effectively handled in a block processing 
procedure. Figure 3 provides a general overview of 
block processing as it applies to multimodal signal 
processing. 

 
Figure 3: Multi-modal signal processing block. 

The first block of the system synchronizes the 
data from various sensors. Multi-rate Digital Signal 
Processing (DSP) techniques such as 
decimation/interpolation are used to match the 
sampling frequency of various sensors. The data also 
needs to be time-synchronized to a unique clock-
time, so that there is no error interpreting the data in 
further blocks. 

The next block of feature extraction is a very 
important step in processing the data emanating 
from the sensor suite. The physiological measure 
will dictate what type of feature is to be extracted 
and the level to which this feature will provide 
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meaningfulness to the derived metric. In the 
following sub-section we will give an overview of 
typical features used from various sensors in the 
literature.  

3.3.1 Heart Rate Features 

The most popular feature used from the ECG data is 
the power spectral density (PSD) of the IBI. The 
PSD analysis provides a means to evaluate various 
autonomic nervous system influences on the heart 
efficiently. Most of the recent research focuses on 
quantifying the change in RSA as a measure of vagal 
tone activity influencing the heart (Hoover & Muth, 
2005; Keenan & Grossman, 2006; Aysin & Aysin, 
2006).  

3.3.2 Blood Pressure Features 

Blood pressure also affects heart rate modulation 
through the baroreceptor reflexes (Sleight & 
Casadei, 1995). The main challenge is to obtain a 
continuous measure of arterial blood pressure 
(ABP). The photoplethysmogram (PPG) signal is 
much more accessible and easily acquired in 
continuous manner as compared to direct 
measurement of the ABP signal. Recent work by 
Shaltis et al, (2005) discusses the calibration of the 
PPG signal to ABP signal. 

3.3.3 Eye Tracking Features 

The ASL 6000 eye tracker uses an IR camera to 
capture images of the eye. An image processing 
algorithm detects the dark pupil area in the eye and 
the glint of light coming off of the eye. Using these 
two measures, the learner’s point of gaze (POG) is 
calculated. After proper calibration, the learner’s 
POG can be transformed into a point on the screen 
correspond to where he or she is looking. 

Various features could be extracted from the 
horizontal and vertical co-ordinate data, such as 
fixation intervals, speed of eye movement, and 
direction of eye movement. Marshall (2007) used 
these features as inputs to a neural network to 
classify cognitive states such as relaxed/engaged, 
focused/distracted, and alert/fatigued. The authors 
also state that as the data captured at the rate of 60-
250 Hz, the states could be predicted in real time. 

3.4 Data Fusion, Cognitive State 
Estimation 

Once appropriate features psychometric data are 
extracted, a strategy is needed for defining the 

mathematical relationship between the feature the 
state change.  For example, Marshall (2007) used 
features extracted from the eyetracker (e.g., eye 
blinks, eye movement, pupil size, and divergence) to 
classify cognitive activity into ‘low’ and ‘high’ 
activity measures. The authors used discriminant 
function analysis to create a linear classification 
model. A feed-forward neural network architecture 
was trained with backpropagation learning scheme 
to create a non-linear classification using the 
eyetracker features. 

We are in the process of creating 
multidimensional classifiers based upon feature 
analysis across multiple psychophysiological 
metrics. These classifiers will eventually index 
levels of cognitive state, which in turn will drive the 
mitigation selection process of the AIA. The pilot 
work presented in the next section highlights current 
results. 

4 PRELIMINARY RESULTS 

4.1 Sensor Sensitivity in Cognitive 
State Estimation 

We are currently investigating the sensitivity of the 
multimodal sensors to define cognitive state changes 
dynamically. For example, Figure 4 shows 
eyetracker data merged with the instantaneous 
arousal level of the observer, as the observer 
passively views a series of varying visual stimuli. 
The arousal metric is calculated from the heart rate 
data and was obtained using the WAM (Hoover & 
Muth, 2005).  

In Figure 4(d), the ellipse represents the current 
viewing location of the observer. When the observer 
moves his or her eyes in a vertical direction, the 
major axis of the ellipse appears as vertical. A 
diagonal movement of the eyes will produce a circle 
as shown in Figure 4(a) and 4(c). Fixations are 
illustrated in 4(c). As the observer fixates onto a 
point of interest, the ellipse becomes a dot. The 
fixation time can be presented along with the 
fixation point in real-time or in an after action 
review format.  

The arousal levels are mapped to the ellipse via 
colors ranging from red for high, yellow for 
medium, and green for low. The scale used to 
change the color will be verified experimentally 
using a variation of the International Affective 
Picture Sort (Lang et al., 2005). These transformed 
features may further be used to develop 
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multidimensional metrics with which to predict 
visual attention and arousal states of the learner.  

 
Figure 4: Four screen captures from our system, showing 
the observer’s current gazing location along with the 
arousal (Images: Lang et al., 2005). 

4.2 Identifying Baseline Values  

Understanding how multimodal psychometric data 
combine to predict cognitive states is only one part 
of the problem in AIA design. Another issue is 
identifying initial baseline values that will set the 
system indices and determine the appropriate 
classification of the learner’s cognitive state. Not 
only will these baseline values vary based upon 
individual difference, they may also vary during the 
training session. 

In a recent study, we monitored the arousal state 
of persons placed in a mixed reality scenario 
representing an every day social experience. The 
social interaction was classified as friendly (e.g., 
mutual regard) or rude (e.g., confrontational). Figure 
5 shows the percent high engagement as measured 
by the EEG and the mean skin conductance for a 
single participant.  We used a multiple baseline 
approach to identify points in the scenario that may 
indicate a new baseline score.   
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Figure 5: Skin conductance mean amplitude with 95% 
Confidence Interval and % High Engagement as measured 
by the EEG. 

As shown, high engagement alone would not capture 
the change in state of the participant accurately. 
Regardless of variability, the sustained arousal 
carried over from experiencing the rude interaction 
may indicate a change in baseline that must be 
account for in order to appropriately select the next 
mitigation. Multimodal data is necessary to construct 
an appropriate metric to capture this type of 
sustained effect. 

5 CONCLUSIONS 

In this paper we reviewed the historical aspects of 
ITS design and discussed a new direction in 
combining current learning theory with adaptive 
system theory. The resulting AIA represents a step 
forward in providing on-demand training in a 
complex and contextually relevant training 
environment. The addition of physiological 
measures to estimate the cognitive state of the 
learner is not a novel; however, the data fusion 
techniques and the use of the multimodal data drive 
mitigation selection may present a worthwhile 
contribution to the field. 
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Abstract: This paper describes a computer-based software prototype tool for visualisation of the vocal-tract, during 
speech articulation, by means of a mid-sagittal view of the human head. The vocal tract graphics are 
generated by estimating both the area functions and the formant frequencies from the acoustic speech signal. 
First, it is assumed that the speech production process is an autoregressive model. Using a linear prediction 
analysis, the vocal tract area functions and the first three formants are estimated. The estimated area 
functions are then mapped to corresponding mid-sagittal distances and displayed as 2D vocal tract lateral 
graphics. The mapping process is based on a simple numerical algorithm and an accurate reference grid 
derived from x-rays for the pronunciation of a number English vowels uttered by different speakers. To 
compensate for possible errors in the estimated area functions due to variation in vocal tract length between 
speakers, the first two sectional distances are determined by the three formants. Experimental results show 
high correlation with x-ray data and the PARAFAC analysis. The tool also displays other speech parameters 
that are closely related to the production of intelligible speech and hence would be useful as a visual 
feedback aid for speech training of hearing–impaired individuals. 

1 INTRODUCTION 

The process of learning to speak in the case of 
people with normal hearing is primarily aided by 
auditory feedback. However, for those who suffer 
from deafness, learning to speak naturally is a very 
difficult process. With limited auditory capability, a 
hearing-impaired person often lacks models of 
speech targets necessary to produce normal speech. 
In an effort to overcome this difficulty, many 
attempts have been made to provide a substitute for 
the feedback mechanism with visual speech display 
devices (Choi, 1982; Bunnell et. Al., 2000; Mashie. 
1995). However, without any articulatory correlate, 
the benefits of such devices were limited. In order to 
produce a natural and intelligible speech, a speaker 
needs to know how to use the vocal organs in 
regards to correct position of the articulators, 
breathing, loudness, rhythm and nasalization 
(Eriksson, et. al., 2005) . Hence the availability of 
visual information regarding these aspects would 
greatly help the hearing-impaired improving their 
speaking abilities. 

This paper describes a system which visualises a 
speaker’s vocal tract by means of mid-sagittal 

graphical plots of the human head. The vocal tract 
shapes, and other related speech parameters, are 
graphically displayed on a PC-monitor using 
information extracted directly from the acoustic 
speech signal as picked up by a microphone or 
loaded from an audio file. To estimate the necessary 
parameters, it is assumed that the speech production 
process is an autoregressive (AR) model. The vocal 
tract area functions, log spectra and the first three 
formants are then estimated, by employing a linear 
prediction (LP) analysis, and used to construct the 
corresponding vocal tract graphics and other 
parameters display.  

2 SPEECH ANALYSIS MODEL 

Speech is the acoustic wave that is radiated from the 
vocal system when air is expelled from the lungs and 
the resulting flow of air is perturbed by a 
constriction somewhere in the vocal tract. This 
speech production process can be practically 
modelled using the well-known all-pole source-filter 
approach, which represents the speech signal in 
terms of an AR model (Quatieri, 2002). According 
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to this model, speech is split into a rapidly varying 
excitation signal, generated by an impulse train input 
or a random noise generator, and a slowly varying 
filter representing the vocal tract. Voiced speech is 
produced by taking the impulse train as excitation. 
In unvoiced segments, the random white noise is 
used as the excitation. The output speech is 
produced by passing the excitation through the vocal 
tract filter. Hence, changes in the vocal tract 
configuration, reflected by the filter, produces 
corresponding changes in the spectral envelope of 
the speech signal.  Therefore to estimate the vocal 
tract shape form the speech signal, an inverse filter 
model has to be used (Miller & Mathews, 1963).  

The speech analysis model used in this work is 
shown schematically in Figure 1. In this model, it is 
assumed that the speech to be analysed is limited to 
periodic non-nasalised voiced sounds so that the 
filter in Figure 1 is driven by an impulse train. This 
means that the filter includes all the contributions 
from the glottal wave, the vocal tract and the 
radiation impedance at the lips. The inverse filter is 
assumed to be a linear filter with only zeros in its 
transfer function, and the power spectral envelope of 
the speech is assumed to be approximated by poles 
only. Accordingly, the transfer function of the 
inverse filter can be expressed in terms of z-
transform notation as: 

1,)( 0
0

=∑=
=

− azazA
M

i

i
i  (1) 

where ai are the coefficients of the inverse filter, M 
is the order of the filter, Tjez ω=  and T is the 
sampling period. Here, a0 affects only the gain of the 
system, hence no generality is lost by setting  a0 = 1. 
The objective of this analysis is to obtain a close 
representation of the vocal tract. To obtain this 
representation, one needs to estimate the coefficients 
of the optimal inverse filter described by equation 
(1). Wakita (Wakita, 1973) has shown that A(z) is 
also an inverse transfer function of a non-uniform 
acoustic tube model of the all-pole vocal tract 
model. Thus the optimal inverse filter process in the 
above speech analysis model can be equivalently 
replaced by a filtering process of an acoustic tube of 
length l, which is the assumed length of the vocal 
tract, divided into arbitrary number, M, of sections 
with equal length Δl, provided that: 
(a) The continuity conditions for the volume 

velocity and sound pressure are satisfied at each 
junction between two adjacent sections; 

(b) The length of the individual tube sections, Δl, are 
kept short compared to the wavelength at the 
highest frequency of interest; 

(c) No losses are accounted for, and  
(d) It should also be noted that the identity of the 

filtering process of the above described acoustic 
tube to that of the optimum inverse filter is 
obtained under the condition 

Tjclj eez ωω == Δ /2 , where c is the velocity of 
sound. Consequently, the sampling frequency Fs 
=1/T and the number of sections M=l/Δl is 
constrained by  (Wakita, 1973): 

l
cM

Fs 2
=  (2)

 Therefore, as long as Fs is constant, the vocal 
tract length, l, is assumed to be fixed here and M, 
i.e. number of the sections or the filter’s order, 
has to be chosen to satisfy equation (2).    

3 MODELLING THE VOCAL 
TRACT  

The vocal tract can be modelled as an acoustic tube 
of varying diameter. If we abstract from the vocal 
tract curvature, the acoustic tube can be divided into 
cylindrical sections of equal lengths. Depending on 
the shape of the acoustic tube, a sound wave 
travelling through it will be reflected in a certain 
way so that interferences will generate resonances at 
certain frequencies. These resonances are called 
formants. Their location largely determines the 
speech sound that is heard.  

It is well known that the linear prediction (LP) 
analysis of speech signals is based on an AR speech 
production model (Markel & Gray, 1976). It has also 
been shown by several researchers that the LP 
process is equivalent to the filtering process of a 
non-uniform acoustic tube model where the tube is 
divided into an arbitrary number of sections of equal 
length (Wakita, 1973; Markovic, 1999). Thus, if the 
conditions stated at the end of Section 2 are 
satisfied, and if the speech signal is pre-emphasis to 
compensate for the spectral characteristics of the 
glottal excitation source and for the lips radiation 
impedance, then estimates of the vocal tract area 
functions can be obtained by computing the 

Figure 1: The speech analysis model. 
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reflection coefficients at the junctions between 
adjacent sections of the equivalent acoustic tube. 
This can be done by using an LP model of the 
appropriate order and the following relation: 

i

i
ii

ii

ii
i AA

AA
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μμ
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= +
+

+

1
1

1
1

1  (3) 

where Ai and Ai+1 are the cross-sectional areas of two 
adjacent sections of the non-uniform acoustic tube 
indexed in ascending order from the lips to the 
glottis, and μi is the reflection at the junction 
between these two sections.  

4 SYSTEM DESIGN AND 
DESCRIPTION 

Using the vocal tract model described in Section 3, a 
PC-based prototype system for visualisation of the 
human vocal tract shapes and other associated 
speech parameters has been designed and developed. 
The system uses the PC’s sound card operating with 
8 kHz sampling frequency and 16-bit resolution, to 
extract the necessary speech parameters directly 
from the acoustic speech waveform. shows The 
block diagram given in Figure 2 depicts the 
functionality and main processing blocks of the 
developed system.  

For simplicity, our system uses an initial 
assumption that the vocal tract is 17 cm long. As the 
PC’s sound card samples the speech at the rate of 8 
kHz, thus satisfying equation (2) requires M to be 
equal to 8, i.e. the initial use of an acoustic tube with 
8 sections. Consequently, an 8th order LP analysis 
model is employed by the system.  

4.1 Estimation of the Area Functions 

The speech signal is segmented into 30 ms frames 
using a hamming window of an appropriate length. 
A pre-emphasis of an approximately 6 dB/octave is 
applied to the current frame using an FIR high-pass 
filter of the form: 

19375.0 −−= nnn xxy  (4) 
The reflection coefficients are computed by applying 
an 8th order LP analysis model using an 
autocorrelation method that uses LPC uses the 
Levinson-Durbin recursive algorithm due to its 
simplicity and ease of its implementation within the 
chosen computing environment. Equation (3) is then 
used to estimate the corresponding vocal tract area 
functions as discussed in Section 3. As an example, 
Figure 3 (the upper half) shows the normalised area 
functions for the English vowel /UH/, as computed 

by the system using an 8-section acoustic tube 
model. The LP model is also used to obtain the log 
spectra, whose peaks are then marked to identify and 
estimate the first three formants, as also illustrated in 
lower half of Figure 3. 

Figure 2: Functional block diagram of the system. 

4.2 Mapping to Mid-sagittal Distances 

Since the human vocal tract does not resemble an 
exact circular tube, there is therefore a need to 
modify the above computed area functions such that 
they map correctly into mid-sagittal distances of the  
vocal tract profiles. Several areas to profile 
transformation techniques have been developed 
(Heinz & Stevens, 1965). Most such techniques rely 
on derivation of suitable application-specific 
transformation parameters using complex analysis of 
x-ray and cine-fluorograms of various speakers. A 
common technique is the αβ model (Heinz & 
Stevens, 1965), which is described by:  

 ii

i
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iiii

AddA ββ

α
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where Ai is the cross-sectional area of a given 
section, di is the mid-sagittal distance and αi and βi 
are section dependent parameters. In our system, we 
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Figure 3: Vocal tract area functions and the first three 
corresponding formants for the vowel /UH/. 

employ a new method based on the above model to 
measure the mid-sagittal distances along the lines of 
a semipolar grid (See Figure 4) according to the 
following procedure: 
(a) The vocal tract was assumed to be divided into 

18 equal sections. 
(b) In the vocal organs, the shortest path from the 

upper to the lower part of each section was 
selected. 

(c) The upper jaw was assumed to be fixed and the 
lower jaw was movable. 

(d) A reference grid for the upper jaw based on x-
ray data of the lateral shape of the vocal tract and 
on results of the PARAFAC analysis (Harshman, 
et. al., 1977) was designed, as shown in Figure 4. 
In this grid, straight perpendicular lines were 
drawn through the centre of each section, in 
accordance with (b) above. 

(e) The 8 area functions estimated by the 7th order 
LP model were re-sampled and redistributed to 
fit the 18-section vocal tract configuration used 
in the system. 

(f) Based on equation (5), a simple numerical 
procedure is used to estimate the values of the 
coefficients α and β that minimize the root mean 
squared error between the area functions 
estimated in (e) above and those derived from 
measurement data obtained from  (Harshman, et. 
al., 1977) for pseudo-sagittal dimensions of the 
tongue position for five speakers each saying ten 
English vowels. The estimated area functions are 

then interrupted as functions of α andβ, as given 
in equation (5), to compute the mid-sagittal 
distances. 

 

 
Figure 4: The reference upper jaw grid used in the system. 

As indicated previously, initially the vocal tract 
is modelled in our system with an assumption that it 
is 17 cm long. It is known, however, that the vocal 
tract length for the utterance of various sounds 
varies even for a single speaker. In addition, the 
male vocal tract is generally slightly longer than 17 
cm, while children and females have shorter vocal 
tracts (Kirlin, 1978). Hence, the above assumption 
may cause an error in the distribution of the area 
functions along the assumed vocal tract 
configuration. To compensate for this possible 
source of error, the first two mid-sagittal distances 
have been determined from the three estimated 
formants F1, F2 and F3 as follows (Ladefoged, et. al., 
1978): 
 

421322211 /3 CFFCFFCFCX +++=  (6) 
 

where X1 is the mid-sagittal distance between the 
lips in cm, C1 = 0.3×10-3, C2 = −0.343×10-6, C3 = 
4.143, C4 = −2.865. The mid-sagittal distance 
between the upper and lower teeth, X2, is estimated 
by: 

2
31

2
XXX +

=  (7) 

where X3 is the mid-sagittal distance extracted from 
the vocal tract area function that corresponds to 
section 3. In addition, the estimated formants have 
been used to adjust the rounding degree of the lips 
and the height of the jawbone on the designed vocal 
tract lateral graphics.  
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5 RESULTS AND DISCUSSION 

The vocal tract visualisation tool has been designed 
to operate with MS Windows-based PC 
environment. The multi-display window and other 
user’s features of the complete system are shown in 
Figure 5. As can be seen, the system’s screen is 
divided into four windows for displaying the vocal 
tract graphics, the sound intensity, the pitch and the 
first three formants of the speech signal. The system 
can operate in two main modes: (a) near real-time 
mode, whereby the speech signal is picked up by a 
microphone connected to the PC sound card (as with 
the case shown in Figure 5), and (b) non real-time 
mode, whereby the speech signal is either recorded 
by the system or read from a stored audio file, and 
its features are then displayed. It also allows the 
saving of speech/sound signals. For the vowel 
articulation, the user can compare the shape of 
his/hers vocal tract to a reference trace (shown with 
a dashed line in Figure 5) for the correct tongue 
position derived from the measurements data 
reported in  (Miller & Mathews, 1963).  The 
deviation from the reference trace is given for this 
case in the form of a computed mean squared error 
(MSE) of all the estimated mid-sagittal distances.      

Figure 6 shows the vocal tract profiles for 10 
American English vowels, as estimated by the 
system (dashed lines represent reference trace for 
tongue position). For comparison and evaluation 
purposes, the deviations, in terms of MSE values, 
from the reference tongue position data adopted 
from (Harshman, et. al., 1977) are also indicated. In 
general, the obtained results seem to correlate well 
with the reference data.  They were also found to 
correlate well with x-ray data and the PARAFAC 
analysis. Referring to the MSE values shown in 
Figure 6, the system seems to perform particularly 
well in the cases of all the ‘front vowels’, such as 
/IY/, /EY/, /IH/, /EH/ and /AE/, with the MSE 
increasing as the vowel height decreases. With the 
exception of /AA/ and /UH/, the results show 
relatively less accurate correlation with the reference 
data for the cases of the ‘back vowels’.  As vowel 
classification into front and back vowels is related to 
the position of the tongue elevation towards the front 
or the back of the mouth, we believe that the higher 
accuracy in the cases of the front vowels is attributed 
to the formant-based added adjustments of the lips, 
jawbone and front sections of the vocal tract we used 
in our approach.  

On the other hand, the relative length of the 
vowel’s vocalisation seems to affect the accuracy of 
the estimated area functions and hence the displayed 
vocal tract shape. In specific, the system seems to 

give relatively lower accuracy for relatively longer 
vowels, such as /AO/, and complex vowels which 
involve changes in the configuration of the mouth 
during production of the sound, such as /OW/. We 
believe this is due to the fact that the system, in its 
current design, bases its estimation of the speech 
parameters on information extracted from the 2-3 
middle frames of the analysed speech waveform.   

6 CONCLUSIONS 

We have described the process of designing and 
development of a computer-based system for the 
near real-time and non real-time visualisation of the 
vocal tract shape during vowel articulation. 
Compared to other similar systems, our system uses 
a new approach for estimating the vocal tract mid-
sagittal distances based on both the area functions 
and the first three formants as extracted from the 
acoustic speech signal. It also utilises a novel and 
simple technique for mapping the extracted 
information to corresponding mid-sagittal distances 
on the displayed graphics. The system is also 
capable of displaying the sound intensity, the pitch 
and the first three formants of the uttered speech. It 
extracts the required parameters directly from the 
acoustic speech signal using an AR speech 
production model and LP analysis. Reported 
preliminary experimental results have shown that in 
general the system is able to reproduce well the 
shapes of the vocal tract, with real-time sensation, 
for vowel articulation. Work is well underway to 
optimise the algorithm used for extraction of the 
required acoustics information and the mapping 
technique, such that dynamic descriptions of the 
vocal tract configuration for long and complex 
vowels, as well as vowel-consonant and consonant-
vowel are obtained.  Enhancement of the system’s 
real-time capability and features, and facilitation of 
an integrated speech training aid for the hearing-
impaired are also being investigated. 
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Figure 5: System’s multi-pane screen display and user’s extracted features. 

 

 
Figure 6: Vocal tract profiles for 10 American English vowels as estimated by the system (dashed lines represent reference 
traces for tongue positions). 
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Abstract: The aim of this work was to create a software that, from the phonetography measures of elderly women, 
generates the phonetogram, evaluates its area, vocal extension (VE), and the dynamic extension (DE) and 
elaborates a database. The phonetography exams were carried out based on the European Phoniatrics Rules. 
The software tools used for development were Delphi® and Paradox®. The results related to the voice 
evaluation of elderly women compares favorably with the normal aging process. The software stores and 
recovers the exams data as well as evaluates voice characteristics and presents graphical outputs in an 
appropriate way.  

1 INTRODUCTION 

The speech has its origin at the vocal folds level, 
through the air flux coming from the lungs, passing 
throughout the larynx constriction, the equalized by 
the vocal tract and radiated by the lips (Boone and 
McFarlane, 1994). 

The voice exam only is complete when the sound 
properties are stored and analised in some way 
(Damsté, 1970). 

The phonetography is a exam that allows to 
evaluate both the frequency extension and dinamic 
range for each frequency value. The result of this 
method produce a graphic called phonetogram. This 
exam allows to identify changes in the voice 
associated with common pathological conditions to 
verify the progression resulting from the vocal 
therapy or simply to follow the voice development 
of the individual (Damsté, 1970; Gramming, 1988; 
Higgins and Saxman, 1991; and Teles-Magalhães, 
Pegoraro-Krook and Pegoraro, 2000). 

The rapid growth of elder population has brough 
some concern in the last few decades. The concern is 
more related to the added life in years than the added 
years in the life (Leden, 1977). These considerations 
bring some questions like : what is the vocal 

extension of elderly people? What is the boundary 
between aging and pathological conditions in the 
vocal changes ?  

Several papers about voice in the aging have 
maked clear that there is a great interest in better 
knowing the voice characteristics of this population. 
So the effects of the age on the voice have to be 
clearly defined in order to stablish the healthy range 
of the voice characteristics.  

The effects of the age on the vocal behavior 
seems to be different in type and level for men and 
women (Higgins et al., 1991). In this work just the 
women voices are considered.  

The informatic has auxilied the speech therapists 
in their diagnosis efforts. Unfortunately, for the 
phonetography case, the few softwares 
commercially available do not present database 
facilities or have prohibitive cost, making the 
storage or recovery of data cumbersome. 

Taking in account all this shortcomings, the 
objective of this work was to elaborate a software 
that from the measures of  phonetography of elderly 
women elaborates the phonetogram, evaluation of its 
area, of the vocal extension (VE) and the dinamic 
extension (DE) storing all this information in a 
database. 
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2 MATERIAL AND METHODS 

2.1 Phonetography 

Forty volunteers women from Bauru city, São Paulo 
state participated of this work, aging from 60 to 84 
years old ( X=68,2  ± 5,74 years old). All of these 
women were interviewed besides the submission of 
perceptive and audiologic exams. 
The exam procedures follow the standards proposed 
by Shultte e Seidner (1993) and recommended by 
the European Phoniatrics Union. Basically the 
exams were issued in a acoustic room of the 
Experimental Phonetic Laboratory of the Hospital de 
Reabilitação de Anomalias Craniofaciais, of the São 
Paulo University. A Casio Model CA-110, 
miniorgan was used to generate the musical notes, 
and an Entelbra 142 analogical sound level meter 
(sound pressure level gauge) to obtain the intensity 
measurements. 

2.2 Database Program  

Equipment (hardware): one IBM-PC® presenting the 
following characteristics: Pentium IV® processor 
(3.0 GHz), RAM memory 512 Kb, hard disk of 80 
Gb and CD_ROM  Creative® was used. The video 
resolution was 800 x 600 pixels per inch. Also has 
been used a HP Deskjet 692C. 

Programs (software): the software was developed 
in Windows XP® using Delphi® from Borland 
Inprise Corporation (version 5.0) and Paradox® from 
Paradox Corporation for the database. 

2.3 Parameters Evaluated from 
Phonetography 

Vocal Extension evaluation: by using the 
fundamental frequencies values (F0), in semitones 
(st), it is applied the following formula: 

 
EV = F0 max – F0 min (1) 

 
Where: 

 EV = Vocal extension (st); 
 F0 max = Maximum frequency (st) produced 

by the individual; 
 F0 min = Minimum frequency (st) produced 

by the individual; 
 

All evaluations related to the frequency are made 
using semitones (st). 

 

Dynamic Extension and Maximum Dynamic 
Extension: after all obtained values for maximum 
and minimum magnitude for each frequency to be 
introduced, the following formula for dynamic 
extension is applied:  

 
DE = Int max – Int min (2) 

 
where: 

 DE = Dynamic extension (dB); 
 Int max = Higher magnitude (dB) produced by 

the individual; 
 Int min = Lower magnitude (dB) produced by 

the individual. 
 
The maximum dynamic extension (MDE) is the 

higher dynamic extension found among all tested 
frequencies. 

Phonetogram Area Evaluation: the area 
evaluation follows the standard proposed by Shultte 
e Seidner (1993). In order to evaluate the area the 
following formula is used: 
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where: 

 A = Area of the phonetogram (cm2); 
 Int max = Higher magnitude (dB) produced by 

the individual; 
 Int min = Lower magnitude (dB) produced by 

the individual; 
 St = Semitone where the maximum and 

minimum magnitude were evaluated; 
 n = Number of elements (semitones) of the 

phonetogram. 

3 RESULTS 

3.1 Exam Data Evaluation 

Related to the minimum frequencies, their values 
varied from 110 Hz or 33 st to 220 Hz or 45 st. The 
average value for minimum frequencies was 154 ± 
24,98 Hz or 38,68 ± 2,80 st. 
For the maximum frequencies of vocal extension, 
the higher value was 659 Hz or 64 st, and the lower 
value was 330 Hz or 52 st. The average value for the 
maximum frequencies was 478,88 ± 56,11 Hz or 
58,35 st ± 2,04 st for all sample.  
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For the vocal extension, the maximum value was  
609 Hz and the lower was 172 Hz or 10 st, with 
average of  324,05 ± 56,97 Hz or 19,70 ± 3,09 st. 
The maximum dynamic estension (MDE) varied 
from 16 to 43 dB. The average value found in the 
sample was 29,08 ± 7,09 dB. 
As far as the area of the phonetogram is concerned, 
the lower area found was 162,0 dB.st or 7,3 cm2 
and the higher area was 654,5 dB.st or 29,5 cm2.  
The average value for this parameter considering all 
the sample was 404,8 ± 135,1 dB.st corresponding 
to 18,2 ± 6,1 cm2. 

3.2 The Software 

The computer program developed, that managing the 
database of phonetography generating the 
phontogram, is compose by eight modules for 
diferents tasks: 

Menu – this module shows all available options 
of the program. 

Patient schedule – This module contains all 
information about the patient and, allows to include 
or make alterations in the schedule.  

Phonetography Schedule – The user can 
manipulate the data related to phonetography 
(frequency values (st) and magnitudes (dB)). 
Through these values, the program can evaluates the 
Vocal Extension (VE), the Maximum Dynamic 
Extension (MDE) and the graphic area. Also, 
protocols of palate evaluation, speech, voice and 
larynx have been included in this module.  

Phonetogram Comparisons – in this module, 
comparisons between 2 or more (maximum 6) 
phonetograms can be done. Any phonetogram can 
be choose by the user from database.   
 

 
Figure 1: Comparison between phonetograms. 

Data Filter – this module allows the user to select 
any specific class of patients. For example, it is 
possible to select all patients from 50 to 55 years old 
or all patients with a specific larynx dysfunction.   

Printer Configuration – this module runs a 
Windows® routine to configure the system printers.  

Software Information – this module shows all 
information related to the program.  

End of Program – this module asks for the end 
procedure and, through the confirmation, closes the 
database and concludes the process. 

4 DISCUSSION AND 
CONCLUSION 

4.1 Characteristics of Elderly Women 
Voice 

Certainly the advance of the age causes lower 
performance of the biologic systems. Particularly, 
the vocal behavior of women studied in this work 
confirms the procedure of normal aging.   
 

Considering the results, it can be observed that: 
 Vocal extension was expanded for low 

frequencies; 
 Reduction of higher boundary of the vocal 

extension; 
 Decreasing of the number of tones of vocal 

extension; 
 Restriction of the boundaries of the minimum 

magnitudes; 
 Restriction of the boundaries of the maximum 

magnitudes; 
 Reduction of the maximum dynamic 

extension; 
 Reduction of the phonetogram area; 
 Better control of the vocal magnitude at 262 

Hz or 48 st, showing high vocal comfort at 
this frequency. 

4.2 Database Utilization 

The easy use of the exam information of the 
database has become a useful tool for the voice 
specialist. The better flux information saves time 
with schedule or data files in different places of the 
hard disk.  

The fast parameters evaluation, after the 
frequency and magnitude data insertion, helps the 
diagnosis. In many cases, the phonetogram area 
evaluation can not be at the clinical practice because 
demands a more complex mathematical formula. 

The over plot facility makes the comparison 
instantaneous. In this way, the comparison among 
patients or even between pre and pos-therapy makes 
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the software an attractive tool. Also the visual 
feedback can helps the patient to correct his vocal 
gesture.  

In conclusion, this software is a potential 
auxiliary tool for voice specialists by presenting 
quantitative values of the voice and allowing 
recording and comparing the voice at distinct times 
of the rehabilitation procedure.  
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Abstract: Human voice has been a matter of interest for different areas as technological development and medical sci-
ences. In order to understand the dynamic complexity of healthy and pathologic voice, researchers have
developed tools and methods for analysis. Recently nonlinear dynamics has shown the possibility to explore
the dynamic nature of voice signals from a different point of view. The purpose of this paper is to apply en-
tropy measures and phase space reconstruction technique to characterize healthy and nodule affected voices.
Two groups of samples were used, one from healthy individuals and the other from people with nodule in
the vocal fold. They are recordings of sustained vowel /a/ from Brazilian Portuguese. The paper shows that
nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic
component of the human voice. Since the nodule pathology is characterized by an increase in the signal’s
complexity and unpredictability, measures of entropy are well suited due to its sensibility to uncertainty. The
results showed that the nodule group had a higher entropy values. This suggests that these techniques may
improve and complement the recent voice analysis methods available for clinicians.

1 INTRODUCTION

The human voice is one of the principal means of
communication, and the acoustic signal carries signif-
icant information about some individual characteris-
tics. The complex normal or pathologic voice produc-
tion mechanism involves different variables. Vocal
fold biomechanics in association with aerodynamic
variables play an important role in voice production
and they are linked to the voice quality changes.

In order to study normal voice and the different
voice disorders, scientists from diverse areas devel-
oped several methods and tools for measurement, di-
agnosis and voice treatment. Therefore traditional
acoustic analysis is an essential and familiar tool for
physicians and speech therapists.

Traditionally, voice has been modeled as a linear
process and acoustic analysis tools are based in lin-
ear system theory. Acoustic parameters evaluate per-
turbation or noise contents in the voice signal. The
classical perturbation parameters evaluate jitter (fun-
damental frequency variation), and shimmer (ampli-

tude variation). Two parameters used to determine the
voice signal noise quantity are the deterministic Har-
monic to Noise Ratio (HNR) and the Coefficient of
Excess (EX) that evaluate the noise from a statistical
point of view (Davis, 1979).

Another interesting parameter is the pitch ampli-
tude (PA), which is a normalized measure of the am-
plitude of the pitch period peak of the residue sig-
nal autocorrelation function. It has a high value for
healthy vowel signals that have clearly defined pitch
period. However, for breathy pathological voices, the
PA is low because the signals have weak periodicity
(Davis, 1979).

Although, these linear tools have been used over
the years, they are based in the assumption that voice
is a linear phenomenon. But, voice production is
a complex mechanism that involves different vari-
ables and exhibits nonlinearities (Kumar and Mul-
lick, 1996). Considering human voice production
(healthy and pathologic) as a nonlinear system, it can
be described by a number of observable output states.
Therefore it can be used in the construction of a state
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space description of the system behavior. Voice sig-
nal, as a time series data, makes available the study of
an underlying dynamic and provide the necessary in-
formation to obtain a reconstruction of the state space
behavior of the system. Thus, phase space reconstruc-
tion technique can be used for voice characterization.

Nowadays, the use of entropy measures is
widespread in many fields of science, whether ap-
plied to stochastic processes or dynamical systems.
As presented by (Amigó et al., 2007), the applica-
tion of entropy to discrete phase space is very natu-
ral, since its concept has been extended from deter-
ministic continuous dynamics to stationary random
processes and discrete dynamical systems. (Amigó
et al., 2007) present a quantity called discrete entropy
to deal with finite-state systems. This quantity asymp-
totically converges to conventional entropy, as evi-
denced by several examples.

As an example of the applicability of entropy,
(Kirk and Jenkins, 2004) show that the Kolmogorov
entropy is used to investigate software metrics, allow-
ing early assessment of the design quality of software
project. Also, in (Lake et al., 2002), an entropy mea-
sure called sample entropy was proposed. The objec-
tive was to improve the diagnosis of neonatal sepsis
by monitoring the heart rate characteristics. The rate
variability is interpreted as changes in the complex-
ity of the underlying physiological processes. De-
spite the fact the method showed sensitivity to other
signal’s parameters, the results were interesting and
could be used for monitoring at-risk infants.

Measures of entropy are intimately related to the
predictability of signals. These measures can be used
to evaluate forecast skill of a system. According to
(Kleeman, 2002), some progress has occurred in us-
ing processes ensemble spread as an indicator of pre-
dictability. This is formalized in a parameter called
predictive power (Schneider and Griffies, 1999).

Natural processes seem to be unpredictable due
to several reasons, as described in (Crutchfield and
Feldman, 2003). The most important reasons are:
unknown rules that govern the system, existence
of intrinsic mechanisms that amplify fluctuations,
observer-induced sources of randomness, insufficient
volume of data, and, perhaps, the dynamics is too
complicated to have predictions evaluated.

Since the presence of pathologies on the vocal
folds results in behavior change of the voice produc-
tion system, the produced signals are going to be less
predictable than the healthy ones. This work aims to
try to detect these changes using simple entropy mea-
sures to differentiate two kinds of signals: healthy and
pathological. For this paper, the pathology studied is
the presence of nodule in the vocal folds.

In Theory a brief description of the entropy es-
timation is presented and also an explanation about
the vocal fold nodule pathology. In Materials and
Methods the voice samples used in the study are de-
scribed in some details. After that, the phase space re-
construction and entropy estimation methods are pre-
sented. Also, a small discussion is made about the
voice samples’ processing. In Results examples of
signals’ phase space analysis are shown with the gen-
eral results of entropy measures. In Conclusion the
final comments about the work is presented.

2 THEORY

In this section a brief explanation of the entropy the-
ory is presented. Also, a description of vocal fold
nodules is shown.

2.1 Entropy

According to (Cover and Thomas, 1991), entropy is a
quantity defined for any probability distribution with
properties that agree with the intuitive notion of infor-
mation measures.

One of the entropy’s first concepts was presented
in (Shannon, 1948) as the definition of a measure of
uncertainty of a random variable. Considering a ran-
dom variable X that assumes values x ∈ χ where χ is
a finite set, the entropy H(X) can be defined by Equa-
tion (1), with units in bits.

H(X) =−∑
x∈χ

p(x) log2 p(x) (1)

The probability of x, Pr{X = x}, is denoted by p(x).
If p(x) = 0, p(x) log2 p(x) = 0 by convention. This
quantity is dependent on the distribution of X instead
of the actual values of the random variable. As dis-
cussed in (Crutchfield and Feldman, 2003), the en-
tropy measures the average amount of bits necessary
to store outcomes of the random variable.

2.2 Vocal Fold Nodules

Individuals with vocal nodules constitute a large part
of the client population at voice clinics (Colton and
Casper, 1996). They are commonly seen in women,
children, salesmen, and teachers who have to use their
voice too frequently. The main symptoms are hoarse-
ness, breathiness, easy vocal fatigue, and throat dis-
comfort. The voice is better in the morning and wors-
ens in the afternoon after voice use (Fisher, 1996).

The vocal nodule is as a benign lesion occurring
on both sides of the vocal folds, strictly symmetric on
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the border of the anterior and middle third of the vo-
cal fold and usually immobile during phonation. The
lesion is confined to the superficial layer of the lamina
propria (Rosen and Murry, 2000; Hirano, 1991).

The vocal folds are subject to several forms of me-
chanical stress during phonation. Vocal fold vibration
during phonation leads to impact stress during colli-
sion between the left and right vocal fold surfaces.
According to different studies, nodules mostly occur
at the midpoint of the membranous vocal folds, where
impact forces are the largest and they are mostly bi-
lateral (Titze, 1994; Jiang and Titze, 1994).

During the closing phase of the folds’ vibration,
the presence of nodules on the outer layer of vo-
cal folds’ tissue inhibits them from being completely
folded on each other. Consequently the glottis clo-
sure is uncompleted, adding turbulent air to the voice
signal. In order to reduce this effect, the subject in-
creases the muscle tension and the subglottal pres-
sure, consequently rising the vocal fold collision
forces (Hillman et al., 1990).

Nodule voice shows perceptually strained/pressed
voice quality and breathiness with various degrees of
turbulent noise. Frequently, the voice also presents
vibrations irregularities, such as roughness and insta-
bility, as well as vocal fry/creak (Hammarberg, 1998).

The nodules are responsible for pitch frequency
and air flow volume changes, also amplitude and mu-
cosal wave reduction and the noise-like turbulence
of airflow in the vocal folds. This is mainly due
to the incomplete closure of the vocal folds, glottal
air leakage, and their asymmetrical vibration because
of their biomechanical parameter alterations (Hugh-
Munier et al., 1997).

3 MATERIALS AND METHODS

In this section the voice samples are addressed show-
ing the groups and acquisition method. After that, the
phase space reconstruction technique and the entropy
estimation method are presented. Finally, the voice
signals’ analysis method is shown.

3.1 Voice Samples

For this study, 28 voice signals divided in two equal
groups were used. The first group was composed of
healthy people with no voice complaints or laryngeal
pathology. The second group was composed of peo-
ple with vocal fold nodules in different stages of dis-
ease evolution according to (Scalassara et al., 2007).
These voice signals are part of a voice database of

the Group of Bioengineering of the School of Engi-
neering of São Carlos at the University of São Paulo,
Brazil. These signals were collected along the past ten
years and used in several studies (Rosa et al., 2000;
Dajer et al., 2005).

All volunteers were diagnosed by physicians of
the Otolaryngology sector and the Head and Neck
Surgery sector of the Clinical Hospital in the Fac-
ulty of Medicine at Ribeirão Preto, Brazil (http:
//www.hcrp.fmrp.usp.br) by means of video-
laryngoscope and stroboscope light.

The data recording was performed using a proto-
col similar to the one presented in (Uloza et al., 2005).
The subjects were asked to produce a sustained vowel
/a/ at a comfortable pitch and loudness level for about
3 seconds. The used microphone was in accordance
to the standards established in Brazil. It was placed at
a distance of 5 cm from the person’s mouth. Consec-
utive trials were performed, selecting the signal with
less voice variability.

As presented in (Davis, 1979), vowel sounds are
generally used in studies of pathological speech be-
cause the vocal folds are vibrating during vowel
phonation. Also, acoustics assessment of laryngeal
function relates to adequacy of sustained vocal fold
vibration. Therefore, in order to collect the data,
the sustained /a/ phoneme was used to evaluate the
acoustical parameters of the samples. In English, this
phoneme is equivalent to “a” in “dogma”.

At voice acquisition, it was necessary to check if
the individual could cope with the phonation interval
and, in negative case, he was asked to stop uttering.
This procedure was important because the mainte-
nance of the utterance causes an increase of the voice
fundamental frequency and an artificial stability on its
production (Rosa et al., 2000). In order to avoid the
influence of transitory phenomena, the start and end-
ing of the acquired voice signal were discarded. Then,
it was possible to ensure that the beginning and end-
ing of voicing did not influence the final result.

After that, the amplitude of the signal was normal-
ized according to its absolute maximum value. It was
necessary to eliminate the influence of different sound
levels from the signals collected. All voices samples
were quantized in amplitude with 16 bits and recorded
in mono-channel WAV format to preserve the fidelity
of the signal. The sampling frequency was 22050 Hz.

3.2 Phase Space Reconstruction
Technique

In order to describe the nonlinear dynamic character-
istics of voice signals, sustained vowel data set was
analyzed with ANL (Análise Não-Linear) software
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(Dajer et al., 2005). This piece of software was devel-
oped using Matlab 7.0 and the Tisean Package (Heg-
ger et al., 1999; Kantz and Schreiber, 2004). The
ANL is based in the phase space reconstruction tech-
nique and represent the vocal folds vibration as an or-
bit trajectory in phase space with time evolution.

The voice signal can be represented by the time
series x(ti), ti = t0 + iT , with i = 1,2, . . . ,N, where
N is the length of the signal and T is the sampling
period (Rabiner and Schafer, 1978). The phase space
reconstruction of this signal is performed by plotting
the time series x(ti) against itself at some time delay
(Ott et al., 1994; Packard et al., 1980).

In order to create the reconstructed space for the
time series x(ti), the method of delays is used (Fraser
and Swinney, 1986; Hegger et al., 1999). A set of m
vectors, called the embedding space, are formed from
time delayed values of x(ti), Equation (2). In this set,
m is the embedding dimension and τ is the time delay.

X(ti) = {x(ti),x(ti− τ), . . . ,x(ti− (m−1)τ)} (2)

When m > 2D + 1, where D is the Hausdorff dimen-
sion, the reconstructed phase space is topologically
equivalent to the original phase space (Fraser and
Swinney, 1986). The delay τ is obtained by the first
local minimum of the mutual information function of
the signal (Fraser and Swinney, 1986).

3.3 Entropy Estimation

In order to estimate the signal entropy, an algorithm
was developed based on the one presented in (Modde-
meijer, 1989) with the optimizations shown in (Mod-
demeijer, 1999). The method is based on a simple his-
togram algorithm with bias correction and minimum
mean square error estimation. In the cited paper, the
author presents several examples that evaluate the al-
gorithm showing its reliability.

The principle of the method is to try to estimate
the probability distribution function (PDF) of the sig-
nal under study. This is performed by dividing the
function in a rectangular grid with I equally ∆x-sized
cells. The occurrences of the signal’s points in each
cell, ki, are summed. Then, the probabilities of each
cell, pi, is replaced by the estimative ki/N, where N
is the total number of samples of the signal. There-
fore, the entropy estimator of Equation (3) is ob-
tained, since the logarithms have base 2, the units are
in bits. The bias correction for this estimator for dis-
crete systems is given in Equation (4).

Ĥx =−∑
i

(
ki

N
log2

ki

N

)
+ log2∆x (3)

E{Ĥx} ≈ Hx−
I−1
2N

(4)

An example of the use of this algorithm is now
shown. It is taken from R. Moddemeijer web-
site: http://www.cs.rug.nl/˜rudy/matlab/doc/
entropy.html. A normal distributed random noise
is generated with zero mean and unity standard devi-
ation. The signal and its histogram, obtained using
30 bins, are presented in Figures 1 and 2 respectively.
The expected entropy of this signal is 1.4189 nat. Us-
ing the estimator the result is 1.3643, what gives an
error of 3.85%.
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Figure 1: Signal of a normal distributed random noise gen-
erated with zero mean and unity standard deviation used to
illustrate the entropy algorithm.
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Figure 2: Histogram of the random noise signal used to il-
lustrate the entropy algorithm. This histogram was obtained
using 30 bins.

3.4 Analysis Method

Each voice sample was analyzed by a speech thera-
pist and had its most stationary part selected. This
stationarity was further analyzed by checking the re-
sult’s power spectrum density (PSD), verifying if only
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minor changes occur. This is a simple form of ob-
taining wide sense stationary (WSS) signals (Hayes,
1996).

For all the samples, this procedure resulted in at
least one second of voice sample. The result was di-
vided in parts with length of 1000 points (approxi-
mately 50 milliseconds). Each of these signals were
normalized by the absolute of its maximum value.

The PDF of these normalized signals were es-
timated according to the proposed method in order
to evaluate their entropy. Since each signal has the
same length and amplitude range, the entropy estima-
tor does not favor any of them. The analysis is per-
fomed with the mean and standard deviations values
of the signal’s entropies.

4 RESULTS

Healthy and nodule voice samples analyzed by means
of phase space reconstruction technique with ANL
showed different visual patterns for each group.

In order to determinate the visual pattern charac-
teristics, three kind of orbits’ dynamic behavior were
observed: a) number of loops, b) attractor course reg-
ularity, and c) attractor trajectories distribution (di-
vergence and convergence of attractor orbits’ trajec-
tories).

For healthy voice signals, phase space reconstruc-
tion for sustained vowel /a/ presents a typical visual
pattern. First, it is characterized by many concentric
loops of different dimensions. The orbits’ loops are
correlated to the interaction between the fundamen-
tal frequency (F0) and the harmonic frequencies (F1,
F2, F3, ...) of the signal. This configuration links the
voice signal complexity and the number of harmonic
frequencies amplified and contained in sustained /a/
vowel. Second, the attractor course is flat and regular
and, third, the attractor trajectories are very close to
each other showing convergence tendency.

Figure 3 shows a typical healthy voice signal of a
sustained vowel /a/. Figure 4 shows its phase space
reconstruction with time delay τ according to (Fraser
and Swinney, 1986).

For nodule voice signals, phase space reconstruc-
tion of sustained vowel /a/ presents different patterns.
In general, the nodule’s pattern is characterized firstly
by a single and irregular orbit loop differing from the
healthy ones. Although the harmonic components are
present in the glottal pulse, the higher muscle tension
and subglottal pressure unbalance the (F0)/harmonic
frequencies ratio and the compensatory vocal tract
gesture contributes to atenuate the harmonic frequen-
cies, consequently producing a single trajectory loop.
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Figure 3: Example of a typical healthy voice signal of a
sustained vowel /a/.
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Figure 4: Phase space reconstruction of the typical healthy
voice signal of a sustained vowel /a/.

Secondly, the attractor course is irregular and curly
because of the incomplete closure of the vocal folds,
turbulence of airflow and the asymmetrical vibration.
Thirdly, the attractor trajectories present a disperse
tendency caused by air flow volume changes and the
mucosal wave variation. This irregularity can happen
in some specific regions or even in different regions
of the orbits.

Figure 5 shows a typical nodule voice signal of a
sustained vowel /a/. Figure 6 shows its phase space
reconstruction with time delay τ according to (Fraser
and Swinney, 1986).

After the proper stationary regions of the signals
were selected using the perceptual acoustic analysis
and study of the phase space, the entropy estimations
were performed. Since these selected samples had at
least one second of voice, they were decomposed in
20 signals of 1000 points each. Figure 7 presents the
mean and standard deviation entropy values of the re-
sults of these 20 signals for each of the 14 healthy and
14 nodule voice samples. These samples are ordered
by their evaluation, therefore they are not paired.

As can be seen in the figure, the mean values of
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Figure 7: Entropy estimation results for the two groups of voice signals, healthy and nodule affected, each with 14 samples.
Every point is a mean (with standard deviation) of entropy values of 20 signals (50 milliseconds each). The nodule group
presented higher values than the healthy group, 99.75% probability in a Student-t test (significance level of 5%).
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Figure 5: Example of a typical nodule voice signal of a sus-
tained vowel /a/.
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Figure 6: Phase space reconstruction of the typical nodule
voice signal of a sustained vowel /a/.

the nodule samples seem to be higher than that of
the healthy samples. According to the standard de-
viation values, the two classes seem to be separated.
The mean entropy value of the healthy group is 5.76
bits with standard error of 0.14 bits, while the mean
and standard error values of the nodule group is 6.04
and 0.16 respectively. The individual values obtained
for these samples are shown in Table 1. An unpaired
Student-t test with a significance level of 5% was per-
formed on the data. It shows that the mean of the
nodule group is indeed higher than that of the healthy
group with a probability of 99.75%.

Table 1: Mean and standard deviation (Std) of the entropy
values, in bits, of the results of the 20 signals of each of the
14 healthy and 14 nodule voice samples.

Healthy Samples Nodule Samples
Mean Std Mean Std
5.48 0.13 5.65 0.06
5.81 0.05 6.06 0.04
5.74 0.06 6.26 0.05
5.91 0.13 5.97 0.06
5.61 0.06 6.07 0.09
5.58 0.11 6.16 0.05
5.69 0.08 6.16 0.12
5.93 0.06 6.08 0.12
5.89 0.09 6.02 0.09
5.66 0.04 5.89 0.13
5.85 0.11 6.26 0.05
5.85 0.07 5.91 0.12
5.93 0.06 5.93 0.08
5.75 0.08 6.15 0.09
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Table 2: Mean values and standard deviations of jitter,
shimmer and pitch amplitude (PA) for the signals under
analysis (percentual values).

Samples Jitter Shimmer PA
Healthy 0.47±0.39 3.34±0.88 54±12
Nodule 3.37±3.22 10.04±4.74 36±15

In order to compare the performance of the proposed
method, the voice signals were analyzed aiming to
extract vocal acoustic parameters. This was per-
formed by a commercial software called Análise de
Voz (Voice Analysis) version 6.0. The mean values
(and standard deviations) of jitter, shimmer and pitch
amplitude (PA) over the 14 samples of each group of
signals are presented in Table 2.

The jitter and shimmer mean values are smaller
for the healthy group, as expected, and present nar-
row probability distribution. For the nodule group the
distribution is much wider. This variation can be in-
terpreted as an increase of the uncertainty of these sig-
nals. The mean PA is higher for the healthy group
because the signals have a more defined period, the
cause of the smaller jitter values.

The higher variability of the parameters for the
nodule group is probably due to physiological differ-
ences among the occurences of the pathology. Nod-
ules can be manifested in several ways along the vo-
cal folds, some layers of tissue may be modified or
not. Therefore, the system dynamic alterations can
lead to much different voice signals. It is interesting
to observe that the presented parameters compare fa-
vorably to the results obtained by the entropy method.

5 CONCLUSIONS

In this work, there was an attempt to look into voice
as a dynamical signal and, consequently, explore new
processing techniques for healthy and vocal nodule’s
voice signals. A practical application and advantages
of dynamical analysis were also presented. Thus,
we believe that nonlinear dynamics tools, as entropy
measures and phase space reconstruction, may help in
a review of many of the voice dynamic characteristics.

We presented a study of the use of entropy mea-
sures to two groups of voice signals. They were com-
posed by samples of healthy and nodule in the vo-
cal folds affected individuals. The samples were an-
alyzed by a speech therapist with aid of phase space
plots. The most stationary parts of these signals (in
the WSS sense) were selected. The entropy method
developed by (Moddemeijer, 1989) was used to es-
timate the entropy of samples of 50 milliseconds of

each of the signals. The results obtained for the
mean and standard deviation values were tested with
a Student-t test being clearly separable. This is an
indication of the behavior of the entropy of nodule
signals, at least in the voice samples studied.

The nodule group showed a higher entropy value
than the healthy group. This was expected because
this vocal fold pathology is characterized by increase
of the signal’s complexity (Hammarberg, 1998; Hill-
man et al., 1990). This effect is reflected in an in-
crease of the uncertainty of the signal, that is, the sig-
nal becomes less predictable (Crutchfield and Feld-
man, 2003; Schneider and Griffies, 1999).

The results were compared to jitter, shimmer and
pitch amplitude values of the samples, which were ob-
tained with a commercial software. The variability of
the parameters for the nodule affected group was sig-
nificantly higher than that of the healthy group, there-
fore presenting a behavior that compares favorably to
that obtained with the entropy method.

This work is still an initial study, but phase space
analysis helps to depict the vowel pattern in a dynam-
ical way. This technique allows to visualize the dif-
ferential dynamics between healthy voices and voices
with vocal folds nodules. Future works intend to use
predictability measures to improve the understanding
of the relation of pathologies with the complexity of
the voice signal. Also, measures applied directly to
the phase space of the signals are planned as well.
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determination (RLD). Single photon avalanche diode (SPAD). Time-correlated single-photon counting 
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Abstract: A synchronous gating technique was proposed for fluorescent photon collecting. The two- and multi-gate 
rapid lifetime determination (RLD) technique was applied to implement on-chip fluorescence lifetime 
extraction. Compared with all available iterative least square method (LSM) or maximum likelihood 
estimation (MLE) based general purpose FLIM analysis software, we offer a method for the direct 
calculation of lifetime based on the photon counts stored in on-chip memory and deliver faster analysis to 
enable real-time applications. Theoretical error analysis of the two-gate RLD technique was derived for 
comparison. The performance of the algorithms were tested on a single-exponential histogram obtained 
from a CMOS SPAD detector chip using a 468nm laser diode light source with optimized gate width. 
Moreover, a multi-exponential pipelined RLD FLIM technique was also proposed and tested on a four-
exponential decay DNA sample containing a single adenine analogue 2-aminopurine. 

1 INTRODUCTION 

Fluorescence lifetime measurements have been used 
widely to study various scientific and practical 
applications on optics, chemistry, biology, medicine, 
medical diagnosis. A large number of different 
techniques including time-domain and frequency-
domain methods have been well developed for 
measuring fluorescence lifetime (Apanasovich and 
Novikov, 1992). In time-domain methods, the 
fluorescence intensity decay is measured through a 
time-correlated single photon-counting (TCSPC) 
card after excitation with a short pulse of laser light 
(Cubeddu et al, 2002), whereas in frequency-domain 
methods, the fluorescent sample is illuminated with 
a periodic light source to obtain a measured phase 
difference between the light source and the 
fluorescent emission. Irrespective of the method 
used (Jo et al, 2004), the lifetime extraction is done 

using computer software. For general purpose time-
domain analysis tools for scientific research 
demanding high accuracy down to the picosecond 
timescale or for practical medical/clinical diagnostic 
applications demanding fast results, a wide range of 
faint multi-exponential fluorophores must be 
computed with a lifetime resolution better than 50ps 
(Becker, 2005). Due to the incapability of the LSM 
or MLE to resolve a small lifetime with a coarse 
channel width,  the number of bits of resolution of 
TDCs on photon counting cards is therefore 
expected to be larger than 11-bit (Becker, 2005). To 
use LSM or MLE properly, the measurement 
window is usually set as large as possible otherwise 
the software would treat the measured data as having 
a DC offset part and therefore the laser pulse 
repetition rate is kept low, which further lowers the 
photon collection speed. Data therefore can be 
gathered in several days. Moreover, because 
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fluorescence lifetimes in imaging are determined on 
a pixel-by-pixel basis, iterative methods can be quite 
time consuming and make real-time image 
processing almost impossible. Although one can 
drop the requirement for short laser pulses by using 
frequency-domain methods, lifetime extraction still 
relies on software analysis, which also makes real-
time image processing difficult to achieve. As 
process technology advances, integration of high 
speed laser drivers and laser diodes on chip is 
becoming feasible. 

2 THEORETICAL ERROR 
ANALYSIS 

The recorded fluorescence intensity f(t) is related to 
the true decay function I(t) through the integral  

( ) ( )
0

( )
t

f t I t IRF dτ τ τ= −∫  (1) 

where IRF(t) is the instrumental response function, 
or the convolution of transition spread of the 
detector and the pulse function of the laser source. 
The true response I(t) could be obtained through an 
on-chip digital de-convolution calculation. However, 
we need to evaluate whether the enhanced precision 
can justify the cost of the extra chip area for digital 
de-convolution. Here we assume I(t) = Aexp(-t/τ), 
and the ratio of the full width half maximum 
(FWHM) of IRF(t) over the lifetime is denoted as r. 
The recorded response f(t) is obtained from (1). As r 
is larger than 1, it is difficult to obtain a clear 
response because of the effects of noise and it is 
inefficient to accumulate enough photon counts for a 
certain SNR criteria. The smaller the ratio r, the 
more efficiently and accurately the lifetime can be 
extracted. Considering the 10ps jitter in the light 
source, the 80ps transition spread of our SPAD 
structure, and the 30ps jitter of gate transitions, the 
overall FWHM is about 100ps. Thus, without on-
chip de-convolution function, the smallest lifetime 
that can be obtained is of the order of 200ps. For 
first time implementation, we simplify by using 
longer-lifetime samples as test cases. The 
assumption of f(t) as a single exponential is quite 
reasonable. In this paper, we applied the RLD 
method for simplicity. 

2.1 Theory 

The simplest way of calculating fluorescence 
lifetime is to use the RLD technique with two 
consecutive gates (Ballew and Demas, 1989) called 

 
Figure 1: Generalized form of two-gate RLD. 

standard RLD. Unlike the LSM or MLE based 
methods, it is a direct calculation method. The 
disadvantage of standard RLD is its high sensitivity 
to the gate width selection. This can be explained by 
reasoning that when dealing with a short lifetime, 
the photons are mostly located in the first gate, and 
the relatively low counts in the second gate becomes 
the major source of error. To overcome this problem, 
a gate overlap approach was introduced to the 
standard RLD (Sharman and Periasamy, 1999) 
trying to offer greater insensitivity to the Possion 
noise in the second gate. This method did offer 
better resolvability for a range of short lifetimes, but 
it sacrificed precision for the longer lifetimes. 
Another approach called SWRLD is proposed (Chan 
et al, 200) using a square wave driven LED as a light 
source. SWRLD offers uniform high precision in a 
much wider range of gate width. However, this 
method does not easily extract lifetimes shorter than 
1ns because the 1ns edge speed of the fastest 
available LED dictates the minimum lifetime 
extraction limit, Thus an example of a long lifetime 
of 2ms has been chosen as an illustration. The 
second challenge is that SWRLD needs many filters 
to separate fluorophore emission from scattered laser 
emission (the IRF).  Beyond these limits, SWRLD is 
indeed a precise method for long lifetime extraction 
(>> 10ns). A better approach to achieve better 
precision for long lifetimes is make the second gate 
wider than the first and therefore tolerate much 
higher counts (Moore et al, 2004). This method, 
however, needs an iteration method to do lifetime 
extraction. Plus for on-chip implementation, 
asymmetric gates require the generation of two 
synchronized clocks with different pulse widths and 
thus increase the circuit complexity. The best 
theoretical solution is not necessarily the right one in 
terms of cost and feasibility. All the amended 
algorithms mentioned require Monte Carlo to do 
error analysis. We derive a generalized formula here 
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for calculating the standard deviation of lifetimes 
much more conveniently and therefore facilitate 
location of the optimized lifetime region or 
measurement window.  Figure 1 shows the 
generalized form of two-gate RLD. The counts N1 
and N2 in the two gates are related as 

( ) ( )2 1( ) 1 0,S Rg x N x N x x= − − − =  (2) 

where x = exp(-h/τ) and  

( ) ( )
( ) ( )

1 1 1

2 2 2

1 / 1 , ,

/ 1 , .

R
c

S R R
c

N N x x N N

N N x x x N N

σ

σ

= − − =

= − − =
 (3) 

 
with σN1 and σN2 being the standard deviations in 
N1 and N2, respectively for Poisson noise and Nc the 
total count number. Together with (2), we have 
 

( ) ( ) ,g x x g xσ σ ′= ⋅  (4) 
 

( ) ( )222 2
2 11 ,S Rg N x N x xσ σ σ= − + −  (5) 

 

( ) ( )1 1
2 1 ,S Rg x N N Sx Rx− −′ = + −  (6) 

 

2and  .x x hσ στ τ=  (7) 

From (2) to (7), we could obtain 
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 (8) 

2.2 Comparison of RLD-2s and RLD-N 

To demonstrate the ability of different RLD schemes, 
we fix the measurement window (MW). First we 
compute the standard deviation over the lifetime 
SNR = στ/τ in dB. Figure 2 shows the SNR in the 
range of τ/MW within 0.05 and 1, and gate number 
N within 2 and 128 under total counts of 217. It 
shows the SNR plot converges as N > 8 and RLD-2 
shows the best resolvability for small lifetime region, 
but both RLD-2 and RLD-N could not resolve those 
less than 0.1. It means that with a laser source of 
repetition rate of 100MHz, they could not resolve 
those less than 1ns. Moreover, the complexity of 
implementing N-gate RLD on chip is too large. In 
terms of implementation, the RLD-2 is much easier 
than RLD-N. Figure 3 shows a comparison plot of 
lifetime SNR versus lifetime normalized by 
measurement window (MW) for theoretical equation 
(8), equation for the multi-gate scheme not shown 
here, Monte-Carlo RLD methods and the maximum 

likelihood estimator (MLE) (Kollner and Wolfrum, 
1992).  

 
Figure 2: SNR plot for RLD-N under total counts of 217. 

 
Figure 3: SNR plot for RLD-N with total counts of 217. 

This plot shows the range of lifetime resolvable by 
each extraction method for a certain laser repetition 
rate. The results obtained by theoretical equations 
are marked as solid lines whereas those by Monte-
Carlo methods are indicated by dots. They match 
well. We also compare the MLE results and find that 
the peak value of the RLD-2 occurs at τ/MW = τ/(2h) 
～ 0.2 which is coincident with previously reported 
literature. The plot shows the RLD-77 has best 
precision and closest to that of MLE only in high 
lifetime region, while it has the worst resolvability 
for low lifetime region. Un-equal gate scheme (S = 
0.5, R = 4.5) offers better resolvability than the 
equal gate-width one (S = 0.5, R = 1.5). The one 
with S = 0.25 and R = 12.25 suggested by (Moore et 
al, 2004) offers the best resolvability for small 
lifetime region but sacrifices some precision in the 
high lifetime region. In terms of implementation 
complexity, feasibility, and limitations on chip, the 
equal gate width scheme is the simplest. Of course, 
if we insist on implementing an un-equal one given 
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that we have conquered the problem of transition 
spread of the IRF, we could build an on-chip look-
up table to simplify lifetime extraction. For first time 
on-chip implementation, we simplify by using the 
equal gate and non-overlap scheme. The overlap 
scheme will be implemented in the future. Table 1 
lists the summary of RLD schemes. Except the 
RLD-N, the others are all possible candidates. 

Table 1: Comparison and summary of RLD schemes. 

 Closed 
Form 

τ /MW < 0.1 
Resolvability 

On-chip 
Feasibility 

Standard 
RLD-2 Yes No Yes/Look-

up Table 
Standard 
RLD-N 
(N > 2) 

Yes No No 

Overlap 
RLD-2 

(R = 1+S) 
Yes Yes Yes/Look-

up Table 

Overlap 
RLD-2 

(R ≠  1+S) 
No Yes Yes/Look-

up Table 

2.3 Synchronous Gating Scheme 

 
Figure 4: Timing diagram for synchronous gating 
technique. 

Figure 4 shows the block diagram for the photon 
counting process. The fluorescence emission is 
detected by a SPAD detector, and the detected signal 
is converted into a digital one by a comparator and 
then sent into two synchronous counters controlled 
by clocks C1 and C2, respectively. And the photon 
counts on counters 1 and 2 are sent to a FPGA for 
post processing.  

2.4 Pipelined RLD-2 for Multi-Decays 

The above analysis is based on the assumption that 
the fluorescence emission follows a single-lifetime 
function. When trying to resolve multi-lifetime 

fluorescence decay, we need a simple algorithm.  
Figure 5 shows an algorithm for lifetime extraction 
in a two-lifetime fluorescence histogram similar to 
the concept of pipelined analog-to-digital converters, 
called pipelined RLD-2 (PL-RLD-2). The lifetime 
extraction procedure uses RLD-2 to extract the 
larger lifetime and intensity with the first memory, 
and subtraction of the extracted extrapolation 
function from the photon counts stored in the second 
memory to obtain the second lifetime and intensity. 
Pipelined algorithms for higher (> 2) decays can 
follow this procedure until the last lifetime is finally 
calculated.   

3 EXPERIMENTAL RESULTS 

3.1 Single-decay 

The chip including a 4×16 SPAD array and digital 
readout circuits was implemented on 0.35μm high 
voltage CMOS process. The die had the polymide 
passivation removed providing around 3-5x increase 
in photon detection probability in the 500nm range. 
Each pixel contains a single 15μm-diameter CMOS 
SPAD (Niclass, 2006). 

 
Figure 5: Block diagram of pipelined RLD-2. 

 
Figure 6: SPAD pixel and two ripple counters. 
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Figure 7: SPAD pixel and two ripple counters. 

Figure 6 shows a SPAD pixel with two ripple 
counters up and down. The gating width could be 
adjusted over a 48ns range with a 408ps resolution. 
The imager is controlled by a FPGA and photon 
count histograms are captured and displayed on a PC. 
The measurement setup is shown in Figure 7. It 
consists of a laser diode emitting 88ps pulses at 
468nm, 5mW average power, synchronized to the 
system clock. Without using any photon counting 
card, the photon emitted is converted into a digital 
signal and processed by on-chip ripple counters in 
Figure 4. The fluorophore sample is 1 micro-molar 
Rhodamine B. Table 2 shows the extracted lifetime 
using the RLD-2 and the LSM based software. The 
difference between them is about 7%. Jitter 
performance of the synchronous gate might 
contribute some error, because a phase-locked loop 
PLL has not been integrated to minimize the jitter.  

Table 2: Comparison of lifetimes extracted by RLD-2 and 
software. 

Sample RLD-2 Software 
Rhodamine B 2.33ns 2.175ns 

3.2 Multiple-decays 

The second example is used to test the proposed 
pipelined RLD-2 algorithm. This data set comes 
from the fluorophore 2-aminopurine (2AP) inside a 
singly-labelled 14 base-pair DNA duplex and was 
measured in an Edinburgh Instruments spectrometer 
equipped with TCC900 photon counting electronics 
(Neely et. al, 2005). The excitation source was a Ti-
Sapphire femtosecond laser system producing pulses 
of ~200fs at 76MHz repetition rate. The output of 
the laser was passed through a pulse picker to reduce 
the repetition rate to 4.75MHz and then frequency 
tripled to give an output at 320nm. The emission 
from the sample was collected orthogonal to the 

excitation direction through a polarizer. The 
fluorescence was passed through a monochromator, 
and detected by a Hamamatsu PMT (R3809U-50). 
The instrument response was 50ps FWHM. 
Florescence decay curves were recorded at emission 
wavelength of 390nm on a timescale of 50ns, 
resolved into 4096 channels, to a total 10,000 counts 
in the peak channel. Decay curves were analyzed 
using the proposed PL-RLD-2 and using the F900 
software with standard iterative reconvolution 
method, assuming a multi-exponential decay 
function in the following equation. 

4

1
( ) exp ,i

i i

tI t A
τ=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (9) 

 
Figure 8: Fitted data and residual using PL-RLD-2. 

Table 3: Comparison of lifetimes (ns) and fractional 
amplitudes (%) extracted by PL-RLD-2 and F900 software. 

τi(ns)/Ai(%) PL-RLD-2 F900 Software 
τ1/A1 0.136/27 0.14/47 
τ2/A2 0.481/55 0.47/39 
τ3/A3 2.179/11 2.19/9 
τ4/A4 8.225/7 8.15/5 

where Ai is the fractional amplitude and τi is the 
fluorescence lifetime of the i-th decay component. 
Figure 8 shows the logarithmic plot for the measured 
photon counts starting from the channel with peak 
counts 10,000 and the fitted data using the proposed 
PL-RLD-2. The residual plot reveals that the 
proposed method fits well with the experimental 
data. The extracted lifetimes and fractional 
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amplitudes using the PL-RLD-2 and the F900 
software are listed in Table 3. The Table shows the 
extracted lifetimes differ within 4% whereas the 
amplitudes differ in a significant range. That is why 
recent literature (Philip, 2003) suggests that 
fluorescence lifetime measurements offer better 
precision. These results highlight the potential of 
RL-RLD-2 for on-chip multiple exponential lifetime 
extraction, if adaptive gating width technique could 
also be introduced on-chip. 

4 CONCLUSIONS 

On-chip fluorescence lifetime extraction including a 
SPAD array and digital readout circuitry is for the 
first time implemented on 0.35μm CMOS process 
using the two-gate RLD. Theoretical error equations 
for several RLD-2/RLD-N schemes were derived 
and compared to determine a possible 
implementation strategy. To implement RLD-2, a 
non-overlap synchronous gating is applied for 
photon counting. The first on-chip attempt is mainly 
focused on dealing with single-exponential 
fluorescence emission, and the extracted result 
matches with the true value well within 10% 
including possible contribution from gating jitter. 
For possible future on-chip implementation for 
multi-exponential fluorescence lifetime extraction, 
we proposed a pipelined RLD-2 (PL-RLD-2) and we 
test this method on a four-exponential experimental 
data, and the extracted lifetimes match well with 
those obtained by iteration based software within 4%. 
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Abstract: A dynamic multiple scale neural model for recognising colour images of textured scenes is proposed. This 
model combines colour and textural information to recognise coloured textures through the operation of two 
main components: segmentation component formed by the Colour Opponent System (COS) and the 
Chromatic Segmentation System (CSS); and recognition component formed by pattern generation stages 
and Fuzzy ARTMAP neural network. Firstly, the COS module transforms the RGB chromatic input signals 
into a bio-inspired codification system (L, M, S and luminance signals), and then it generates the opponent 
channels (black-white, L-M and S-(L+M)). The CSS module incorporates contour extraction, double 
opponency mechanisms and diffusion processes in order to generate coherent enhancing regions in colour 
image segmentation. These colour region enhancements along with the local textural features of the scene 
constitute the recognition pattern to be sent into the Fuzzy ARTMAP network. The structure of the CSS 
architecture is based on BCS/FCS systems, thus, maintaining their essential qualities such as illusory 
contours extraction, perceptual grouping and discounting the illuminant. But base models have been 
extended to allow colour stimuli processing in order to obtain general purpose architecture for image 
segmentation with later applications on computer vision and object recognition. Some comparative testing 
with other models is included here in order to prove the recognition capabilities of this neural architecture. 

1 INTRODUCTION 

In biological vision, we can distinguish two main 
operating modes: pre-attentive and attentive vision. 
The first one performs a parallel and instantaneous 
processing which is independent of the number of 
patterns being processed, thus covering a large 
region of the visual field. Attentive vision, 
nevertheless, acts over limited regions of the visual 
field (small aperture) establishing a serialised search 
by means of focal attention (Julesz & Bergen, 1987). 

The proposed model works on the pre-attentive 
and attentive mode: pre-attentive segmentation and 
attentive recognition. In the pre-attentive process, 
the network processes, in a consistent way, colour 
and textural information for enhancing regions and 
extracting perceptual boundaries to form up the 
segmented image. In the attentive mode, the model 
merges textural information and the intensity of the 
region enhancement in order to punctually recognise 

scenes that include complex textures, both natural 
and artificial. 

The skill of identifying, grouping and 
distinguishing among textures and colours is 
inherent to the human visual system. For the last few 
years many techniques and models have been 
proposed in the area of textures and colour analysis 
(Gonzalez & Woods, 2002), resulting in a detailed 
characterisation of both parameters as well as certain 
rules that model their nature. Many of these 
initiatives, however, have used geometric models, 
omitting the human vision physiologic base and so, 
wasting the context dependence. A clear example of 
such a feature is the illusory contour formation, in 
which context data is used to complete (Grossberg, 
1984) the received information, which is partial or 
incomplete in many cases.  

The architecture described in this work extracts 
both colour and textural features from a scene, 
segments it into textural regions and brings this 
information to an ART classifier, which categorizes 
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the textures using a biologically-motivated learning 
algorithm.  Humans learn to discriminate textures by 
looking at them and becoming sensitive to their 
statistical properties in small regions (Grossberg and 
Williamson, 1999). 

The proposed neural model architecture is based 
on the later version of BCS/FCS neural model 
(Grossberg et al., 1995; Mingolla et al., 1999), and 
on the Fuzzy ARTMAP recognition architecture 
(Carpenter et al., 1992). The BCS/FCS model 
suggests a neural dynamics for perceptual 
segmentation of monochromatic visual stimuli and 
offers a multiple scale unified analysis process for 
different data referring to monocular perception, 
grouping, textural segmentation and illusory figures 
perception. The BCS system obtains a map of image 
contours based on contrast detection processes, 
whereas the FCS performs diffusion processes with 
luminance filling-in within those regions limited by 
high contour activities. Consequently, regions that 
show certain homogeneity and are globally 
independent are intensified.  

In pre-processing, the main improvement 
introduced to the BCS/FCS original model hereby in 
this paper, resides in offering a complete colour 
image processing neural architecture for extracting 
contours and enhancing the homogeneous areas in a 
colour image. In order to do this, the neural 
architecture develops processing stages, coming 
from the original RGB image up to the segmentation 
level, following analogous behaviours to those of the 
early mammalian visual system. This adaptation has 
been performed by trying to preserve the original 
BCS/FCS model structure and its qualities, 
establishing a parallelism among different visual 
information channels and modelling physiological 
behaviours of the visual system processes. 
Therefore, the envisaged region enhancement is 
based on the feature extraction and perceptual 
grouping of region points with similar and 
distinctive values of luminance, colour, texture and 
shading information.  

The adaptive categorization and predictive 
theory is called Adaptive Resonance Theory, ART. 
ART models are capable of stably self-organizing 
their recognition codes using either unsupervised or 
supervised incremental learning (Carpenter et al., 
1991). ARTMAP theory extends the ART designs to 
include supervised learning. Fuzzy ARTMAP 
architecture falls into this supervised theory. In 
Fuzzy ARTMAP, the ART chosen categories learn 
to make predictions which take the form of 
mappings to the names of output classes. And thus 
many categories can map the same output name. 

In section 2, each of the stages composing the 
architecture will be explained. Afterwards, section 3 
studies its performance over input images presenting 
complex textures in order to, in section 4, establish 
the conclusions of the analysis and finally assess the 
validity of the model depicted here. 

2 PROPOSED NEURAL MODEL 

The architecture of the proposed model (Figure 1) is 
composed of two main components, colour 
segmentation module and recognition module. The 
first component consists of two systems called 
Colour Opponent System (COS) and Chromatic 
Segmentation System (CSS). The recognition 
module is made up by a feature smooth stage, an 
orientational invariances stage, and a Fuzzy 
ARTMAP neural network. 
 

 
Figure 1: Proposed model architecture. At the bottom, the 
detailed COS module structure: on the left, it shows type 1 
cells whereas on the right, elements correspond to type 2 
opponent cells. In the middle, the detailed structure of the 
Chromatic Segmentation System (CSS) based on the 
BCS/FCS model. At the top, the recognition module, 
based on a Fuzzy ARTMAP network. 

The COS module transforms the chromatic 
components of the input signals (RGB) into a bio-
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inspired codification system, made up of two 
opponent chromatic channels, L-M and S-(L+M), 
and an achromatic channel. 

Resulting signals from COS are used as inputs 
for the CSS module where the contour map 
extraction and two intensified region images 
corresponding to the enhancement of L-M and S-
(L+M) opponent chromatic channels are generated 
in multiple scale processing, according to various 
perceptual mechanisms (perceptual grouping, 
illusory contours, discounting the illuminant and 
emergent features). The two enhanced images along 
with the textural response from the simple cells form 
up the punctual pattern of features that will be sent 
to the recognition module where the Fuzzy 
ARTMAP architecture generates a context-sensitive 
classification of local patterns. The final output of 
the proposed neural architecture is a prediction class 
image where each point is associated to the texture 
class label which it belongs to. 

2.1 Colour Opponent System (COS) 

The COS module performs colour opponent 
processes based on opponent mechanisms that are 
present on the retina and on the LGN of the 
mammalian visual system (Hubel, 1995). Firstly, 
luminance (I signal) and activations of the long (L 
signal), middle (M signal), short (S signal) 
wavelength cones and (L+M) channel activation (Y 
signal) are generated from R, G and B input signals. 
The luminance signal (I) is computed as a weighted 
sum (Gonzalez & Woods, 2002); the L, M and S 
signals are obtained as the transformation matrix 
(Hubel & Livingstone, 1990). 

In the COS stage, two kinds of cells are 
suggested, called type 1 and type 2 cells (see Figure 
1). These follow opponent profiles intended for 
detecting contours (type 1, simple opponency) and 
colour diffusion (type 2 cells initiate double 
opponent processes).  

2.1.1 Type 1 Opponent Cells 

Type 1 opponent cells perform two opponent L-M, 
S-(L+M), and luminance (Wh-Bl) channels (see 
Figure 1). These cells are modelled through two 
centre-surround multiple scale competitive 
networks, and form the ON and OFF channels 
composed of ON-centre OFF-surround and OFF-
centre ON-surround competitive fields, respectively. 
These competitive processes establish a gain control 
network over the inputs from chromatic and 
luminance channels, maintaining the sensibility of 
cells to contrasts, compensating variable 

illumination, and normalizing image intensity 
(Grossberg & Mingolla, 1988). The equations 
governing the activation of type 1 cells ((1) and (2)) 
have been taken from the Contrast Enhancement 
Stage in the original models (Grossberg et al., 1995; 
Mingolla et al., 1999), but adapted to compute 
colour images. The equations for the ON and OFF 
channel are: 
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where A, B, C and D are model parameters,  
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with ec as central signal, es as peripheral signal 

(see Table 1), the superscript g=0,1,2 with suitable 
values for the small, medium and large scales. The 
weight functions have been defined as normalised 
Gaussian functions for central (Gc) and peripheral 
(Gsg) connectivity.  

Table 1: Inputs of different channels on type 1 opponent 
cells. 

 L-M Opponency S-(L+M) Opp. Luminance 
 L+-M- L--M+ S+-Y- S--Y+ W+-Bl- W--Bl+ 

ec Lij Sij Iij 
esg Mij Yij Iij 

2.1.2 Type 2 Opponent Cells 

The type 2 opponent cells initiate the double 
opponent process that take place in superior level, 
chromatic diffusive stages (see Figure 1). The 
double opponent mechanisms are fundamental in 
human visual colour processing (Hubel, 1995). 

The receptive fields of type 2 cells are composed 
of a unique Gaussian profile. Two opponent colour 
processes occur, corresponding L-M and S-(L+M) 
channels. Each opponent process is modelled by a 
multiplicative competitive central field, presenting 
simultaneously an excitation and an inhibition 
caused by different types of cone signals (L, M, S 
and Y as sum of L and M). These processes are 
applied over three different spatial scales in the 
multiple scale model shown. Equations (4) and (5) 
model the behaviour of these cells, ON and OFF 
channels, respectively. 
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with e(1) and e(2) being the input signals of the 
opponent process (see Table 2). The weight 
functions have been defined as normalised 
Gaussians with different central connectivity (Gg) 
for the different spatial scales g=0, 1, 2: 

Table 2: Inputs for different type 2 cells channels. 

 L-M Opponency S-(L+M) Opponency 
 L+-M- L--M+ S+-Y- S--Y+ 

e(1) Lij Sij 
e(2) Mij Yij 

2.2 Chromatic Segmentation System 
(CSS) 

As previously mentioned, the Chromatic 
Segmentation System bases its structure on the 
modified BCS/FCS model (Grossberg et al., 1995; 
Mingolla et al., 1999), adapting its functionality to 
chromatic opponent signals, for colour image 
processing. The detailed structure of CSS can be 
seen in Figure 1. 

The CSS module consists of the Colour BCS 
stage and two chromatic diffusive stages, processing 
one chromatic channel each. 

2.2.1 Colour BCS Stage 

The Colour BCS stage constitutes our colour 
extension of the original BCS model. It processes 
visual information from three parallel channels, two 
chromatic and a luminance channels to obtain a 
unified contour map. Analogous to the original 
model, the Colour BCS module has two 
differentiated phases: the first one (simple and 
complex cells) extracts real contours from the output 
signals of the COS and the second is represented by 
a competition and cooperation loop, in which real 
contours are completed and refined, thus generating 

contour interpolation and illusory contours (see 
Figure 1). Colour BCS preserves all of the original 
model perceptual characteristics such as perceptual 
grouping, emergent features and illusory perception. 

The achieved output coming from the 
competition stage is a contour map and it will act as 
a control signal serving as a barrier in chromatic 
diffusions. 

The simple cells are in charge of extracting real 
contours from each of the chromatic and luminance 
channels. In this stage, the filters from the original 
model have been replaced by two pairs of Gabor 
filters with opposite polarity, due to their high 
sensibility to orientation, spatial frequency and 
position (Daugman, 1980). Their presence has been 
proved on the simple cells situated at V1 area of 
visual cortex (Pollen & Ronner, 1983). Figure 2 
shows a visual representation of Gabor filter pair 
profiles. 
 

 

 
Figure 2: Receptive fields of the filters used to model 
simple cells. Top-left: Anti-symmetric light-dark receptive 
field. Top-right: Anti-symmetric dark-light receptive field. 
Bottom-left: Symmetric receptive field with central 
excitation. Bottom-right: Symmetric receptive field with 
central inhibition. 

The complex cell stage, using two cellular layers, 
fuses information from simple cells giving rise to a 
final map which contains real contours for each of 
the three scales used (see Figure 1).  

Detected real contours are passed into a 
cooperative-competitive loop, as it is shown in 
Figure 1. This nonlinear feedback network detects, 
regulates, and completes boundaries into globally 
consistent contrast positions and orientations, while 
it suppresses activations from redundant and less 
important contours, thus eliminating image noise. 
The loop completes the real contours in a consistent 
way generating, as a result, the illusory contours. In 
order to achieve this feature it makes use of a short-
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range competition, and a long-range cooperation 
stage (Grossberg et al., 1995; Mingolla et al., 1999).  

Cooperation is carried out by dipole cells. Dipole 
cells act like long-range statistical AND gates, 
providing active responses if they perceive enough 
activity over both dipole receptive fields lobes (left 
and right). Thus, this module performs a long-range 
orientation-dependent cooperation in such a way that 
dipole cells are excited by collinear (or close to 
collinearity) competition outputs and inhibited by 
perpendicularly oriented cells. This property is 
known as spatial impermeability and prevents 
boundary completions towards regions containing 
substantial amounts of perpendicular or oblique 
contours (Grossberg et al., 1995). The equations 
used in competitive and cooperative stages are taken 
from the original model (Grossberg et al., 1995). 

2.2.2 Chromatic Diffusive Stages 

As mentioned above, the chromatic diffusion stage 
has undergone changes that entailed the introduction 
of Chromatic Double Opponency Cells (CDOC), 
resulting in a new stage in the segmentation process. 
CDOC stage models chromatic double opponent 
cells. The model for these cells has the same 
receptive field as COS type 1 opponent cells (centre-
surround competition), but their behaviour is quite a 
lot more complex since they are highly sensitive to 
chromatic contrasts. Double opponent cell receptive 
fields are excited on their central region by COS 
type 2 opponent cells, and are inhibited by the same 
cell type. We apply double opponency to the L-M 
and S-Y channels. This is to say, we apply a greater 
sensibility to contrast as well as a more correct 
attenuation toward illumination effects, therefore 
bringing a positive solution to the noise-saturation 
dilemma. 

The mathematical model that governs the 
behaviour of chromatic double opponent cells is the 
one defined by (1) and successive equations, by 
varying only their inputs. These inputs are now 
constituted by the outputs of the COS type 2 
opponent cells for each chromatic channel (see 
Table 3). 

Table 3: Inputs of the included Chromatic Double 
Opponent Cells. 

 L-M Opponency S-(L+M) Opponency 
 L+-M- L--M+ S+-Y- S--Y+ 

ec (L+-M-)ij (L--M+)ij (S+-Y-)ij
 (S--Y+)ij 

esg (L+-M-)ij (L--M+)ij (S+-Y-)ij (S--Y+)ij 
 
Chromatic diffusion stages perform four nonlinear 
and independent diffusions for L-M (ON and OFF) 

and S-Y (ON and OFF) chromatic channels. These 
diffusions are controlled by means of a final contour 
map obtained from the competition stage while the 
outputs of CDOC are the signals being diffused.  

At this stage, each spatial position diffuses its 
chromatic features in all directions except those in 
which a boundary is detected. By means of this 
process, image regions that are surrounded by closed 
boundaries tend to obtain uniform chromatic 
features, even in noise presence, and therefore 
producing the enhancement of the regions detected 
in the image. The equations that model the diffusive 
filling-in can be found in (Grossberg et al., 1995).  

As in previous stages, diffusion is independently 
performed over three spatial scales in an iterative 
manner, obtaining new results from previous 
excitations, simulating a liquid expansion over a 
surface.  

Scale fusion constitutes the last stage of this pre-
processing architecture. A simple linear combination 
of the three scales, see equation (9), obtains suitable 
visual results at this point.  

01 02 11 12
0 1

21 22
2

( ) ( )

( )
ij ij ij ij ij

ij ij

V A F F A F F

A F F

= − + −

+ −
 (9) 

where A0, A1 and A2 are linear combination  
parameters, gt

ijF  represents diffusion outputs, with 
g indicating the spatial scale (g=0,1,2) and t 
denoting the diffused double opponent cell, 1 for ON 
and 2 for OFF. 

2.3 Recognition Module 

The attentive recognition process generates a pattern 
by merging the textural response information 
coming from the simple cells and the diffusion 
intensities of the chromatic channels from the scale 
fusion stage. The assorted pattern will be made up 
with the responses from the three scales of the 
receptive fields, small, medium, and large, the k 
orientations, and its two last components being the 
chromatic diffusion intensities from the scale fusion 
stage of L-M and S-(L+M) channels. Thus a n-
dimensional pattern from each point of the scene 
will be created and sent to the Fuzzy ARTMAP 
architecture to be learned in the supervised training 
process or be categorized in the prediction process. 
The ART architecture must learn a mapping from 
the input space populated by these feature vectors to 
a discrete output space of associated region class 
labels. The architecture’s output corresponds with an 
image of the class prediction labels in each point. 

The recognition stage is composed of three 
components: texture feature smooth stage, 
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orientational invariances stage, and the Fuzzy 
ARTMAP neural network stage.  

2.3.1 Texture Feature Smooth Stage  

Due to the high spatial variability shown in Gabor’s 
filters response a smooth stage is proposed through a 
Gaussian Kernel convolution with σsmooth deviation, 
in all orientations.  

2.3.2 Orientational Invariance Stage 

In the pattern categorization process some 
orientational invariances are generated by means of 
the group displacement of components following the 
pattern’s existing orientations. 

The two last components from diffusion do not 
participate in this displacement. Thanks to these 
invariances it’s achieved that the same texture 
pattern may be viewed from different angles. 

3 TESTS AND RESULTS 

This section introduces our tests’ simulations over 
the proposed architecture.  

The recognition process takes place by 
generating patterns in every position of the scene, 
obtaining them from the outputs of the simple cells. 
Those patterns contain textural and colour 
information. The textural information for pattern 
generation is obtained of the luminance channel. The 
colour information is included in the diffusion 
components inserted into the pattern. 

In order to shape the patterns, the responses 
coming from two simple cells filters are used, the 
Anti-symmetric light-dark receptive field and the 
Symmetric receptive field with central excitation 
(see Figure 2). With them, we used three spatial 
scales y four orientations. Thus, obtaining a 24-
dimensional textural vector, which, with the two 
intensities coming from the scale fusion stage, 
generate a 26-dimensional pattern to use as input to 
the recognition stage. 

In order to show processing nature of the 
depicted model, its responses will be analysed and 
compared versus other methods, using images which 
include complex textures. We begin with a first test 
“two textures problem”. The textures image (see 
Figure 3a) is composed of two near-regular textures 
(weave and brick) which are widely used in texture 
benchmarks (Grossberg and Williamson, 1999). 

 

  

  

  

 
Figure 3: Images of the “two textures test”. a) Original 
image, 128x128 pixels. b) Image of the contours map for 
large scale, c) Output of the scale fusion stage for the L-M 
channel, d) Output of the scale fusion stage for the S-
(L+M) channel, e) Image of extracted contours using 
Canny’s extractor, f) Image segmentation with a 
pyramidal method, g) Classification result of ‘two 
textures’ test. The darker grey level corresponds to the 
brick texture prediction while the lighter grey level 
corresponds to the weave texture prediction. 

Figures 3b, 3c and 3d, display the different stage 
outputs of the proposed model. Figure 3b includes 
the contour map for large scales, Figures 3c and 3d 
include the two outputs coming from the diffusion 
stages. Those outputs will constitute the last two 
components of the recognition patterns. Figure 3e 
include the results from the Canny extractor, using 
the cvCanny() with 1, 100, and 70 as parameters; 
and 3f shows the output of the pyramidal 
segmentation using function cvPyrSegmentation() 
with 30000, 30000, and 7 as parameters. cvCanny() 
and cvPyrSegmentation() are functions from Intel 
Computer Vision Library, OpenCv (Intel, 2006). 

Comparing the results, it can be clearly observed 
that the proposed architecture behaves in a 
compatible manner with the human visual system. 
The presented system detects a texture boundary 
contour map with perceptual behaviour by extracting 
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the illusory contour which marks off both textures. 
The shown model perceptually differentiates two 
textures through filling-in processes controlled by 
the illusory vertical contour. Those two comparative 
methods do not exhibit a concordance with the 
Visual System, and so both extraction and 
segmentation obtain worse quality visual results.  

Another recognition test was run with a two 
textures image. A smooth value of σsmooth=4.85 was 
chosen for the textural patterns, which corresponds 
to a 8x8 resolution, that is, each patch of 8x8 pixels 
in the input image yields a single pixel in an output 
image for each orientation (Grossberg and 
Williamson, 1999). The image was divided into 
lower and upper parts. The patterns from the lower 
half were taken for Fuzzy ARTMAP network 
training using a vigilance parameter of 0.95. The 
network was then tested using the patterns coming 
from the upper half part. In the supervisory process, 
the categories created for the patterns on the left 
texture (weave) were associated to a class prediction 
pictured light grey, while the patterns coming from 
the right texture (brick) where associated to another 
class prediction depicted in a darker grey.  

In the training process as well as in the testing 
one a frame of 10 pixels were left without any 
processing. In Figure 3g we can see its resulting 
class prediction. The errors committed in the upper 
half prediction were of 115 points in the left side 
(weave texture) and 112 points in the right side 
(brick texture) which brings the error toll to a 3.17% 
(96.83% of success). Those statistics are of a similar 
magnitude to those obtained in (Grossberg and 
Williamson, 1999), where a score of 95.7% was 
obtained for a texture mosaic test with 5 textures 
instead of two like in our case.  

 

   

   

  
 

Figure 4: 8-colour texture database (t1 a t8) and multitex 
test image. 

In order to accomplish this comparison of texture 
recognition methods, a test was run, similar to the 
“10-texture library problem” proposed in (Grossberg 
and Williamson, 1999). We took 8 different classes 
of textures with 3 colour images per class (see 
Figure 3, only one of each class is presented). Each 
texture image consists of 128x128 pixels. 

Those 8 classes are included or are of similar 
complexity to the black & white image texture 
database used in (Grossberg and Williamson, 1999). 
Our architecture was trained with points from two of 
the images from each class. The training phases 
were executed using three different resolutions like 
in (Grossberg and Williamson, 1999), 8x8, 16x16, 
and 32x32. The third image from each class was 
used to evaluate the prediction level of our 
architecture. Both training and testing was 
performed with two different levels of vigilance, 
ρ=0.95 and ρ=0.98 for training and ρ=0.9 and 
ρ=0.97, respectively for testing. The results are 
shown in Table 4, where the statistics for each class 
of texture are depicted. It can be observed that the 
success rate of the predictions increase with low 
resolutions. The global results are shown in the last 
row of Table 4. Our recognition system achieved 
96,4%, 98.0% and 97.4% corrects with ρ=0.95; and 
98.0%, 99.6% and 97.4% corrects with ρ=0.98 in 
8x8, 16x16 and 32x32 resolution, respectively. The 
ARTEX system proposed in (Grossberg and 
Williamson, 1999) achieved worse results in the two 
first resolutions. ARTEX system achieved 95.8%, 
97.2% and 100.0% corrects with all its features and 
one training epoch (no information about the 
vigilance parameter is given). In Table 4, it can be 
seen that the first texture sharply decreases the 
success rate because it is a highly irregular (no 
regular brick size and colour). The others statistical 
values are over those obtained by ARTEX system.  

Table 4: 8-textures recognition statistics for each texture 
class and global. 

ρ=0.95 ρ=0.98  
8x8 16x16 32x32 8x8 16x16 32x32

T1 90.0 86.9 80.3 90.9 87.2 79.3 
T2 97.3 100 100 97.1 100 100 
T3 98.1 98.5 99.0 98.8 99.8 100 
T4 98.7 99.8 99.8 99.9 100 100 
T5 97.8 100 100 99.2 100 100 
T6 99.9 99.9 100 100 100 100 
T7 97.6 100 100 99.9 100 100 
T8 92.1 98.5 100 98.4 100 100 

total 96.4 98.0 97.4 98.0 99.6 97.4 

Our architecture was also trained and tested over 
a “multitex problem”, analog but more complex than 
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the “texture mosaic problem” proposed in 
(Grossberg and Williamson, 1999). Our mosaic 
includes 9 textural areas versus the 5 textural areas 
from (Grossberg and Williamson, 1999). As 
explained before, with the third image from each 
texture class, we built a 210x210 pixels multitex test 
image (see Figure 4 row 3-right) in order to evaluate 
the frontier precision between textures in the 
prediction of our architecture. Both the training and 
the testing was performed with two different levels 
of vigilance, ρ=0.95 and ρ=0.98 for training and 
ρ=0.9 and ρ=0.97, respectively for testing. The 
results are shown in Table 5. Those results show a 
better class rate in all resolutions and vigilance 
levels than those obtained in (Grossberg and 
Williamson, 1999) as our worst result (95.89%) 
beats the best result (95.7%) shown in this work. 

Table 5: Multitex prediction statistics. 

Resolution Train vigilance 
parameter 

Samples
/class 

Class rate 
(%) 

8x8 0.95 300 95.89 
16x16 0.95 125 96.67 
32x32 0.95 40 97.30 

8x8 0.98 300 99.75 
16x16 0.98 125 99.48 
32x32 0.98 40 99.18 

The images of the predictions can be seen in 
Figure 5 where only those corresponding to a 
vigilance parameter value of ρ=0.95 are shown. 
Each prediction class is depicted with a level of 
grey, from black to white. Those images reveal two 
remarkable points. First, the best prediction for the 
interior points shows up for a 32x32 resolution. 
However, it is the 8x8 resolution the one which 
accurately resolve texture transitions. 

The main differences between our architecture 
and the one shown in (Grossberg and Williamson, 
1999) are basically the inclusion of colour 
information (the two output signals coming from the 
chromatic channels in the diffusion stage) and the 
use of one additional receptive field in the pattern’s 
textural components. Our architecture also includes 
in the patterns the processing of the symetric 
receptive field with central excitation simple cells. 
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Abstract: Many insects can navigate accurately using the polarised light from the sky when the sun is obscured.  They 
navigate using two different types of optical features: one is a set of three ocelli on the top of the head and 
the second is a celestial compass based on several photoreceptors on the dorsal rims of the compound eyes.  
Either feature can be used alone, but the dorsal rim receptors appear to be more accurate.  Robots have been 
built that navigate using three photoreceptors, or three pairs of orthogonally oriented photoreceptors, but 
none has been designed which uses a full set of photoreceptors similar to those in the dorsal rim.   A new 
model of the function of the dorsal rim compass is proposed which relies on the four azimuths at which the 
polarization angle χ = ±π/4.  A simulation shows that this could provide an accurate navigational tool for a 
robot (or insect) in lightly clouded skies. 

1 INTRODUCTION 

Due to the scattering of light within the earth’s 
atmosphere, skylight is partially linearly polarized, 
discovered by the Irish Scientist Tyndall (1869).  
Two years later a full mathematical description of 
the phenomenon was given by Lord Rayleigh (1871) 
for the scattering by small particles in the 
atmosphere (the particles we now know are air 
molecules).  That an insect can use this polarization 
to navigate was first discovered in experiments with 
bees by Karl von Frisch (1949).   

It took another 25 years before the nature of the 
insect’s celestial compass began to be clarified 
(Kirshfeld et al., 1975; Bernard and Wehner, 1977).  
There are two different types of optical features 
involved: the first is a set of ocelli, generally 3 in 
number, on the top of the head (Goodman, 1970) 
and the second depends primarily on a specialized 
part of the insect compound eye, a comparatively 
small group of ommatidia situated in the dorsal rim 
area.  Normally the ocelli and dorsal rim are 
probably used together to navigate, in some way still 
unknown, but experiments with desert ants (Fent and 
Wehner, 1985) have shown that either feature can be 
used successfully alone with the other blacked out.  
It was also found in these experiments that the ocelli 

are more erratic and less accurate for navigation than 
the dorsal rim photoreceptors. 

Further insight on the dorsal rim came from 
Rudiger Wehner and co-workers working with 
desert ants and bees (Labhart, 1980; Rossel and 
Wehner, 1982; Wehner, 1997).  It was found that 
each ommatidium in the dorsal rim has two 
photoreceptors with axes of polarization at right 
angles to one another and each strongly sensitive to 
the E-vector orientation of plane polarized light.  
One of the axes of polarization of these ommatidia 
has a fan shaped orientation that has been shown in 
experiments to provide a map for the polarised sky, 
a map which the insect can use as a compass 
(Rossel, 1993).  Recently this insect map of celestial 
E-vector orientation has been found represented 
within the central complex of the brain of an insect, 
the cricket (Heinz and Homberg, 2007).  We return 
to this later. 

Therefore much is known about this celestial 
compass and how it is represented within the brain.  
However, relatively few contributions deal with the 
physical mechanism underlying the compass, the 
principal subject of this paper.  Only one attempt has 
been made (to our knowledge) to design a 
navigational aid for a drone or robot based on this 
compass; this uses only 3 pairs of photoreceptors 
(Wehner,1997; Lambrinos et al, 1998), different 
from the typical fan of 50 -100 pairs of receptors 
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used by an insect or used in the design proposed 
here.  NASA has also built robots navigating by 
skylight, but these use three photoreceptors with 
different axes of polarization, probably the 
underlying principle behind navigation by the ocelli 
(NASA, 2005).  Few details have been released on 
the above systems, so comparison with our new 
algorithm has not been possible. 

In the following we first derive mathematical 
expressions for the light intensities measured by the 
photoreceptors, before showing how these can give 
the direction of the sun. 

2 THEORY 

2.1 Measured Intensity 

We begin with the assumption that the sky is blue, 
with no cloud.  Then it is well known (Rayleigh, 
1871) that the light observed from any patch of sky 
is partially polarised, with an elliptical profile for the 
electric vector (although not elliptically polarised) in 
which the major axis of the ellipse, is at right angles 
to both the direction of the sun, represented by the 
unit vector S, and to the direction of the observed 
patch of sky, k’.   We let k’ be one of three mutually 
orthogonal vectors i’, j’ and k’, with i’ in the 
direction of the major axis of the ellipse, and j’ in 
the direction of the minor axis. The electric vector in 
the direction of the major axis is often called the E-
vector.  The angle which this makes clockwise in the 
ellipse from the plane of the zenith, is called the 
polarization angle, χ.  In the ideal situation where all 
of the light observed is scattered once only, the ratio 
of the size of the minor axis to the size of the major 
axis is known to be cos (θ) where θ is the angle 
between S and k’. 

Let ES be the scattered electrical vector being 
observed.  Then 
 ]')sin()cos(' )[cos( jiES φθφ += E        (1) 
 
where E is the magnitude of the unpolarized electric 
field.  The angle φ   determines the direction of the 
vector within the ellipse; so it equals 0 when the 
electric vector is parallel to the major axis. 

When the partially polarised light enters an 
ommatidium in the dorsal rim its intensity is 
measured by two photoreceptors, each of which can 
measure polarised light with parallel structures 
called microvilli.  The two directions of the 
microvilli are at right angles to one another, and 
define two orthogonal axes of polarization, 

represented here by the orthogonal unit vectors i and 
j, known as the X and Y photoreceptors.  The third 
mutually orthogonal vector, k, is in the same 
direction as the observed patch of sky, so k = k’.  
The angle which the vector i makes with the vertical 
plane by rotation about k is called ξ. 

We can now write the previous unit vectors in 
Equation (1) in terms of i and j using the 
transformation: 

 

jij'
jii'

)cos()sin(
)sin()cos(
ξχξχ
ξχξχ

−+−−=
−+−+=

             (2) 

 
    We look at the orientations of the microvilli 

in the dorsal rim of the honey bee by Sommer 
(1979), as copied in Figure 1.  The fan shape of the 
microvilli is apparent.   

 
Figure 1: The paired orthogonal photoreceptors in the 
dorsal rims of a bee.  The Y photoreceptors are dark, the X 
photoreceptors light (Sommer, 1979). 

The observation of sky by the photoreceptors is 
known to be contralateral, i.e. they observe the sky 
on the opposite side of the head.  An examination of 
the figure shows that  the axes of the X 
photoreceptors are approximately parallel to the 
meridians passing through the patches of sky being  
observed contralaterally.  The same approximate 
parallel pattern was found in Desert Ants by Wehner 
and Raber (1979).  So we assume that the angle ξ 
that the X polarization axis makes with this meridian 
is always zero.  This greatly simplifies our later 
algorithm for a small insect brain. 

We can now substitute for i’ and j’ from Eq.(2) 
in Eq.(1) to obtain an expression for the partially 
polarised vector ES in terms of the unit vectors i and 
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j.  For example, part of this is the magnitude, EX, of 
the vector in the direction i to be measured by the 
microvilli of the X photoreceptor: 
                (3) ( ))sin()cos()sin()cos()cos( φθχφχ −= EXE

 
However, each receptor can only measure a light 
intensity, which is proportional to the summation of 
the square of the amplitudes of the electrical vectors 
for all angles φ .  So, for receptor X, the measured 
intensity, SX, is found by first integrating the square 
of the amplitude in (3) over all angles and then 
multiplying by a factor, 2R, which depends on terms 
derived by Lord Rayleigh (1871) and on the 
measuring capability of the photoreceptor.   

Before writing down the result of the integration 
we note that in the real world the sky is often not 
always blue, but has a degree of haze or cloud 
differing with direction.  The light then entering the 
ommatidia can be viewed as make up of two 
components, one partly polarised as in the above 
equations, and the second totally unpolarized due to 
multiple scattering.  We let U be the intensity of 
unpolarized light measured by both photoreceptors.  
Then we find 

[ ] URESX +−= )(sin)(sin1 222 χθ        (4) 

       [ ] URESY +−= )(cos)(sin1 222 χθ         (5) 
 
It has been shown by Labhart(1988) that the POL 
neuron at the bottom of each ommatidium of a 
cricket records the difference between the two 
signals, or rather the difference between the log of 
the two signals, not the signals themselves; so the 
signal recorded is 

)()( YXXY SLnSLnS −=                   (6) 
 
We set RE2 = 1 in Figure (2) to illustrate the 
variation in these signals as the azimuth angles of 
the ommatidia vary. 

Some of the above is known, but to proceed 
further we need the polarization angle, χ.  This 
depends on the azimuth and elevation of the sun. 

2.2 Solar Azimuth and Elevation 

The angles θ and χ are related to the azimuth, as, and 
elevation, hs, of the sun.  It is convenient to 
introduce a third set of orthogonal axes, i’’, j’’ and 
k’’ fixed on the earth, with i’’ and j’’ in the plane of 
the ground and k’’ vertically upwards.  For a 
photoreceptor to find θ and χ we need also the 
azimuth, ao, and elevation, ho, of the sky being 
observed by the photoreceptor, i.e. towards the 

centre of the patch of sky being observed.  So we let 
the unit vector i’’ point along the ground in this 
direction. 
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Figure 2: Illustration of the signals SX and SY with U=0, 
and SXY with U=1, as they vary with the azimuth of the fan 
of observations, ao, measured from the central axis of the 
insect. Top graph: hs=0, as=0. Bottom: hs=30, as=60.  Note 
that as=ao at a maximum of SY and that there are 4 
azimuths where SXY=0, called zeros. 

In terms of these new unit vectors we write the 
vector pointing in the direction of the sun as S = 
S1i’’ + S2j’’ + S3k’’   where  

)sin(
);sin()cos(
);cos()cos(

3

2

1

s

oss

oss

hS
aahS
aahS

=
−=
−=

        (7) 

 
We can write down two equations for the direction 
of the sun.  First we know that the vector k’, which 
points at the observed patch of sky, makes an angle 
θ relative to the direction of the sun, S.  We also 
know that the E-vector, in the direction represented 
by the unit vector, i’, is at right angles to the plane 
containing the solar unit vector, S, and the vector, 
k’.  So 
        (a)  k’.S  = cos(θ),  and (b) i’.S = 0.               (8) 

We now express the unit vectors i’, describing 
the E-vector, and k’ in terms of the new axes i’’, j’’ 
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and k’’ fixed in the earth.  Since k’ and k’’ are in the 
same vertical plane it follows that 
 
         '                       (9)  ')sin('')cos(' kik oo hh +=
 
Noting that i’ is at right angles to k’ and that the 
angle χ represents the orientation of the major axis 
of the polarised light about the vector k’, it follows 
that 
       (10)             '')sin()cos(]'')cos('')sin([' jkii χχ −+−= ohoh                                                                                          
Substitute and Equations (8a and b) become 

)sin()sin()cos()cos()cos()cos( shohshaoh +=θ    (11)  

)cos()sin()sin()cos()cos()sin()cos(

)sin()cos()cos(0

shashaoh

shoh

χχ

χ

−−

=

                                     (12) 
where a = as – ao  is the azimuth of the sun relative 
to the azimuth of the observed sky. 

A new unexpected equation was derived from 
(11) and (12) after some analysis: 
      )cos()sin()cos()sin( sos haa −=χθ    (13) 
  
This can also be derived geometrically, or from the 
relation k’ x S = sin(θ )i’.  It simplifies the 
calculation of the angle χ, although not its sign.  But 
more significantly, by substitution in (5), it changes 
the expression for the measured intensity SY :               

[ ])(cos)(sin1 222
sosY haaRES −−=           (14) 

 
This surprising result shows first that it is the same 
for all elevations of the sky being observed and 
second that, as the azimuth ao round the fan of 
receptors varies, the position of the maximum value 
of SY gives a new measure for the azimuth of the 
sun, for all elevations of the sun (see Figure 2).   
Unfortunately, finding this maximum is not possible 
if an insect is only measuring the difference in the 
two log signals as in Equation (5).  But this does not 
stop a robot from using this strategy to find the solar 
azimuth.  But it can only be approximate as finding 
the exact position of a maximum is always difficult. 

2.3 A Precise Compass 

We begin with a question - why have two orthogonal 
photoreceptors, instead of one?  A possibility is that 
the contrast between the two signals is improved 
near the maximum of one of them.  Unfortunately 
this is often obscured by the sin2(θ) term in 
Equations (4) and (5), as evident in Figure (2).  Also 
we are left with the problem of the lack of precision 

in the determination of the position of any 
maximum, even enhanced.   

The photoreceptors can only measure 
intensities, but absolute intensities of light from the 
sky are so variable that only comparisons between 
intensities from the same region of the sky are 
meaningful computationally.  An example is the 
ratio of the two intensities from the pair of 
orthogonal receptors in one ommatidium.  Although 
this ratio can be measured accurately, the inclusion 
of an unknown amount of unpolarized light, U, 
makes it meaningful only when the two are equal 
(the easiest factor to measure).  Equating SX and SY  
puts SXY = 0 in Equation (6), eliminates U, RE2 and θ 
and we get simply: .      )(cos)(sin 22 χχ =

This makes χ = ±π/4.  So finding where SXY=0, 
the quantity measured for each ommatidium, tells us 
the precise azimuths ao where χ = ±π/4.  We call this 
a zero.  An examination of Figure (2) shows that in 
these two cases there are 4 zeros.  Curves similar to 
this were drawn for a range of solar azimuths and 
solar elevations and the zeros found.  The zeros for 
different solar azimuths are shown in Figure (3) for 
one solar elevation.  This and other examples show 
that in almost all cases there are 4 zeros, usually 2 
on either side of the head, but sometimes 4 on one 
side and none on the other.  When the elevation of 
the sun is above the elevation of the observed patch 
of sky there may be no zeros. 
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Figure 3: Graph of azimuths, ao, of the observation at 
which Sxy = 0 (called zeros) for different values of the 
solar azimuth, as, at solar elevation, hs =30o.  Zeros occur 
when the two orthogonally polarized intensities are equal, 
making χ=±π/4.  There are usually 4 zeros, just enough to 
uniquely define the azimuth and elevation of the sun. 

We now show how we can use these 4 zero to make 
a precise measurement of the sun’s position.   
Noting that cos(χ) = 1 and sin(χ) =  ±1 at the zeros, 
Equation (12) becomes: 

     
)tan()cos()sin(

)sin()cos(

soos

oos

hhaa
haa

=−±
−

            (15) 
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Solving this for as, the azimuth of the sun, gives           
δγ ±±= os aa                                              (16)  

in which for each azimuth,  there is a different γ 
and δ given by γ = arccos(1/K) and δ = 
arcsin(tan(h

oa

s)cos(ho)/K) where K2 = 1+ sin2(ho).  
The angle γ is fixed for each ommatidium; so it 
might be stored as γ±oa  within the corresponding 
neurons.  It needs to be corrected with the angle δ 
(unless the sun is on the horizon, when δ=0); but 
this correction needs the observation of 4 zeros, as 
discussed in the next section.  If 4 zeros cannot be 
observed because the region of observed sky is 
restricted the insect can only use ao ± γ, leaving an 
error of δ.  Such errors have been found in 
experiments.  So Equation (16) may be the 
mathematical basis of at least part of the celestial 
map in an insect brain.   

The 4 alternatives in Equation (16) can also 
regenerate exactly the results in Figure (3), but in an 
inverted form.  An example is shown in Figure (4).  
In Figures (3) and (4) the elevations of the sky being 
observed have been chosen to vary between 45o (at 
azimuths 0o and 180o) and 80o (at azimuths ±90o).  
However, these elevations are not critical: if all 
ommatidia examine the sky at a constant high 
elevation the algorithm described below is still valid 
and the curves in Figures (3) and (4) all become 
straight lines. There are still 4 zeroes, but none at 
high solar elevations where sin(δ) > 1. 
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Figure 4: Inverted graph of as for positive ao calculated 
using Equation (16) for hs =60o, showing the contribution 
of the different ± combinations:      s1: ao +γ +δ;  s2: ao +γ 
-δ;  s3: ao –γ +δ;  s4: ao –γ -δ. 

We have built a simulator that can calculate the 
position of the sun using the above equations.  We 
illustrate first with an example in which the 
elevation of the sun is 30o and the solar azimuth is 
20 o; in this example the four zeros are at the 
azimuths:  ao = 53o, 145 o, -5 o, and -110 o.  For each 
of these there are 4 alternatives given by Equation 
(16), but an insect or a robot which is only 
measuring intensities would not know which is 

correct. Four alternatives for 4 zero angles makes a 
total of 16 possibilities as in the array in Table 1.  

Table 1: Example of array of 4 possible solar azimuths  for 
each of 4 zeros (where SX - SY = 0) when the elevation of 
the sun is 30o. Note that the correct azimuth (marked in 
bold) is found once in each of the four rows corresponding 
to the four zeros.  This occurs only for the correct solar 
elevation.  

Zeros γ+δ +γ-δ –γ+δ –γ-δ 
52 180 20 85 -75 

145 -89 125 165 20 
-5 131 20 -31 -142 

-110 20 -148 -72 120 

So the algorithm is simple:   

1. find the 4 zeros where   SX = SY ; 
2. obtain for each the two angles γ±oa ;   
3. choose a possible solar elevation; 
4. find the 4 possible azimuths for each zero 

from Equation (16) and put in an array of 
16 angles (as in the example); 

5. scan the array for one angle in all 4 rows, 
within a small tolerance (e.g. 1 degree).  If 
found, it is the solar azimuth; 

6. if not found, increase the elevation (e.g. by 
1 degree) and return to step 3.   

Figure (5) shows how this algorithm converges to 
the correct result for the example in Table 1. 

-90

-60

-30

0

30

60

90

0 30 60 9hs

as

0

 
Figure 5: Graph showing, as the solar elevation hs varies, 
how four of the elements in the 16 array elements in Table 
1 converge on the correct result at the solar azimuth 
as=20o when hs=30o.  (Only half of the graph is shown.). 

Simulations with about 1000 examples have shown 
that this algorithm succeeds is almost every case 
with no ambiguity within a tolerance of 1 degrees.  
Occasional errors or failure occur only at low or 
high solar elevations (< 3o or > ho).  Four zeros are 
needed: three zeros give a typical 40% error rate.  
The algorithm takes only a page of code, and once it 
is given the positions of the 4 zeros it calculates the 
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solar azimuth in less than a second on a PC.  It can 
easily be built into the processor of any robot. 

Besides the accuracy of the method it has the 
advantage that it gives the solar azimuth anywhere 
within 360o, with no ambiguity of π as in some other 
algorithms.  It is partially independent of 
environmental conditions since some ommatidia 
may be looking at blue sky while others are looking 
at lightly clouded sky.  The position of the zeros is 
unchanged as long as a polarization pattern is 
detectable below the cloud, which is more likely for 
ultraviolet light detectors (Pomozi et al., 2001). 

So the greatest difficulty in building a skylight 
compass for a robot based on this algorithm is the 
detection of the four zeros.  One design uses an array 
of about 100 pairs of orthogonal photoreceptors in a 
circle round the robot.  The problem is that each pair 
would have to observe a patch of sky with an 
accurate azimuth; the elevation, due to Equation 
(14), would be less critical.  In another design the 
robot has one accurate pair of photoreceptors which 
is rotated continually through 360o (like radar) 
measuring the azimuth as it moves at a constant high 
elevation (e.g. 70o). 

3 CONCLUSIONS 

We have shown that an accurate celestial compass 
for a robot can be built round the principle of finding 
4 zeros in the differences between the two signals 
obtained from pairs of orthogonally polarised 
photoreceptors.  The algorithm was derived from 
published studies on the anatomy of insect eyes and 
on published experiments with insect navigation.  In 
particular Equation (16) explains why errors occur 
when the view of an insect is restricted.  The 
algorithm is also simple enough for the small brain 
of an insect; so we believe that the algorithm, or 
something like it, is part of the celestial compass 
within the brain of an insect.   

At the heart of the algorithm are searches in 
arrays of exactly 16 elements as in Table 1.  So we 
might expect evidence for this within the brain of an 
insect.  It is interesting to note that a topographic 
representation of E-vector orientation has been 
found to underlie the columnar organisation of the 
central complex of the brain of a locust, and this 
consists of stacks of arrays, each composed of a 
linear arrangement of 16 columns (Heinze and 
Homberg, 2007).     
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Abstract: This paper analyzes, through clustering and visualization, Magnetic Resonance spectra of a complex multi-
center human brain tumour dataset. Clustering is performedas a two-stage process, in which the models used
in the first stage are variants of Generative Topographic Mapping (GTM). Class information-enriched variants
of GTM are used to obtain a primary cluster description of thedata. The number of clusters used by GTM
is usually large and does not necessarily correspond to the overall class structure. Consequently, in a second
stage, clusters are agglomerated using K-means with different initialization strategies, some of them definedad
hoc for the GTM models. We evaluate if the use of class information influence the brain tumour cluster-wise
class separability resulting from the process. We also resort to a robust variant of GTM that detects outliers
while effectively minimizing their negative impact in the clustering process.

1 INTRODUCTION

Medical decision making is usually riddled with un-
certainty, especially in sensitive settings such as non-
invasive brain tumour diagnosis. The brain tumour
data analysed in this study are obtained by Magnetic
Resonance Spectroscopy (MRS). Information derived
from the MR spectra can contribute to the evidence
base available for a particular patient, providing sup-
port to clinicians.

The fields of Machine Learning and Statistics co-
exist with data analysis as a common target. An
example can be found in Finite Mixture Models
(Figueiredo and Jain, 2002). In practical scenarios,
such as medical decision making, these models could
benefit from data visualization. Finite Mixture Mod-
els can be endowed with visualization capabilities
provided certain constrains are enforced, such as forc-
ing the mixture components to be centred in a low-
dimensional manifold embedded in the observed data

∗Alfredo Vellido is a Ramón y Cajal researcher and
acknowledges funding from the MEC project TIN2006-
08114. Raúl Cruz-Barbosa acknowledges SEP-SESIC
(PROMEP program) of México for his PhD grant. Authors
gratefully acknowledge the former INTERPRET project
centres (http://azizu.uab.es/INTERPRET) for making avail-
able and managing the data for this study.

space, as in Generative Topographic Mapping (GTM)
(Bishop et al., 1998), which can be seen as a prob-
abilistic alternative to Self-Organizing Maps (SOM)
(Kohonen, 1995) for data clustering and visualiza-
tion. When available class information can also be
integrated as part of the GTM training to enrich the
cluster structure definition (Cruz and Vellido, 2006).
The resulting models will be used in our experiments
to analyze a complex MRS dataset.

GTM-based models do not place any strong re-
striction on the number of mixture components (or
clusters), in order to achieve an appropriate visual-
ization of the data. This richly detailed cluster struc-
ture does not necessarily match the more global clus-
ter and class structures of the data. In this scenario, a
two-stage clustering procedure may be useful to un-
cover such global structure (Vesanto and Alhoniemi,
2000). GTM and its variants can be used in the first
stage to generate a detailed cluster partition in the
form of a mixture of components. The centres of
these components can be further clustered in the sec-
ond stage. For that role, the well-known K-means al-
gorithm is used in this study.

The first goal of the paper is assessing to what
extent the introduction of class information improves
the final cluster-wise class separation. The issue re-
mains of how we should initialize K-means in the sec-
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ond clustering stage. Random initialization (Vesanto
and Alhoniemi, 2000) does not make use of the prior
knowledge generated in the first stage of the proce-
dure and requires a somehow exhaustive search of the
initialization space. Here, we propose two different
ways of introducing such prior knowledge as fixed
initialization. These procedures, resulting from GTM
properties, allow significant computational savings.

In section 2, we summarily introduce the GTM
and itst-GTM and class-enriched variants, as well as
the two-stage clustering procedure with its alternative
initialization strategies. Several experimental results
are provided and discussed in section 3, while a final
section outlines some conclusions.

2 TWO-STAGE CLUSTERING

2.1 The GTM Models

The standard GTM is a non-linear latent variable
model defined as a mapping from a low dimensional
latent space onto the multivariate data space. The
mapping is carried through by a set of basis functions
generating a constrained mixture density distribution.
It is defined as a generalized linear regression model:

y = φ(u)W, (1)

where φ are M basis functions φ(u) =
(φ1(u), ...,φM(u)). For continuous data of di-
mensionD, spherically symmetric Gaussians are an
obvious choice of basis function;W is a matrix of
adaptive weightswmd that defines the mapping, and
u is a point in latent space. To avoid computational
intractability a regular grid ofK points uk can be
sampled from the latent space. Each of them, which
can be considered as the representative of a data
cluster, has a fixed prior probabilityp(uk) = 1/K and
is mapped, using (1), into a low dimensional manifold
non-linearly embedded in the data space. This latent
space grid is similar in design and purpose to that
of the visualization space of the SOM. A probability
distribution for the multivariate dataX = {xn}

N
n=1 can

then be defined, leading to the following expression
for the log-likelihood:

L =
N

∑
n=1

ln







1
K

K

∑
k=1

(

β
2π

)

D/2 exp

{

−β‖yk−xn‖2

2

}







(2)

whereyk, usually known asreferenceor prototype
vectors, are obtained for eachuk using (1); andβ is
the inverse of the noise model variance. The EM al-
gorithm is an straightforward alternative to obtain the
Maximum Likelihood (ML) estimates of the adaptive
parameters of the model, namelyW andβ.

The class-GTM model is an extension of GTM
that makes use of the available class information. The
main goal of this extension is to improve class separa-
bility in the clustering results of GTM. For the Gaus-
sian version of the GTM model (Sun et al., 2002;
Cruz and Vellido, 2006), this entails the calculation
of the posterior probability of a cluster representative
uk given the data pointxn and its class labelcn, or
class-conditionalresponsibilityẑc

kn = p(uk|xn,cn), as
part of the E step of the EM algorithm. It can be cal-
culated as:

ẑc
kn = p(xn,cn|uk)

∑K
k′=1

p(xn,cn|uk′ )

= p(xn|uk)p(cn|uk)

∑K
k′=1

p(xn|uk′ )p(cn|uk′ )

= p(xn|uk)p(uk|cn)

∑K
k′=1

p(xn|uk′ )p(uk′ |cn)
,

(3)

and, beingTi each class,

p(uk|Ti)=

∑n;cn=Ti
p(xn|uk)

∑n p(xn|uk)

∑k′ ∑n;cn=Ti
p(xn|uk′ )

∑n p(xn|uk′ )

(4)

The rest of the model’s parameters are estimated fol-
lowing the standard EM procedure.

For the Gaussian GTM, the presence of outliers is
likely to negatively bias the estimation of the adaptive
parameters, distorting the clustering results. In order
to overcome this limitation, the GTM was recently re-
defined (Vellido, 2006; Vellido and Lisboa, 2006) as a
constrained mixture of Student’st distributions: thet-
GTM, aiming to increase the robustness of the model
towards outliers. The mapping described by Equation
(1) remains, with the basis functions now being Stu-
dent’s t distributions and leading to the definition of
the following mixture density:

p(x|W,β,νk)=

1
K ∑K

k=1
Γ(

νk+D
2 )βD/2

Γ(
νk
2 )(νkπ)D/2

(1+ β
νk

‖yk−xn‖
2)

νk+D
2

(5)

whereΓ(·) is the gamma function and the parame-
ter ν = (ν1, . . . ,νK) represents the degrees of free-
dom for each componentk of the mixture, so that it
can be viewed as a tuner that adapts the level of ro-
bustness (divergence from normality) for each com-
ponent. This density leads to the redefinition of the
model log-likelihood and, again, the estimation of the
corresponding adaptive parameters using EM. The ex-
tension to class-t-GTM is straightforward and is omit-
ted here for the sake of brevity.

2.2 Two-Stage Clustering based on
GTM

In the first stage of the proposed two-stage cluster-
ing procedure, the GTM models are trained to ob-
tain the representative prototypes (detailed clustering)
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of the observed dataset. In this study, the resulting
prototypesyk of the GTM models are further clus-
tered using the K-means algorithm. In a similar two-
stage procedure to the one described in (Vesanto and
Alhoniemi, 2000), based on SOM, the second stage
K-means initialization in this study is first randomly
replicated 100 times, subsequently choosing the best
available result, which is the one that minimizes the
error functionE = ∑C

c=1 ∑x∈Gc ‖x−µc‖
2, whereC is

the final number of clusters in the second stage and
µc is the centre of the K-means clusterGc. This ap-
proach seems somehow wasteful, though, as the use
of GTM instead of SOM can provide us with richer a
priori information to be used for fixing the K-means
initialization in the second stage.

Two novel fixed initialization strategies that use
the prior knowledge obtained by GTM in the first
stage are proposed. They are based on the Magni-
fication Factors (MF) and the Cumulative Responsi-
bility (CR). The MF measure the level of stretching
that the mapping undergoes from the latent to the data
spaces. Areas of low data density correspond to high
distorsions of the mapping (high MF), whereas areas
of high data density correspond to low MF. The MF
is described in terms of the derivatives of the basis
functionsφ j(u) in the form:

dA′

dA
= det1/2

(

ψTWTWψ
)

, (6)

whereψ has elementsψ ji = ∂φ j/∂ui (Bishop et al.,
1997) anddA′ anddA are, in turn, infinitesimal rect-
angles in the manifold and latent spaces. If we choose
C to be the final number of clusters for K-means in
the second stage, the first proposed fixed initialization
strategy will consist on the selection of the class-GTM
prototypes corresponding to theC non-contiguous la-
tent points with lowest MF for K-means initialization.
That way, the second stage algorithm is meant to start
from the areas of highest data density.

The CR is the sum of responsibilities over all data
points inX for each clusterk:

CRk =
N

∑
n=1

ẑc
kn (7)

The second proposed fixed initialization strategy,
based on CR, is similar in spirit to that based on MF.
Again, if we chooseC to be the final number of clus-
ters for K-means in the second stage, the fixed ini-
tialization strategy will now consist on the selection
of the GTM prototypes corresponding to theC non-
contiguous latent points with highest CR. That is, the
second stage is meant to start from those prototypes
that are found in the first stage to be most responsible
for the generation of the observed data.

3 EXPERIMENTS

3.1 Human Brain Tumour Data

The multi-center data used in this study consists of
217 single voxel PROBE (PROton Brain Exam sys-
tem) MR spectra acquired in vivo for six brain tumour
types: meningiomas (58 cases), glioblastomas (86),
metastases (38), astrocytomas (22), oligoastrocy-
tomas (6), and oligodendrogliomas (7). For the analy-
ses, the spectra were grouped into three types (typol-
ogy that will be used in this study as class informa-
tion), as in (Tate et al., 2006): high grade malignant
(metastases and glioblastomas), low grade gliomas
(astrocytomas, oligodendrogliomas and oligoastrocy-
tomas) and meningiomas. The clinically relevant re-
gions of the spectra were sampled to obtain 200 fre-
quency intensity values. The high dimensionality of
the problem was compounded by the small number of
spectra available, which is commonplace in MRS data
analysis.

3.2 Experimental Design and Settings

The GTM, t-GTM and their class-enriched counter-
parts were implemented in MATLABR©. For the
experiments reported next, the adaptive matrixW
was initialized, following a PCA-based procedure de-
scribed in (Bishop et al., 1998). This ensures the
replicability of the results. The grid of latent points
uk was fixed to a square 20x20 layout for the MRS
dataset. The corresponding grid of basis functionsφ
was equally fixed to a 5x5 square layout.

The goals of these experiments are fourfold. First,
we aim to assess whether the inclusion of class infor-
mation in the first stage of the procedure results in any
improvement in terms of cluster-wise class separabil-
ity (and under what circumstances) compared to the
procedure using standard GTM. Second, we aim to
assess whether the two-stage procedure improves, in
the same terms, on the use of direct clustering of the
data using K-means. Third, we aim to test whether the
second stage initialization procedures based on MF
and the CR of the class-GTM, described in section
2.2, retain the cluster-wise class separability capabil-
ities of the two-stage clustering procedure in which
K-means is randomly initialized. In fourth place, we
aim to explore the properties of the structure of the
dataset concerning atypical data. For that, we use the
t-GTM (Vellido, 2006), as described in section 2.1.

The clustering results of all models will be first
compared visually, which should help to illustrate the
visualization capabilities of the models. Beyond the
visual exploration, the second stage clustering results
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Figure 1: Representation, on the 2-dimensional latent space of GTM and its variants, of a part of the tumour dataset. It is
based on the mean posterior distributions for the data points belonging to low grade gliomas (‘*’) and meningiomas (‘o’). The
axes of the plot convey no meaning by themselves and are kept unlabeled. (Top left): GTM without class information. (Top
right): class-GTM. (Bottom left):t-GTM without class information. (Bottom right): class-t-GTM.

should be explicitly quantified in terms of cluster-
wise class separability. For that purpose, the follow-
ing entropy-like measure is proposed:

EGc({Ti})= − ∑
{Gc}

P(Gc) ∑
{Ti}

P(Ti |Gc) lnP(Ti |Gc)

=−
C

∑
c=1

KGc
K

|{Ti}|

∑
i=1

pci ln pci

(8)

Sums are performed over the set of classes (tumour
types){Ti} and the K-means clusters{Gc}; K is the
total number of prototypes;KGc is the number of pro-

totypes assigned to thecth cluster;pci =
KGci
KGc

, where
KGci is the number of prototypes from classi assigned
to clusterc; and, finally,|{Ti}| is the cardinality of the
set of classes. An entropy of 0 corresponds to the case
of no clusters being assigned prototypes correspond-
ing to more than one class.

Given that the use of a second stage in the cluster-
ing procedure is intended to provide final clusters that
best reflect the overall structure of the data, the prob-
lem remains of what is the most adequate number of
clusters. In this paper we do not use any cluster va-

lidity index and we just evaluate the entropy measure
for solutions from 2 up to 10 clusters.

3.3 Results and Discussion

In the first stage of the two-stage clustering procedure,
GTM, t-GTM and their class-enriched variants class-
GTM and class-t-GTM were trained to model the hu-
man brain tumour dataset. The resulting prototypesyk
were then clustered in the second stage using the K-
means algorithm. This last stage was performed with
three different initializations, as described in section
2.2. In all cases, K-means was forced to yield a given
number of final clusters, from 2 up to 10. The entropy
was calculated for all settings.

Before considering the entropy results, visualiza-
tion maps (obtained using the mean of the poste-
rior distribution: ∑K

k=1 ukẑkn or ∑K
k=1 ukẑc

kn) of all the
trained models in the first stage were generated. Three
hypotheses were made for the clustering results vi-
sualized here. First, the use of class information
in the clustering models should yield visualization
maps where classes are separated better than in those
models which do not use it. Second, the use oft-
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GTM should help to diminish the influence of out-
liers and the visualization maps generated with these
models should show the data more homogeneously
distributed throughout the visualization maps than in
Gaussian GTM, which do no use it. Thirdly, since
the tumour dataset is stronly class-unbalanced, we hy-
pothesized that the small classes would consist mainly
of atypical data. The second and third hypotheses will
be tested using thet-GTM variants.

For the sake of brevity, we only provide one of
these illustrative visualizations in Fig. 1.

Here, two tumour groups (low grade gliomas and
meningiomas) are shown. The right column of Fig.
1, where the models that include class information
are located, provides some preliminary support for
the first hypothesis since the class separation between
both classes is better than that of the models that
do not use class information, located in the left col-
umn. This can be observed in the form of a more pro-
nounced overlapping of both classes in the left hand-
side models of Fig. 1. This is reinforced by the en-
tropy results provided later on in the paper.

The use oft distributions in the models repre-
sented in the bottom row yields a similar data spread
to that of the standard Gaussian GTM models of the
top row. This is an indication that there might be not
too many clear outliers in the two classes visually rep-
resented. Therefore, the second hypothesis cannot be
supported at this stage.

We now turn our attention to the third hypothe-
sis. In (Vellido and Lisboa, 2006) it was shown that a
given data instance could be characterized as an out-
lier if the value of

O∗
n = ∑

k

ẑknβ‖yk−xn‖
2 (9)

was sufficiently large. The histogram in Fig. 2 dis-
plays the values ofO∗

n from (9) for the brain tumour
dataset. We did the same for the class-t-GTM model
and the corresponding values ofO∗

n are displayed in
Fig. 3.

First of all, and supporting our previous impres-
sion, not too many data could be clearly characterized
as outliers according to these histograms. Somehow
surprisingly, given the complex tumour typology of
the dataset under study, these results do not support
the third hypothesis, as most of the spectra that might
be considered as outliers actually belong to the largest
and best represented tumour types, such as menin-
giomas and glioblastomas. Interestingly, few metas-
tases and astrocytomas are amongst the most extreme
outliers.

The entropy measurements quantifying the
cluster-wise class separation for the brain tumour
dataset are shown in Fig. 4. Two immediate conclu-
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Figure 2: Histogram of the statistic (9) for thet-GTM
model; outliers are characterized by its large values. As
an example, the ten largest values are labeled.
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Figure 3: Histogram of (9) for class-t-GTM. As an example,
the four largest values are labeled.

sions can be drawn: First, all the two-stage clustering
procedures based on GTM perform much better than
the direct clustering of the data through K-means in
terms of cluster-wise class separation. The two-stage
procedure based on class-GTM also performs much
better than its counterpart without class information
based on the standard GTM (right hand side of Fig.
4). On the contrary, it can also be observed that
the two-stage clustering based on class-t-GTM does
not perform better than thet-GTM model. This
is explained by the fact that the adjustment of the
model provided byt-GTM, which is blind to class
information by itself, alters the accordance between
class and cluster distributions, especially in a strongly
class-unbalanced dataset such as the one under
analysis. This result draws the limits out of which the
addition of class information is not necessarily useful
in terms of cluster-wise separation. The second
main conclusion to be drawn is that the random
initialization in the second stage of the clustering
procedure, with or without class information, does
not entail any significant advantage over the proposed
fixed initialization strategies across the whole range
of possible final number of clusters, while being far
more costly in computational terms.

TWO-STAGE CLUSTERING OF A HUMAN BRAIN TUMOUR DATASET USING MANIFOLD LEARNING
MODELS
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Figure 4: Entropy for the two-stage clustering of the tumourdataset, with different initializations (MF init, CR init and rand
init) and K-means alone. The ‘c’ and ‘nc’ symbols refer to models that, in turn, use and not use class information. The ‘t’ in
the legend means thatt-GTM was used in the first stage. (Left): all models are shown.(Right): only the GTM,t-GTM and
their class-enriched variants are shown.

The entropy measure in (8) quantifies the level
of agreement between the clustering solutions and
the class distributions. In terms of the overall
cluster-wise class separation provided by the Gaus-
sian distributions-based GTM clustering models, it
has been shown that the addition of class information
consistently helps. As a result, these class-enriched
models would be useful in a semi-supervised setting
in which new undiagnosed tumour cases were added
to the database.

4 CONCLUSIONS

In this paper we have analyzed the influence exerted
by the inclusion of class information in the two-stage
clustering of a complex human brain tumour MRS
dataset. We have also introduced two economical and
principled fixed initialization procedures for the sec-
ond stage of the procedure. The existence of atypi-
cal data or outliers in the human brain tumours MRS
dataset under study and its influence on the clustering
have also been explored.
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Abstract: Modern high-throughput facilities provide the basis of -omics research by delivering extensive biomedical
data sets. Mass spectra, multi-channel chromatograms, or cDNA arrays are such data sources of interest for
which accurate analysis is desired. Centroid-based clustering provides helpful data abstraction by representing
sets of similar data vectors by characteristic prototypes,placed in high-density regions of the data space. This
way, specific modes can be detected, for example, in gene expression profiles or in lists containing protein
and metabolite abundances. Despite their widespread use, k-means and self-organizing maps (SOM) often
only produce suboptimum results in centroid computation: the final clusters are strongly dependent on the
initialization and they do not quantize data as accurately as possible, particularly, if other than the Euclidean
distance is chosen for data comparison. Neural gas (NG) is a mathematically rigorous clustering method that
optimizes the centroid positions by minimizing their quantization errors. Originally formulated for Euclidean
distance, in this work NG is mathematically generalized to give accurate and robust results for the Pearson
correlation similarity measure. The benefits of the new NG for correlation (NG-C) are demonstrated for sets
of gene expression data and mass spectra.

1 INTRODUCTION

Massive data sets with a high number of samples
and/or attributes create challenges inde novodata
analysis. Particularly, high-throughput biomedical
devices like mass spectrometers or gene expression
arrays generate thousands of data points in parallel
for which accurate data models are required in order
to faithfully reduce the data complexity and to facili-
tate the analysis.

Centroid-based data representations provide most
intuitive interpretations, because a centroid can be
regarded as noise-free prototype of its surrounding
cloud of data. Especially for many data vectors, cen-
troids can be much more easily assessed than re-
sults from hierarchical clustering, for example. Some
well-known clustering algorithms are freely avail-
able (de Hoon et al., 2004), implementing widely

used methods of Eisen et al. (Eisen et al., 1998).

As a matter of fact, self-organizing maps (SOM)
and k-means clustering are frequently used methods
for extracting a pre-defined number of centroids from
the data (Kohonen, 2001; MacQueen, 1967). While
centroids in k-means get specialized by an iterative
averaging procedure applied to data that they do cur-
rently represent, SOM is a cooperative model with
updates of the best-matching centroid and also of its
neighbors. Since SOM neighbors are related to lateral
centroids arranged on a grid structure, the SOM up-
date triggers a mapping of similar high-dimensional
data vectors onto similar positions of that usually low-
dimensional grid, often, a 2D-plane for visualization.
Due to topological constraints induced by the grid,
quantization accuracy, i.e. data representation, of the
SOM centroids is often not optimum (Villmann and
Claussen, 2006). Thus, if the dimension reduction
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feature of SOM is not needed, better representations
are obtained without grid structure. This can be real-
ized by a SOM-like algorithm called neural gas (NG)
that will be of interest here.

Data condensation requires similarity criteria in
order to gather related items. Besides Euclidean dis-
tance, Pearson correlation is one of the most often
used comparison criteria in biological studies. In
principle, a wide range of similarity measures, ex-
pressed as Minkowski metric or correlation, is avail-
able in self-organizing maps (SOM) and k-means.

There is a commonly overlooked problem con-
nected to similarity rating and model update, though.
SOM centroids, for example, are defined by their
closeness to data points, and it is thus straight-forward
to describe closeness by task-specific similarity mea-
sures. Yet, the SOM update rule ’make close cen-
troids more similar to the data’ is traditionally imple-
mented as a claim for identity: centroids are moved on
straight lines inEuclideanspace, in portions depend-
ing on their closeness, towards presented data points.
There is thus a difference between the update rule
for a strict one-to-one correspondence of all centroid
components with those of the represented data vec-
tors, and the more relaxed desire of merely represent-
ing high similarity. Although, for vector pairs, iden-
tity is equivalent to maximum similarity, the situation
is different for a single centroid representing many
data points; then, similarity constraints do usually al-
low more degrees of freedom for the centroid place-
ment than strict identity constraints. Analogous con-
siderations apply to the k-means clustering method,
in which custom measures define data assignments
to centroids, but in which average data centroids are
strictly computed (by averaging) in Euclidean space.

The discrepancy between similarity computation
and subsequent update of data models can be circum-
vented by coupling the update procedure with ana-
lytic properties of the selected similarity measure. In
cost function frameworks the model parameters can
be adapted by optimization of similarity relationships.
Here, gradient-based optimization of centroid loca-
tions is discussed for Pearson correlation similarity.
Correlation is often used in biomedical analysis tasks.
It has got favorable pattern matching characteristics,
and it allows to calculate formal derivatives and can
be directly used in gradient methods such as the Hes-
kes variant of SOM (Heskes, 1999), neural gas (Mar-
tinetz and Schulten, 1991), and generalized learning
vector quantization (Sato and Yamada, 1995). The
subsequent derivative is integrated into the highly ac-
curate neural gas clustering method, for which supe-
rior performance is demonstrated for gene expression
data and mass spectrum data.

2 METHODS

Faithful data representation requires robust centroid
locations within the data. Self-organizing maps
(SOM) realize a cooperative centroid placement strat-
egy by iterative presentation of data points that trig-
ger further improvements of previously placed cen-
troids. A general formulation of this simple procedure
is given in Algorithm 1.

Algorithm 1 SOM / NG centroid update

repeat
chose randomly a data vectorx

k← argmini {d(wi ,x)}
{ w

k is closest centroid to data vectorx }
for all m centroidsj do

w
j ←w

j + γ ·hσ
(

D(wk,w j)
)

·U(x,w j)
{ γ,h,σ,D,U : see text}

end for
until no more major changes

SOM Mode of Algorithm 1. Since SOM centroids
cooperate laterally on a grid structure, updates im-
ply spatial specialization with similar grid neigh-
bors. Grid dependencies between centroidsk and j
are expressed by the neighborhood indexD(wk,w j).
For example, rectangular 2D grids possess four di-
rect neighborsNk of non-boundary centroids with
D(wk,Nk) = 1. The σ-range of neighborhood co-
operation is expressed by the decreasing function hσ,
with maximum value at hσ(0) = 1. Often a Gaus-
sian bell hσ(D) = e−D2/σ2

is put upon the grid, con-
tracted during update by shrinkingσ→ 0. In addition
to neighborhood characterization, the update strategy
of centroidw

j facing data vectorx is described by
U(x,w j). As said above, centroids are most often
moved on straight Euclidean lines towards the data
vector, i.e. by the termU(x,w j) = (x−w

j), in small
steps depending on the update rateγ < 1.

NG Mode of Algorithm 1. The neural gas algo-
rithm works exactly the same as described in the pre-
vious SOM mode, except for one crucial exception:
the centroid neighborhood is no longer defined on a
pre-defined grid structure. Instead, the neighborhood
changes dynamically in course of data presentation.
The centroid closest to the currently presented data
vectorx is assigned a rank of zero, the runner-up gets
a rank of one, and so forth. In general, the neighbor-
hood is defined by the ranks relative to only the data
vector:D(wk,w j) = D(w j) = rnk(x,w j) with

rnk(x,w j) =
∣

∣{d(x,wi) < d(x,w j) , i = 1. . .m}
∣

∣ .

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

198



In contrast to SOM, the best-matching centroidw
k

does not induce a specialized structure on the grid
neighbors, and the rank-based neighborhood is al-
ways data optimum. Centroid update profits from
ranks, because they are useful for breaking ties, i.e.
for differentiation of very similar data. Ranks are ex-
ponentially wrapped by hσ(D) = e−D/σ, againσ→ 0
during update iterations. As for SOM,U(x,w j) =
(x−w

j) andγ < 1.

Its is known that the NG algorithm asymptotically
realizes a stochastic gradient descent on the cost func-
tion (Martinetz et al., 1993):

E(W,σ) =
1

C(σ)
·

m

∑
j=1

n

∑
i=1

hσ(rnk
(

x
i ,w j)

)

·d(xi ,w j) .

(1)
The scaling factorC(σ) = ∑m−1

i=0 hσ(i) is used for nor-
malization. In the limitσ→ 0, the NG mode of Algo-
rithm 1 leads to a centroid placement that minimizes
the total quantization error, defined by d(x j ,wi), be-
tweenm centroids andn data vectors. This property
does not hold for the SOM version. Even worse,
in general the mathematical optimization target of
SOM is undefined (Cottrell et al., 1994), unless the
costly modification proposed by Heskes is imple-
mented (Heskes, 1999).

The benefits of neural gas are: mathematical un-
derstanding of centroid specialization, high repro-
ducibility of results, neighborhoodcooperation for ro-
bustness against initialization, and easy implementa-
tion. Very importantly, the generic formulation of the
neural gas algorithm allows to create modifications
with respect to the choice of the data similarity mea-
sure. A minor drawback of NG is the sorting oper-
ation, i.e. a computing complexity ofO (nlogn), re-
quired for rank calculation. Therefore, a fast batch
version of neural gas with quadratic convergence
based on Newton’s method has been proposed re-
cently (Cottrell et al., 2006), complementing the it-
erative online approach discussed here. The authors
do also present a method for clustering data only de-
fined by a similarity matrix. For its simplicity, we
stick to Algorithm 1 in the following, and we intro-
duce a derivation making full use of the analytic prop-
erties of Pearson correlation for an improved centroid
update rule.

Neural Gas Clustering with Pearson Correlation.
Pearson correlation is our focus of choice, because it
provides a certain degree of invariance to additive or
multiplicative effects induced by measuring devices
or biochemical probe concentrations. Thus, pattern-
based analysis is enhanced by choosing Pearson sim-
ilarity for data vectors and centroids, mathematically

described with abbreviationr(x,w) = B√
C ·D

by

r(x,w) =
∑d

i=1 (xi−µx) · (wi−µw)
√

(

∑d
i=1 (xi−µx)2

)

·
(

∑d
i=1 (wi−µw)2

)

.

(2)
In principle, the covariance ofx andw gets standard-
ized by the product of the individual variances ofx

and w. However, due to dynamic centroid update,
there is no much use in making the implicit standard-
ization explicit by data preprocessing, such as z-score
transformation. Furthermore, in cases when correla-
tion is just a building block, like in the dissimilarity
measure(1− r)p (Zhou et al., 2002), it is much more
natural to think in terms of a self-contained equation
(Eqn. 2) than in terms of statically preprocessed data.

Correlation described by Eqn. 2 can be plugged
into the cost function Eqn.1 being optimized by gra-
dients along partial derivatives of E with respect to co-
ordinates of all centroidsw. In general, these deriva-
tives indicate contributions of thek-th centroid com-
ponent ofw to the distance or similarity measure.

For the squared Euclidean distance d2(x,w) =

∑d
i=1(xi − wi)

2 this corresponds to the previously
mentioned termU(x,w) = (x−w):

∂d2(x,w)

∂wk
=−2 · (xk−wk) ∝ U(xk,wk) .

For Pearson correlation the derivative is

∂r(x,w)

∂wk
=

(xk−µx)−
B

D
· (wk−µw)

√
C ·D

. (3)

Since the cost function should be minimized, cor-
relation r is turned by negative sign into a dissim-
ilarity measure. Therefore, the termU(xk,wk) =
−∂r(x,w)/∂wk is inserted into Algorithm 1 which
constitutes the new version of neural gas for
correlation-based centroid placement, NG-C for
short. It can be shown that this correlation-based up-
date rule yields a valid gradient descent also at the
boundaries of the receptive fields. A proof, origi-
nally for the Euclidean case, is provided by (Martinetz
et al., 1993), where a vanishing contribution of the
ranks was presented. Since the proof does not rely on
specific properties of the Euclidean metric, a direct
transfer to Pearson correlation is possible. Therefore,
Eqn. 1 is still a cost function that gets optimized by
the neural gas algorithm.

Usually, good convergence is reached after 50–
1000 repeated data cycles, depending of the sizen of
the data set and the numberm of centroids. Thereby,
the neighborhood rangeσ is exponentially decreased
from a starting size ofσ = m to a small value of
σ = 0.001. This involves all prototypes strongly in
the beginning, contracting centroids towards the data
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’center’, and it leads to a fine-tuning of data-specific
centroids in the final phase.

3 RESULTS

The following three applications show the superior-
ity of NG-C clustering over traditional methods with
Pearson correlation. As demonstrated, cost function
optimization by NG-C provides better data represen-
tations and higher reproducibility of results.

3.1 Single Cluster Representation of
Gene Expression Data

A first proof of concept is given for the simple,
but illustrative task of finding only a single centroid
position. This points out structural differences be-
tween Euclidean- and correlation-based centroid up-
date. We use an exemplary 14-dimensional gene ex-
pression data set, where macroarrays were used to
cover 14 temporal developmental stages in the en-
dosperm tissue of developing barley grains, sampled
from day 0 after flowering in steps of two days to day
26. After quality-based filtering, 4824 highly reliable
genes were obtained. Conforming to standards, ex-
pression values were quantile normalized and log2-
transformed. However, for maintaining overall ex-
pression levels, z-score was not applied to the 14-
dimensional expression series. For illustration, the
set was further reduced to 344 genes of prominent
temporal up-regulation with more than 10 transitions
x j

t < x j
t+1.

Neural gas has been run with Euclidean update
U(x,w) = (x−w) and with updates based on the
derivative of correlation according to Eqn. 3. Both ap-
proaches have been re-run 50 times with random cen-
troid initialization. Each run has been carried out with
100 update iterations usingγ = 0.001 for the approach
Euclidean andγ = 0.01 for the correlation-based one.
Neighborhood sizeσ does not have any influence and
even d is not important for data assignments, because
there is only one centroid to be assigned to. Thus,
only the effect of the derivative of d on the centroid
specialization is studied here.

The results are displayed in the plot panel of
Fig. 1. The plots show the 14-dimensional expression
series together with their centroids, projected by PCA
and embedded by multi-dimensional scaling (MDS)
in two dimensions. PCA represents the Euclidean
view on the data, MDS the correlation-based view. To
summarize the displayed results, Euclidean update is
very stringent in both data views, the top left panel
indicating that all 50 centroids are almost perfectly

located in the center of gravity at point (0,0), which
is the k-means solution fork = 1. Complementary to
that, correlation-based update exhibits many degrees
of freedom in Euclidean view, but shows very high
specificity in the correlation view – which is exactly
what is has been designed for.

In addition to visual validation, which might suf-
fer from shortcomings of the built-in dimension re-
duction, quantization errors have been calculated. For
the average data vector, analog to the determinis-
tic k-means result withk = 1, an average correla-
tion of r = 0.96226 to the data vectors is found.
The Euclidean NG-update yields a result with an av-
erage correlation of the generated centroids ofr =
0.96222±5.583·10−5, which is virtually the result of
the avarage vector, affected by minor update-specific
fluctuations. Correlation-based centroid update yields
the best results with an average correlation ofr =
0.96403±8.173·10−5. In combination with the bot-
tom left panel in Fig. 1 it can be concluded that there
are non-unique solutions that can be reached only, if
Euclidean constraints are relaxed to updates operating
in correlation space. Despite of the small differences
for the presented data set, the results are quite fun-
damental, because they show that better solutions ex-
ist beyond averages. On a good mathematical basis,
similarity-specific updates induce less constraints on
the cost function and yield better data representations.

3.2 Clustering of Gene Expression Data

Mining for principal shapes in large lists of gene ex-
pression patterns is a central tool for the identifica-
tion of co-expressed genes. Neural gas with corre-
lation is used to meet this purpose for the data set
described in the last paragraph containing 4824 gene
expression levels at 14 time points. For comparison,
Eisen’s implementation of k-means and Gasch’s and
Eisen’s fuzzy k-means are taken as reference mod-
els (de Hoon et al., 2004). Both make use of Pear-
son correlation for creating sets of similar patterns for
centroid calculation, but they compute centroid po-
sitions in Euclidean space. Calculations were done
with 100 cycles for neural gas, i.e. 482,400 centroid
updates, and 100 cycles for the k-means models.

A number of 23 centroids was used in all mod-
els, because fuzzy k-means is, due to its built-in PCA,
limited to 3×#experiments+2=3×14+ 2= 44 proto-
types of which only 23 were identified as unique by
fuzzy k-means (Gasch and Eisen, 2002). Contrary to
the k-means methods, unused prototypes do not occur
in NG-C, because of its neighborhood cooperation.
The exponential NG-C neighborhood influence is re-
alized as exponential decay fromσ = 23 toσ = 0.001,
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Figure 1: Centroid specialization for single cluster representation. Top row: Euclidean update rule, bottom row: update based
on derivative of Pearson correlation. Left column: principal component plots, right column: multidimensional scaling of
(1− r) data relationships. In 50 individual NG runs, Euclidean updates (top row) show high specificity for both the Euclidean
data view (shown as PCA) and the correlation-based view (shown as MDS). Correlation-based updates (bottom row) exhibit
large diversity in Euclidean view (PCA) and high specificityin correlation view (MDS).

the update rate is set toγ = 0.001. Two quality criteria
are considered for model comparison: reproducibility
of the obtained centroids for different runs of the al-
gorithms and quantization accuracy.

Reproducibility of Clusters. One major aspect of
clustering is the consistency of the results. This has
been tested by running NG-C and k-means 10 times
from random starting configurations of the 23 cen-
troids. For fuzzy k-means the standard initialization is
fixed, which makes repeats unnecessary. Visual com-
parison is thus restricted to NG-C and k-means. An
informative comparison between both methods is dis-
played in Figure 2, created using the free TreeView
software. Both horizontal intensity bars contain the
23 centroids of 10 runs, i.e. 230 columns. Shades of
gray denote specific gene expression intensities. Pat-
terns of temporal up- and down-regulations present
in the underlying data set are nicely captured by cen-
troids of both models. The tic marks attached to the
bottom of the NG-C bar point out 23 prominent bands
that reflect a high reproducibility of the centroids con-
tained therein, independent of their random initializa-
tion. For k-means, displayed in the row above, the re-
sult is very different: an unspecific continuous range
of final states is obtained, which supports the experi-
ence of many users of k-means who complain about
the poor reproducibility of results.

Quantization Accuracy. Table 1 provides a summary

of the quantization accuracy of the found clusters.
For each run, the average correlation of expression
patterns with their corresponding centroids are mea-
sured, and the respective standard deviations are also
calculated. These two values are averaged over all
centroids. Finally, mean values for the 10 experi-
ments are determined and listed in Table 1. As a major
outcome, NG-C shows a superior data representation
over k-means and fuzzy k-means. The fuzzy k-means
is a little better than simple k-means, but its major dis-
advantage is the limitation to 44 centroids of which 21
are even unused. The good results of NG-C, however,
are not too much surprising, because neural gas has
been mathematically designed to optimize the goal of

Table 1: Average correlations between data samples and
their centroids for 10 independent runs of NG-C and k-
means. The deterministic result of the fuzzy k-means is
0.9335± 0.07216. In terms of quantization accuracy and
data assignment variability NG-C performs best. Both k-
means and its fuzzy k-means yield slightly worse quantiza-
tions, but fuzzy k-means covers data more homogeneously.

NG-C
mean std.-dev.

0.9516±0.0001 0.0573±0.0004
k-means

mean std.-dev.
0.9329±0.0017 0.0881±0.0038
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Figure 2: Cluster reproducibility for correlation-based neural gas (NG-C) and k-means. Both models, corresponding tothe
upper and lower bar, were run 10 times with random initialization. For the considered number of 23 centroids this yields
a total of 230 centroids (gray columns) for comparison. While the final states of k-means cover a continuum of centroid
locations, exhibiting only one major break, the final statesof NG-C are highly conserved and displayed as 23 characteristic
bands containing approx. 10 specific centroids.

maximum quantization accuracy (minimum quantiza-
tion error), while the k-means methods are acting on
assumptions about Euclidean data centers iteratively
assessed by averaging.

3.3 Clustering of Mass Spectra

The last application concerns clustering of mass spec-
trum data from a clinical cancer study with 1050 mass
spectra taken from sliced frozen tissue probes, us-
ing a linear MALDI-TOF MS, Autoflex, in a range
of 2000-10000Da (by courtesy of Bruker Daltonik
GmbH, Bremen). The data preparation protocol of
the measured spectra followed the default workflow
for baseline correction, alignment and peak picking.
Robust peaks with signal to noise ratio S/N> 5 were
used for further analysis, and only maxima of the ex-
tracted peaks were considered. This led to a high
quality data set of 1050 samples, each described by
32 peaks. Clustering assists in tasks of data inspec-
tion and hypothesis generation.

Neural gas is applied in two manners to address
the task of deriving tissue-specific spectrum centroids
from the 32-dimensional data: one with Pearson cor-
relation for centroids assignment, but with Euclidean
update, the other fully correlation-driven for both pat-
tern matching and update.

A small number of 11 clusters has been chosen
in order to force sparse representations and to make
the constraints of stringent Euclidean updates appar-
ent. Both approaches have been trained in 10 indepen-
dent runs using 1000 data cycles, i.e. 1000 x 1050 it-
erations, starting with randomly initialized centroids.
Euclidean update was performed with an update rate
of γ = 0.01. A value ofγ = 104 was used for the
correlation-based update. This large value compen-
sates for the very small variability of the derivatives
of correlations, which are caused by very similar mass
peak profiles.

Both methods yield accurate data abstractions,

as shown in Fig. 3. The MDS visualization faith-
fully displays the correlation relationships of the 32-
dimensional centroids and the data. Since similar
scatter points correspond to highly correlated data
vectors, excellent reproducibility of the final con-
figurations and a good data coverage can be ob-
served. With respect to quantization, centroids from
Euclidean update correlate on average at a level of
r = 92.8106±0.0043 with the represented data. Up-
date by Pearson correlation yields an improvement to
r = 93.4854± 0.0790 for the same number of pro-
totypes. The small standard deviation for Euclidean
update again points out (indirectly) the very strong at-
traction to the final centroid configuration, which is,
however, not optimum in terms of quantization accu-
racy (data representation), for which the correlation
update is clearly a better choice.

4 CONCLUSIONS

Based on the mathematical derivative of the Pear-
son correlation coefficient, we developed a new ap-
proach to maximize correlation in prototype-based
data models. Particularly, the derivative can be di-
rectly plugged into the update step of a generalized
version of the neural gas clustering method. Well-
reproducible high-quality clusters were obtained by
the new NG-C method. For the data clustered here,
k-means and fuzzy k-means, although offering corre-
lation similarity, are clearly outperformed by NG-C.
In general, correlation-based centroid matching com-
bined with Euclidean update, as usually realized in
k-means and SOM implementations, leads to sub-
optimal data representations.

Although Pearson correlation is one of the gold
standards in biomedical data analysis, the above con-
cept can be easily generalized by replacing the deriva-
tive of Pearson correlation by that of other suitable
similarity measures. This opens directions to process

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

202



−1 0 1 2 3

−
1

0
1

2
Embedded Data Set with NG Centroids

MDS axis 1

M
D

S
 a

xi
s 

2

Figure 3: Visualization of data (small dots) and neural gas
(NG) centroids (circles and crosses). Centroids correspond
to 10 independent runs of NG, each run comprising 11 cen-
troids, for two different update rules. Circles correspond
to NG centroids obtained by Euclidean update; they do ex-
hibit an extremely high reproducibility. Crosses correspond
to centroids with correlation-based update; their final states
are less stringently fixed, but their quantization quality is
better (see text). In many cases, both update rules yield
similar final configurations, but the boxes highlight regions
with sytematic differences.

data from wide scientific fields where domain knowl-
edge needs to be carefully considered.
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Abstract: We present a spatio-temporal clustering algorithm for detection of endocardial contours in short axis (SAX)
contrast echocardiographic image sequences. A semiautomatic method for segmentation of left ventricle in
SAX videos is proposed which uses this algorithm and at the same time requires minimal expert intervention.
Expert is required to specify a few candidate points belonging to the contour, only in the first frame of the
sequence. The initial contour is approximated by fitting an ellipse in the region defined by the points speci-
fied. This region is identified as the principal cluster corresponding to the left ventriclular cavity. Later the
density based clustering was applied for regularization on the inital contour. We have extended the DBSCAN
algorithm for identification of the principal cluster corresponding to the left ventricle from the image. The al-
gorithm also incorporates the temporal information from the adjacent frames during the segmentation process.
The algorithm developed was applied to 10 data sets over full cardiac cycle and the results were validated by
comparing computer generated boundaries to those manually outlined by one expert. The maximum error in
the contours detected was ±2.9mm. The spatio-temporal clustering algorithm proposed in this paper offers an
efficient semiautomatic segmentation of heart chambers in 2D contrast echocardiography sequences.

1 INTRODUCTION

Amongst the various medical imaging modalities, two
dimensional (2D) echocardiography is valuable for
patients with heart diseases. It is noninvasive, real
time, easy to use in clinical environment and of-
fers relatively low cost solution as compared to other
modalities (Bridal et. al, 2003). However, for eval-
uation of cardiac functional parameters, segmenta-
tion is to be carried out. Manual segmentation as
routinely carried by experts is time consuming and
tedious due to large image data in different stan-
dard echo views over a full cardiac cycle. Again
the manual method also suffers from inter-observer
and intra-observer variability in measurements (Maes
et. al, 1993). Many researchers have shown image
processing applications to enhance clinical utility of
echocardiography by automated and semiautomated
endocardial border delineation and for evaluation of
functional cardiac parameters (Noble and Boukerroui,
2006). In fact there is a continuous growing de-

mand for the automated segmentation and quantifi-
cation to support professionals in diagnosis. In re-
cent years automated segmentation of heart cham-
bers and in particular the left ventricle has received
significant attention in 2D and 3D echocardiograms.
However automatic edge definition and subsequent
segmentation in echocardiograhic images is difficult
due to presence of speckle noise, poor contrast, inher-
ent dropouts, inter-cavity structures and variability of
data along with orientation and positioning of trans-
ducer (Setaredhan and Soragham, 1996).

In recent years numerous clinical studies have
shown the clinical utility of myocardial contrast
echocardiography (MCE) in quantification of my-
ocardial perfusion, left ventricle (LV) volumes, LV
contours and cardiac functional parameters (Cohen
et.al., 1998). There have been few reports of research
attempts towards the semiautomatic and fully auto-
matic segmentation of left ventricle from 2D con-
trast enhanced echo images (Wolfer et. al, 1999).
A very rigorous work for the segmentation problem
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in low mechanical-index contrast echocardiography
is reported (Zwirn et. al, 2006). It has been shown
that the use of temporal continuity results in better
segmentation as it follows the approach of human ex-
pert in delineation (Mullet-Parada and Noble, 1998).
Typically the dropouts present in the image can be re-
covered by the use of boundary information from the
neighboring frames (Choy et. al, 1998). Researchers
have reported active contour approach (Morales et.
al, 2002), trained deformable models (Garcia et. al,
2003) and active shape model (Pickard et. al, 2004).
Many of the proposed methods have shown results
comparable to expert delineation for good quality im-
ages (Mishra et. al, 2003). However none of the
methods has a generalized applicability for fully auto-
matic or semiautomatic segmentation for the images
acquired in routine clinical environment.

Few researchers have extended the application of
well established data clustering approaches in the
field of medical image segmentation (Celebi et. al,
2005). In this work we have extended the Density-
based Clustering (DBSCAN) approach by including
temporal data and applied for the segmentation of
contrast echo sequences. Our spatio-temporal cluster-
ing algorithm has shown good results in the segmen-
tation of endocardial borders in frames of a sequence
by accommodating temporal information. The user
intervention is minimal and is of the form of specify-
ing five or more candidate points for contour on the
first frame of the sequence.

The paper is organized as follows: In section II
we discuss the density based clustering and its ex-
tension in spatio-temporal clustering technique. In
section III, we present the application of the algo-
rithm for segmentation of endocardial border after fit-
ting the ellipse in the first frame through the points
specified by the user and then to subsequent frames
in the sequence. The contours thus obtained are post
processed and smoothened to obtain final endocardial
borders. In section IV we present the results of the
proposed algorithm and, finally conclusions drawn
and future work is discussed in Section VI.

2 CLUSTERING

Clustering is an important technique in data min-
ing for finding data distributions and patterns in the
underlying one or more dimensional data (Jain and
Dubes, 1988). It has been a active field of research
since last two decades and many novel approaches
have been reported in the literature (Jain et. al,
1999). Clustering has number of upcoming appli-
cation fields, such as statistical data analysis, pat-

tern recognition, image processing, segmentation and
many others. It is the task of grouping similar objects
together with respect to a distance , connectivity, con-
tinuity, relative density in the space or other similarity
measure.

In formal mathematical definition cluster is de-
fined as (Fung, 2001): Let X ∈ Rm×n be a set of data
items representing a set of m points in xi in Rn. The
goal is to partition X into K groups Ck such that ev-
ery data that belongs to the same group are more alike
than data in different groups. Each of the K groups is
called a cluster. The result of the algorithm is an injec-
tive mapping X 7−→C of data items Xi to clusters Ck.
The number K might be preassigned by the user or it
can be unknown determined by the algorithm . There
are many approaches to data clustering that vary in
their complexity and effectiveness. For our applica-
tion we have focussed our attention on a single cluster
(K = 1), pertaining to the heart chamber specifically,
the left ventricle in the contrast echcocardiographic
view. In our work we call it as principal cluster. The
assumption of defining only one principal cluster is
valid because the spatial coordinates of the boundary
objects of this principal cluster reflect the endocardial
contour.

2.1 Dbscan for Principal Cluster

Density-based algorithms typically regard clusters as
dense regions of objects in the data space separated by
regions of low density. Thus the main objective lies
in finding regions of high and low densities (Bradley
and Fayyad, 1998). This approach is also capable of
finding arbitrarily shaped clusters in the data space.
Another advantage of these algorithms is that they
are independent of the prior knowledge of the number
of clusters. Hence these are very useful in situations
very clustering can be confined to only in the region
of interest (Han and Kamber, 1998). In contrast en-
hanced short axis echo sequence, the chamber cavi-
ties are filled with micro-bubbles which contribute in
achieving their opacity. This results in a bright re-
gions corresponding to the blood filled areas in an
echo image (Fedele et. al, 1998). In the SAX images
of the left ventricle (LV), a single bright region in the
center of the acoustic window corresponds to the LV
cavity. We treat this central bright region as a single
cluster of interest. As stated earlier it is termed as the
principal cluster for this application. The two global
parameters of density based clustering algorithms are:

• E ps: Maximum radius of the neighborhood.

• MinPts: Minimum number of points in the Eps
neighborhood of a point.

ENDOCARDIAL SEGMENTATION IN CONTRAST ECHOCARDIOGRAPHY VIDEO WITH DENSITY BASED
SPATIO-TEMPORAL CLUSTERING
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The ellipse fitted through the expert specified points
in the first frames is taken as the starting point for
the density based cluster algorithm. The maximum
radius of the neighborhood E ps is chosen as half of
the major axis of the ellipse. The parameter MinPts
was chosen to be 100 after a study of end systole im-
ages in 44 patients. The core point of the principal
cluster is chosen as the center point of the ellipse fit-
ted through the points specified by the expert in the
first frame. We have chosen four local parameters for
grouping the objects (pixels) in a cluster. These pa-
rameters include the features of the objects like pixel
intensity, gradient threshold, gradient angle and the
angular gradient with respect to the center point of the
region. For cavity boundary, only negative intensity
changes are identified along radial lines from center
point. Again the threshold for gradient (GT ) was ob-
tained automatically from the histogram statistics and
the coordinates and intensities of the pixels specified
by the expert. The algorithm for our application is
framed as:
• The center of the ellipse is taken as core point.

• The maximum radius is assigned the value of semi
major axis in the first frame.

• Gradient threshold is obtained by histogram of the
frame.

• Density reachable points around the core point
are identified.

• Above steps are repeated for all the frames in the
sequence.

• Border objects of the cluster are determined.

2.2 Spatio-temporal Dbscan

An image is a 2-dimensional(2D) array of pixels de-
fined on a W ×H rectangular lattice S = [ (x, y) :
1 ≤ x ≤W,1 ≤ y ≤ H ], and is indexed by the co-
ordinate (x, y). Each pixel in a given frame can be
represented by a feature vector. In a video stream, im-
age frames are continuous along the time axis. Thus
a video sequence can be expressed in spatio-temporal
domain. Temporal dimension can be incorporated in
many ways. One of the way is separating the frames
of the sequence with respect to discrete time and to
stack consecutively. We follow this approach in our
application. In a video sequence, the frame to frame
variation in shape and dimension of a given object
depends upon its deformity and forces acting on it.
Hence it is possible to recover a missing segment or
to correct any outlier in the contour from the adjacent
frames if the frame to frame variation is not signifi-
cant. The outliers are detected with the radius of cur-
vature of the extracted contour and the corresponding

points in adjacent frames. We propose temporal con-
tinuity in the neighborhood of three frames:

1. For ith frame the jth border pixel will lie in the
bounds setup by (i−1)th and (i+1)th frame.

2. Presence of drop out pixels in a frame was taken
by temporal continuity from adjacent frames over
an interval of three fames.

We have used parameter λ as the correction factor
which governs the closeness of the corrected seg-
ment with the temporal frames. Correction is incor-
porated at 360 equidistant points on the contour i.e
j = [1,2, .....360]. The clustering is recursively car-
ried out to regroup the cluster on the basis of modified
distance and density parameters. These parameters in
turn are function of λ during recursive calls of DB-
SCAN.

Figure 1: Flow chart for segmentation procedure.

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

206



3 SEGMENTATION WITH
T-DBSCAN

In this work, we have applied the spatio-temporal
clustering algorithm to segment the endocardial bor-
der in the contrast enhanced echocardiography videos
of 10 patients. Figure 1. shows the flowchart of the
segmentation procedure. After preprocessing of the
image frames, user specifies candidate boundary pix-
els of the left ventricle in the first frame of the first
frame of the sequence by mouse. The ellipse is fitted
through these points and its parameters are stored for
subsequent processing.

3.1 Image Processing

The echocardiographic videos used in this study were
contrast enhanced short axis apical images at various
levels of LV. These were obtained from different sub-
jects for two to four cardiac cycles. The videos were
acquired on GE Vingmed Ultrasound, VIVID7 in hos-
pital environment under expert guidance. The frames
in each video were 434 x 636 true color with 8 bit bit-
depth in DICOM format. Gray scale conversion with
256 levels was done. The video sequences for one
complete cardiac cycle were used for estimation of
LV border. Echo images contain speckle noise which
lead to incorrect gradient estimation. Hence speckle
reducing anisotropic diffusion (SRAD) filtering was
used (Yongjian and Scott, 2002). They have sug-
gested edge sensitive diffusion for reducing speckles.
In the numerical implementation we used δt = 0.008
and threshold of 5. This reduced the speckles and at
the same time preserved the edge information for fur-
ther feature extraction.

3.2 Elliptical Boundary Approximation

The Initial boundary approximation is carried out in
the first frame of the sequence by fitting a ellipse
through the points specified by the expert. The best
fit ellipse through the points specified is done using
Least Squares Criterion (Fitzgibbon et. al, 1999) A
minimum of five points are to be specified by the ex-
pert, which strongly belong to the endocardial bor-
der for that particular frame. This is the only user
intervention which is required in our scheme. The
standard impixel function of MATLAB is used which
gives the spatial coordinates of the selected points
along with their intensities. The intensities returned
by the function were used in the subsequent proce-
dure for the search.

The generalized CONIC equation of the Ellipse is

given by:

ax2 +by2 + cx+dy+ exy+ f = 0 (1)

with a, b and c not all zero and b2 < 4ac, where all
of the coefficients are real. Again, more than one so-
lution, defining a pair of points (x, y) on the ellipse,
exists. It can be expressed in matrix notation as;

XTAX = 0 (2)

where X and A are given by

X = [1 x y]′ (3)

A =

 f 0.5c 0.5d
0.5c a 0.5e
0.5d 0.5e b

 (4)

The coordinates of the N chosen points (N >= 5) as
marked by the expert and the equations (2-4) are used
for the determination of the parameter matrix of the
conic representation. The orientation and tilt of the el-
lipse is sought by coefficients in the equation (1) and
incorporated in the evaluation of final ellipse parame-
ters using square completion method. Figure 2 shows
the first frame of SAX apical sequence with the de-
tected ellipse and its center point.

Figure 2: Ellipse Fitted in the first frame of the sequence.

3.3 Spatio-temporal Clustering

The DBSCAN clustering algorithms is recursively
called for incorporating corrections in the outliers
with the parameter λ. In our implementation we have
used λ = 0.5 distance units, which gave optimum re-
sults.

3.4 Post Processing and Smoothing

The contour thus obtained was smoothed out by lo-
cally weighted scatter plot smoothing using least
squares linear polynomial fitting. A span of
10 percent was used to implement this standard
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MATLAB function. Further smoothing was carried
out by fitting spline through the data points with min-
imizing the maximum square distance between the
data points.

Figure 3: Detected contour in frame No.1.

Figure 4: Detected contour in frame No.8.

Figure 5: Detected contour in frame No.15.

4 EXPERIMENTAL RESULTS

The proposed methods for ellipse fitting, DBSCAN
and Spatio-temporal DBSCAN were implemented in
MATLAB 2006a on P-IV 2.1 GHz PC. Figures 3 to
7 show the result of application of the proposed algo-
rithm. The endocardial border estimation was done
on more than 10 video sequences of various standard
contrast echo views. The contour estimated by com-
puter in each frame of every sequence was compared
with that drawn by expert.

Figure 6: Detected contour in frame No.25.

Figure 7: Detected contour in frame No.32.

5 CONCLUSIONS

The proposed method for semi automatic estimation
of endocardial border of heart chambers in short axis
contrast echocardiographic sequences is based on el-
lipse fitting and subsequent spatio-temporal recursive
density-based clustering. The results show the effec-
tiveness of the method and its utility in the recovery
of the dropouts during image acquisition. The method
requires user intervention only in the first frame of
the sequence. The contour for each frame so obtained
may be utilized for the determination of the cardiac
parameters like, wall motion, area and for 3D visual-
ization. Further work is required before the method
can be employed in clinical environment for evalua-
tion of cardiac functional parameters. The issues in-
volved are the testing robustness, computational com-
plexity of the method along with its sensitivity to the
expert points. The algorithm requires fine tuning of
parameter λ for determination of optimum number of
iterations. In future work, we also intend to test the
proposed method on large number of data sets for its
further validation for images acquired in routine clin-
ical environment.
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Abstract: This paper presents a novel 3D brain segmentation method based on level sets and bio-inspired methodologies.
Level set segmentation methods, although highly promising, require manual selection of seed positions and
thereshold parameters, along with manual reinitialisation to a new level set surface for each candidate region.
Here, the use of swarm intelligent mechanisms is used to provide all the statistical data and sample points
required, allowing automatic initialisation of multiple level set solvers. This is shown by segmentation of
white matter, grey matter and cerebro-spinal fluid in a simulated T1 MRI scan, followed by direct comparison
between a commercial level application - FMRIB’s FAST - and the ground truth anatomical model.

1 INTRODUCTION

The solution to initial value problems by level set
methods has transformed the study of evolving inter-
faces and, along with the surge in available processing
power, provides a unique and promising methodology
for three-dimensional image segmentation. However,
the initialization of surfaces and tuning of parameters
almost universally requires human intervention. By
using agent based clustering and segmentation algo-
rithms, we can hope to automate this process to a large
extent, thus no longer relying on expert knowledge or
requiring multiple tedious trials for an acceptable re-
sult.

The paper begins by reviewing the history of level
set methods, leading to the method currently used in
this work. Following this is a brief review of the
mechanisms of swarm intelligence, leading to previ-
ous attempts at data clustering and image segmenta-
tion using agent based principles. Next, the imple-
mentation details are given of the level set solver,
followed by the agent-based initialization algorithm.
Finally, preliminary results of the system are shown
along with a discussion of its merits and the project’s
future direction.

1.1 Level Set Method

Level set methods for image segmentation rely on an
evolving closed surface defined by a moving inter-

face, the front, which expands from a point out into
the image, fitting itself to the region it is released
within, and smoothing any noise. Among the advan-
tages of level set methods is the natural ability for
a single surface to seemingly split apart and merge
without losing its identity. To accomplish this we add
a further spatial dimension,φ, to our problem space,
then we can in effect have a single surface in(n+1)-
dimensional space, even though from observation of
n dimensions we see two or more spatially distinct
closed surfaces. This is the essence of the level set
method and allows for topological changes to be han-
dled naturally. This is easily visualised in the 2D case:
for example Figure 1, where two 2D surfaces are pro-
jected to a 3D volume, where it is shown they are
mathematically part of the same object. Numerically,
each point in spaceU includes a scalarφ that can vary
dynamically as time progresses, via a speed function
F . Functionally, by taking a slice at timet of all points
in U whereφ = 0, we are taking the 0th level setof the
functionφ.

If we initialise φ to the signed distance from an
initial closed surface, then we can visualiseφ as the
height at a certain point, and all the points in space
with a height of 0 make up our surface. Thus, as well
as handling topological changes naturally, the level
set approach also has the advantage that the gradient
across the surface at any given point on the interface
can be found using∇φ, meaning the local curvature
can be determined. A curvature term gives the signed

210



Figure 1: Illustration of level set function surfaceS (red)
and evolution of moving interface/zero level set (blue).
Topological change of two separate fronts (left) into a sin-
gle front (right) handled naturally via higher dimensional
function. After (Sethian, 1996).

Figure 2: Illustration of surface evolution without curva-
ture (left) and using a curvature term (right). After (Sethian,
1996).

’sharpness’ of the interface at a point, allowing for
a smoothing effect, overcoming noise and preventing
leaks. This is illustrated in Figure 2. The typical for-
mulation for theφ update function then becomes:

φt = |∇φ|(αF +(1−α)∇•
∇φ
|∇φ|

) (1)

Where: φt is the time derivative ofφ; α controls
the the level of smoothness in the surface;F is the
data-dependent speed function;∇ • ∇φ

|∇φ| gives local
curvature at a given point.

Updating the values ofφ at each point in space
requires a numerical technique to evolve the zero
level set from an initial specification. Naively then,
we could initialise a surface in space, create a suit-
able speed functionF , and numerically integrate until
some condition is met and the surface extracted as all
points whereφ = 0 (for example (Phillips, 1999)). An
advantage here is sub-cell accuracy - theφ values can
be interpolated to find points on a scale that is more
accurate than the discrete embedding it is operating
within. The first problem here is that the whole state-
space must be evaluated each iteration, rather than
just the surface. Secondly a small timestep is required
to prevent numerical instabilities. These two caveats
make the naive method undesirable for use outside of
specialist fields.

Algorithms have been developed to overcome
these issues by only performing updates on regions
near the surface, rather than integrating over the entire
state space. The most well-known is the Narrow Band
approach (D. Adalsteinsson, 1995; Sethian, 1999),

where numerical integration is performed within a
band of points initialised around the surface, though
when the zero level set reaches the edge of this band,
the band must be reset. This dramatically increases
efficiency over the naive method, with little or no ef-
fect on accuracy. However, further optimization in
this vein has come in the form of the Sparse Field ap-
proach (Whitaker, 1998). With this method the nar-
row band is reduced to the smallest workable size and
the reinitialisation requirement is based on a purely
local update, rather than a global update of the entire
band. The reduction in accuracy is tolerable for most
applications and its implementation has allowed the
level set family of methods to achieve real-time per-
formance levels in complex 3D applications (for ex-
ample see (Lefohn et al., 2003; Lefohn et al., 2004)).

The Sparse Field approach has been taken even
further in the work of (Karl, 2005), and is the method
presented here. In this work the narrow band is low-
ered to simply two linked lists operating in a discrete
space,Lin andLout, representing the inside and out-
side boundaries of the zero level set, respectively. No
attempt at sub-cell accuracy is made and most op-
erations use integer math. The values ofφ are also
kept constant depending on their status and are up-
dated discretely. There are four such values repre-
senting inside, inside edge, outside edge, and outside
the volume, set so that a rough gradient can be found
at any point (for example: 3,1,−1,−3, respectively).
The level set algorithm approximation itself is imple-
mented in a two-pass process:

In the first pass elements inLin and Lout are
checked using the speed functionF . If an expan-
sion/contraction is provoked, the relevant list element
is switched to the opposing list. If an element finds
itself surrounded by cells withφ values of opposite
sign, it is removed from its list. This fact allows for
splits and merges in the topology.

The second phase involves an approximate Gaus-
sian smoothing termG, that is, taking the (weighted)
average ofφ values from the area surrounding an el-
ement ofLin or Lout. Depending on the outcome of
G, expansion/contraction adjustments to the lists and
φ values are performed, similar to expansion viaF .
This has the effect of smoothing away noise as well
as sharp protuberances in the surface.

Unlike previous algorithms, the process of expan-
sion via the speed function and contraction via curva-
ture are not intrinsically linked into the same update.
In this algorithm,F is run onLin andLout a number of
times. After this initial expansion phase a number of
G runs are similarly done onLin andLout. The ratio of
F to G runs determines the smoothness of the solution
(in an analogue to theα parameter in (1)).
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Further optimization can be made when the ratio
of F runs is much higher thanG runs. Elements vis-
ited on the list that have reached a locally optimal po-
sition will remain in that position on the next run of
the speed function. Therefore they can be removed
from successiveF runs on that pass.

As mentioned in their paper title, this method de-
parts almost entirely from the PDE based methods,
but maintains many of the advantages. Sub cell accu-
racy is not possible in this generic form, but it would
a simple addition to use this method as a prototype
generator for slower, but more accurate methods. The
inclusion of theφ embedding, albeit much simplified,
allows local topology to be determined at any point
to discrete-level accuracy. Thus, the Gaussian func-
tion has the information required to approximate the
’sharpness’ at a point, and to expand or contract as a
result (in a reasonable approximation to the effect of
curvature). The lack of the requirement to solve PDEs
holds several advantages. No timestep is required in
the update process - the algorithm is entirely discrete.
The method maintains the implicit ability of splits and
merges along the front, without relying on any gra-
dient calculation, eliminating the need for expensive
entropy-satisfying spatial derivative schemes.

Parameter selection for level set segmentation
generally requires at least some level of human in-
teraction. Specifically in the case of image segmen-
tation, initialization of a level set solver requires at
minimum seed locations, an ideal data value, and an
acceptable noise threshold to be preset. Also, differ-
ing data classes in the same problem space, for exam-
ple tissue types in medical scans, each require their
own level set surface with their own set of initializa-
tion parameters. Ideally the task of assigning seed
locations and calculating level set parameters would
be automated. These issues lend themselves well to
an agent based approach, which will be discussed in
the following section.

1.2 Multi-Agent Swarm Based
Algorithms

Agents are independent entities existing in some
environment - sensing, processing and modifying
the environment based on internal reasoning. For
multi-agent systems, the swarm intelligence and self-
organisation paradigms have become popularized in
many disciplines as an explanation for the apparent
mismatch in complexity of agent versus complexity
of task (Camazine et al., 2001), and as a unique engi-
neering metaphor (Bonabeau et al., 1999). Such sys-
tems of agents can focus on simple stimulus-response
functions using purely local stimuli with little or no

cognition or direct communication. Tasks are ac-
complished by exploiting the non-linearity inherent
in such a massively parallel system, rather than re-
lying on individual agent complexity. An agent mod-
ifying the environment at a particular location allows
another agent in that same location at a later time
to sense this new state and respond accordingly. In
this way the environment is used for indirect com-
munication, termedstigmergy. Stigmergy in bio-
logical systems is further enhanced by the complex-
ity of the environment, for example diffusion is uti-
lized in many biological processes to spread infor-
mation in the form of chemical gradients. Activa-
tion/attraction and inhibition/repulsion functions can
thus be designed to control agent interactions based
solely on local environmental state and any internal
state, relying on quantitative information reinforce-
ment and decay as well as qualitative signaling via the
environment to control the weighting between possi-
ble responses. A global-level task or structure may
then be many times more complex than an individual
can perceive or accomplish, yet through parallel ap-
plication of simple rules with indirect non-linear cou-
plings, we see the spontaneous emergence of a solu-
tion. Given this non-linearity, a tiny change in a pa-
rameter can result in a drastically different solution,
but (if the system is well formed) one that still con-
forms to a valid set of stable solutions - that is, the
system exhibitsmultistability. We have demonstrated
this engineering paradigm previously in modeling the
building behaviour ofMacrotermestermites (Feltell
and Bai, 2004; Feltell et al., 2005). The use of an
attractive cement pheromone to coordinate soil clus-
tering behaviour has provided the inspiration for the
swarm-intelligent clustering mechanism used here.

Swarm based clustering algorithms have been de-
veloped to cluster sets ofn-dimensional data, gen-
erally projected onto a 2D grid, by taking inspira-
tion from brood sorting and corpse clustering in ants
(Monmarche et al., 1999; Monmarche, 1999; Kanade
and Hall, 2003; Schockaert et al., 2004) as well as
building behaviour in termites (Vizine et al., 2005).
The approach does not need any prior knowledge of
the problem space or number of clusters, and as a
bonus gives a visual representation of the clusters on
the 2D grid.

Agent based approaches have also been devel-
oped to directly segment an image, again using in-
spiration from natural systems such as ant pheromone
trail networks (Ramos and Almeida, 2000), artificial
life (Liu et al., 1997; Liu and Tang, 1999; Bocchi
et al., 2005), social spiders (Bourjot et al., 2003), and
even termites, bloodhounds and children (Fledelius
and Mayoh, 2006). Here the agents interact directly
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within then-dimensions of the problem space, rather
than outside it. This distinction from swarm based
data clustering allows spatially localized regions to be
processed independently - possibly requiring only a
subset of the image space to be explored.

If the two perspectives can be combined, along
with other swarm-inspired mechanisms, we could
ideally form a localized data clustering algorithm,
whereby ideal seed locations and other parameters
would be found by agents within the image environ-
ment as they cluster similar voxels together.

Swarm intelligent systems emphasize robustness
and diversity over accuracy, and so find solutions to
complex problems that are ’good enough’, but which
require minimal agent capability in terms of both cog-
nition and interaction. One of the major lures of level
set algorithms is the tolerance for error, both in the
problem space and, within limits, the initialization
parameters. As long as ’good enough’ seed loca-
tion, ideal value and acceptable range parameters can
be determined, the solution to the level set equations
should be near-optimal in all but the hardest cases.
With this assumption in mind, well located seeds can
then be acceptable sample points used to approximate
the voxel mean and range within a class.

2 IMPLEMENTATION

2.1 Level Set Solver

The level set solver is derived from the model of Shi
& Karl (Karl, 2005). We define two sets of discretized
points, representing the inside and outside layers be-
tween which lies the level set surface. As well as up-
dating these sets as the surface expands or contracts
we must maintain the values ofφ, such thatφ = 3
inside the volume enclosed by the level set surface,
φ = 1 along the inside layer,φ =−1 along the outside
layer, andφ = −3 outside the volume (note: the sign
is reversed here compared to the original algorithm to
be more in line with other level set methodologies).
Finally, we must ensure that no orphaned points exist.
That is, inside points must always have at least one
outside point adjacent to them, and similarly outside
points must always have at least one inside point ad-
jacent. The update routine for both inside and outside
layers is similar, though varies in parameter value.
Following is a summary of the general update routine:

Let:

• Current time step bet.

• Two sets of points defining our two discretized
layers beSi andSj .

• φ constants in space be:bi alongSi ; b j alongSj ; ai
in the volume beyondSi; a j in the volume beyond
Sj .

• Three-dimensional cartesian point vector,p =
(pi+ p j + pk).

• Neighbourhood ofp, N(p) = {(pi + i + p j +
pk),(pi− i + p j + pk),(pi + p j + j + pk),(pi +
p j− j + pk),(pi + p j + pk+ k),(pi + p j + pk−
k)}.

• Context dependent speed function,F(p) : ℜ −→
ℜ, with condition fi required for update to occur.
Here and throughout this work it is assumed voxel
intensity value is in[0,1] ∈ℜ.

Then, for eachp ∈ Si , iff F(p) =⇒ fi :

1. Increment time step,t.

t←− t +1 (2)

2. p is added toSj

Sj ←− {Sj ∪{p}} (3)

3. φ at pointp is set to constant,b j .

φ(p,t)←− b j (4)

4. p is removed fromSi , whilst all relevant neigh-
bours ofp are added toSi .

Si ←− {Si−{p}}∪{∀r∈ N(p) | φ(r,t) = ai}
(5)

5. φ at all relevant neighbours of pointp is set to
constant,bi.

φ({r | φ(r,t) = ai},t)←− bi ,∀r ∈ N(p) (6)

6. All points in Si that are in not neighboured by a
point in Sj are orphaned points and must be re-
moved.

Si ←− Si−{∀r ∈ Si | N(r)∩Sj = /0} (7)

7. φ at all orphaned points inSi is set to constant,a j .

φ({r |N(r)∩Sj = /0},t)←− a j ,∀r ∈ Si (8)

In practice, all these steps can be combined into a sin-
gle update loop. The update loop is performed on both
the inside and outside layers. Let our inside surface
beSin and the outside surface beSout, then: ain = 3,
aout = −3, bin = 1, bout = −1, fin ⇔ (F(p) > 0),
fout ⇔ (F(p) < 0). The steps (3)..(6) deal with the
surface evolution. The steps (7) and (8) handle shock
propagation, that is, they remove points as the curve
crosses over itself to maintain an unambiguous closed
surface.

LEVEL SET BRAIN SEGMENTATION WITH AGENT CLUSTERING FOR INITIALISATION - Fast Level Set Based
MRI Tissue Segmentation with Termite-Like Agent Clustering for Parameter Initialization

213



The algorithm is then:

Let:

• D(p) be the problem specific data term, specifi-
cally the voxel gray level value at pointp.

• J(p) be the problem specific speed function,
specifically: J(p) = 1 for |(D(p)− T)| < ε and
J(p) = −1 for |(D(p)−T)| > ε, where:T is the
ideal data value;ε is the acceptable error.

• G(p) be a Gaussian smoothing approximation,
specificallyG(p) =

(

φ(p,t) + ∑r∈N(p) φ(r,t)
)

/7.
With the conditionG(p) = 0 iff |G(p)|< 1, tighter
areas can be explored, as smoother curves will
neither contract nor expand. This produces more
accurate solutions in most cases, but tends to give
less smooth surfaces.

• tJ be the number of speed runs to perform;tG be
the number of Gaussian smoothing runs to per-
form.

Then:

A Initialize Sin and Sout to small surface(s) about
given seed locations.

B Perform (2)..(8) with: i = out; j = in; F(p) =
J(p).

C Perform (2)..(8) withi = in; j = out; F(p) = J(p).

D Repeat from (B) whilet < tJ.

E Perform (2)..(8) with: i = out; j = in; F(p) =
G(p).

F Perform (2)..(8) withi = in; j = out; F(p) =
G(p).

G Repeat from (E) whilet < tJ + tG.

H Sett = 0. Repeat from (B) fortS iterations.

2.2 Swarm based Parameter
Initialization

The parameter specification for the level set solver as
well as the number of tissue types requiring individual
segmentation is beyond the capability of a level set al-
gorithm alone. Instead, in this work we show how we
can use a collection of agents following similar rules
to previous agent clustering algorithms, but with the
agents embodied within the image space itself, find-
ing good seed locations as well as performing minor
preprocessing functions.

Agents have real-valued position and direction,
using simple nearest neighbour approximation when
sensing the underlying discrete image voxels. They
wander the image in an initially random direction,

however as they move they lay a quantity of attrac-
tive ’pheromone’ in visited voxels. The quantity of
pheromone is proportional to the divergence of voxel
intensity|∇2 ·D| at their current location. A high di-
vergence value often indicates a heterogeneity in the
image - specifically an interface between two regions.
Here, pheromone deposition further has the restric-
tion D > 0.1 to avoid segmenting irrelevant black re-
gions. Pheromone diffuses through the image lattice,
with the edge of the lattice and near-black (D < 0.1)
voxels acting as sinks. The addition of a positive re-
inforcement pheromone mechanism allows the agents
to use gradient following behaviour in coordinating
toward promising seed locations. As pheromone dif-
fuses away it causes that area to receive less attention,
ultimately meaning less suitable seed locations are
abandoned. This reflects in many ways the clustering
behaviour of termites in nest construction (Bruinsma,
1979), where heterogeneities stimulate deposits of
soil laden with a cement pheromone, which in turn
attracts other termite builders to the site.

This clustering behaviour, in the termite case, cre-
ates regular spaced piles or pillars of soil. Piles close
to one-another thus compete for the termites atten-
tions, eventually resulting in regularly spaced pillars.
In this work, as with the termite paradigm, this mech-
anism means seed locations tend not to become too
localised. The combined effect ultimately increases
the agents’ sampling efficiency within large images.

The generalised update routine for an individual
agent is given as follows:

Let:

• t be the current time step of an agent.

• Real-valued point vector,p be the current position
of an agent

• Scalar pheromone field,ρ(p) be the pheromone
concentration at locationp.

• Speed,sbe a scalar speed value for the agent.

• Vectorv be the continuous direction vector of the
agent.

Then:

1. Increment time step,t.

t←− t +1 (9)

2. Lay pheromone proportional to the logarithm of
the absolute divergence. Logarithmic scale is used
here to avoid floating point accuracy overflow.

log(ρ(p))←− log
(

ρ(p)+ |∇2D(p)|
)

(10)

3. Calculate new direction vector from weighted gra-
dient of logρ.

v←− v + α(v−∇ logρ) (11)
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4. Calculate speed scalar based on local density ofρ.

s←− 1+
β

1+ log(ρ(p))
(12)

5. Calculate updated position based on normalized
direction vector and speed value.

p←− p+
v
||v||
·s (13)

Where:α is the weighting of pheromone gradients
in movement;β controls the maximum speed of an
agent.

The full agent algorithm is then:

A Initialize set of n agents,M, each with random
position within the image and random direction.

B Perform (9)..(13) for eachm∈M.

C Diffuse pheromone:∂tρ = d ·∇2ρ
D Repeat from (B) whilet < tA time steps.

E Select the topC voxel locations with highest
pheromone levelρ, to get full seed list,Q.

F Run k-means clustering onQ, classifying into
prespecified number of sets,Qi , where i =
{1,2, ..,q}.

G Within eachQi calculate meanµ(Qi) and standard
deviationσ(Qi), giving ideal data valueT = µ(Qi)
and error thresholdε = σ(Qi) + k, wherek is a
constant, within a class.

OnceT andε have been calculated for a seed set
Qi , the level set routine can be run, initialisingLin
andLout surfaces as pseudo-spheres about each seed
location inQi . The agent algorithm need only be run
once, then the level set algorithm run once for each
seed set.

Additionally, in practice the diffusion step can
be moved into a separate thread to take advantage
of modern day multiple core processors. With the
simplest distributed setup, with little control on syn-
chronization or load balancing, the algorithm can still
function correctly - an implicit advantage of the ro-
bust swarm metaphor.

The image is finally extracted as all voxel posi-
tions whereφ > 0, thus all points lying on and within
Lin.

3 RESULTS

The dataset used comes from BrainWeb’s online MRI
simulator (McConnell BIC, 2007) with default pa-
rameters: modality T1, slice thickness 1mm, noise

Figure 3: Comparison of ground truth to FAST and the
swarm initialised level set solution presented here. Images
used in both FAST and the present work have been prepro-
cessed by BET. From left to right: white matter; gray mat-
ter; cerebro-spinal fluid.

3% and non-uniform intensity 20%. For comparison
with ground truth and FAST (Zhang et al., 2001) the
number of classes is setq = 3. The various parame-
ters, unless otherwise stated, are set as follows:

α = 2;β = 2.5;d = 0.015;k = 0.02;tS = 10;tA =
3000;tJ = 30;tG = 3

The parameter values above forα,β,d andk, were
found in part using a real-valued genetic algorithm,
using the similarity to the ground truth images, mi-
nus the similarity between one another, as a fitness
function. This process has proven useful so far, yet
is only partially utilised here and remains a direction
for future work. Other values are chosen intuitively to
balance execution time and accuracy.

From Figure 3 it can be seen how the approach,
even in this early stage, can compete with popular so-
lutions such as FMRIB’s FAST, which uses a method
based on Markov random fields. In both solutions,
preprocessing has been performed using FMRIB’s
popular BET (Smith, 2002) to skull strip and nor-
malise the image voxels.

Quantitative measurement on accuracy is approx-
imately possible given the hand segmented ground
truth images available. In the above case, FAST
achieves approximately 92%, 85% and 57% accu-
racy, whereas the swarm initialised level set algorithm
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achieves 86%, 83% and 55%, for white matter, grey
matter and cerebro spinal fluid, respectively. FAST
remains superior, but the small score difference cer-
tainly indicates the presented approach is well worth
further investigation.

In terms of execution time, from the point of file
loading to final file output, FAST outdoes the perfor-
mance of the presented work by just over double. The
above solution was found by the swarm initialised
level set algorithm in approximately 17 mins, whereas
FAST finished in approximately 8 mins. It is worth
noting that the swarm approach presented is still in
early development, and as discussed in the next sec-
tion, has the advantage of naturally supporting a dis-
tributed implementation.

4 DISCUSSION AND FUTURE
WORK

The level set solver is an approximate discrete solu-
tion to a continuous problem. Although the algorithm
used in this work is particularly fast, it simply does
not have the power of a narrow band or even sparse
field approach. These methods not only reflect the
naive approach more directly, but also have sub-cell
accuracy, where actual surface points can be interpo-
lated within image voxels using the real-valued gradi-
ent ofφ. They can also vary in speed along different
areas of the surface, allowing for a more global curva-
ture force effect. The discretisation ofφ values to sim-
ply the set{−3,−1,1,3}means the curvature term is
much more rigid, and does not distinguish on a lo-
cal level between corners of differing sharpness. Ide-
ally the current level set solver approximation would
work as a rapid prototype for a more accurate narrow
band based method. This remains a direction for fu-
ture work.

One benefit of using a swarm based system is in
the robustness to a noisy environment. In this regard
it should be possible to include an atlas mechanism,
using only the most minimal registration with the can-
didate image, and restrict agent interaction within or
near the atlas template for a given region. This would
give the agents’ environment a significant amount of
extra information, which can be used to focus agent
efforts - increasing efficiency and allowing for seg-
mentation of more difficult (too smooth/too noisy) re-
gions.

The preprocessing by BET could be removed for
future versions. BET simplifies segmentation signif-
icantly, and prevents areas such as the skull being
segmented as part of brain matter. However, pre-
liminary results of segmentation without BET pre-

Figure 4: Solution found using current algorithm without
BET preprocessing. All parameters are set similar - the
number of classes remaining at 3. From left to right: white
matter, gray matter, cerebro-spinal fluid.

processing are promising in their own right, though
show several mismatched regions (see Figure 4), and
it is likely that with more classes and ground truth
samples, along with evolutionary algorithm parameter
tuning, the method can be applied to multiple modal-
ities and varying image spaces without the need for
any preprocessing.

Another benefit of the multi-agent paradigm is its
naturally distributed nature. As has been eluded to,
the diffusion of pheromone can already be ported to
another processing unit to greatly increase efficiency.
A further extension could see the image space and/or
agents split to run parallel. Certainly each region’s
level set solver could in future run on separate pro-
cesses to dramatically decrease execution time.
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Abstract: Facial expression recognition is an active research field which accommodates the need of interaction 
between humans and machines in a broad field of subjects. This work investigates the performance of a 
multi-scale and multi-orientation Gabor Filter Bank constructed in such a way to avoid redundant 
information. A region based approach is employed using different neighbourhood size at the locations of 34 
fiducial points. Furthermore, a reduced set of 19 fiducial points is used to model the face geometry. The use 
of Principal Component Analysis (PCA) is evaluated. The proposed methodology is evaluated for the 
classification of the 6 basic emotions proposed by Ekman considering neutral expression as the seventh 
emotion. 

1 INTRODUCTION 

Facial expression recognition is an active research 
field that spawns across different subjects such as 
Human Computer Interaction (HCI), Smart 
Environments and medical applications. 
Recognizing facial expressions is a difficult task and 
therefore several limitations exist such as limitation 
due to lighting conditions, facial occlusions or facial 
hair. 

In 1971 Ekman et.al determined 6 basic 
emotions; anger, fear, surprise, happiness, disgust 
and sadness (Ekman and Friesen, 1971). The neutral 
face expression is usually considered as the seventh 
basic emotion. Basic emotions are universal and 
exist in different human ethnicities and cultures. 
Even though the term emotion is used for 
categorization, emotions do not rely solely on visual 
information (Fasel and Luettin, 2003). 

The task of Facial Expression Recognition can 
be divided into three main steps which are face 
recognition so that the face in an image is known for 
further processing, facial feature extraction which is 
the method used to represent the facial expressions 

and finally classification which is the step that 
classifies the features extracted in the appropriate 
expressions.  

In general there are two approaches to represent 
the face and consequently the facial features. The 
first, often referred to as holistic approach, treats the 
face as a whole. Essa (Essa and Petland, 1997) 
treated the face holistically using optical flow and 
measured deformations based on the face anatomy. 
Donato (Donato et. al. 1999) has used several 
methods for facial expression recognition. Fisher 
linear discriminates (FLD) were used to project the 
images in a space that provided the maximal 
separability between classes and Independent 
Component Analysis (ICA) to preserve higher order 
information. 

Instead of using the whole face, one can isolate 
and use the prominent features of a face, such as 
eyes, eyebrows, mouth, etc. Using fiducial points to 
model the position of the prominent features one can 
symbolize the face geometry in a local manner. The 
number of fiducial points used varies and mainly 
depends on the desired representation, as it is 
reported that different positions hold different 

218



 

information regarding the expressions (Lyons et. al., 
1999). The way that these fiducial points are 
identified in an image can either be automatic (Gu 
et. al., 2005) or manual (Lyons et. al. 1999), (Guo 
and Dyer, 2005), (Zhang et. al. 1998). 

It has been shown that simple cells in the 
primary visual cortex can be modeled by Gabor 
functions (Dougman, 1980), (Dougman, 1985). This 
solid physiological connection between Gabor 
functions and human vision has yielded several 
approaches to facial expression recognition (Lyons 
et. al. 1999), (Gu et. al., 2005), (Guo and Dyer, 
2005), (Zhang et. al. 1998), (Liu and Wang, 2006), 
(Lyons and Akamatsu, 1998). Zhang (Zhang et. al., 
1998) compared the Gabor function coefficients 
with the coordinate positions of the fiducial points 
and concluded that the first represent the face better 
than the latter. Donato (Donato et. al., 1999) 
reported that Gabor functions performed better than 
any other method used in both analytic and holistic 
approaches. 

In this work we present a methodology for the 
classification of human emotions which is based on 
Gabor coefficients of the fiducial points. The 
methodology is based on Gabor coefficients which 
are extracted from a region around the fiducial 
points. It is noted in the literature that the feature 
vector is formed using single pixel values at the 
locations of the fiducial points. The proposed 
approach forms the feature vector from a region 
around each fiducial points gathering more 
information and avoiding in such a way artifacts 
which might exist close to the fiducial point. 
Furthermore, an alternate set of fiducial points is 
presented using just 19 landmark positions. We also 
attempted to reduce the number of fiducial points 
and to make the approach more efficient using PCA. 
The methodology is evaluated using the Japanese 
Female Facial Expression (JAFFE) database (Lyons 
and Akamatsu, 1998) in two cases: (a) using its full 
annotation and (b) excluding fear. 

2 MATERIALS AND METHODS 

The proposed methodology includes three stages (a) 
construction of the Gabor Filter Bank, (b) extraction 
of the Feature vector and (c) classification (Fig. 1). 

2.1 Gabor Function 

A two dimensional Gabor function ( , )g x y is the 
product of a 2-D Gaussian-shaped function referred  
as the envelop function and a complex exponential  
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Figure 1: Flow chart of the proposed method. 

(sinusoidal) known as the carrier and can be written 
as (Dougman, 1980), (Dougman, 1985), (Manjunath 
and Ma, 1996): 

2 2

2 2

1 1
( , ) exp 2 ,

2 2
x y x y

x y
g x y jWπ

πσ σ σ σ
= − + +

⎡ ⎛ ⎞ ⎤⎛ ⎞
⎜ ⎟⎜ ⎟ ⎢ ⎥

⎝ ⎠ ⎣ ⎝ ⎠ ⎦
 (1) 

where ,x y  are the image coordinates, ,x yσ σ  are 
the variances in the ,x y  coordinates respectively 
and W  is the frequency of the sine wave. 

Its Fourier Transform ( , )G u v can be written as: 
2 2

2 2

1 ( )
( , ) exp ,

2
u v

u W v
G u v

σ σ

−
= − +

⎧ ⎡ ⎤⎫
⎨ ⎬⎢ ⎥⎩ ⎣ ⎦⎭
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where 1/ 2u xσ πσ=  and 1/ 2v yσ πσ= . 

2.2 Gabor Filter Bank 

A Gabor filter bank can be defined as a series of 
Gabor filters at various scales and orientations. The 
application of each filter on an image produces for 
each pixel a response. The above representation (Eq. 
(1)) combines the even and odd Gabor functions as 
are defined in (Dougman, 1980). 

If ( , )g x y  is the mother function, we can derive 
the Filter bank functions using a series of rotations 
and dilations on the mother function: 
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where /n Kθ π= , K  is the total number of 
orientations and 0, 1, , 1n K= −… . 

Manjunathan showed that Gabor filters form a 
nonorthogonal basis and that redundant information 
is included in the images produced by the filter 
(Manjunath and Ma, 1996), (Guo and Dyer, 2005). 
This leads to the following equations for the filter 
parameters , ua σ  and vσ : 

1
1
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tan ,2 2 ln 2
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Kv u
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where a  is the scaling factor, S  is the number of 
scales, 0, 1, , 1m S= −… , and hU and lU  are the 
high and low frequencies of interest. 

In this work we have chosen 
,2 4 2 16U U

h l
= =  with three scales ( 3S = ) 

and six orientations ( 6K = ) differing each by 6π . 
Thus 18 complex Gabor filters were defined in total 
which will be used to extract the feature vector for 
each image. In Figure 2 the real part of the resulting 
filters is displayed. 

 

 
Figure 2: The real part of the Gabor filter when 2 6θ π=  
at all scales used. 

2.3 Gabor Features 

For any given image ( , )I x y  its Gabor decomposition 
at any given scale and orientation can be obtained by 
convolving the image with the particular Gabor 
filter. 
 

( , ) ( , ) ( , )G u v I x y g x y= ∗  (7) 

 
The magnitude of the resulting complex image is 
given: 

 
2 2( ) ( )G Re G Im G= +  (8) 

 
All features derive from G  and the feature 

vector ,k NF  is formed according to the following 
formula: 

, , , 0,1, , , 0,1, ,5,
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k N i j
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F G l N k
+ +
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where N  is the number of the fiducial points, 
equalled to 19 and 34 respectively here. k  is the 
number of neighbouring pixels used to form the 
regions. The feature vector can be portrayed as a 
square 1-norm of the matrix when 0k ≠ , which 
corresponds to the intensity values of the mask 
around each fiducial point. 

 
(a)   (b) 

Figure 3: Typical Positions of fiducial points (a) 34 points 
(b) 19 points. 

2.4 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are well known 
classifiers and can be used in multi-class problems. 
In the presented work we employed feed forward 
back propagation ANNs. The architecture of the 
ANNs consists of three layers. The first layer (input 
layer) consist of T  input nodes where T is the 
dimension of the feature vector ( ,

T
k NF R∈ ). The 

second layer (hidden layer) consists of 2T C+  
neurons, where C is the number of the classes. The 
sigmoid function is used as activation function for 
these hidden neurons. Finally the third layer (output 
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layer) consists of C neurons. The activation function 
of the output neurons is the linear function. In order 
to train the ANNs the mean square error function is 
used and the number of epochs are 500. 

2.5 Principal Component Analysis 

In several cases T is quite large (for example when 
N in Eq. (9) is set to 34, the resulting feature vector 
has a dimension of 612). PCA is applied to reduce 
the input number features so that the retained 
features account for 95% of the total variance (sum 
of variances). 

2.6 Dataset 

The JAFFE (Lyons and Akamatsu, 1998) database 
was used for the evaluation of the proposed method. 
It features ten different Japanese women posing 3 or 
4 examples for each basic emotion containing a total 
of 213 images. Including in the annotation of the 
dataset, neutral position is considered as a seventh 
basic emotion.  

An alternate dataset derives from JAFFE database 
containing 181 images when fear is excluded. This 
can be justified in (Zhang et. al., 1998). Hereafter 
the two different datasets would be addressed as 
JAFFE-7 and JAFFE-6 with the latter excluding 
fear. 

3 RESULTS 

Several different sets of experiments were contacted 
with respect to:  

i. The annotation used for classifications (i.e. 
either JAFFE-6 or JAFFE-7 datasets) 

ii. The number of fiducial points used ( N in 
Eq. (9) is equal to 19 or 34 ) 

iii. The neighborhood size used to construct the 
feature vector (Single Pixel, 3x3, 5x5, 7x7, 
9x9, 11x11) 

iv. The employment or not of PCA for 
dimensionality reduction  

The combination of the aforementioned sets leads to 
48 different feature sets. For the evaluation the ten 
fold stratified cross validation method was used. 

In the tables that will be presented below the 
abbreviations used correspond to the emotions, (SU 
for surprise, DI for disgust, FE for fear, HA for 
happy, NE for neutral, SA for sadness and finally 
AN for anger). 

3.1 JAFFE-7 

In this series of experiments the full annotation of 
the JAFFE dataset was used along with both facial 
representations (34 and 19 fiducial points). Table 1 
displays the accuracy of each approach; the best 
performance was obtained when a neighborhood 
11x11 of pixels was used with 34 fiducial points 
representing the face. When 19 fiducial points were 
used the accuracy declined only by 0.9% at max. 

Table 1: Performance using the JAFFE-7 Dataset. 

Region 34 
Points 34 PCA 19 

Points 19 PCA 

Single 
Pixel 72.8% 53.5% 63.4% 47.4% 

3x3 81.7% 74.6% 73.2% 60.1% 
5x5 84.0% 79.3% 78.4% 71.4% 
7x7 85.0% 78.9% 82.2% 73.7% 
9x9 87.3% 82.6% 84.0% 80.8% 

11x11 87.8% 83.6% 86.9% 82.6% 
 

Table 2 displays the confusion matrix for the best 
performing approach. It can be seen that the poorest 
performance was obtained for the emotions of 
disgust and fear where the first was classified often 
as anger and the latter as sadness. Following the 
reasoning of Zhang (Zhang et. al., 1998) a second 
series of experiments were conducted. 

Table 2: Confusion matrix for 34 fiducial points and 
11x11 region. 

 SU DI FE HA NE SA AN 
SU 30 0 0 0 0 0 0 
DI 0 24 0 0 0 1 4 
FE 1 1 23 2 1 3 1 
HA 0 0 0 27 3 1 0 
NE 0 0 0 0 29 1 0 
SA 1 0 1 1 1 27 0 
AN 0 2 1 0 0 0 27 

3.2 JAFFE-6 

In this series of experiments fear was excluded from 
the classification process. The accuracy for each 
approach is shown in Table 3. The best performance 
was still obtained when using 34 fiducial points with 
accuracy 92.3%. Still the alternate dataset with 19 
fiducial points provided similar results with 
accuracy 90.1%. 
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Table3: Performance using the JAFFE-6 Dataset. 

Region 34 
Points 34 PCA 19 

Points 19 PCA 

Single 
Pixel 75.7% 60.2% 65.2% 53.0% 

3x3 85.6% 79.0% 76.8% 68.5% 
5x5 87.3% 81.2% 81.8% 72.9% 
7x7 89.5% 82.9% 84.0% 79.0% 
9x9 91.7% 85.1% 85.6% 85.1% 

11x11 92.3% 87.3% 90.1% 86.2% 
 
In Table 4 and Table 5 the confusion matrices of 

these best performing experiments are presented. 
Disgust still is confused with anger in both cases. 
This yields that both these sets of fiducial points are 
not adequate enough to separate correctly these two 
emotions. 

Table 4: Confusion matrix for 34 fiducial points and 
11x11 region excluding fear. 

 SU DI HA NE SA AN 
SU 29 0 0 1 0 0 
DI 0 24 0 0 2 3 
HA 0 0 31 0 0 0 
NE 0 0 0 30 0 0 
SA 3 0 1 1 26 0 
AN 0 3 0 0 0 27 

Table 5: Confusion matrix for 19 fiducial points and 
11x11 region excluding fear. 

 SU DI HA NE SA AN 
SU 29 0 0 1 0 0 
DI 0 24 0 0 2 3 
HA 0 0 31 0 0 0 
NE 0 0 0 30 0 0 
SA 3 0 1 1 26 0 
AN 0 3 0 0 0 27 

4 DISCUSSION 

A facial expression recognition method, using a 
Gabor Filter Bank was presented. All redundant 
information in the construction of the filter bank was 
avoided by specially designing the filters. Two 
different facial representations were used using 19 
and 34 fiducial points, respectively. Furthermore, the 
employment of a region based approach was 
investigated to avoid misclassification due to 
artefacts. 

The manual feature reduction performed with the 
alternate dataset has reduced the feature vector by a 

factor of 0.4. The use of PCA, produced competitive 
results and has decreased the dimension of the 
feature vector by a factor of 0.9. In this work the 
fiducial points in the image were marked manually. 
This approach is possible to introduce errors, for 
example choosing a different point of interest 
instead of the one indented. By using regions the 
possibility of such errors taking place was 
minimized. The classifier performed weakly when 
tried to classify disgust and anger. Larkin (Larkin et. 
al., 2002) reported that males also made errors when 
decoding facial expressions of disgust, confusing it 
with anger. Facial expression recognition is a multi-
class problem. Zhang (Zhang et. al. 1998), using a 
slightly different ANN, have reported accuracy 
~90% when dealing with JAFFE-7 and 92.2% when 
using JAFFE-6. Guo (Guo and Dyer, 2005) had used 
JAFFE-7 and compared the performance of different 
classifiers. When the same feature vector was used 
(dimension equaled to 612) they reported accuracy 
63.3% for the Simplified Bayes, 91.4% when using 
linear Support Vector Machines and 92.3% when 
using non linear (Gaussian Radial Basis Function 
Kernel) Support Vector Machines. Both of these 
approaches use a pixel-based feature extraction 
approach; in our case we employed a region-based 
feature extraction process, which permits some 
flexibility in the selection of the fiducial points and 
the affect of artifacts is minimized. 

Further improvement of the presented method 
consists primarily of making the method automated. 
This is mainly related to the identification of the 
fiducial points that currently are manually marked. 
Furthermore, the use of a three-dimensional filter 
bank will be investigated by using time as a third 
constant and applied in a new, preferably video 
based, dataset. 
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Abstract: In this paper we propose an automated approach to recognize human faces based on the analysis of the 
distribution of the focuses of attention (FOAs) that reproduces the ability of the humans in the interpretation 
of visual scenes. The analysis of the FOAs (distribution and position), carried out by an efficient and source 
light independent visual attention module, allows us to integrate the face features (e.g., eyes, nose, mouth 
shape) and the holistic features (the relations between the various parts of the face). Moreover, a remarkable 
approach has been developed for skin recognition based on the shifting of the Hue plane in the HSL color 
space. 

1 INTRODUCTION 

Face recognition is a research area of biometrics that 
for its complexity and importance is becoming one 
of the most interesting topics of study in the image 
analysis and understanding field. A general 
statement of the face recognition problem is as 
follows: given a video image of a scene, identify one 
or more persons in the scene using a stored database 
of faces. The problem of face recognition is open, 
because an effective model has not been proposed 
yet, and the shortcomings of these systems are 
evident when compared to the human capability to 
recognize the faces. 

Several approaches for automating the process of 
face recognition have been proposed in the last 
twenty years. Generally, a face recognition involves 
automating three related tasks: 1) Face Detection, 2) 
Features Extraction and 3) Face Matching. 

The automatic systems have to execute all the 
three tasks above. 

For face detection the majority of the approaches 
are based on the skin pixels segmentation using the 
color spaces processing (Brand et al., 2001), (Ikeda, 
2003). 

An interesting algorithm is proposed in (Phung et 
al., 2002) where a human skin color model in the 
YCbCr color space is presented, and the k-means 
algorithm is proposed for clustering the skin pixels 
in three Gaussian clusters. The pixels are considered 
belonging to one of three clusters on the basis of the 
Mahalanobis distance. 

For the face features extraction various methods 
have been developed. Methods based on deformable 
templates seem to be the most effective. Yuille et al. 
(Yuille et al., 1991) describe the use of deformable 
templates called “snakes” (Kass et al., 1998), based 
on simple geometrical shapes to locate eyes and 
mouths. Several methods use the active shape model 
(ASMs), (Jiao et al., 1998) and (Wang et al., 2000), 
with different approaches (e.g. wavelet, Gabor filter, 
etc.) for the detection of the features. Cootes et al. 
(Cootes et al., 1995) have proposed an effective 
model for interpretation and coding of face images 
with results in the range [70%-97%], but in their 
approach the landmarks to detect the main facial 
features are manually located. 

One of the most relevant algorithms for face 
matching is the eigenfaces proposed in (Pentland et 
al., 1994). The eigenfaces, based on the 
eigenpictures, removes the data redundancy within 
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the face images. Other approaches have pointed out 
the structural coupling of the face features. One of 
the most effective is the Elastic Bunch Graphic 
Matching (Wiskott et al., 1997) which uses the 
wavelet functions.  

All the mentioned methods are not effective in 
all the possible scenarios, and require a high 
processing time and great amounts of memory for 
features storaging. 

A techniques commonly used for features 
dimensionality reduction are Principal Components 
Analysis (PCA) (Yang et al., 2004) and Linear 
Discriminant Analysis (LDA) (Etemad et al, 1997). 
The main goal of PCA is to reduce the 
dimensionality of the data, while retaining as much 
as possible of the variation present in the original 
dataset. The reduction is obtained by selecting a set 
of orthogonal vectors maximizing the variance 
overall the samples.  

Instead LDA seeks to find the direction in the 
dataset that maximizes between-class scatter and 
minimizes the within-class scatter.  

Although these two methods reduce the space 
dimensionality, they face the computational 
difficulty when the dimension of the data is too 
huge. Moreover a critical issue of the LDA method 
is the singularity and instability of the within-class 
scatter matrix. Indeed, especially in face recognition 
problems, there are a large number of features 
available, while the total number of training patterns 
is limited, commonly less than the dimension of the 
features space. This implies that the within-class 
scatter matrix might be singular and instable (Jain et 
al, 1982).  

In order to overcome the singularity problem, an 
alternative method, called Fisherfaces (Belhumeur et 
al, 1997), was proposed. Such method is a two stage 
dimensionally reduction technique carried out by: 1) 
performing PCA to project the n-dimensional image 
space onto a lower dimensional subspace and 2) 
applying LDA to the best linear discriminant 
features on such subspace. 

Although Fisherfaces method solves the 
singularity problem, often the instability remains a 
huge drawback. Several methods, based on 
Fisherfaces, were proposed to bypass such limitation 
(Liu et al, 1993), (Thomaz et al, 2003). 

The aim of our paper is to propose an algorithm 
that avoids the computational costs inherent to an 
high features space dimensionality by using a 
restricted number of features face. Moreover our 
method shows a reasonable accuracy comparable 
with the best existing methods as shown in the 
section results. Sect. 2 outlines the overall face 

recognition system, Sect. 3, Sect .4 and Sect. 5 
illustrate, respectively, the subsystems Face 
Detection, Face Features extraction, and Face 
Matching of the algorithm. Results and future work 
are focused, respectively, in the last two sections. 

2 PROPOSED SYSTEM 

Many researchers in computer science, neuroscience 
and psychology have pointed out the importance of 
either the face features (e.g., mouth shape, nose 
shape, etc.) or the holistic features (such as the 
distance between the nose and the mouth or the 
distance between the eyes, etc.) for the face 
recognition. For example, Bruce in (Bruce et al., 
1998) has attentioned the holistic features. Other 
studies support the hypothesis that the face 
recognition in human relies only on the face features 
(e.g., big ears, crooked nose, etc.). For example, in 
(Faro et al., 2006) an attentive system, based on the 
Itti and Koch model of visual attention (Itti et al., 
2000), recognizes faces by analyzing and classifying 
only the face features, located by using the Active 
Contour Model and Active Shape Model. 

The use of only face features has been criticized, 
based on the evidence provided in the Barlett and 
Searcy study (Barlett et al., 1993) using the Thatcher 
Illusion. In fact, inverting the main features of a face 
(i.e. putting the mouth in place of the eyes) the result 
is an strange object that is not recognized as a face. 

This supports the importance of the holistic 
features in the face recognition process. 

The proposed recognition system integrates both 
theories and is based on the hypothesis that in the 
recognition process humans memorize the 
distribution of some particular points, called 
“focuses of attention” (FOAs) that bind both face 
and holistic features. It consists of four main parts 
(shown in fig.1): 
• Face Detection: by a suitable clustering 

algorithm based on color processing; 
• Visual Attention for Features Extraction: 

where the points of interest are focused by a 
pure bottom-up attention module; 

• Features Extraction: by a suitable analysis of 
the identified FOAs; 

• Face Matching: where the features (face and 
holistic ones), extracted by the previous module, 
are compared with the others stored in the 
database for face matching. 

The FOA extraction module is based on the 
emulation of the human capability to interpret 
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complex visual scenes. In fact, humans have a 
remarkable ability to interpret scenes in real time, in 
spite of the limited speed of the neuronal hardware 
available for such tasks. Visual processes appear to 
select a subset of the available sensory information 
before further processing (Tsotsos et al., 1995), most 
likely to reduce the complexity of scene analysis. 
This selection seems to be implemented in the form 
of a spatially circumscribed region of the visual 
field, called “focus of attention” (FOA), which scans 
the scene (by using sequence of eye movements, 
called saccades) both in a rapid, bottom-up, 
saliency-driven, and task-independent manner as 
well as in a slower, top-down, volition-controlled, 
and task-dependent manner. Bottom-up attention 
directs the gaze to salient regions (image-based 
saliency cues), while topdown attention enables goal 
directed visual search (task-dependent cues). 
In particular, our algorithm implements the 
architecture proposed by Koch and Ullman (Koch et 
al., 1985) where human visual search strategies are 
explained by the “feature integration theory,” based 
on the saliency map that defines the relationships 
between the components of a scene depending on 
the importance that the components have for the 
generic observer. 

 

 
Figure 1: The Overall System. 

3 FACE DETECTION 

Usually, the face detection process depends strongly 
from the illumination of the scene. For this reason in 
our algorithm the HSL (Hue, Saturation, Luma) 
space color has been chosen. In this space H=0 
represents red while H = 255 is violet (fig. 2(a)). For 
the Caucasian, Mongolian and American races, the 
pixels of the skin are close to the red color, hence for 
a better analysis we have defined a new space called 
HrSL (Hue centered on Red-Saturation-Luma) 

obtained by shifting the HSL space (see Fig. 2). In 
the new space the red color is represented by the 
value H=127 and not by 0 as in the HSL space. This 
shifting allows us to realize an effective thresholding 
of the skin pixels as is shown in fig.3. 

 

 
(a) 

 

 
(b) 

Figure 2: (a) HSL space, (b) HrSL space. 

 
(a) 

 
(b) 

 
(c) 

Figure 3: (a) Original Image. Images obtained by a 
suitable thresholding in the HSL space (b) and in the 
HrSL space (c). 

The face detection process (shown in fig. 4) uses a 
clustering algorithm, which consists of three steps:  

 Identification of three clusters ; 
 Selection of the winner cluster ; 
 Filtering the input image with a mask 

obtained by a smoothing of the winner 
cluster 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4: (a) Imput Image, (b) Mask obtained by a 
smoothing of the winner cluster, (c) Final Image with face 
detection. 

More in details the clustering algorithm used is 
based on a modified version of the k-means 
algorithm. The first step aims to divide the Hr plane 
of the input image in a lot of the clusters using the 
minimization of the Euclidean Distance between 
each one points value of the Hr plane and the 
centroid value, which represents the mean of the 
values of each one region of the image. A very great 
number of cluster produces an increasing of the CPU 
time and the merging problem, whereas few clusters 
could be non sufficient to separate the main parts of 
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the Hr plane. In according to experimental test, we 
choose three clusters.  

After the clustering algorithm we divide the 
image in cluster to identify the winner cluster, 
which is the cluster whose the RGB value is nearest 
at (195,145,155). Applying a suitable filtering we 
obtain the face mask that allows us to detect the 
face. 

4 VISUAL ATTENTION FOR 
FEATURES EXTRACTION 

The output image of the face detection step is the 
input image for the algorithm that extracts features 
based on a visual attention system. The visual 
attention module proposed in this paper detects 
salient regions from a color image simulating 
saccades of human vision using a saliency map 
similar to the one proposed by Itti & Koch (Itti et al., 
2000). The differences in computing the saliency 
map are: 1) we don’t apply Gaussian pyramid, thus 
reducing the computational complexity and 
increasing the spatial resolution of the processed 
images and 2) we don’t use the double color 
opponent mechanism, and therefore the dependence 
of attention module on the illumination source is 
reduced, 3) the HSL space is the best representative 
of how the humans perceive the colors. 

The first step to compute the saliency map is to 
convert the image, obtained by the face detection 
module, in the HrSL space. Experimentally, we have 
noticed that the Saturation plane is unnecessary for 
the computation of the saliency map, while Hr and L 
planes allow us, respectively, to detect the contours 
and the shapes of the face (e.g. eyes, nose, mouth, 
etc…). After having extracted the Hr and L planes, 
the following filters have been applied to the both 
planes, obtaining the images partially shown in fig. 5: 

• Directional Prewitt filters (oriented at 0°, 
45°, 90°, 135°) obtaining Hr_Prewitt0°, 
Hr_Prewitt45°, Hr_Prewitt90°, 
Hr_Prewitt135°

 and L_Prewitt0°, 
L_Prewitt45°, L_Prewitt90°, 
L_Prewitt135°,features; 

• Canny Filter to both planes, obtaining the 
Hr_Canny_map and L_Canny_map; 

 
The images, processed with the above non-linear 

filters, are combined with the aim to obtain the 
features maps as follows: 

1. All the Hr images processed with Prewitt 
filters are summed obtaining the Hr-Prewitt 
Features Map; 

2. All the L images processed with Prewitt 
filters are summed giving more weight to the 
90° Map, obtaining the so called L-Prewitt 
Features Map; 

3. The Hr_Canny map and L_Canny map are 
processed using a normalization function N(·) 
that implements the mechanism of iterative 
spatial inhibition by using the DoG 
(Difference of Gaussian) filter proposed in 
(Itti et al., 2000). The obtained maps are 
called respectively Hr-Edge Map and L-Egde 
Map. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5: (a) Hr plane of the detected face, (b) L plane of 
the detected face, (c) Hr-Prewitt90° Map, (d) L-Prewitt90° 

Map, (e) Hr-Canny Map, (f) L-Canny Map. 

Applying the normalization factor N(·) to both 
the Hr-Prewitt Features Map and Hr- Egde-Map 
and summing these two maps we obtain the Hr-
Saliency Map (fig.6(a)). 

The same procedure is applied for L-Saliency 
Map (fig.6(b)) which is obtained by summing the L-
Prewitt Features Map and L-Egde Map. Finally, the 
Saliency Map (fig.6(c)) is computed by summing the 
L-Saliency (with a greater weight) with the Hr-
Saliency Map. 

After having extracted the saliency map, the first 
Focus of Attention (FOA) is directed to the most 
salient region (the one with the highest grey level in 
fig.6(c)). 

Afterwards, this region is inhibited according to 
a mechanism called inhibition of return (IOR), 
allowing the computation of the next FOA.After the 
FOAs distribution extraction, a FOAs analysis has 
been carried out in order to identify the eyes, the 
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ellipse surrounding the face and the mouth. For the 
eyes position detection, we consider the most two 
salient regions of the obtained FOAs distribution. 
 

 
(a) 

 
(b) 

 
( c) 

 
(d) 

Figure 6: (a) L_Saliency Map, (b) Hr_Saliency Map, (c) 
Saliency Map, (d) Some identified FOAs. 

For the ellipse identification the algorithm 
computes a set of distances from each extracted 
FOA. All the FOAs, which distance by the centre is 
greater than a suitable threshold, are considered as 
belonging to the face boundaries. By an 
interpolation of these FOAs we obtain the searched 
ellipse. By analyzing the remaining FOAs, we are 
able to extract the mouth. After the feature 
extraction the holistic face features have been 
extracted.  

5 FEATURES EXTRACTION 

The aim of this module is to extract the face features 
and the holistic features starting from the most 
important FOAs previously identified. The identified 
holistic features are: 

 The normalized area (AN) and the 
eccentricity (E) of the ellipse that best fits 
the contour FOAs, as described below: 
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Where xA and yA are, respectively, the horizontal 
and the vertical axes of the ellipse; 

 the distance between the central point of 
the FOAs eyes (C0) and the center of the 
such ellipse (CEm); 

 the focal distance between the eyes (Cf); 
 the vertical distance (Yb) between the 

central point of the mouth (Cm) and the 
center of the ellipse (CEm); 

 the distance between the eyes and the 
mouth: computed as the distance between 
the central point of the eyes FOAs C0 and 
Cm; 

 the distribution of the 20 most salient 
FOAs; 

 
Overall the computed holistic features are shown 

in fig.7. For the face features we consider the 
position of the most relevant FOAs and starting from 
these locations we apply the snakes, as in (Faro et 
al., 2006), that allow us to extract the searched 
features. 
 

 
Figure 7: Extracted Holistic Features. 

The final step is to match the extracted features 
with the ones stored in the database. The considered 
features for the matching are:1) FOAs Distribution, 
2) Face Features and 3) Holistic Features. 

The face matching must be independent from the 
rotation, the scaling and the translation. For this 
reason the first step is to apply a Procrustes analysis 
(Bin et al., 1999) to the FOAs distribution. After this 
transformation we extract the holistic (based on the 
FOAs distribution) and the face features and finally 
we compute the fitting value that is given by the 
following formula: 
 

1 1 2 2 3 3Fit T T Tα α α= ⋅ + ⋅ + ⋅   
where T1 is the fitting value of the distribution, T2 
the fitting value for the features extracted by using 
the FOAs dist., and T3 the fitting value for the facial 
features extracted by deformable models. The 
recognized person is the one whose Fit value is the 
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greatest, and if it is greater than a threshold, 
otherwise nobody is recognized. 

6 EXPERIMENTAL RESULTS 

The proposed method has been tested on a database 
of 114 subjects. Each subject is represented by 5 
images in different positions (side view with an 
angle of 45°, frontal view with serious expression, 
side view with angle 135°; frontal view showing no 
teeth and frontal view showing the teeth). Each 
image is characterized by a spatial resolution of 
640*480, with a uniform background and natural 
light. Subject’s age is between 18 and 50 years. 

For face matching, the features of the side view 
with an angle of 45°, frontal view with serious 
expression, and side view with angle 135° of each 
person have been used to create the face model; the 
remaining two images of each person (frontal view 
showing no teeth and frontal view showing the 
teeth) have been used for the testing phase. 

Concerning face detection, the success rate is 
100%. For the features extraction on all the detected 
images, the percentage of success is about 93%. The 
66% of the images whose features have been 
extracted correctly, has been used for the model face 
creation. The test for face identification has been 
carried out on the remaining images (181 images, 
corresponding to the 34%). 

The experimental results are shown in Table 1. 

Table 1: Experimental results. 

Algorithm N° Test 
images 

Correct 
Evaluation 

Success 
rate 

    
Face 

Detection 570 570 100 % 

Features 
Extraction 570 531 93.1% 

Face 
Matching 181 170 93.9% 

    
 
The overall recognition rate of our method is 
87.42%. The classification performances are more 
than satisfying, especially if compared with other 
well-know methods in literature. Indeed Eigenfaces 
(Pentland et al., 1994) shows an average recognition 
rate of 88.0%, Fisherfaces(Belhumeur et al, 1997) 
86%, Liu Method(Liu et al, 1993) 86.5%.  

7 CONCLUSIONS AND FUTURE 
WORKS 

An automated face recognition system based on the 
emulation of the human capability to interpret 
complex visual scenes has been proposed. The 
system proves effective due to the integration of the 
face and holistic features. 

This integration is attained by applying both the 
FOAs distribution analysis and the algorithm 
proposed in (Etemad et al, 1997). 

An important peculiarity of the system is the 
independence from both the illumination source and 
the dimension of the face to be recognized. The 
independence from the illumination source has been 
obtained by using the proposed HrSL color space. 

Moreover, the HrSL allows us to best detect the 
skin pixels. The independence from the face 
dimension has been carried out adopting the 
Procrustes analysis. 

An improvement that generalizes the system 
regards the face detection module; in fact, the high 
accuracy of the method is due to the background 
uniformity of the used images. In other cases for a 
better clustering it will be necessary to associate at 
the color processing module a spatial processing 
system. 

In addition, the system is set to work only with 
Caucasian, Mongolian and American races; for a 
correct functioning with the other races it is 
sufficient to shift the Hue color plane. Although the 
features extraction and the face matching systems 
have shown good results, they should be tested 
especially with different face images with different 
orientation and non-uniform background. 

For this reason it will be very interesting to 
develop a parallel system able to analyze at the same 
time different locations of the scene, especially for 
complex scenes with many faces and other objects. 

Finally, we plan to apply the proposed approach 
not only for face recognition but also for gesture 
recognition. 
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Abstract: We present a method to fit a template face model to 3D scan face.We first normalize the size and align the
orientation then fit the model roughly by scattered interpolation method. Secondly we run the optimization
method based on Allen’s work. We are able to generate face models which have ”poin-to-point” correspon-
dence among them. We also suggest a way to transfer any facialtexture image over this fitted model.

1 INTRODUCTION

Creating realistic 3D human face is a difficult task.
Since human face has very complex geometry, and its
difference between races and ages is large. Although
3D human face model has been created for many ap-
plication, it can be said that there is no standard way
of making human face model from scratch. Making
a realistic human face is still a challenging task. Re-
lated study have been reported to create morphable
or animatable human face from 3D face scan, how-
ever there are still many known or unknown issues
relating human face model (Ekman and V.Friesen,
1975) (Parke, 1972).

In this paper, we propose a method for creating
face model which has full correspondence among dif-
ferent faces. By having such a model with full cor-
respondence, it becomes an easy task to animate face
with known parameters among different face models.
With this model, it becomes a trivial task to group face
by comparing the corresponding geometry or morph-
ing between different faces. It would also be possible
to use this face model to recognize human face if the
quality of created face model improves more.

The main contribution of this paper is a template-
based face registration technique for establishing a
point-to-point correspondence among a set of face
model. Our method of creating such a face model
is based on the Allen’s work (Allen et al., 2003).
Starting from the 3D scan face data, we try to fit
our template face to those scan data with as less as
human interactions intervened. The fitting process
runs semi-automatic except that facial markers have

to be marked by human at first. We describe our fit-
ting method from a template face to any 3D-face scan
taken from real human in this paper. We also suggest
one method of transferring facial image over this face
model.

2 RELATED WORK

Blantz and Vetter (Blanz and Vetter, 2003) create a
morphable face model by taking images of several
faces using a 3D scanner and putting them into ”one-
to-one” correspondence by expressing each shape us-
ing the same mesh structure. Using the morphable
model, it is possible to group changes in vertex po-
sition together for representing common changes in
shape among several surfaces. Using principal com-
ponent analysis, they succeeded to find a basis for ex-
pressing shape changes between faces.

Concept of morphable model face model has been
extended by many researchers. For instance Vla-
sic (Vlasic et al., 2005) published a method for ex-
pressing changes in face shape using a multi linear
model, accounting for shape changes not only based
on a person’s identity but also based on various ex-
pression.

Model with full correspondence is also studied by
Praun and co-workers work (Praun et al., 2001). In
order to establish full correspondences between mod-
els, they create a base domain which is shared be-
tween models, then apply a consistent parameteriza-
tion. They search for topologically equivalent patch
boundaries to create base domain mesh. Since our
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domain is limited to only Human face model, a base
domain would be prepared in advance.

3 OVERVIEW

The task of the template face model fitting is to adapt
a model face to fit an individual’s 3-D scan face.
As input to this process, we took several 3D face
scan with Vivid700 (MINOLTA, 1999). We created
the template face model with a commercial model-
ing software. Our template face contains 435 vertices
and 822 triangles. Boundary of the shape is the con-
tour of face. We first crop the 3D scan data outside
of the face contour. We preprocess the surfaces so
that the shape of boundary of template face model
and 3D scan face is almost the same. However this
is not a strict demand, but doing so makes the fitting
result better empirically. Our fitting method are com-
prised of two part. We first fit the template face model
roughly by using scattered interpolation method, then
refine the fitting by minimizing the error energy func-
tion which describes the quality of the match. For
visual richness of 3D surface especially for facial ex-
pression, texturing is very important topic. We sug-
gest a method of transferring any facial textual image
over the fitted model with full correspondence among
them.

4 3D SURFACE FITTING

If the two face model’s shapes differ substantially,
optimization framework could stuck in local minima
and will not result in desirable face model. So our
method first fit the template face model roughly by
using scattered data interpolation, then use the opti-
mization framework suggested by Allen (Allen et al.,
2003). This way makes our fitting process more ro-
bust than (Allen et al., 2003). Before starting fit-
ting, we normalize the size of each model by resizing
the bounding box of its model and align the center of
the model. Scattered data interpolation is described in
4.1, and optimization framework is described in 4.2.

4.1 Scattered Data Interpolation

We first locate the same number of facial feature
points on both on template face model and 3D scan
face data manually. The number of marker points
is 13 in our case. Once we have set markers which
have one-to-one correspondence between template
face and 3D scan face, we construct a smooth inter-
polation function that gives the 3D displacements be-

tween the 3D scan face and the new adapted position
for every vertex in the template face model.

(a) (b)

Figure 1: Facial markers. (a) Facial markersvi on template
face. (b) Facial markersmi on 3D scan face.

Given a set of known displacementsui = vi −mi
away from the 3D scan face positions at every marker
positioni, construct a function that gives the displace-
mentu j for every non-constrained vertexj in the tem-
plate face model. We use a method based on radial
basis functions, that is the function of the form

f (v) = ∑
i

ciφ(‖ v−vi ‖)+Mv+ t (1)

whereφ(r) are radially symmetric basis functions.M
and t are affine components. To determine the co-
efficient ci and the affine componentsM and t, we
solve a set of linear equations that include the interpo-
lation constraintsui = f (vi), as well as the constraints
∑ci = 0 and∑civT

i = 0, which remove affine contri-
bution from the radial basis functions. Many different
functions forφ(r) have been proposed. We have cho-
senφ(r) = |r|2 log(|r|) for our function. We have ap-
plied this interpolation for each coordinate,X, Y, and
Z.

(a) (b)

Figure 2: Scattered data interpolation. (a) Original template
face. (b) Template face after RBF interpolation.

4.2 Model Data Fitting Optimization

After fitting roughly by scattered interpolation
method described above. We improve the quality of
fitting by minimizing the fitting error metric by adapt-
ing Allen’s method (Allen et al., 2003). We describe
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this method for fitting template face model to 3D scan
face. Each vertexvi in the template surface is influ-
enced by a 3x4 affine transformation matrixTi . We
try to find a set of transformations that move all of the
points in the template face to 3D scan face surface.

The quality of the match is evaluated using a set
of error functions: data error, smoothness error, and
marker error. These error terms are described in the
following sections.

Marker error. Equal number of Facial feature
points are placed on both the template face and the
3D scan face at the locations which are characteristic
for faces. About 13-20 features markers are suffice
to locate facial feature locations. We call the 3D lo-
cation of the markers on the 3D scan facem1...m, and
the corresponding vertex index of markers on the tem-
plate facet1...m. The marker error termEm minimizes
the distance between each marker’s location on the
template face and the 3D scan face:

Em = ∑m
i=1 ‖ Tti vti −mi ‖

2 (2)

Data error. We fit the marker first, then fit all the
remaining points in the template face. We define a
data error termEd as the sum of the squared distances
between each vertex in the template face and the 3D
scan face surface.

Ed = ∑n
i=1δidist2(Tivi ,D) (3)

wheren is the number of vertices in template face,
δi is a weighting term to control the validity of the
match, and thedist() function computes the distance
to the closest point on the 3D face scan. If the surface
normals at the corresponding points are more than
90◦, setδi to 0 otherwise set to 1.

Smoothness error. Allen (Allen et al., 2003) sug-
gested that simply moving each vertex in the template
face to its closest point in the 3D scan separately will
not result in a well arranged mesh, because neighbor-
ing parts of the template face could be mapped to dis-
parate parts of the 3D scan face. To constraint the
problem, we adopted the smoothness error,Es (Allen
et al., 2003). we formulate the constraint between ev-
ery two points that are adjacent in the template face:

Es = ∑
{i, j |{vi ,vj}∈edges(T)}

‖ Ti −Tj ‖
2
F (4)

where‖ · ‖ is the Frobenius norm. By minimizingEs
we prevent adjacent parts of the template face from
begin mapped to disparate parts of the 3D scan face.

Combining each error. Our complete objective
function E is the weighed sum of the three error func-
tions above:

E = αEm+ βEd + γEs (5)

where the weightsα, β, andγ are adjusted to guide
the optimization. We use a quasi-Newtonian solver,
L-BFGS-B (Zhu et al., 1994).

We first run the optimization using the relatively
low resolution mesh of the template face compared
with the 3D scan face. After that we subdivide the
resulting template face by inserting a new vertex be-
tween every edges of the mesh. Newly inserted vertex
position and its affine transformation is interpolated
between the two vertices of the edge.

We vary the weights,α, β, andγ, so that marker
point fits first then the remaining vertice move to the
appropriate position so that overall surface of the tem-
plate face fit to the 3D scan face. We run our optimiza-
tion as following

At the first stage (Low resolution of the template
face)
1. Fit the markers first:α=10,β=1, γ=1
2. Make the data error term to dominate:α = 1,β=10,
γ=1

At the second stage (High resolution of the tem-
plate face)
1. Continue the optimization:α=5, β=1, γ=0
2. Make the data error term to dominate:α = 0,β=10,
γ=1

Template face after fitting sometimes have ripple
over high curvature area. We have applied laplacian
smoothing (Taubin, 1995) to this surface and get
more smooth surface as seen in Fig 4.

(a) (b)

Figure 3: Fitting template face. (a) Template face after fit-
ting to 3D face scan. (b) Subdivided template face after
fitting.
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(a) (b)

Figure 4: (a)Smoothing face model after fitting. (b) display
in shading mode.

(a) (b)

Figure 5: (a)Fitted template face from another angle. (b)
Target 3D face scan from the same angle.

5 CONSTRAINED FACIAL
TEXTURE MAPPING

We propose a method based on radial basis function
(RBF) technique to apply a facial texture image to our
template based 3D face model. Fist we calculate the
mapping from 3D template face surface to 2D param-
eter space. With this mapping we obtain the template
face image. Then user specifically assigns the cor-
responding 2D points in the sample facial image to
those points in the template face image. We employ
RBF to morph the sample face image with the con-
straint of these feature points. Our method is charac-
teristic in that we do not re-calculate the 2D mapping
parameter for each face model, but use the common
parameterization prepared in-advance with the mor-
phed face image.

5.1 Template Face Image

Texture mapping or parameterization of 3D mesh is to
compute a mapping between a discrete surface patch
and an isomorphic planner mesh through a piecewise
linear mapping. This piecewise linear mapping is
simply defined by assigning each mesh node a pair
of coordinate(u,v) referring to its position on the

planer region. A number of work on parameterization
has been published, and almost all techniques explic-
itly aim at producing least-distorted parameterization.
We employ the intrinsic parameterizations (Desbrun
et al., 2002) for our parameterization method. Sum-
mary of the intrinsic parameterization is described in
Appendix. Fig 6 shows the result when we apply this
parameterization to our template face model. We call
the resulting 2D image the template face image.

(a) (b)

(c)

Figure 6: (a)3D template face. (b) 2D parameterization. (c)
template face image.

5.2 Face Image Morphing

2D image Morphing method we employ is basically
same as 4.1. The energy-minimization characteristic
of RBF ensures that the mapping function smoothly
interpolates constraints with non-deformation proper-
ties. User manually assign corresponding 2D points
in the sample texture image. User can set an arbitrary
set of constrained points, although for simplicity this
could be the same set of facial feature points as we
use in 4.1. The morphing result is in Fig 7. We trans-
form this morphed face image over the face model af-
ter fitting in Fig 8. Fig 9 shows various texture image
applied to our template face model.

6 CONCLUSIONS

We have succeeded to make face models which have
full point correspondence among them by fitting the
generic template face model to each 3D face scan. Al-
though initially it requires human interaction to locate
facial feature markers on each model, fitting process
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(a) (b)
Figure 7: Locate facial feature points int the original tex-
ture image which correspond to the facial feature points of
the template face image in Fig 6 (c). We then apply RBF
based image morphing with the constrained feature points.
(a)original texture image. (b) morphed texture image.

(a) (b)
Figure 8: Texture mapping after fitting. (a)textured face
model. (b) view from another angle.

Figure 9: Various texture mapping to template face model.

proceeds automatically. The resulting face model is
nicely fitted to the target 3D scan face. Although the
fitted face surface sometime is not as smooth as we
desire, we can smooth the surface by using laplacian
smoothing method without blurring the facial feature
points. Since our template face is created by ad-hoc
method, it calls for the way to create a ideal template
face. Praun et al (Praun et al., 2001) create a base do-
main model by tracing patch boundaries to represent
overall shape of the model. Although created base do-
main is too abstract for our template model, it could
be generated from its base domain. In stead of using a
triangular mesh, several studies have been made to fit
a spline surface over dense polygon mesh or points.
Besides of the patch boundary issue relating to spline
surfaces, it is a more suitable model for animation and
provide a fine but more expensive model for render-
ing.

Since we have a face model with consistent pa-
rameterization, it is a simple application to morph be-
tween any two faces. Although our face model after
fitting looks very similar to the original scan face, we
haven’t evaluated how accurate the fitting is. One pos-
sible method is to construct a graph which consists of
geodesic paths between every pair of the facial marker
points. The accuracy of the fitting could be done by
comparing these graphs.

We suggested one method to map texture image
over our template based face model. With this method
user doesn’t have to adjust texture coordinate for each
different face model, but rather morph the image with
the constraint of matched feature points between the
template face image and itself. For the restricted do-
main as human face model this method was found to
produce pleasing result.
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APPENDIX

Parameterization of 3D mesh is to compute a map-
ping between a discrete surface patch and an isomor-
phic planar mesh with least distortion. Desbrun at el
(Desbrun et al., 2002) describe a general distortion
measureE, which is given by Dirichlet EnergyEA and
Chi EnergyEχ

E = λEA +µEχ

whereλ andµ are two arbitrary real constants.

EA = ∑
edges∈(i, j)

cotαi j |ui −u j |
2

where|ui −u j | is the length of the edge(i, j) in the
parameter domain, andαi j is the opposite left angle
in 3D as shown in Fig 10.

Eχ = ∑
j∈N(i)

(cotγi j +cotδi j )

|xi −x j |2
(ui −u j)

2

where the anglesγi j andδi j are define in Fig 10.

Figure 10: 3D 1-ring and its associated flattened version.

Since the gradient ofE is linear, computing a pa-
rameterization reduces to solving the following sparse
linear system:

MU =

[

λMA + µMχ

0 I

][

U internal

Uboundary

]

=

[

0
Cboundary

]

= C

whereU is the vector of 2D-coordinates to solve
for. C is a vector of boundary conditions that contains
the positions where the boundary vertices are placed.
MA andMχ are sparse matrices where coefficients are
given respectively by:

MA
i j =











cot(αi j )+cot(βi j ) if j ∈ N(i)
−∑k∈N(i) MA

ik if i = j

0 otherwise,

Mχ
i j =











(cot(γi j )+cot(δi j ))/|xi −x j|2 if j ∈ N(i)

−∑k∈N(i) Mχ
ik if i = j

0 otherwise,
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Abstract: Face recognition has been actively investigated by the scientific community and has already taken its place
in modern consumer software. However, there are still major challenges remaining e.g. preventing negative
influence from varying illumination, even with well known face recognition systems. To reduce the perfor-
mance drop off caused by illumination, normalization methods can be applied as pre-processing step. Well
known approaches are linear regression or local operations. In this publication we present the results of a
two-step evaluation for real-world applications of a wide range of state-of-the-art illumination normalization
algorithms. Further we present a new taxonomy of these methods and depict advanced algorithms motivated by
the pre-eminent human abilities of illumination normalization. Additionally we introduce a recent bio-inspired
algorithm based on diffusion filters that outperforms most of the known algorithms. Finally we deduce the
theoretical potentials and practical applicability of the normalization methods from the evaluation results.

1 INTRODUCTION

Artificial face recognition is in the focus of challeng-
ing research and besides a widely used technology in
a multitude of applications. The targeted application
of this paper is the field of person recognition in real-
world photo archive scenarios, e.g. unsupervised con-
sumer photo archive management.

In the task of face recognition under real-world
conditions, different factors hinder the recognition
process e.g. pose, facial expression and illumination.
In this publication we concentrate on the impact of
varying illumination that can change the appearance
of one person more than the difference of appearance
between two persons (Adini et al., 1997).

The purpose of this work is an experimental eval-
uation of state-of-the-art illumination normalization
methods for real-world applications. We draw the hy-
pothesis that well performing algorithms under con-
trolled conditions can worsen results under uncon-
trolled real-world conditions versus other algorithms.

We focus on algorithms that can be summarized
as pre-processing techniques. Commonality of that
methods is the ability to process single images with-
out the need of further information.

The contemplated pre-processing algorithms dif-
fer manifestly in their method concerning the impact

Figure 1: Most illumination estimation algorithms for face
recognition assume high spatial frequency of facial infor-
mation and low frequency of interfering illumination.

of illumination and the manner to normalize it. They
range from well-know histogram manipulations that
directly produce normalized images to sophisticated
methods e.g. adopting human visual concepts that
return illumination estimations for normalizing pro-
cess. These algorithms follow the idea that illumi-
nation L(x,y) and reflecting facial information R(x,y)
are distributed in different frequencies of image infor-
mation I(x,y) depicted in Figure 1.

To allow systematic analysis of the different
algorithms a novel taxonomy of the state-of-the-
art normalizations is introduced. Furthermore we
present an advanced regression algorithm and a novel
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perception-inspired approach for illumination nor-
malization based on diffusion filters.

2 TAXONOMY OF
NORMALIZATION METHODS

2.1 Homogenous Point Operations

Homogenous point operations conduct transforma-
tions on gray scale values of an intensity image I(x,y)
independent from their position using a general trans-
formation function F :

I′(x,y) = F(I(x,y)) (1)

Several studies e.g. (Shan et al., 2003) evaluated
homogeneous point operations for illumination nor-
malization. In our experiments we use the Histogram
Equalization (HE), Histogram Matching (HM), His-
togram Stretching (HS), Normal Distribution (ND)
and Logarithmic Transformation (LOG). The LOG
refers to dynamics compression for better resolutions
of dark regions in human perception (Savvides and
Kumar, 2003).

Figure 2: Illumination normalization results of homogenous
point operations a) original, b) HE, c) HS, d) LOG.

Figure 2 shows the results of selected algorithms.
In general these algorithms yield an improved vi-
sual impression of the distracting illumination impact.
However they are not able to eliminate local illumina-
tion effects like shadows since disregarding any spa-
tial information.

2.2 Local Point Operations

The homogenous point operations can also be ap-
plied in a local window. That type of normalization
for face recognition was first introduced by (Villegas-
Santamaria and Paredes-Palacios, 2005) and (Xie and
Lam, 2006). In our experiments we use the Local His-
togram Equation (LHE), Local Histogram Matching
(LHM) and Locale Normal Distribution (LND).

A common advanced local algorithm is the Lim-
ited Adaptive Histogram Equalization (LAHE). The
LAHE limits the contrast in homogenous regions and
interpolates values of the neighbourhood to avoid

Figure 3: Normalization results of different local point op-
erations with distinct intensity of artefacts: a) original, b)
LHM, c) LHE, d) LAHE.

artefacts. In our experiments we use the LAHE de-
veloped by (Zuiderveld, 1994).

The results of local point operations show im-
proved consideration on local effects of illumination
by concomitant degrease of image quality for human
impression, depicted in Figure 3.

2.3 Statistical Illumination Estimation

(Ko et al., 2002) introduced the Linear Regression
(LREG) model to estimate the influence of illumina-
tion in face recognition as a regression plane. Applied
on image data the regression plane Y ′ can be calcu-
lated with an approximated regression factor B. B can
be calculated with the vectorized image X and its co-
ordinates Y by a least square fit:

Y ′ = B ·X with = (XT ·X)−1 ·XTY (2)

The illumination normalization is achieved by in-
verting the resulting regression layer and substraction
of the original image. For a more adaptive illumina-

Figure 4: Approximations of different regression methods
of an face image with strong shadows: a) original face, b)
LREG , c) QDREG, d) CBREG.

tion estimation we introduce the Nonlinear Regres-
sion (NLREG) for illumination normalization in face
recognition. The NLREG uses an n-th order polyno-
mial as regression function. To prevent over fitting
of the regression to facial contours we use only a 2D
quadratic polynomial (QDREG):

L(x,y) = a0 +a1 · x+a2 · y+a3 · x2 +a4 · y2 +a5 · xy (3)
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and a 2D cubic polynomial (CBREG) for our exper-
iments. The regression coefficients ai can be deter-
mined by least squares estimation. Figure 4 shows
the different regression results.

All of these regression methods result in a quite
similar visual impression depicted in Figure 5. This
behavior depends on the same overall slope of the re-
gression layers and the smooth influence of the poly-
nomial characteristics.

Figure 5: Illumination normalization results of statistical al-
gorithms: a) original, b) result LINREG, c) result QDREG
, d) result CBREG.

2.4 Retinex Methods

The retinex model, named after retina and cortex, was
introduced by (Land, 1977) to entitle its model of the
human visual perception. It describes the human vi-
sual cognition of color and illumination by consider-
ing retina and cerebral cortex. The most interesting
point for illumination normalization is the assump-
tion, that perception depends on the relative or sur-
rounding illumination. It means that reflector R(x,y)
equals the quotient of intensity I(x,y) and the illu-
mination L(x,y) calculated by the neighborhood of
I(x,y). The following algorithms estimates the illu-
mination based on the pixel neighborhood.

Single-Scale Retinex (SSCRET) introduced by
(Jobson and Woodell, 1995) defines a Gaussian kernel
to estimate the neighborhood illumination. Within the
SSCRET a logarithmic transformation of the image
data is used as human perceptional oriented dynamic
compression. These step is an additional requirement
of the retinex theory (Levine et al., 2004). For SS-
CRET Equation 4 with a single Gaussian can be used.

R(x,y) =
S

∑
s=1

(log [I(x,y)]− log [I(x,y)∗Gs(x,y)]) (4)

Multi-Scale Retinex (MSCRET) describes an exten-
sion to the SSCRET and uses multiple Gaussian ker-
nels (Rahman et al., 1996). The aim of using different
Gaussian filters with varying σs is a better approxima-
tion. The multiple results are combined by accumu-
lating the single normalizations. Figure 6 shows the
results of SSCRET and MSCRET.

The Self Quotient Image (SLFQUO) was devel-
oped by (Wang et al., 2004) and estimates an illumi-
nation free image Q as quotient of the intensity image

Figure 6: Illumination estimations and normalization re-
sults of Single/Multi-Scale Retinex algorithms: a) illumi-
nation est. SSCRET, b) result SSCRET, c) illumination est.
MSCRET, d) result MSCRET.

I and I convolved with a filter F .

Q =
I

I ∗F
(5)

The image Q equals to the reflection R and the fil-
tered image I equals to the approximated illumination
L. Similar to the MSCRET, multiple Gaussian filters
were used. In contrast, a special weighted Gaussian
kernel is designed and used in equation 4 instead of
normal Gaussian kernel G.

In addition to the retinex theory the illumina-
tion estimation according to (Gross and Brajovic,
2003) (GROBRA) uses further information from the
human perceptional research. Psychological experi-
ments show that the ability of human visual percep-
tion to dissolve intensity change ∆I depends propor-
tionally to the absolute intensity I. That behavior is
described in Weber’s law (Wandel, 1995) as:

∆I
I

= ρ (6)

Instead of Gaussian filters the GROBRA uses an min-
imization approach to estimate the illumination L.

E(L) =
∫ ∫

Ω

ρ(x,y) · [L(x,y)− I(x,y)]2dxdy

+λ

∫ ∫
Ω

(L2
x +L2

y)dxdy
(7)

The weighting function ρ(x,y) is applied to handle the
local contrast ratio based on equation 6. The second
term of equation 7 describes a smoothing constraint
with λ as weighting factor. To solve the minimization
problem a linear partial differential equation system
based on Euler-Lagrange equation is used.

The GROBRA seems to be the most sophisticated
retinex algorithm but Figure 7 shows that at least the
visual result yields the best by visual impression. The
following section describes a novel diffusion filter ap-
proach that relates to the group of retinex algorithms.

3 DIFFUSION FILTER
APPROACH

The theory of (Cohen and Grossberg, 1984) about
neural dynamics of brightness perception indicates
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Figure 7: Illumination estimation and normalization result
of SLFQUO and GROBRA algorithms: a) illumination est.
SLFQUO, b) result SLFQUO, c) illumination est. GRO-
BRA, d) result GROBRA.

that diffusion processes are proceeded in human per-
ception. Qualities of features like brightness spread
diffusively up to boundary contours in visual cortex.

In image processing the diffusion approach was
introduced as Scale-Space-Theory (SST) by (Witkin,
1983). The concept of the SST is to describe struc-
tured elements by a multi-resolution pyramid that
is generated by convolutions of the original image
I0(x,y) with multiple Gaussian filters.

I(x,y, t) = I0(x,y)∗G(x,y, t) (8)

The varying parameter t results in different sized im-
ages. Another form to describe that context is the dif-
fusion equation as used by (Koenderink, 1984):

∂t I = ∇
2I = (Ixx + Iyy) (9)

The motivation behind that approach is the as-
sumption that structured elements can be better de-
scribed by increasing the number of resolution planes.
With rising the number of planes a floating approxi-
mation of the image structure can be processed.

Disadvantage of the SST is the linear isotropic be-
havior which means diffusion spread out to all direc-
tions without responding to edges. Further nonlinear
algorithms e.g. (Perona and Malik, 1990) consider
edges and reduce the diffusion by a diffusion coeffi-
cient c that depends on image gradients intensity.

∂t I = ∇ · (c ·∇I) (10)

Considering additionally the direction of edges in the
diffusion process, leads to nonlinear anisotropic dif-
fussion (Weickert, 1998). The different impacts on
noisy images are depicted in Figure 8.

Figure 8: Different behaviors of diffusion filter for noise
reduction with attention to structured elements: a) origi-
nal, b) linear isotropic, c) nonlinear isotropic, d) nonlinear
anisotropic (Weickert, 1998).

For illumination normalization the diffusion fil-
tered image can be interpreted as the illumination esti-
mation L(x,y). With use of L(x,y) a normalization in

multiplicative Retinex context can be processed. Fol-
lowing a systematization of diffusion filters by (We-
ickert, 1998) we use the algorithm of (Perona and Ma-
lik, 1990) in our experiments as Nonlinear Isotropic
Diffusion Filter (NLISODIF) that weakens the diffu-
sion at edges by the intensity of the gradient.

Additionally we introduce the novel use of a dif-
fusion tensor based Nonlinear Anisotropic Diffusion
Filter (NLANISODIF) algorithm for illumination nor-
malization. That approach uses a gradient direction
related tensor D instead of diffusion coefficient c to
weaken the diffusion process.

The diffusion tensor D according to (van den
Boomgaard, 2004) is based on a rotation matrix and
can be measured as:

D =
1

(Ix)2 +(Iy)2

·
(

d1(Ix)2 +d2(Iy)2 (d2−d1)IxIy
(d2−d1)IxIy d1(Iy)2 +d2(Ix)2

) (11)

Figure 9 shows the normalization results of
NLISODIF and NLANISODIF.

Figure 9: Illumination estimation and normalization results
for different diffusion filter: a) illumination est. NLISODIF,
b) result NLISODIF, c) illumination est. NLANISODIF, d)
result NLANISODIF.

The visual impression of the diffusion results is
similar to the related retinex methods. Based on the
algorithmic the NLISODIF resembles the GROBRA
while NLISODIF uses the gradient as weighting func-
tion and GROBRA the Weber contrast.

4 EVALUATION

4.1 Concept

The evaluation concept is based on the hypothesis that
pre-processing methods with ability to solve the sin-
gle problem of varying illumination possibly reduce
recognition rate in real-world environment by remov-
ing necessary facial information.

For that reason we decided to conduct a two-step
evaluation. First we tested under controlled condi-
tions with small changes in pose and facial expres-
sion. This pretest should measure the ability of each
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algorithm to normalize illumination changes and as-
sure a comparability to other publications.

The second step measures the recognition rates
under real-world uncontrolled conditions. This real-
world test should evaluate changes within and be-
tween normalization groups compared by controlled
and uncontrolled conditions. Further it allows to draw
more practical oriented and reliable conclusions for
the given use cases.

4.2 Face Recognition Algorithms

The choice of recognition algorithms plays an impor-
tant role in the evaluation of the normalization meth-
ods. We decided to choose well known and common
algorithms for eased comparability with other publi-
cation results.

We use the eigenface (Turk and Pentland, 1991)
and fisherface (Belhumeur et al., 1997) approaches
which are appearance based subspace methods for
face recognition. These algorithms interpret pixels
of images as coordinates in a high-dimensional space
and transform them into low dimensional subspace
called facespace. Therefore a training process with
observations of reference persons is needed.

4.3 Databases

We used the following setup for our experiments: For
pretest we choose the Yale Face Database B. It is well
suited for evaluation of lightning influence as shown
in (Georghiades et al., 2001).

We use four already defined database subsets with
similar illumination conditions as shown in Figure 10.

Figure 10: Examples of the Yale Face Database B subsets
used for the pretest.

In our experiments we used all possible combina-
tion of these subsets. This procedure is oriented at
realistic conditions, where different lighting environ-
ments can be used as reference and test data. Based
on that procedure we get 4 by 4 recognitions rates.
The final result is estimated as mean of this 16 rates.

Publicly available face recognition databases are
usually based on controlled environmental conditions
and focus on varying specific properties. Regarding
the given use case with real-world conditions we cre-
ated a new special database. It is set-up from private

consumer photos that were taken by individual pho-
tographers, with different camera types, at very dif-
ferent situations, day-times and mimics. The only re-
striction is a frontally pose. Figure 11 shows exam-
ples of this database. It contains 25 persons with four
observations of each person. Because of the small
number of images per person we iterative changed the
train and test observation to get four results for each
person by using three training images per person.

Figure 11: Examples of the new real-world database that
contains frontal face images varying in all possible aspects.

4.4 Results and Discussion

Figure 12 shows the results of our two-step evalua-
tion. All algorithms went through pretest and real-
world test with eigenface and fisherface recognition
approaches. In addition each algorithm was sepa-
rately evaluated with a preliminary and subsequent
histogram equalization (HE). The subsequent HE im-
proves the results clearly so that we present in each
case only the best combination. The first data set in
the diagram (ORG) represents the initial recognition
rate without any normalization as reference.

As expected, the homogenous point operations
leads to the lowest recognition rates of the test field.
All algorithms supply similar results at least in the
real-world test. Most of the algorithms could reach
there results only by using a preliminary or subse-
quent HE. Based on that fact we ascribe most of the
improvements to the HE.

Local point operations obtain the best results be-
neath the retinex methods. Within the local methods,
especially by evaluating the LND, we could prove
our hypothesis that transferring algorithms from con-
trolled to uncontrolled environments can decrease
performance. Reason for the decline of LND towards
the LAHE could be the worse artefacts of LND that
arise by filtering without paying attention to different
contrast in local window. In real-world test LAHE is
leading in its group and outperforms most of all other
algorithms.

Statistical regression methods lead to good overall
but not best results. On real-world test the nonlinear
extensions come up with better results then LINREG
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Figure 12: Results of two-step evaluation for pretest and real-world test as well as eigenface and fisherface approach.

but within pretest the results are equal. That behavior
can be explained by the heavy cast shadows within
pretest images which results in strong shadow lines
that could not be approximated by the 2th and 3rd
order polynomials. In most real-world images these
strong shadow-light contours appear rarely, so that
CBREG can improve recognition by 8 %.

The group of human perceptional algorithms
based on retinex theory contains with NLANISODIF
and especially GROBRA the outperforming algo-
rithms of our experiments. A reason for that could
be the consequent transfer of human visual process-
ing techniques based on the perceptional concepts
e.g. use of gradient information to approximate the
illumination estimation. Following this conclusion
SLFQUO with its weighted Gaussian filter that at-
tempts to use gradient information could not convince
within real-world test.

However, within the pretest the new diffusion fil-
ter based algorithms lead the overall results with 94 %
recognition rate. Within the real-world test the We-
ber contrast proportion used by GROBRA seems to be
more applicable. The GROBRA becomes the overall
leading algorithm in real-world test with 51 % recog-
nition rate which also supports our hypothesis.

Besides LAHE the GROBRA and NLANISODIF
algorithms are of high practical relevance.

5 CONCLUSIONS

In this paper we presented a new taxonomy of illumi-
nation normalization methods. We introduced an al-
gorithm motivated by human perception and based on
known diffusion filter concepts. Further we presented
the results of a two-step evaluation of 18 different al-
gorithms to verify best approaches under controlled
and uncontrolled real-world conditions. Our experi-
ments suggest a number of conclusions:

• Our experiments showed that variation only in il-
lumination can be normalized up to nearly con-
summate recognition rates of 94 %.

• We demonstrated that recognition rates for real-
world data can be improved with eigenface from
12 % to 40 % and fisherface from 13 % to 51 %.

• Furthermore we verified our hypothesis that well-
performing algorithms under controlled condi-
tions can be worse under real-world conditions
depicted on the overall leading algorithm of
pretest and real-world test.

• Human perception related algorithms outper-
formed nearly all other algorithms.

• The group of local operations brought up multiple
well-performing algorithms.

However, the real-world test results clearly show
that illumination normalization is just one step to an
entire face recognition system. There are a number of
issues to be addressed in future work. First, analyze
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in detail which factors influence the recognition rates
to what extent. Second, evaluating of normalizing al-
gorithms for different aspects e.g. pose or facial ex-
pression under real-world conditions. Finally, evalu-
ation of further face recognition techniques is needed
e.g. Hidden Markov Model (M. Bicego and Murino,
2003) or 2D Gabor Wavelet (Wiskott et al., 1997).
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Abstract: Impedance Cardiography is a cost-effective, non-invasive technique particularly useful in measuring cardiac 
functions. It evaluates systolic time intervals and stroke volume measuring thorax bioimpedance. In this 
paper, adopting the time-frequency analysis method, a new design has been developed to study the first 
derivative of impedance cardiography signal. The application of parallel wavelet filter banks has been 
investigated and a new method for ICG signal characteristic point detection has been developed. Test results 
show the improvement of the method in sensitivity and the feasibility of an easy implementation by design 
tools. Moreover, the algorithm noise immunity has been investigated. 

1 INTRODUCTION 

Impedance Cardiography (ICG) is a technique to 
study cardiac functions through measurements of the 
thorax electrical impedance. It has been widely 
adopted because it is noninvasive, easy to use and 
suitable for long-term and continuous monitoring of 
hemodynamic function (Jensen, 1995). Moreover, 
the ICG signal can be correlated with other 
significant signals (i.e. ECG) to generate alarm in 
critical situations.  

In the past difficulties associated in ICG signal 
processing have been motion artefacts, muscle noise, 
pacemakers, etc. The most recent ICG devices have 
shown improved accuracy. Therefore the ICG has 
established a role in the management of outpatients 
with hypertension, heart failure and other chronic 
diseases (Treister, 2005). The use of ICG in 
therapeutic decision making regarding patients with 
critical diseases is primarily based on its ability to 
identify presence or absence of hemodynamic 
abnormalities. For these reasons many researches 
have been developed both to study physiological 
mechanisms for understanding origin and meaning 
of ICG signals and to improve effectiveness and 
applicability of ICG diagnostic test adopting 
advanced signal processing techniques (Wang, 
1995). 

Many efforts have been done to implement 
automatic detection of reference points in biological 

signal. However, existing peak detection algorithms 
are difficult to automate for generic use because 
either they rely on a number of parameters that need 
to be customized for a particular application of the 
algorithm or they use reference informations that is 
highly specialized for a particular application.  

Most of the proposed methods make use of 
filtering technique (band pass filtering and temporal 
filtering) (Leski, 1992), (Pan, 1984), or adaptive 
thresholding technique (Sun, 1992), (Suppappola, 
1994). All the previous techniques exhibit 
limitations when real signal are adopted (Sun, 2005). 
In fact, the first drawback of filtering-based 
approach is that frequency variations in the signal 
under test (due to different causes such as, for 
instance, cardiac frequency changes) may adversely 
affect the method performance. For instance, the 
frequency band of some biological signal, such as 
ECG, differs for different subjects and can change 
for the same subject due to particular events. The 
second problem in the filter based algorithms is the 
frequency band overlapping of noise and some 
biological signals. Therefore, the choice of a suitable 
bandwidth is a trade off between noise and high 
frequency details while the duration of the sliding 
window is a trade off between false and missed 
detections.  

Whereas, the main problem of the thresholding 
techniques is their sensitivity to baseline variations 
and signal intensity. This high noise sensitivity can 
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be a problem for some types of signals having low 
signal to noise (S/N) ratio. 

An extensive overview of various algorithms for 
peak detection in ECG signals can be found in 
(Kohler, 2002) which includes approaches based on 
neural networks, adaptative filters, Hidden Markov 
models and Hilbert transform, too.  

The purpose of this paper is to introduce an 
improved signal processing technique able to 
provide an easy implementation in design tools. It 
adopts the wavelet transform for ICG waveform 
characteristic point detection. Moreover, for parallel 
computing and for implementation by design tool, 
parallel filter banks have used in the adopted 
technique. Experimental results show the method 
validity and its high sensitivity parameter. In fact, 
sensitivity reliable results with minimum 
interferences from noise and artifact have been 
obtained. 

2 ICG TECHNIQUE 

Impedance cardiography is the study of cardiac 
function by means of thorax electrical impedance 
measurements. High frequency (20-100KHz), low 
intensity current (1-5mA rms) is injected through the 
thorax by some electrodes and the impedance 
change is sensed by measuring a voltage across 
other electrodes. No risk of physiological effects 
have been found because various tissues of human 
body are not excitable at this frequency and at this 
low current level (Patterson, 1989). The impedance 
variation can be used for diagnostic information and 
for the stroke volume (SV) estimation by using 
blood flow appropriate model. The term SV 
indicates the amount of blood pumped by the heart 
left ventricle in one contraction. 

Figure 1 shows a typical impedance waveform 
obtained from electrodes in which the characteristic 
points are indicated.  

Pulsating blood flow through the thoracic aorta 
causes shifts in the thoracic impedance as a function 
of changes in blood volume. This oscillating 
component of the total thoracic impedance can be 
expressed as its derivative (dZ/dt). Measurements of 
the changes in the thoracic impedance (dZ/dt 
waveform) during the cardiac cycle are used to 
calculate SV. This can be done in several ways 
(Kubicek, 1974), (Sramek, 1982), (Bernstein, 1986). 
Generally all the equations take into account 
position and value of C-point related to B-point and 
X-point. 

 
Figure 1: Typical impedance waveforms from the thorax 
of a human subject. 

3 WAVELET TRANSFORM 

Wavelet transform provides temporal and spectral 
information simultaneously, so it is suited for 
determining characteristic points of non stationary 
and fast transient signals, such as ICG signals. This 
feature is suitable to distinguish the ICG signal from 
noise and interferences. 

The wavelet method decomposes a time variant 
signal into several components having various scales 
or resolutions. A suitable time and frequency limited 
wavelet is chosen as the “mother”. Scaling and 
shifting the mother wavelet, a family of functions 
called “daughter” wavelet is generated. For small 
value of the scale factor, the wavelet is constructed 
in the time domain and gives information about fine 
details of signals. Therefore a global view of the 
signal is obtained by the scale factor large value. 
The wavelet transform of a time signal at any scale 
is the convolution of the signal and a time-scaled 
daughter wavelet.  

There are essentially two types of wavelet 
decompositions: the redundant ones (continuous 
wavelet transform (CWT)), and the nonredundant 
ones (orthogonal, semi-orthogonal, or biorthogonal 
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wavelet bases) (Unser, 1996). The first type is 
preferable for feature extraction because it provides 
for a description that is truly shift-invariant. The 
second type is preferable for data reduction, or when 
the orthogonality of the representation is an 
important factor. However, the choice between these 
types of decompositions has to take into account 
computational considerations, too. A decomposition 
in terms of wavelet bases using Mallat fast algorithm 
is typically orders of magnitude faster than a 
redundant analysis, even if the fastest available 
algorithms are used (Rioul, 1992), (Unser, 1994).  

As the aim of this paper is the implementation of 
a fast parallelized algorithm, a nonredundant wavelet 
decompositions has been chosen. To determine the 
best wavelet function to be used, the ICG signal 
properties have been studied, such as the shape and 
the time localization of events. Temporal signal 
shape is an important parameter, so orthogonal 
wavelets are unsuitable to be used. In fact they are 
unable to provide symmetry in the time domain and 
they introduce non-linear phase shift. The signal 
shape is maintained if the phase shift is linear. Thus 
the wavelet to be adopted should be a symmetrical 
function (Dinh, 2001). Spline wavelets have 
properties satisfying the previous requirements. The 
higher order of the Spline wavelet results in the 
sharper frequency response of the equivalent FIR 
filter, that is always desirable. But the FIR 
equivalent filter of the higher order Spline wavelet 
has longer coefficient series leading to more 
computational time consumption. Therefore, the 
cubic spline wavelet is assumed to have an order 
high enough for this application. 

Traditional wavelet theory (Cohen, 1996) 
considers a decomposition algorithm with an 
iterative structure (in particular an asymmetrical tree 
structure) that does not efficiently merge with the 
novel computational techniques, such as parallel 
processing, concurrent programming and design 
tools. In this study the a’ trous and the Mallat 
algorithms for parallelized filter bank design have 
been used (Yang Li, 2005). The algorithm generates 
a set of parallelized perfect-reconstruction filter 
banks for an arbitrary number of end-nodes of a 
traditional tree structure (Koh, 2003). 

4 PEAK DETECTOR METHOD 

The method presented in this section processes the 
first derivate of the impedance signal and allows to 
determine the time domain absolute position of C 
Peak (figure 1).  

ICG signal (figure 2) is sampled at a frequency of 
250 Hz. The input hardware stores sequentially all 
the sample in a high speed frame which is then 
processed in real time by the system. 

 

 
Figure 2: ICG signal. 

In figure 3 the algorithm model is represented. 
The starting signal is indicated with ‘ICG Signal’, 
while the results with: 

- ‘C_point_Number’  that evaluates the number of 
peaks presents in the processed frame; 

- C_Indices’ whose aim is the determination of 
the position of samples which corresponds to peaks 

 

 
Figure 3: Algorithm model realized with the software tool 
MATLAB Simulink®. 

The ‘C_point Detector’ subsytem (figure 4) 
determines the ICG signal peaks. 

Figure 4: ‘C point detector’ subsystem model. 

It uses an evolution of the classical Mallat 
decomposition, called a’ trous algorithm. The a’ 
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trous algorithm for non-ortogonal wavelet uses a 
filter bank structure as the Mallat algorithm (Mallat, 
1989), but differs only for the filters design. It has 
been demonstrated that after the application of 
wavelet filters for j-times, the precision of a’ trous 
algorithm is 2j time higher then the Mallat algorithm 
(Table 1) (Shensa, 1992).  

Table 1: Precision of Mallat algorithm and a’ trous 
algorithm varying decomposition level 

 
 

For the tree structure of the algorithm, the 
previous structure is not suitable for parallel 
computing and for implementation in design tools. 
To overcome this limit equivalent parallel filter 
banks have been used. As it is known, the output 
signal realignment is necessary only to put just the 
delay introduced by each filter (figure 5). 

A cubic spline wavelet (wavelet ‘bior3.3’) has 
been chosen because it makes possible the perfect 
signal reconstruction (figure 6). 

For ICG signal processing, six dyadic scales 
have been used to decompose the signal (figure 7). 

 

 
Figure 5: Pulse response of FIR filters equivalent to levels 
4, 5, 6. 

With a soft treesholding technique applied to 
level 1, 2, 3, the noise has been reduced and then the 
signal reconstructed in the time domain. 

To localize characteristic points inside signal, 
detail levels 4, 5, 6 have been considered because 
they contain the highest number of C signal 
frequencies. 

In respect to each singularity in ICG signal, a 
point of maximum value in detail coefficient signal 
is present. The proposed method searches local 
maximum points in the positive region of scale 4, 
scale 5 and scale 6 using a thresholding technique. 
Various tests have indicated the local maximum in 
the lower scale as the best points for the real signal 
peak localization 

.  

Figure 6: Wavelet ‘bior3.3’. 

 
Figure 7: Decomposition of ICG signal over six scales. 

5 RESULTS AND DISCUSSION 

Real ICG signal (fig.8) has been tested with good 
results. Moreover the test has been repeated adding 
Gaussian noise with zero average and variable 
variance. In this situation the algorithm noise 
immunity has been evaluated. 
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Figure 8: Frame tested. 

The software detection algorithms for medical 
applications requires the evaluation of the detection 
performance according to ANSI/AAMI standard. 
Two parameters are used to evaluate algorithms: 
Sensitivity: 

FNTP
TPSe
+

=  (1) 

Positive Prediction:  

FpTP
TPP
+

=
 

(2) 

where: 
 TP is the number of true positive detections;  
 FN (the number of false negatives) is the 

number of C points present in the signal that the 
algorithm is not able to detect; 

 FP (the number of false positives) is the number 
of C points detected by the algorithm but really 
not present in the signal. 

 
Tested Frame presents C-peak value fluctuations 

in the range [1÷1.5Ω/s]. Other local maximum 
points are all in the negative region. Algorithm has 
individuated the 50% of the maximum value of the 
wavelet in each windowed segment of data as the 
optimal threshold value. 

The obtained sensitivity parameter is very 
satisfactory and appears quite independent from 
noise (figure 9). Predictivity is fairly good but 
decreases as noise increases (figure 10). 

Anyway it is to be noted that very heavy noise 
conditions have been chosen to test the algorithm 
noise immunity. An additional Gaussian noise signal 
with v=0.1(Ω/s)2 corrupts heavily the ICG signal; in 

particular the noise, besides changing the ICG signal 
shape, introduces many false peaks while cancels a 
minor number of true peaks. 

 
Figure 9: Sensitivity. 

 
Figure 10: Positive Predictivity. 

6 CONCLUSIONS 

The real-time C-point detection algorithm presented 
in this paper has demonstrated to have high 
sensitivity. 

The method computational time has been 
optimized adopting a parallel procedure to analyze 
the ICG signal. Therefore the realized procedure is 
suited to be implemented in real applications. 
Practical performance is to be improved for positive 
predictivity that appears to be sensible to noise level. 
Moreover, the absence of standard and validated 
ICG data bases, such as those used for ECG signals, 
makes the algorithm efficiency evaluation difficult 
and provides results poorly reproducible and 
comparable. 
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Abstract: This paper proposes a novel technique to eliminate the noise in practical electrocardiogram (ECG) signals. 
Two state-of-the-art denoising techniques, which both based on wavelet bases, are combined together. The 
first one is discussing wavelet bases in Besov spaces.  Compared to traditional algorithms, which discuss 
wavelets in 2 ( )L R  spaces, the proposed technique projects ECG signals onto Besov spaces for the first time. 
Besov space is a more sophisticated smoothness space. Determining the threshold of shrinkage function in 
Besov space could eliminate Gibbs phenomenon. In addition, instead of using linear shrinkage function, the 
proposed algorithm uses nonlinear hyper shrinkage function, which is proposed by Poornachandra. The 
function tends to keep a few larger coefficients representing the function while the noise coefficients tend to 
be reduced to zero. Combining the two techniques, we obtain a significant improvement over conventional 
ECG denoising algorithm. 

1 INTRODUCTION 

Removing noise is an pertinent problem in ECG 
signals processing. Usually, there are two kinds of 
noises in ECG, power line frequency noise and 
white noise. Power line frequency noise can be 
regarded as the result of an electromagnetic 
compatibility issues: background electromagnetic 
field interference from surrounding equipments and 
from buldings and power conductors. White noise is 
usually considered from the measure equipment. 

Previously, different filters based on Fourier 
bases are used to eliminate the noises, such as notch 
filter. The problem of these methods is that they 
could not reduce the two kinds of noises at the same 
time. In addition, because the notch has a relatively 
large bandwidth, which means that the other 
frequency components around the desired null are 
severely attenuated, this method brings in signal 
distortions. In 1995, Donoho (David L Donoho, 
1995) proposed a novel denoising algorithm based 
on wavelet shrinkage. It provides excellent 
performance and since then, wavelets became a 
state-of-the-art denoising method. Before long, P. M 

Agante (P M Agante, 1995) applied soft-threshold 
method in ECG and achieve good results. However, 
traditional wavelet method has its drawbacks. They 
are not shift invariant; therefore, for the signals not 
smooth enough, it will appear Gibbs Oscillation 
phenomenon at the location where the signal is sharp 
changed. In ECG signals, there are R waves, which 
change sharply. As a result, Traditional wavelet 
denoising algorithm brings in Gibbs oscillation after 
R waves.  

In this paper, we apply two techniques to 
eliminate the noise and restrain the Gibbs 
phenomenon at the same time. First, we determine 
the threshold of wavelet shrinkage function in Besov 
spaces. Besov space ( )P

qB Lα  is a smoothness space 
with 0σ > , 2( , ) [1, )p q ∈ +∞ , it is defined by 

( )
( ) { ( ) | }P

q

P p
q B L

B L f L R f α
α = ∈ < ∞  (1) 

Where the Besov seminorm ( )P
qB Lα�  is linked to the 

smoothness modulus of the considered function. 
Besides that, in stead of linear shrinkage function, 
we use nonlinear shrinkage model (S. 
Poornachandra, 2007). Combining the two novel 
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techniques, we obtain a significant improvement 
over conventional wavelet denoising algorithm. In 
order to certify our idea, the noises in ECG signals 
in our experiment are not added by hand. They are 
from actual interfering. We collect the ECG signals 
with noises by our own devices.  

2 INTRODUCTION TO WAVELET 
SHRINKAGE FUNCTION IN 
BESOV SPACE 

Wavelet is defined as orthonormal basis functions 
for the expansion of functions belonging to various 
function spaces. Usually, it is the space of squared 
integrable real functions 2 ( )L R  (functions with finite 
energy). Recently, it has been shown that more 
sophisticated smoothness spaces, such as Besov 
spaces, provide a suitable and more refined 
characterization of real-life signals (Kathrin 
Berkner, 2000). The wavelet series representation of 
a function 2( ) ( )f t L R∈  could be express as 

0 0

0
0

2 1 2 1
( ) ( ) ( )

j j

j k k jk jk
k Z j j k Z

df t c t tϕ ψ
− ∞ −

∈ = ∈
= +∑ ∑ ∑  (2) 

 
ϕ  is called farther wavelet and ψ  is called mother 
wavelet. , ( )j k tϕ  and , ( )j k tψ  are the dilation and 
translation of the wavelet function.  

 
/ 2

, ( ) 2 (2 )j j
j k t kϕ ϕ= −  (3) 

/ 2
, ( ) 2 (2 )j j

j k t kψ ψ= −  (4) 

j , k  are the scaling and translation parameters 
respectively, ,j k Z∈ , / 22 j  could maintain the unity 
norm of the basis function at various scales. The 
coefficients 

0 0
,j k j kc g ϕ=  and ,jk jkd g ψ= . Often 

we set 0 0j = , and in that case there is only one 
scaling coefficient. The wavelet series are usually 
discussed in 2 ( )L R  spaces, but in our research, we 
use a more sophisticated set of functions, Besov 
spaces ( )P

qB Lα  ( 0 α< < ∞ , 0 p< ≤ ∞ , 0 q< ≤ ∞ ). In 
Besov spaces, for a function ( )P

qf B Lα∈ , its norm 
could be defined  using its wavelet coefficients as (5) 
(Kathrin Berkner , 2000) 

0

0

11 /
( / 2 1)

( )
|| || | | 2 | |P

q

q p qp
p j p p p

j k jkB L
k j j k

f c dα
α + −

>

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑ ∑  (5) 

The three Besov parameters have natural 
interpretations: a p -norm of the wavelet 

coefficients is taken within each scale j , a weighted 
q -norm is taken across scale, and the smoothness 
parameter α  controls the rate of decay of the jkd , 
increasing α  corresponds to increasing smoothness.  

Based on reference (Antonin Chambolle, 1998), 
the denoising problem could be described as follow. 
Given a positive parameter λ  and a signal f , find a 
function f%  that minimize over all possible function 
the functional 

2
2

0( )
|| || || ||

2
P

q

q
B L L

f f fα

λ
+ −  (6) 

Choose a proper λ , the f%  could be the denoising 
signal of f . For simpleness, we set Besov 
parameters 1p q= = . Then the problem could be 
expressed as follow: 

( )2( 1/ 2) 0
, , ,

, ,
min 2 | |

2
j

j k j k j k
j k j k

d d dα λ− + −∑ ∑  (7) 

That means for each j , k , we estimate the d
)

 
use follow expression: 

2 ( 1/ 2)
0

( 1/ 2)
0 0

( ) 2 | |
2

( ) max(| | 2 / )

argmin j

d

j

d d

sign d d

d α

α

λ λ

λ

−

−

− +

= ⋅ −

=
)

 (8) 

 
That means the ECG signal has small Besov 

norm if the wavelet coefficient in each scale have 
small 1l  norms and those 1l  norms decay rapidly 
across scale.  

Note that any wavelet basis having r α>  
vanishing moments can be used to measure a Besov 
norm (Hyeokho Choi, 2004). 

3 INTRODUCTION TO 
NONLINEAR SHRINKAGE 
MODEL 

Donoho and Johnstone were first to formalize the 
wavelet coefficient thresholding for removal of 
additive noise from deterministic signals (David L 
Donoho, 1995). Wavelet thresholding is based on 
the property that typical real-world signals have 
sparse representations in the wavelet domain. The 
small coefficients are usually correlated to noise. 
Therefore, by choosing an orthogonal basis, which 
could efficiently approximates the signal with few 
nonzero coefficients; we could choose a particular 
threshold and set the coefficient bellow the threshold 
to zero. Using these coefficients in an IDWT to 
reconstruct the data, we could kill the noise. 
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The shrinkage function proposed by Donoho and 
Johnstone are the hard and the soft shrinkage 
function. Hard thresholding simply sets the 
coefficients below a threshold T  to zero, as (9). Soft 
thresholding first shrinks each coefficient by T  and 
then hard thresholds, as (10). 

 
0,

( )
,

H
T x

x
δ =  

| |
| |
x T
x T
≤
>

 (9) 

( )( ) sgn( ) | |S
T x x x Tδ

+
= −  (10) 

 
Both hard and soft shrinkages have their 

disadvantages. Due to the discontinuities of the 
shrinkage function, hard shrinkage estimate tends to 
have bigger variance and can be unstable, that is, 
sensitive to small changes in the data. The soft 
shrinkage estimate tends to have bigger bias, due to 
the shrinkage of large coefficients (S. 
Poornachandra, 2007). 

To overcome the drawbacks of hard and soft 
shrinkage, we decide to use nonlinear shrinkage 
function. There are two kinds nonlinear shrinkage 
estimate in our experiment. The first is called 
nonnegative garrote shrinkage function (M. Vetterli, 
1995), which was first introduced by Breiman 
(1995) as follow: 

2( ) 1 ( / )G x x xλδ λ
+

⎡ ⎤= −⎣ ⎦  (11) 

The shrinkage function ( )G xλδ  is continuous and 
it provides a good compromise between the hard and 
the soft shrinkage functions. It is less sensitive than 
hard shrinkage to small fluctuations and less biased 
than soft shrinkage. The second shrinkage function 
is called hyper shrinkage, which is proposed by S. 
Poornachandra as follow: 

( )( ) tanh( * ) | |hyp x x x tλδ ρ
+

= −  (12) 
 
The major advantage of hyper shrinkage is its 

nonlinearity, that is, the function in wavelet domain 
tends to keep a few larger coefficients representing 
the function while the noise coefficient tend to be 
reduced to zero. 

4 NOISE REDUCTION BY OUR 
METHOD 

The objective of this paper is to eliminate the noise 
buried in practical ECG signals. In our research, we 
combine the two techniques we mention above. 
First, we determined the threshold of shrinkage 
function for each level in Besov spaces. It is 

obviously that for each subband, the parameter α  
should be different. We set jα  for each level 
experimentally. Then we use the two kinds of 
nonlinear shrinkage functions to obtain the estimated 
coefficients. Finally, using these coefficients the 
original ECG signal is thus recovered. The general 
process is showed bellow. The decomposition level 
is 6. 

Step 1. Choose db3 wavelets, and do DWT. 
Step 2. Choose α  at each level. For the fist level 

0 0.9α = , and 0 0.25* (log( 2))j sqrt jα α= + +  for each 
level.  

Step 3. Determine the threshold based on the jα . 
Step 4. Apply hyper shrinkage function and the 

estimated coefficients obtained. 
Step 5. IDWT use the estimated coefficients. 

5 SIMULATIONS AND RESULTS 

In our research, the ECG signals are obtained by our 
own devices. Each piece of signal is about 1 min 
long. The sampling rate is 1200Hz. 

In our research, we use five different denoising 
methods. We show original signal and the processed 
4 signals and their spectrums in Fig.1 to Fig.6. In 
order to see clearly, we show their details of the 
sample points around R waves. The method in Fig.2 
determines the threshold in 2 ( )L R  spaces and use 
hard thresholding shrinkage function, while in Fig.3 
the thresholds is determined in 2 ( )L R  spaces and use 
soft thresholding method. The other three discuss the 
thresholds in Besov spaces. Whereas Fig.4 uses soft 
shrinkage function, Fig.5 use nonnegative garrote 
shrinkage function and the last one uses hyper 
shrinkage function. 

 
Figure 1: The original signal and its spectrum. 
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Figure 2: Determine the threshold in 2 ( )L R  and use hard 
thresholding. 

 

Figure 3: Determine the threshold in 2 ( )L R  and use soft 
thresholding. 

 
Figure 4: Determine the threshold in Besov spaces and use 
soft thresholding. 

 
Figure 5: Determine the threshold in Besov spaces and use 
nonnegative garrote shrinkage function. 

 
Figure 6: Determine the threshold in Besov spaces and use 
hyper shrinkage function. 

As we seen from the pictures above, combined 
with threshold determined in Besov spaces and 
hyper shrinkage function, the recovered signal is the 
most visually pleasant. The proposed technique 
almost eliminate Gibbs phenomenon. To describe 
the oscillation of the recovered signal 
quantificational, we calculate the total variation of 
the six signals. Total variation for a uniform 
sampling discrete signal f  is defined as (S. Mallat, 
1998). 

|| || | [ ] [ 1] |N V N N
n

f f n f n= − −∑  (13) 
Where || ||N Vf  is the Total Variation. In order to 

certify the effectiveness of the proposed method, we 
give 4 pieces of signals’ Total Variation. They are 
show in Table 1. 

Table 1: Total Variation of the signals. 

 1 2 3 4 average 
T1 0.3914 0.3747 0.3801 0.3875 0.3834 
T2 0.1789 0.1654 0.1388 0.1252 0.1521 
T3 0.1789 0.1654 0.1388 0.1252 0.1521 
T4 0.1721 0.1517 0.1006 0.1177 0.1355 
T5 0.1758 0.1504 0.1030 0.1206 0.1374 
T6 0.1431 0.1371 0.0803 0.0919 0.1131 
 
In the above table, T1 means the original signals’ 

Total Variation. T2 to T6 correspond Fig.2 to Fig.5. 
In the table, we could notice easily that discussing 
threshold in Besov space and using nonlinear 
shrinkage function could obtain good results. And 
among those, hyper shrinkage is the most effective, 
it has the least oscillation. 

6 CONCLUSIONS 

This paper proposes a novel approach to eliminate 
the noises in practical ECG Signals. First, we use the 
characterization of Besov space, which is a 
smoothness spaces, through wavelet 
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decompositions. Then we apply nonlinear shrinkage 
function instead of linear shrinkage function. The 
experiment results show that the proposed algorithm 
is visually pleasant compared to traditional methods. 
It could eliminate the noise successfully, and at the 
same time, it suppresses Gibbs oscillation. The 
proposed technique has potential application in data 
acquisition systems, which are generally 
encountered by noise. 
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Abstract: This paper presents a wavelet-based signal processing method developed for an ambulatory ECG 
monitoring system. The monitoring system comprises modern trends in ambulatory ECG monitoring like 
integration of hardware in clothing, the use of low-power components and wireless data transmission via 
Bluetooth. The signal processing is located close to the sensor, thus allowing increased variability for the 
subsequent data handling (i.e. data transmission in case of detected abnormalities). Due to the very limited 
computational resources (an ultra-low power microncontroller (µC)) and the relatively high demands upon 
signal processing, the need arises for a method which meets the special demands of the ambulatory 
application. Therefore, we developed a wavelet-based method for detecting QRS complexes, especially 
adapted to the real-time requirements. The novel idea of our approach was to incorporate information 
gained from a lower scale directly into the threshold applied for QRS detection in a higher scale. To date, all 
tests proved a very low computational load while simultaneously preserving the reliability of the analysis 
(Se=99,74%, +P=99,85% using the entire MIT-BIH Arrhythmia Database), thus pointing out the 
possibilities of real-time signal processing under ultra-low power conditions.   

1 INTRODUCTION 

Analysis of the electrocardiogram (ECG) is used for 
diagnosis in a wide range of cardiac diseases. 
Anomalous changes may indicate arising coronary 
diseases in an early stage. Further on, acute life-
threatening situations can be observed in the ECG 
immediately after their incidence. Increasingly 
powerful hardware today allows ambulatory long-
time monitoring of the ECG. Such recordings are 
especially useful to detect sporadically occurring 
events, which are not perceptible in short-time 
readings. Also, the online observation of patients 
with increased risk of cardiac breakdowns, due to 
preliminarily diseases or due to special physiological 
stress, is feasible. The available possibilities make 
the long-time ECG a very powerful tool for 
improved medical care. The Fraunhofer Institute for 
Photonic Microsystems (IPMS) focuses on the 
development of a complete system for ambulatory 

ECG monitoring. The signal processing is done in 
close proximity to the sensor to allow a high 
flexibility in further data handling. In particular, 
wireless data transmission can be reduced to 
situations of imminent risks, increasing the 
efficiency of the system to allow the long-time 
application (up to 7 days) of the system.  

Due to the very limited resources of the 
employed ultra-low power µC and the often low 
signal quality, the demands on the signal processing 
are very high. The literature delivers a huge number 
of essays concerned with ECG processing: 
derivative based methods, digital filters, different 
transforms including the wavelet transform and 
neural networks, to name a few (Köhler, 2002). We 
designed a wavelet-based processing method 
especially suited for its real-time application. This 
paper describes the method and gives detailed 
information on the performance concerning 
detection rates as well as computational load. 
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The paper is organized as follows: Section 2 
gives an introduction into the monitoring system and 
describes our algorithm based on considerations on 
the wavelet transform and its implementation in 
detail. Experimental results are reported in Section 3 
and discussed in Section 4. Finally, Section 5 
contains conclusions and some considerations 
concerning the future development of the system. 

2 MATERIALS AND METHOD 

2.1 Hardware 

As carrier of the monitoring system we used a smart 
shirt. We integrated four electrodes to record a three-
channel ECG based on Einthoven. Further on, a 
partially flexible printed circuit board was included. 
The board contains the hardware for analog 
preprocessing and further data handling. Sampling 
of the ECG is done at 1000 Hz and 12-Bit 
resolution. Data handling may include storage of 
data on a memory card and, optionally, the wireless 
data transmission via Bluetooth to a PDA. The PDA 
serves as gateway to communicate with medical 
personnel via internet. Signal processing done close 
to the sensor offers the possibility of wireless data 
transmission limited to situations of imminent risks. 
In this way, the actual data handling (storage and/or 
transmission) depends upon the outcome of the just-
performed signal processing, thus rendering the 
overall system more flexible and improving its 
efficiency. All electronics as well as the signal 
processing is controlled by the ultra-low power µC 
MSP430F1611. Due to its low power consumption, 
such a controller is very suited for ambulatory 
applications. Of course, the low consumption 
accounts for a likewise low maximum clock 
frequency of 8 MHz. To handle this major 
drawback, an adequate signal processing method 
was developed. The underlying ideas, the 
implementation and performance results of the 
developed algorithm will be described next. 

2.2 Signal Processing Method 

2.2.1 Wavelet Basics 

The wavelet transform (WT) decomposes a signal in 
scaled and translated versions ψa,t(τ) of a basis 
function called mother wavelet ψ(τ). The derivates 
of the mother wavelet are given by 
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where a is a scale factor which is a measure of the 
current width of the applied wavelet and t is the 
translation parameter which describes the position of 
the wavelet in the time domain. The wavelet 
transform X(a,t) results from the inner product of the 
signal and the scaled and translated wavelet 
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The resulting coefficients can be seen as a measure 
for the similarity of the examined signal segment 
specified by t, and a wavelet of varying width 
specified by a. The transformation of (2) to the 
frequency domain yields 
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where X(ω) and Ψ(ω) are the Fourier transforms of 
the signal and the wavelet, respectively. From (3) it 
can be seen that decomposing a signal by the WT is 
equivalent to the application of a filter bank. The 
bandwidth of each pass-band filter increases with 
higher center frequencies. 

2.2.2 Calculated Transform 

There are three usual ways to compute the wavelet 
transform: the so-called continuous WT (CWT), the 
dyadic WT (DYWT) and the discrete WT (DWT). 
The schemes differ in the required computational 
resources, the resulting degree of redundancy and in 
some properties of the results like shift-invariance. 
In the DYWT the scale a is sampled along a dyadic 
sampled grid while the translation remains scale 
independent. Thus, applying the DYWT, the property 
of shift-invariance can be maintained while the 
degree of redundancy, and therefore the 
computational load, is reduced in comparison to the 
CWT. For the DYWT the definition of ψa,t(τ) 
becomes  
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When using expressions like “scale 4”, we will refer 
to the scale a=2m =24. 

Fast computations of the DWT are done through 
the Mallat algorithm. In analogy to the “algorithme a 
trous” (Holschneider, 1989), it constitutes a 
recursive algorithm allowing the fast calculation of 
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the DYWT. The highly advantageous property of 
shift invariance justifies an increased computational 
effort, rendering the use of the DYWT optimal for 
our intended realization. 

A wide range of different wavelets have been 
employed in the past for ECG processing. Referring 
to the choice of an adequate wavelet, the statements 
found in the literature disagree. For instance, Dinh et 
al. conclude that the cubic spline wavelet is best 
suited for the detection of QRS complexes (Dinh, 
2001). Differing from this, Li et al. do not perceive 
substantial differences in the performance of the 
detection by using a spline of higher order than the 
quadratic spline wavelet (Li, 1995). The possible 
usage of different wavelets allows the utilization of 
other criterions searching for an adequate one. As 
our application aims at the real-time processing 
under extremely limited resources, the compactness 
of the chosen wavelet in the time domain is a crucial 
demand. The quadratic spline wavelet originally 
introduced by Mallat et al. (Mallat, 1992) meets this 
demand and is used in our implementation. In Figure 
1, the transfer functions realized by the quadratic 
spline wavelet are shown. 

Figure 1: Transfer functions realized by the quadratic 
spline wavelet and a sampling frequency of 1000 Hz. 

2.2.3 Underlying Idea of the Implemented 
Method 

In the current stage of development we realized a 
QRS detector. The most commonly used principle of 
wavelet-based QRS detectors (employing the 
quadratic spline wavelet) is to search for modulus 
maximum pairs (MMP) (combination of local 
extreme values exceeding a threshold). To obtain a 
good performance the search typically is carried out 
across all scales, at least up to the scale assumed as 
most significant in regard to the main energy 

portions contained in QRS complexes. (Li, 1995), 
(Martinez, 2004) 

An obviously possible solution to reduce the 
computational effort is not to incorporate all scales, 
but to do the detection based on only one scale. Such 
an approach does not take advantage of the multi-
scale decomposition provided by the WT, but it 
constitutes a viable way to detect QRS complexes. 
Employing only one scale of the WT is similar to the 
usage of a single bandpass-filter. On the filtered 
signal the typical method of grouping extrema to 
MMP and assigning them to QRS complexes can be 
applied. In Section 3, some example results (testing1 
and testing2, see Table 1) using this methodology 
are given. Different rules to control the value of the 
thresholds were employed. In both cases, adaptive 
thresholds (see Appendix for details on the 
adaptation) were applied. In testing2 the threshold is 
generally endued with an offset to lower the 
resulting value compared to the threshold in 
testing1. As expected, the performance of the 
methods varies in sensitivity and positive 
predictivity. Both methods offer, depending on the 
data set as well as on the observed signal portion 
within one data set, sections of varying detection 
quality. With regard to this, a method to influence 
automatically the valid threshold becomes a very 
interesting option. Such a procedure aims to take the 
advantages of a generalized lower or higher 
threshold according to the current signal state.  

Our method detects QRS complexes in scale 5. 
Based on the number of threshold crossings within a 
sliding window in the scale 4 the threshold in scale 5 
is controlled.  

2.2.4 Structure of the Algorithm 

The algorithm can be divided in three steps:  
(1) Search for MMP and extract “relevant threshold 

crossings” in scale 4.  
(2) Search for MMP in the scale 5 incorporating 

the information gained from the corresponding 
number of threshold crossings detected in the 
scale 4. 

(3) Classification of MMP found in scale 5 as QRS 
complexes using a simplified regularity 
analysis  

Step (1): With every incoming sample the search 
for local extrema, aimed at the grouping of a MMP, 
is continued. Different combinations of extrema can 
constitute a MMP. To detect the extrema, online-
adaptive thresholds ε±

4 are used. An adaptation of 
the thresholds is caused by the successful grouping 
of a MMP (see Appendix for details on the 
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adaptation). Based on ε±
4 additional thresholds ε±

cross 
are created to excerpt all “relevant threshold 
crossings”. “Relevant threshold crossings” refer to 
local extrema crossing the corresponding threshold 
ε±

cross. This registration is not carried out in order to 
group the extrema as MMP, but to obtain a measure 
of the signal quality by counting the number of 
crossings Ncross within a window Wcross of 500 
samples. Note that there is a major difference 
between the extrema searched for MMP grouping 
and the extrema detected using ε±

cross, as the absolute 
value of ε±

cross is generally smaller or equal than ε4
± 

and found extrema are not discarded until their 
position has left the range of the sliding window. 

Step (2): MMP are searched in scale 5 using the 
same routine as in scale 4. Also online adaptive 
thresholds ε±

5 are existent. Differing from scale 4, 
for the MMP search in scale 5 not directly the online 
adaptive thresholds ε±

5 are used, but a threshold 
changed by a correction factor κ. κ varies  depending 
on the number of registered threshold crossings. The 
actual number of zero crossings Ncross can be 
interpreted as a measure for the degree of higher 
frequency noise or artifacts. According to this, κ 
converts the information contained in Ncross to a 
threshold operation in scale 5, referred as ε±

5 + κ 
(note that this is only a symbolic notation). In 
general, for noisy segments the threshold is 
increased whereas a reduction in sections of good 
signal quality is performed. Depending on the value 
of Ncross, the modification of threshold can be up to 
±37.5% of the actual ε±

5. It is important that the 
threshold be changed only for the search of local 
extrema, otherwise ε±

5 doesn’t suffer any changes. 
To allow the zero crossing window to be placed 
symmetrically around the scale 5 coefficient under 
observation, the scale 5 coefficients have to been 
delayed by 250 samples (taking into account the half 
window size), plus the delay introduced by the 
recursive online calculation of the WT.  

Step (3): If a MMP is detected in scale 5 and a 
corresponding MMP in scale 4 is existent, a 
simplified regularity analysis based only on the 
amplitudes of the detected MMP is carried out. If no 
corresponding MMP is present at scale 4, the MMP 
of scale 5 is accepted as QRS without any regularity 
analysis. 
Figure 2 shows an example containing an ECG 
segment, the corresponding scale 4 and scale 5 
coefficients and the course of. Also showed is the 
course of the threshold values ε±

4 (bright), ε±
cross 

(dark), ε±
5 (bright),  ε±

5 + κ (dark). The threshold 
adaptation after detections and the general dynamics 
of the correction factor are visible. Ncross exhibits the 

expected behaviour. An increase is visible during 
noisy segments whereas during uncorrupted 
segments only the QRS complexes have an influence 
(resulting in an oscillation between 0 and 2 detected 
crossings). ε±

5 + κ oscillates around ε±
5). 

 
Figure 2: Example for the behavior of the algorithm. 

2.2.5 Implementation 

The algorithm was implemented in C. To minimize 
the required computational effort three fundamental 
concepts were incorporated in our  implementation.  

Simplicity of employed data types: the applied 
µC is a 16-Bit controller. This renders the 
application of 16 Bit fix-point operators very useful. 
Incoming data is sampled with a 12-bit resolution. 
16-Bit fix-point numbers were used for the recorded 
ECG as well as for wavelet coefficients, scaling 
coefficients and threshold values. Considering the 
maximal values possibly appearing in the course of 
the WT, a multiplication of incoming data by 4 is 
possible. Therewith, the whole value range is 
involved and the inaccuracies introduced by 
rounding errors are reduced. 

Simplicity of all employed operations: as 
mentioned before, the usage of the quadratic spline 
wavelet provides a low number of coefficients 
(namely 4 low-pass coefficients and 2 high-pass 
coefficients) thus fulfilling the first requirement on 
an effective real-time processing. Furthermore, the 
coefficients allow the calculation of the WT with 
only bit-shifts and additions. Also the adaptation of 
all threshold values was implemented by bit-
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manipulations. All remaining steps of the algorithm 
are performed by logical instructions like 
comparisons. These operations also are 
characterized by their low computational load. 

Avoidance of inappropriate processing methods: 
to provide a uniformly low computational load, 
often used undesirable steps as back-searchs were 
excluded. The applied windowing operation, also an 
improper medium for the real-time purpose, acts on 
a window of 500 samples, introducing a delay of 
250 ms only. All values to be updated in periodic 
manner (for example the zero crossings within W0, 
for which the removal or addition of crossings is 
demanded due to the sliding window) are arranged 
in circular buffers. This allows the algorithm to work 
continuously on every incoming sample. 

3 RESULTS 

3.1 Detection Performance 

Table 1 yields the results of the performance 
evaluation accomplished under different conditions. 
Using the MIT-BIH Arrhythmia Database, all beats 
occurring beginning 5 minutes after the begin of the 
records until 30 minutes have been evaluated. This 
results in 90491 beats. As previously mentioned, the 
example trials testing1 and testing2 were carried out 
without any influence created by the usage of Ncross. 

The quantitative evaluation of the complete 
method with own data (Table 1, evalOwnData) 
yielded a sensitivity (Se) of 99.85 % and a positive 
predictivity (+P) of 99.92 %. The annotation by a 
health professional was used as reference. The 
evaluation using the MIT-BIH Arrhythmia Database 
(Table 1, evalMIT) yielded a sensitivity and positive 
predictivity of 99,74 %, respectively 99,85 %. As 
the algorithm was designed for data sampled at 1000 
Hz, the data was upsampled. Due to the contained 
frequency portions, the regularity analysis was 
skipped as a similarly easy regularity analysis (like 
accomplished for own data) no longer was possible. 

Table 1: Performance of the QRS detector using different 
test configurations. 

Identifier of 
the task 

Number 
of  beats Se +P 

testing1 90941 99.31 % 99.80 % 

testing2 90941 99,81 % 99,36 % 

evalOwnData 8525 99,85 % 99,92 % 

evalMIT 90941 99,74 % 99,85 % 

Table 2: Required resources for signal processing. 

Computational load (at 8 MHz) 
Processing Step required 

cycles required µs 

Calculation of WT 900 112.5 

Search for MMP 400 50 

Ncross  maintanance  70 7.5 

Over all <2000 <250 

Table 3: Memory coverage of the implemented method. 
Code Memory Data memory 

<7900 byte <4000 byte 

3.2 Computational Load 

Table 2 contains an outline of the required resources. 
Besides the overall amount of cycles, the equivalent 
processing time and the number of cycles 
concerning specific steps within the implemented 
method are given. The algorithm acts without any 
prefiltering of the signal and thus avoids additional 
computations other than the calculation of the WT 
and the subsequent feature extraction procedure. The 
step “Search for MMP” refers to the search for 
extremas and the grouping of detected combinations 
of extrema to a MMP. According to the structure of 
the algorithm, this step is called twice per input 
sample, once for scale 4 and once for scale 5. The 
whole detection procedure requires less than 250 µs 
(2000 cycles), leaving computing power to manage 
other functions.  

Also of high interest considering the limited 
resources of the ultra-low power µC is the memory 
coverage. Table 3 shows the most important 
characteristics, proving the adequacy of the 
implemented method. 

4 DISCUSSION 

The evaluation of our method showed promising 
results in terms of the required computational load 
and the performance of the method. Note, that the 
only difference between the methods used in 
testing1 and evalMIT is the correction of the 
threshold in scale 5, thus pointing out the 
effectiveness of the algorithm. Compared to the 
high-quality approaches of Li et al. (Li, 1995) and 
Martinez et al. (Martinez, 2004) the reached 
detection rates are slightly lower. However, a deeper 
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insight to the methods reveals in both cases 
strategies which are very impractical for a real-time 
calculation. For instance, Li et al. work on 600 
samples of the ECG each time instead of on every 
incoming sample. Furthermore, two “real-time 
unfriendly” techniques (in the original paper referred 
to as “tactic 1” and “tactic 2”) to exclude or accept 
detections based on foregoing and subsequent 
detections with the benefit of hindsight were 
incorporated. In turn, Martinez et al. incorporated in 
the computation of their scale-dependent thresholds 
the RMS calculated from 216 values of the respective 
scale. The storage of that amount of data for one 
scale would exceed the data memory of the 
controller by a factor of 10. Taking this into account, 
our realization seems to be very appropriate for the 
application area. By incorporating the information 
on the latest detected QRS complexes, the 
performance of the method still can be slightly 
increased. Nevertheless, to reach the detection 
performance reported by Li et al. while maintaining 
a similarly low computational load like provided by 
our method seems to be very difficult. 

In addition to the good results obtained by our 
method, the implemented method exhibits a high 
potential for future work. For instance, concerning 
the QRS delineation as well as P and T waves 
delineation, the already computed wavelet 
coefficients can be used as basis. 

5 CONCLUSIONS 

We developed a method especially suited to perform 
signal processing in close proximity to the sensor. 
The proposed algorithm is adapted to best meet the 
most important demands of the ambulatory 
application, which are low computational load and 
high reliability. Even for a sampling frequency of 
1000 Hz the described method can be used on an 
ultra-low power µC, leaving computing power for 
other purposes. The physical proximity of the signal-
processing hardware to the sensor provides 
increased flexibility for subsequent information 
handling and, combined with an ultra-low power 
architecture, is capable of significantly increasing 
the runtime of an ambulatory monitoring system. 

Future work will focus on further signal 
processing steps. These steps may include detection 
of P and T-waves as well as the evaluation of the 
ST-segment. As it was shown by the literature this 
can be done based on the wavelet transform as well. 
The use of the wavelet coefficients for further signal 
processing purposes renders the wavelet-based 
method even more attractive for low-power 
microsystems with reduced hardware complexity. 
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APPENDIX 

Rules for threshold adaptation after a detected MMP 
(for lower thresholds εm

- “max” is replaced with the 
specific “min” values and εm

+ is replaced by εm
-): 
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400 ms after an adaptation (to avoid mistakes 
introduced by T waves with higher frequency 
portions) the threshold is lowered by 50%. 
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Abstract: Wavelet functions have been used as the activation functionin feedforward neural networks. An abundance
of R&D has been produced on wavelet neural network area. Somesuccessful algorithms and applications in
wavelet neural network have been developed and reported in the literature. However, most of the aforemen-
tioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality,
tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In
order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid
functions is presented. We described how a multidimensional wavelet neural networks based on these func-
tions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the
method proposed, it is studied the exclusive-or (XOR) problem.

1 INTRODUCTION

Wavelet functions have been successfully used in
many problems as the activation function of feedfor-
ward neural networks. There are claims that many
biological fundamental properties can emerge from
wavelet transformation (Marar, 1997). An abundance
of R&D has been produced on wavelet neural network
area. Some successful algorithms and applications in
wavelet neural network have been developed and re-
ported in the literature (Zhang and Benveniste, 1992;
Marar, 1997; Oussar and Dreyfus, 2000; Chen and
Hewit, 2000; Zhang and San, 2004; Fan and Wang,
2005; Zhang and Pu, 2006; Chen et al., 2006; Avci,
2007; Jiang et al., 2007; Misra et al., 2007).

However, most of the aforementioned reports im-
pose many restrictions in the classical backpropaga-
tion algorithm, such as low dimensionality, tensor
product of wavelets, parameters initialization, and, in
general, the output is one dimensional, etc.

In order to remove some of these restrictions, we
develop a robust Three Layer PPS-Wavelet multi-
dimensional strongly similar to classical Multilayer
Perceptron. The great advantage of this new ap-

proach is that PPS-Wavelets offers the possibility
choice of the function that will be used in the hid-
den layer, without need to develop a new learning al-
gorithm. This is a very interesting property for the
design of new wavelet neural networks architectures.
This paper is organized as follows. Section 2 co-
vers basic theoretical aspects in function approxima-
tion. Section 3 introduces the wavelet sigmoidal func-
tion. Section 4 presents the framework used in this re-
search. Section 5 deals with application of exclusive-
or (XOR) problem. Section 6 concludes this paper.

2 FUNCTION APPROXIMATION

Multilayer perceptron networks (MLP) have been in-
tensely studied as efficient tools for arbitrary function
approximation. Amongst the developments achieved
in the theory of function approximation using MLP,
the work carried out by Hecht-Nielsen resulted in an
improved version for the superposition theorem de-
fined by Sprecher (Hecht-Nilsen, 1987). Galant and
White in 1988 showed that a feedforward network
with one hidden layer of processing units that use flat
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cosines as the activation function correspond to a spe-
cial case of Fourier networks that can approximate a
Fourier series for a given function. Cybenko deve-
loped a rigorous demonstration that MLPs with only
one hidden layer of processing elements is sufficient
to approximate any continuous function with support
in a hypercube (Cybenko, 1989).

The theorem is directly applied to MLP. The sig-
moid, radial basis and wavelets functions are a com-
mon choice for the network construction since it sa-
tisfies the conditions imposed in the theorem. The
theorem of function approximation provides a mathe-
matical basis that gives support to the approximation
of any continuous arbitrary function. Furthermore, it
defines for the case of MLP that a network composed
of only one hidden layer neurons is sufficient to com-
pute, in a given problem, a mapping from the input
space to the output space, based on a set of training
examples. However, with respect to training speed
and ease of implementation, the theorem does not pro-
vide any insight about the solutions developed. The
choice of activation functions and the learning algo-
rithm defines which particular network is used. In any
situation, the neurons operate as a set of functions that
generate an arbitrary basis for function approximation
which is defined based on the information extracted
from the input-output pairs. For training a feedfor-
ward network, the backpropagation algorithm is one
of the most frequently employed in practical applica-
tions and can be seen as an optimization.

3 WAVELET FUNCTIONS

Two categories of wavelet functions, namely, or-
thogonal wavelets and wavelet frames (or non-
orthogonal), were developed separately by different
interests. An orthogonal basis is a family of wavelets
that are linearly independent and mutually orthogo-
nal, this eliminates the redundancy in the representa-
tion. However, orthogonal wavelets bases are difficult
to construct because the wavelet family must satis-
fy stringent criteria (Daubechies, 1992; Chui, 1992).
This way, for these difficulties, orthogonal wavelets
is a serious drawback for their application to func-
tion approximation and process modeling (Oussar and
Dreyfus, 2000). Conversely, wavelet frames are con-
structed by simple operations of translation and di-
lation of a single fixed function called the mother
wavelet, which must satisfy conditions that are less
stringent than orthogonality conditions.

Let ϕ j(x) a wavelet, the relation:

ϕ j(x) = ϕ(d j .(x− t j))

wheret j is the translation factors andd j is the dilation
factors∈ R. The family of functions generated by℧
can be defined as:

℧ =
{

ϕ(d j .(x− t j)) ,t j and dj ∈ R
}

A family ℧ is said to be a frame ofL2(R) if there
exist two constantsc > 0 andC < ∞ such that for any
square integrable functionf the following inequali-
ties hold:

c‖ f‖2≤∑
j

|< ϕ j , f > |2≤C‖ f‖2

where ϕ j ∈ ℧, ‖ f‖ denotes the norm of functionf
and < ϕ j , f > the inner product of functions. Fa-
milies of wavelet frames ofL2(R) are universal ap-
proximators (Zhang and Benveniste, 1992; Pati and
Krishnaprasad, 1993). In this work, we will show
that wavelet frames allow practical implementation of
multidimensional wavelets. This is important when
considering problems of large input and output di-
mension. For the modeling of multi-variable pro-
cesses, such as, the artificial neural networks bio-
logically plausible, multidimensional wavelets must
be defined. In the present work, we use multidi-
mensional wavelets constructed as linear combination
of sigmoid, denominated Polynomial Powers of Sig-
moid Wavelet (PPS-wavelet).

3.1 Sigmoidal Wavelet Functions

In (Funahashi, 1989) is showed that:
Let s(x) a function different of the constant func-

tion, limited and monotonically increase. For any
0 < α < ∞ the function created by the combination
of sigmoid is described in Equation 1:

g(x) = s(x+ α)−s(x−α) (1)

whereg(x) ∈ L1 (R), i.e,
∫ ∞

−∞
g(x) < ∞

in particular, the sigmoid function satisfies this pro-
perty.

Using the property came from the Equation 1, in
(Pati and Krishnaprasad, 1993) boundary suggest the
construction of wavelets based on addition and sub-
traction of translated sigmoidal, which denominates
wavelets of sigmoid. In the same article show a pro-
cess of construction of sigmoid wavelet by the substi-
tution of the functions(x) by ϒ(qx) in the Equation 1.
So, the Equation 2 is the wavelet function created in
(Pati and Krishnaprasad, 1993).

ψ(x) = g(x+ r)−g(x− r) (2)
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where r > 0. By terms of sigmoid function, the
Equation 2,ψ(x) is given by:

ψ(x) = ϒ(qx+a+ r)−ϒ(qx−a+ r)−

ϒ(qx+a− r)+ϒ(qx−a− r) (3)

whereq > 0 is a constant that control the curve of the
sigmoid function andα andr ∈ R > 0.

Pati and Krishnaprasad demonstrated that the
function ψ(x) satisfies the admissibility condition
for wavelets (Daubechies, 1992; Chui, 1992). The
Fourier Transform of the functionψ(x) is given by
the Equation 4:

∫ ∞

−∞
ψ(x)e−iwxdx=−i

4π
q

sin(wα)sin(wr)
sinh(πw

q )
(4)

In particular, we accepted for analysis and prac-
tical applications the family of sigmoid wavelet gen-
erated by the parametersq = 2 andα = r, as exam-
ple. So, the Equation 3 can be rewritten the following
form:

ψ(x) = ϒ(2x+m)−2ϒ(2x)−ϒ(2x−m) (5)

wherem= α+ r.
Following, partially, this research line, we present

in the next section a technique for construction of
wavelets based on linear combination of sigmoid
powers.

4 POLYNOMIAL POWERS OF
SIGMOID

The Polynomial Powers of Sigmoid (PPS) is a class
of functions that have been used in recent years to
solve a wide range of problems related to image and
signal processing (Marar, 1997). Letϒ : R→ [0,1]
be a sigmoid function defined byϒ(x) = 1

1+e−x . The

nth−power of the sigmoid function is a function

ϒn : R→ [0,1] defined byϒn(x) =
(

1
1+e−x

)n
.

Let Θ be set of all power functions defined by (6):

Θ = {ϒ0(x),ϒ1(x),ϒ2(x), . . . ,ϒn(x), . . .} (6)

An important aspect is that the power these functions,
still keeps the form of the letterS. Looking the form
created by the power functions of sigmoid, suppose
that thenth power of the sigmoid function to be repre-
sented by the following form:

ϒn(x) =
1

a0 +a1e−x +a2e−2x + · · ·+ane−nx (7)

wherea0,a1,a2, . . . ,an are some integer values. The
extension of the sigmoid power can be viewed like
lines of a Pascal′s triangle. The set of function writ-
ten by linear combination of polynomial powers of
sigmoid is defined as PPS function. The degree of
the PPS is given by the biggest power of the sigmoid
terms.

4.1 Polynomial Wavelet Family on PPS

The derivative of a functionf (x) onx = x0 is defined
by:

f ′(x0) = lim
∆x→0

f (x0 + ∆x)− f (x0)

∆x
since the limits there is. So, if we do the computation
of the Equation 8 :

f (x0 + ∆x)− f (x0)

∆x
(8)

for a small value of∆x , showed have a good appro-
ximation for f ′(x0). Naturally,∆x can be positive or
negative. So, if is we use negative value for∆x, the
expression will be:

f (x0−∆x)− f (x0)

−∆x
(9)

This way, we can say that the arithmetic measure
of the Equations 8 and 9 will be a good approxima-
tion for f ′(x0) too. Then, we can write the following
Equation 10:

f ′(x0)≃
f (x0 + ∆x)− f (x0−∆x)

2∆x
(10)

By convenience, we considerp = 2∆x and its su-
bstitution in the Equation 10. So, we have the Equa-
tion 11:

f ′(x0)≃
f (x0 + p

2)− f (x0−
p
2)

p
(11)

this point we computed an approximated value for the
second derivative off (x) in x = x0. From the Equa-
tion 11, changingf (x) by f ′(x), we obtain the Equa-
tion 12 :

f ′′(x0)≃
f
′
(x0 + p

2)− f ′(x0−
p
2)

p
(12)

reusing the Equation 11, we can write:

f ′(x0 +
p
2
)≃

f (x0 + p)− f (x0)

p
and

f ′(x0−
p
2
)≃

f (x0)− f (x0− p)

p
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using these results in the Equation12, we have an ap-
proximation of the second derivative off (x) in x= x0
that is given by:

f ′′(x0)≃
f (x0 + p)−2 f (x0)+ f (x0− p)

p2 (13)

The approximation given by the Equation 13 is ex-
tremely adequate for the thatf (x) is a sigmoid func-
tion. Suppose thatf (x) is a sigmoid, for example,
ϒ(x). So, the second derivative ofϒ(x) is approxi-
mated by the Equation 14:

ϒ′′(x0)≃
ϒ(x0 + p)−2ϒ(x0)+ ϒ(x0− p)

p2 (14)

Due the fact of the sigmoid function to be continu-
ous and differentiable for anyx∈ R, we can say that
the Equation 14 is true for anyx0, then we can write
the Equation 15, defined for allx∈ R.

ϒ′′(x)≃
ϒ(x0 + p)−2ϒ(x)+ ϒ(x− p)

p2 (15)

Comparison the Equations 15 and 5, we do
there analysis for the approximation of the second
derivative of sigmoid function. The first for values of
p≥ 1 and the second for values ofp < 1.

Casep≥ 1:

It is clear that the function given by the sigmoid
second derivative approximation, Equation 15, also
will have the same form of the Pati and Krishnaprasad
functions, except of ap2 constant that divides their
amplitude. So, the following result is true: when
p > 1 always there is a sigmoid wavelet which
integral of the admissibility condition (Daubechies,
1992; Chui, 1992) limited the same integral of the
Equation 15. Therefore, the approximation of the
second derivative of the sigmoid function is a wavelet
too.

Casep < 1:

In this case, we will analyze whenp is going to zero,
i.e.,

lim
p→0

ϒ′(x0 + p)−2ϒ(x)+ ϒ′(x− p)

p2 (16)

this limit tends to the second derivative of the function
is given on PPS terms by:

ϕ2(x) = 2ϒ(x)3−3ϒ(x)2 + ϒ(x) (17)

where we denominatedϕ2(x) the first wavelet the
sigmoid function. The others derivatives, begin on

the second, we considered true by derivative proper-
ty by Fourier Transform (Marar, 1997). The suc-
cessive derivation process of sigmoid functions, al-
lowed to join a family of wavelets polynomial func-
tions. Among many applications for this family of
PPS-wavelets, special one is that those functions can
be used like activation functions in artificial neurons.
The following results correspond to the the analytical
functions for the elementsϕ3(x) and ϕ4(x) that are
represented by:

ϕ3(x) =−6ϒ4(x)+12ϒ3(x)−7ϒ2(x)+ϒ(x)

ϕ4(x) = 24ϒ5(x)−60ϒ4(x)+50ϒ3(x)−15ϒ2(x)+ϒ(x)

ϕ4(x) ϕ5(x)
Figure 1: PPS-wavelets examples.

4.2 Estimating the Coefficients of
PPS-wavelets

Consideringj the number of wavelets that are to be defined,
the algorithm below calculates a matrix of integer values
that estimates the coefficients of the PPS-wavelets.

Step 1: Initialization

C1,1 ← 1;

C1,2 ← 1;

The initial values are considered only auxiliary vari-
ables. The matrix of value associated with the process of
wavelet construction is obtained from the second row.

Step 2: Calculate the coefficient of the PPS of the highest
degree

n ← 3;

n ← n+1; (n≤ j)

Cn−1,n ← Cn−2,n−1 ∗ (n−1)∗ (−1)n+1;

Step 3: Calculate the coefficients of the remaining terms
of the polynomial
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k ← n;

k ← k−1; (k > 2)

Cn−1,k−1 ← Cn−2,k−1 ∗ (k−1)+

Cn−2,k−2 ∗ (k−2)∗ (−1)k;

Step 4: Calculate the coefficients of the first power vari-
able

Cn−1,1 ← 1

It is important to notice that steps 2 and 3 are cascaded
by an inherent dependence on variablen. By proceeding in
above way, a family of polynomial wavelets are generated.

4.3 PPS Wavelet Neural Network

Let us consider the canonical structure of the multidimen-
sional PPS-wavelet neural network (PPS-WNN), as shown
in Figure 2.

Figure 2: PPS-wavelet neural network Architectures.

For the PPS-WNN in Figure 2, when a input pattern
X = (x1,x2, . . . ,xm)T is applied at the input of the network,
the output of theith neuron of output layer is represented
as a function approximation problem, ie,f : Rm→ [0,1]n,
given by:

Oi(x)≃

ϒi

(

p

∑
j=1

w(2)
i j ϕ j

(

d j .

(

m

∑
k=1

w(1)
jk xk−b(1)

j

)

− t j

)

−b(2)
i

)

(18)

wherep is number of hidden neurons,ϒ(.) is sigmoid
function, ϕ(.) is the PPS-wavelet,w(2) are weight
between the hidden layer to the output layer,w(1) are

weights between the input to the hidden layer,d are
dilation factors and t are translation factors of the
PPS-wavelet, b(1) and b(2) are bias factors of the
hidden layer and output layer, respectively.

Figure 3: The Hidden Neuron of PPS-Wavelet Neural Net-
work.

The PPS-WNN contains PPS-wavelets as the ac-
tivation function in the hidden layer ( Figure 3) and
sigmoid function as the activation function in the out-
put layer (Figure 4).

The output of thejth PPS-wavelet hidden neuron
(Figure 3) is given by :

⊛ j = ϕ j(d j .(net(1)
j − t j))

where

net(1)
j =

m

∑
k=1

w(1)
jk xk−b(1)

j

The output of theith output layer neuron (Figure 4)

Figure 4: The Output Neuron of PPS-Wavelet Neural Net-
work.

is given by:

⊚i =
1

1+exp(−net(2)
i )

where

net(2)
i =

p

∑
j=1

w(2)
i j ϕ j(d j .(net(1)

j − t j))−b(2)
i
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The adaptive parameters of the PPS-WNN consist
of all weights, bias, translations and dilation terms.
The sole purpose of the training phase is to determine
the ”optimum” setting of the weights, bias, transla-
tions and dilation terms so as to minimize the diffe-
rence between the network output and the target out-
put. This difference is referred to as training error of
the network. In the conventional backpropagation al-
gorithm, the error function is defined as:

E =
1
2

s

∑
q=1

n

∑
i=1

(yqi−oqi)
2 (19)

wheren is the dimension of output space,s is the
number of training input patterns

The most popular and successful learning method
for training the multilayer perceptrons is the back-
propagation algorithm. The algorithm employs an
iterative gradient descendent method of minimization
which minimizes the mean squared error (L2 norm)
between the desired output (yi) and network output
(oi). From Equations (18) and (19), we could
deduce the partial derivatives of the error to each
PPS-wavelet neural network parameter′s, which is
given by:

Partial Equations of the Output Layer

∂E

∂w(2)
i j

=−
s

∑
q=1

(yqi−oqi).oqi.(1−oqi).

ϕ j(d j .(net(1)
q j − t j)) (20)

∂E

∂b(2)
i

=
s

∑
q=1

(yqi − oqi).oqi.(1 − oqi) (21)

Partial Equations of the Hidden Layer

∂E

∂w(1)
jk

=−d j .
s

∑
q=1

[ϕ′j(d j .(net(1)
q j − t j)).xqk.

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j ] (22)

∂E

∂b(1)
j

=
s

∑
q=1

[ϕ′j(d j .(net(1)
q j − t j)).d j .

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j ] (23)

Partial Equations of the PPS-Wavelet Parameters

∂E
∂d j

=
s

∑
q=1

{[ϕ′j(d j .(net(1)
q j − t j)).(net(1)

q j − t j)].

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j } (24)

∂E
∂t j

= d j

s

∑
q=1

[ϕ′j(d j .(net(1)
q j − t j)).

n

∑
i=1

(yqi−oqi).oqi.(1−oqi).w
(2)
i j ] (25)

After computing all partial derivatives the network
parameters are updated in the negative gradient direc-
tion. A learning constantγ defines the step length of
the correction,r is the iteration and momentum factor
is β. The corrections are given by:

w(2)
i j (r +1) =

w(2)
i j (r)− γ.

∂E

∂w(2)
i j

+ β.(w(2)
i j (r)−w(2)

i j (r−1))

b(2)
i (r +1) =

b(2)
i (r)− γ.

∂E

∂b(2)
i

+ β.(b(2)
i (r)−b(2)

i (r−1))

w(1)
jk (r +1) =

w(1)
jk (r)− γ.

∂E

∂w(1)
jk

+ β.(w(1)
jk (r)−w(1)

jk (r−1))

b(1)
j (r +1) =

b(1)
j (r)− γ.

∂E

∂b(1)
j

+ β.(b(1)
j (r)−b(1)

j (r−1))

d j(r +1) = d j(r)−γ.
∂E
∂d j

+β.(d j(r)−d j(r−1))

t j(r + 1) = t j(r)− γ.
∂E
∂t j

+ β.(t j(r)− t j(r − 1))

4.4 Algorithm to PPS Wavelet Neural
Network

In this section, the learning algorithm to the PPS-
wavelet neural network is proposed by using the back-
propagation method.

Begin
initialize-choice-PPS-function();

initialize-architecture();

initialize-weights();

initialize-PPSwavelet-neurons-dilatations();
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initialize-PPSwavelet-neurons-translations();

initialize-neurons-bias();

Do-While (epoch≤ epochmax)

or (1
2totalerror > acceptableerror)

BeginDo−While

totalerror← 0;

randomize-input-patter-order();

For pattern counterq = 1..s

Beginf or

read input patternx(q, j) : j = 1..m

read input target vectory(q,i) : i = 1..n

acc-param-h-layer();by Eqs. ( 22 )- ( 25 )

computeO(q,i) by Eq. (18)

acc-param-o-layer();by Eqs. (20)- (21)

totalerror ← totalerror +(y(p,k)−O(p,k))
2

Endf or

IF (totalerror > acceptableerror) Then

BeginThen

update-param-o-layer();

update-param-h-layer()

Endthen

epoch← epoch+1

EndDo−While

End
where the initialization procedures, attribute random
values on[0,1] to the parameters. However, improve-
ments in the initialization process have been pro-
posed by the selection of basic functions PPS-wavelet
(de Queiroz and Marar, 2007).

5 PATTERN RECOGNITION AND
THE XOR PROBLEM

The pattern recognition problem consists of designing
algorithms that automatically classify feature vectors
associated with specific patterns as belonging to one
of a finite number of classes. A benchmark problem in
the design of pattern recognition systems is the exclu-
sive OR (XOR) problem. However, to solve this prob-
lem, effectively ended research interest in the area of
Artificial Neural Networks for over 21 years, which
highlights the importance of the XOR problem in the

design of pattern recognition systems. The standard
XOR problem is depicted in Figure 5:

Figure 5: The exclusive or (XOR) problem: points (0,0)
and (1,1) are members of class A; points (0,1) and (1,0) are
members of class B.

Here the diagonally opposite corner-pairs of the
unit square form two classes, A and B. From the Fig-
ure 5, it is clear that it is not possible to draw a sin-
gle straight line which will separate the two classes.
This observation is crucial in explaining the the com-
plexity to solve this problem. This problem can be
solved using multi-layer perceptrons (MLPs), or by
using more elaborate single-layer artificial neural net-
work such as the PPS Wavelet neural network, can
be trained to solve this problem in a straightforward
manner. In order to demonstrate the adaptive capacity
of the PPS neural networks, we accomplished a study
with the functionsϕ2(x) andϕ5(x). The results are
illustrated in Figures 6 and 7 respectively:

Figure 6: XOR problem based onϕ2(x).
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Figure 7: XOR problem based onϕ5(x).

6 CONCLUSIONS

Neural networks and wavelet transform have been re-
cently seen as attractive tools for developing efficient
solutions for many real world problems in function
approximation. The combination of neural networks
and wavelet transform gives rise to an interesting and
powerful technique for function approximation re-
ferred to as wavenets. Function approximation is a
very important task in environments where computa-
tion has to be based on extracting information from
data samples in the real world processes. So, mathe-
matical model is a very important tool to guarantee
the development of the neural network area.
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Abstract: Almost all fish possess a flow-sensing system along their body, called the lateral line, that allows them to
perform various behaviours such as schooling, preying, andobstacle or predator avoidance. Inspired from this,
our group has built artificial lateral lines from newly-developed flow sensors using Micro-Electro-Mechanical
Systems (MEMS) technology. To make our lateral line a functional sensory system, we develop an adaptive
beamforming algorithm (applying Capon’s method) that provides our lateral line with the capability of imaging
the locations of oscillating dipoles in a 3D underwater environment. To help our sensor arrays adapt to the
environment for better performance, we introduce a self-calibration algorithm that significantly improves the
image accuracy. Finally, we derive the Cramer-Rao Lower Bound (CRLB) that represents the fundamental
perfomance limit of our system and provides guidance in optimizing artificial lateral-line systems.

1 INTRODUCTION

Biologists have discovered that almost all species of
fish have a flow-sensing system, called the lateral line,
consisting of cilium-like haircell sensors (Figure 1)
(Dijkgraaf, 1963). Each haircell sensor in the lateral
line measures local fluid flow velocity, and fish rely on
their lateral lines to perform a wide range of activities
including schooling, preying, navigation, and preda-
tor avoidance (Pitcher and Wardle, 1976; Coombs,
1994). Studies show that using its lateral lines, a
fish can locate and track an acoustic dipole source
(Coombs and Conley, 1997), which models the back-
and-forth motion of the tail of smaller prey or other
fish.

Inspired by the capability of the fish lateral lines,
we are developing an equivalent engineered system,
an artificial lateral line. Potential applications in-
clude maneuvering Autonomous Underwater Vehi-
cles (AUV), dynamic imaging in an underwater en-
vironment, detecting corrosion or leaks inside pipes,
and detecting and tracking intruders such as swim-
mers or submarines.

Recent advances in Micro-Electro-Mechanical

Figure 1: Hair cell sensor system in fish.

Systems (MEMS) technology make it possible to
build micrometer-scale sensors mimicking the func-
tion and structure of fish lateral lines. The first MEMS
lateral line consists of a linear array of 16 hotwire
amemometers (Fan et al., 2002). These sensors are
capable of measuring flow magnitude but not direc-
tion. Recently, MEMS haircell flow sensors, which
are sensitive to flow direction, have also been devel-
oped (Chen and Liu, 2003).

Along with development of sensors, signal-
processing algorithms are also required to make a
complete artificial lateral-line sensory system. Pre-
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vious work in this area localizes and tracks an acous-
tic source using a ML estimator (Pandya et al., 2006)
and introduces a new method for imaging all flow
sources surrounding a sensor array (Pandya et al.,
2007). In this paper, we extend the work in (Pandya
et al., 2007) to cover mapping in three-dimentional
space (3D imaging). In particular, we review the
dipole model and modify the beamforming algorithm
in (Pandya et al., 2007) to handle 3D imaging of
dipoles using haircell sensors. Next, we present a
self-calibration algorithm to adjust the gains across
the sensors to improve estimation accuracy. Finally,
we derive the Cramer-Rao Lower Bound (CRLB) for
the dipole position estimate to find the fundamental
performance limits of the system.

2 ARTIFICIAL LATERAL-LINE
SENSORS

We have used three types of flow sensors to build arti-
ficial lateral lines: conventional hot-wire sensors, mi-
cromachined (MEMS) hot-wire sensors, and hair-cell
sensors (Figure 2). Both types of hot-wire sensors
operate on the heat dissipation principle. Voltage ap-
plied across a sensor heats up the wire. Movement of
water or air particles across the hot wire carries away
heat causing a change in the wire’s resistance and in
turn the current. The change in current reflects the
speed of water or air particles moving across the wire.

Figure 2: Three types of flow sensors for underwater acous-
tic signals.

Conventional hotwire sensors are bulky and
costly. This makes it hard to form small and dense
arrays of sensors for artificial lateral lines. To over-
come those drawbacks, micromachined hotwire sen-
sors have been developed (Chen et al., 2003). They
can be integrated to form a lateral line in a canal as

in fish or to form a dense array of sensors with 1mm
spacing . However, the sensors are fragile and cannot
distinguish the direction of flow. To avoid these prob-
lems, micromachined haircell sensors were invented
that operate on the same principle as in fish. The hair
of the sensor intercepts the flow, and the force applied
on the hair is transformed into stress at the base of the
hair. A piezo-electric strain gauge on a cantilever at
the base translates the stress into an electronic signal
(Yang et al., 2007). The advantages of the haircell
sensors are robustness and directional sensing capa-
bility.

3 FLOW IMAGING USING A
BEAMFORMING APPROACH

Our main goal is to estimate the locations of dipole
sources using arrays of flow sensors in an underwater
environment. In our laboratory experiment, the dipole
source is a small sphere oscillating back and forth in a
certain direction at a fixed frequency. We start with a
dipole source since it is simple enough so that its sur-
rounding flow field model is well established. More-
over, dipole-like flow sources are commonly encoun-
tered in nature, such as the waving tail of a fish. Bi-
ologists have extensively studied fish lateral-line re-
sponse to acoustic dipoles and found that fish can lo-
cate the source of a dipole and track its movement,
and at least some species treat it as prey (Coombs,
1994).

A model of an oscillating dipole source in fluid
has been well studied in (Coombs, 2003). The flow
velocity at a point in space near a dipole source is
modeled as

~v f low(r,θ) =

(

a3Uo
cos(θ)

r3

)

r̂+

(

a3Uo

2
sin(θ)

r3

)

θ̂.

(1)
In the above equation, the flow velocity is a function
of the dipole diametera, the initial vibrational veloc-
ity amplitudeUo, and the observation distancer and
angleθ as shown in Figure 3a. Also,̂r and θ̂ are
unit vectors of the dipole’s spherical coordinates at
the sensor’s position.

The flow velocity in Equation (1) is, however,
derived in the dipole’s spherical coordinates. It is
more convenient to compute flow velocity in the fish’s
Cartesian coordinates (Figure 3b) so that we can de-
rive array patterns due to a dipole oscillating in a cer-
tain direction at some location in space. Transformed
into the fish’s Cartesian coordinates, the flow velocity
is then

~v f low(~s) =
a3Uo

2r3 (3cos(θ)r̂− ẑd) (2)
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Figure 3: (a) Dipole’s Spherical coodinates. (b) Fish’s
Cartesian coordinates.

whereẑd is now the unit vector on the oscillating axis
of the dipole and~s = (xs,ys,zs) is the vector represent-
ing the position of the sensor in the fish’s coordinates.
If ~d = (xd ,yd ,zd) is the vector that indicates the posi-
tion of the dipole, then

r = ‖~s− ~d‖ andr̂ =
~s− ~d

‖~s− ~d‖

Researchers have studied how the lateral lines in
fish respond to the fluid-flow field created by a dipole
source. In (Curcic-Blake and van Netten, 2006), the
excitation patterns along the lateral line of a ruffle
fish (Gymnocephalus cernuus L.) were electrophysio-
logically measured, then compared to theoretical pre-
dictions and found to be in good agreement. The
authors also applied a continuous wavelet transform
(CWT) algorithm on the collected signals to produce
a 2D-contour map of the area surrounding the dipole
source. Although the region of the dipole source
can be identified from the contour map, the map has
poor resolution, making it difficult to visually locate
the dipole’s position or to see multiple simultaneous
sources.

Approaching this problem from the engineer-
ing side, our research group has implemented artifi-
cial lateral lines with both conventional and MEMS
hotwire sensors and used them to capture the sig-
nals in the flow field created by a dipole source. An
adaptive beamforming approach using Capon’s beam-
former (Capon, 1969) yielded a much higher resolu-
tion spatial imaging of dipole source then the CWT
(Pandya et al., 2007).

(Curcic-Blake and van Netten, 2006) and (Pandya
et al., 2007) only focus on the case of two-
dimensional imaging. That means that the dipole
source and all the sensors are in theXY -plane, and the
estimation is only concerned with thex andy coordi-
nates. Moreover, (Pandya et al., 2007) used hotwire
sensors that measure flow magnitude, not flow direc-
tion. In this case, the dipole model in Equation (2)

reduces to

‖~v f low(~s)‖ =
a3Uo

2r3 ‖3cos(θ)r̂− ẑd‖

=
a3Uo

2r3

√

3cos2(θ)+1. (3)

In fact, Equation (3) is simplified further when the
dipole’s direction of oscillatinĝzd is perpendicular to
XY -plane

‖~v f low(~s)‖ =
a3Uo

2r3 sinceθ = π/2. (4)

Equation (4) is used in (Pandya et al., 2007) to com-
pute expected sensor readings for each position of
dipole in the grid. However, this model no longer
holds when we extend the problem to 3D imaging us-
ing haircell flow sensors.

3.1 3D Imaging with Haircell Sensors

Figure 4 illustrates how the flow velocity~v f low im-
pacts on the hair of an artificial hair cell (AHC) sen-
sor. A dipole source is located above the sensor in
3D space. The flow velocity is computed using Equa-
tion (2). Note that flow velocity now can be in any
direction in 3D space. We neglect here any effects
introduced by the structure to which the sensors are
attached. Figure 4a shows the side view of the flow
vector and Figure 4b shows the top view of it.

Figure 4: (a) Side view of sensor and dipole. (b) Top view
of sensor and dipole.

A single AHC sensor can only measure flow par-
allel with the strain-guage cantilever. Therefore, an
AHC sensor does not measure the magnitude and di-
rection of the flow velocity~v f low but measures the
projection of the flow velocity onto the sensor’s ori-
entation axis. The sensors’ orientations are thus es-
sential information to determine the sensor array re-
sponse.

We extend the adaptive beamforming algorithm in
(Pandya et al., 2007) to enable 3D imaging with AHC
sensors via the steps summarized below:
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• Step 1: Compute the expected sensor array pattern
for each dipole position(xd ,yd ,zd) in the 3D grid.
For each sensor in the array, use Equation (2) to
compute the flow velocity at that sensor, and then
project the flow velocity onto the sensor’s orien-
tation axis. This produces a template of the array
pattern includingL sensor readings

s(xd ,yd ,zd) = [s1,s2, . . . ,sL].

Note that the flow velocity in Equation (2) is
determined by the sensor position vector~s, the
dipole position vector~d = (xd ,yd ,zd), and the
dipole oscillating vector̂zd . ẑd is a unit vector de-
fined by the azimuth angleθd and the zenith angle
φd . So there are in total 5 parameters to define a
dipole, namelyxd ,yd ,zd for position andθd ,φd for
oscillating direction.

• Step 2: Compute the outer-product from the sen-
sor samples

R =
1
N

N

∑
n=1

x[n]∗ xT [n]

wherex[n] is the discrete-time vector of samples
of the collected signals.

• Step 3: Using Capon’s method, compute the en-
ergy level at each point in the grid

E =
1

sH
~d

R−1s~d

• Step 4: Plot a map of energy levelE for each point
in the 3D grid. The high-energy regions in the
map correspond to the dipole sources’ locations.

Figure 5: 3D Dipole Imaging with a dipole oscillating at
(50,50,50).

The above algorithm is used in a 3D dipole imag-
ing simulation, and the results are shown in Figure 5.

In this case, we simulate 2 arrays in an L-shape pat-
tern with a total of 21 haircell sensors on the x and
z axes. On each of two axes, there are 11 sensors
spaced 10 mm apart from 0 to 100 mm. A dipole is
located at(50,50,50). Figure 5 shows a sphere cen-
tered around the dipole source with different colour
intensity. High intensity presents the energy level out-
put (from Capon’s formula) at the local point. That
means the dipole is most likely there.

4 SELF-CALIBRATION
ALGORITHM

Calibration of sensors is an important practical step
before doing any signal analysis. Since each individ-
ual sensor’s sensitivity gain can vary (especially for
sensors still in the laboratory stage of development),
poor calibration will lead to poor estimation perfor-
mance. Biological systems have a remarkable abil-
ity to tune their response to environmental variation,
growth, or injury. Self-tuning ability is equally de-
sirable for an engineered system. In this section, we
propose an effective way of doing sensor array cali-
bration for this type of experiment.

A straightforward method for calibration of a sen-
sor array is to sequentially place a dipole in front of
each sensor in the array, then record readings of all the
sensors, which form a series of array patterns. Ideally,
all the patterns should have similar shape and magni-
tude with the peak at the sensor closest to the dipole.
However, measured array patterns vary significantly
due to the non-uniformity of sensor gains. Figure 6
displays an example of the measured array patterns
before calibration.
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Figure 6: Measured sensor array patterns (non-uniform sen-
sor gains).

Mathematically, the calibration problem can be
formulated as follows. Consider a linear array ofL
evenly spaced sensors and a series of measurements
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as the dipole travels a linear path at a constant dis-
tance from the sensor array. When the dipole is in
front of Sensor 1, the ideal array pattern will be

[s0,s1,s2, . . . ,sL−1]

at Sensor 2, it will be[s−1,s0,s1, . . . ,sL−2] and so on
until sensor L,[s−L+1,s−L+2, . . . ,s0]. Stacking those
ideal array patterns together produces a Toeplitz ma-
trix

A =

























s0 s1 s2 . . . . . . sL−1

s−1 s0 s1
. . . sL−2

s−2 s−1
. ..

. . .
. . .

...
...

. . .
. ..

. . . s1 s2
...

. .. s−1 s0 s1
s−(L−1) . . . . . . s−2 s−1 s0

























As each sensori has a gaingi, the matrix of array
patterns with gains is

B =



























g1s0 g2s1 g3s2 . . . gLsL−1

g1s−1 g2s0 g3s1
. . . gLsL−2

g1s−2 g2s−1
. . .

. . .
...

...
. . .

. . .
. . . gLs2

...
. . . g(L−1)s0 gLs1

g1s−(L−1) . . . . . . g(L−1)s−1 gLs0



























With noise included, the actual readings may be
C = B + N, whereC is the noisy version ofB. Figure
6 shows the measured array patterns by plotting the
rows of the matrixC. Although each pattern seems to
have the peak at the sensor closest to the dipole, the
shapes of the patterns are quite different due to non-
uniform sensor gains. The aim of calibration is to find
a set of sensor gains[g1,g2, . . . ,gL] and matrixA that
approximateC as closely, as possible, i.e.

A∗













g1 0 . . . 0

0 g2
. . . 0

...
...

...
0 . . . 0 gL













≈C

This is a bilinear least squares problem, which is
a simple special case of a mixed linear-nonlinear least
squares problem (Golub and Pereyra, 1973). Golub
and Pereyra (Golub and Pereyra, 1973) show that
the optimal linear coefficients in the globally optimal
solution are simply the linear least-squares solution
when the nonlinear coefficients are fixed at their glob-
ally optimum values; since the bilinear form is lin-
ear in both the sensor gainsgi and the shift-invariant

dipole response patterns j when the other is held con-
stant, this holds for both.

We apply the standard iterative solution approach
in which we fix one set of coefficients, find the least-
square optimal solution best fitting the measured data
for the other, and iterate until convergence. (See, for
example, (Bai and Liu, 2006) for recent convergence
theorems for this algorithm for random inputs.) The
algorithm is as follows:

• Step 1: Initialize with uniform gainsg1 = g2 =
. . . = gL = 1.

• Step 2: Fix the gains[g1,g2, . . . ,gL] and find the
optimal least squares solution for the dipole re-
sponse[s(−L+1),s(−L+2), . . . ,s0, . . . ,s(L−1)]. This
is equivalent to summing matrixC diagonally and
then dividing it by the sum of all gains corre-
sponding to the column that the diagonal line
crosses.

• Step 3: Fix the dipole response
[s(−L+1),s(−L+2), . . . ,s0, . . . ,s(L−1)] and find
the optimal least squares solution for the gains
[g1,g2, . . . ,gL]. This is equivalent to summing
up each column ofC and dividing it by the
sum of correspondingsl that appeared in that
column (see matrixB). For example, after
summing up column 2, it is divided by the sum
(s1 + s0 + s−1 + . . .+ s(2−L)) to getg2.

• Step 4: Go back to Step 2 with the new gains in
Step 3. Repeat the process until convergence.

This method allows the on-line calibration of sen-
sors from observation of a dipole source as it travels
across the array. This can be exploited to develop a
fully self-tuning system like biological systems.

Using the algorithm above, we show the improved
results in Figure 7, using an array of 8 hotwire sensors
positioned 12.5mm apart on the X-axis from 12.5mm
to 100mm. A dipole is placed in front of each sen-
sor and data are collected. Figure 7(A) displays the
array patterns for these eight positions. As can be
seen, these patterns do not look like a shifted version
of each other. The calibration algorithm is applied
to these patterns to produce the calibrated patterns in
Figure 7(B). The improvement in the magnitude and
shape of those patterns is clear. The effect of the cal-
ibration algorithm can be clearly seen as we run a 2D
imaging test of estimating the location of a dipole lo-
cated in front of sensor 4 (50 mm). The image in Fig-
ure 7(C) is the result of processing signals without
calibration while the one in Figure 7(D) uses calibra-
tion. There is obviously a significant improvement in
the accuracy of the image produced by using calibra-
tion.
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Figure 7: Effects of Self-calibration: (A) Measured array patterns (before calibration), (B) Calibrated array patterns, (C) 2D
dipole imaging without calibration, (D) 2D dipole imaging with calibration.

5 CRAMER-RAO BOUND ON
DIPOLE LOCALIZATION

Fundamental lower bounds on the error of the dipole
position estimate for lateral-line sensors are very use-
ful for evaluation of the estimator presented in Section
3.1, for finding the fundamental performance limit of
a lateral line array, and for evaluating different sensor
array configurations.

The signal captured by sensork can be modeled
as

sk = fk(~d)+ Nk (5)

whereNk is the additive Gaussian noise andfk(~d)
is the expected reading at sensork produced by a
dipole at location~d. For the case of 2D imaging
(~d = (xd ,yd)) using hotwire sensors,fk(~d) is actually

computed by Equation (3); i.e.,fk(~d) = ‖~v f low(~sk)‖.
For case of 3D imaging using AHC sensors,fk(~d) is
computed as described in Step 1 of the algorithm in
Section 3.1.

If the noises at all sensors are assumed to be i.i.d.
with zero mean and varianceσ2

N , the signal vector
of the sensor arrays is a Gaussian random vector
N (f(~d),Iσ2

N). Using the standard procedure in (Poor,
1988), we can derive the Fisher Information Matrix
for the case of 2D imaging as

F =
1

σ2
N







∑L
k=1

(

∂ fk(x,y)
∂x

)2
∑L

k=1
∂ fk(x,y)

∂x
∂ fk(x,y)

∂y

∑L
k=1

∂ fk(x,y)
∂x

∂ fk(x,y)
∂y ∑L

k=1

(

∂ fk(x,y)
∂y

)2







(6)
then the CRLB is

Var[~d] ≥ [F]−1 (7)
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For the case of 2D imaging using hotwire sensors as
in (Pandya et al., 2007), we have from Equation (3)

fk(x,y) =
a3Uo

2r3 =
a3Uo

2‖~sk − ~d‖3

=
a3Uo

2[(x− xsk)
2 +(y− ysk)

2]
3
2

then (6) becomes

F =
( 3

2a3Uo)
2

σ2
N

×







∑L
k=1

(x−xsk
)2

[(x−xsk
)2+(y−ysk

)2]
5 ∑L

k=1
(x−xsk

)(y−ysk
)

[(x−xsk
)2+(y−ysk

)2]
5

∑L
k=1

(x−xsk
)(y−ysk

)

[(x−xsk
)2+(y−ysk

)2]
5 ∑L

k=1
(y−ysk

)2

[(x−xsk
)2+(y−ysk

)2]
5







(8)
We now compute the CRLB in Equation (8) for a

system consisting of 16 hotwire sensors placed 6mm
apart along the X-axis starting from 60mm to 90mm.
The bounds on the estimation error’s variance are rep-
resented by error ellipses in Figure 8. Each ellipse
corresponds to a dipole located at its center. Note
that the size of the ellipses grows larger as the dipole
moves away from the array. This just agrees with the
fact that as the dipole moves away from the sensor ar-
ray, not only do the signals become weaker but also
the array patterns flatten out. The CRLB shows that
no signal processing algorithm can accurately esti-
mate the location of dipoles at long range (more than
about an array length) because the signals collected
by sensors show almost no difference between dipole
locations.

As the results show, the CLRB can be a source of
design criteria to build a flow sensor array meeting
requirements of image resolution and coverage range.

6 CONCLUSIONS

The adaptive beamforming approach to flow-field
imaging can be generalized to produce an image of
osccilating dipoles’ locations in a three-dimensional
underwater environment. The images’ accuracy in-
creases significantly when a self-calibration algorithm
to tune the sensors’ gains is applied. The calibration
algorithm, which uses the bilinear least squares tech-
nique, is a good starting point to build a system with
the self-tuning capability that biological systems al-
ways exhibit. Our final result, the Cramer-Rao Lower
Bound, is a useful tool to evaluate the performance
limits of a lateral line system. This helps in the de-
sign of a better system. The bounds also confirm that
a lateral-line system is neccessarily a near-field sense.
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Figure 8: Error ellipse centered around different dipole po-
sitions, 16 sensors (the circles) are on the x-axis.
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Abstract: Based on variational and level set approaches, we present a hybrid framework with quality control for 
confocal microscopy image segmentation. First, nuclei are modelled as blobs with additive noise and a filter 
derived from the Laplacian of a Gaussian kernel is applied for blob detection. Second, nuclei segmentation 
is reformulated as a front propagation problem and the energy minimization is obtained near the boundaries 
of the nuclei with the Fast-Marching algorithm. For each blob, multiple locally optimized points are selected 
as the initial condition of the front propagation to avoid image under-segmentation. In order to achieve 
higher accuracy, a graphical interface is provided for users to manually correct the errors. Finally, the 
estimated nuclei centres are used to mesh the image with a Voronoi network. Each mesh is considered as a 
Geodesic Active Contour and evolves to fit the boundaries of the nuclei. Additional post-processing tools 
are provided to eliminate potential residual errors. The method is tested on confocal microscopy images 
obtained during trophoblast elongation in ruminants. Experimental results show that cell nuclei can be 
segmented with controlled accuracy and difficulties such as inhomogeneous background or cell coalescence 
can be overcome. 

1 INTRODUCTION 

Confocal microscopy imaging is one of the most 
important technologies used to observe the cellular 
developmental process. Image segmentation is a 
major step to interpret the obtained images. 
Correctly explored, it will provide important 
information about cellular shape and tissue 
organisation. Appropriate and automatic image 
segmentation tools are usually necessary to assist the 
analysis. However, segmenting confocal images is a 
complex and laborious task. Several factors might 
raise difficulties: (1) uneven background: Most of 
the tissues are fluctuating during the image 
acquisition and background is rarely uniform; (2) 
local intensity variation inside a nucleus. Due to 
imperfect staining during the experiment or intrinsic 
cellular structure, one nucleus may be split into two 
or more parts; (3) cell coalescence: Cell over-
clustering makes it hard to tell the exact nuclei 
boundaries. 

Many segmentation approaches relating to 
biological images have been proposed in the 
literature. Research shows that traditional image 

segmentation methods such as thresholding, region 
growing and edge-based approaches (Pitas, 2000) 
can not be successfully applied to microscopy 
images. Reported successful methods usually 
focused on a specific type of images without 
generality (Wu et al., 2005). Watershed 
segmentation has been popular and considered as 
one effective method. Thomas (Thomas and 
Graham, 2007) modified watershed method to give 
more accuracy for identifying intracellular structures 
even in the presence of inhomogeneous background. 
Wahlby (Wahlby et al., 2004) and Long (Long et al., 
2007) used both the intensity and geometry 
information to appropriately detect nuclei. Those 
methods are robust but the system is complicated 
and need more time to adjust and analyse the 
parameters to give the accurate result according to 
the characteristics of images. All modified 
watershed algorithms face over-segmentation 
phenomena and have to provide post processes to 
adjust the result, especially on cellular microscopy 
images with high noise and cell coalescence. Based 
on partial differential equations and variation models, 
Solorzano (Solorzano et al., 2001), Chang (Chang et 
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al., 2007) and Dirk (Dirk et al., 2006) provide 
another direction by using level set segmentation. 
The solution is derived by minimizing a global 
energy function. This method benefits from well 
founded mathematical theories which allow 
developers to analyze, understand, improve the 
existing methods and work in a continuous setting in 
higher dimensional space. 

The paper is organized as follows: Section 2 
introduces a hybrid structure supporting quality 
control. Section 3 illustrates segmentation 
approaches. The system is evaluated in Section 4. 
Finally, Section 5 draws a conclusion. 

2 HYBRID FRAMEWORK 

Drawing outlines of cells with a mouse, the result 
can be regarded as absolutely accurate and objective, 
but it is a hard work and difficult to repeated. 
Automatic methods are fast and convenient, but 
some errors occur. Therefore, the solution for image 
segmentation is a trade-off between precision and 
speed. When high accuracy is needed, the system 
needs interactivity with the analyzer or provides an 
automatic result with limited errors. To deal with a 
wide variety of biological microscopy images, a 
hybrid framework with quality control will be 
preferable. 

We constructed such a hybrid framework 
combining PED-based level set approaches with 
selectable interaction which supports automatic and 
semi-automatic segmentation with a robust error-
checking stage, as shown in Figure 1. The nuclei are 
firstly modelled into blobs with some additive noise 
and Laplacian of Gaussian (LoG) filter is regarded 
as a blob-detector. Using gradient information, a 
front propagation fast marching is applied to 
segment cellular nuclei. The result can be directly 
outputted after morphology filter or used to enhance 
the last result. An interactive module is provided to 
prevent error propagation and Voronoi meshing is 
created from those appropriate centres. From cellular 
shape information, geodesic active contour (GAC) is 
introduced to refine nuclei boundaries. Post 
processing methods are added as supplementary 
module to correct for potential errors. 

 
Figure 1: Diagram of hybrid framework. 

3 METHOD DESCRIPTION 

3.1 Blob Detection 

On confocal images from ruminant trophoblast cells 
e.g. Figure. 2 (A), one sees that most nuclei are 
nearly round. Laplacian of Gaussian filter has been 
proved to be an effective blob-detector (Byun et al. 
2006) since LoG filter is able to detect particular 
edges by determining the peak point of the ridge. 
Therefore, we aimed at detecting regions which are 
brighter than the surrounding to overcome 
inhomogeneous background.  

Although the nuclei of trophoblast cells are not 
exactly round, our objective is focused on rotation 
invariance of objects, so that it is fitful to over-fit a 
circle model into the whole image. From the 
experimental results, we found that the diameter of 
LoG filter is proportional to nuclei average diameter 
and this initial value can be set in advance since the 
kind of cells are known, e.g. bovine or ovine  
trophoblast. LoG filter will get a smooth image local 
maximal values of which nearly correspond to the 
nuclei centres shown in Figure 2. (B). 

After blob-detector, an H-convex filter is added 
for enhancing the local maximum. H-convex 
belongs to a kind of morphological method and has 
the effect of extracting objects that are brighter than 
background by at least H-intensity units. It is 
relatively straightforward and does not require 
homogeneity in the background. The enhanced local 
maximal result can be gotten in Figure 2. (C). 
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Figure 2: Results in each module. 

3.2 Fast Marching 

Fast marching method (Sethian, 1996) has 
monotonically advancing front with positive speed 
to build solutions outward from the boundary 
condition by choosing the smallest time in its 
evolution, until it adopts the form of the enclosing 
nuclei delineated by the staining. The segmentation 
result from fast marching is gotten in Figure 2 (D). 

Our speed function is provided by sigmoid 
function: 
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where I is intensity of input pixel,  'I is the intensity 
of output pixel, Min and Max  are the minimum and 
maximum values of output image, α  defines the 
width of input intensity range and β defines 
intensity around which the range is centred. 

Since some cell nuclei are connected closely, 
segmentation results depend on initial seed 
positions, so that multiple seeds will have more 
chances not to miss objects. However, having seeds 
distributed inside the nuclei is not helpful for 
contour expansion. Therefore, instead of randomly 
selecting multiple points as initial condition, we 
searched the best seeds for each candidate by finding 
its local minimum through comparison with 
neighbours as shown in Figure 3. 

 
Figure 3: Seeds optimization by local searching. 

The selection of optimal seeds gives a better 
result in detecting nuclei, and that this result is stable 
shown Table 1. The more seeds can be assigned 
nearby the edge of nuclei, the more precise the fast 
marching segmentation can be. Table 1 also shows 
that the number of initial seeds is important. If too 
many seeds are put in one image, many single nuclei 
will be divided into multiple parts due to local 
intensity variations. Normally the distances we have 
selected are 16 pixels in row, 16 pixels in column 
and a searching radius of 3 pixels. For some special 
trophoblast images we had to adjust these 
parameters carefully. 

Table 1: Comparison between random and optimal seeds. 

radius 

(pixels) 

Number 

of nuclei 
4×4 8×8 

16× 

16 

32× 

32 

64× 

64 

Optimal 398 360 337 339 310 
3 

Random 419 364 332 319 307 

Optimal 319 312 303 304 302 
5 

Random 337 312 299 288 275 

3.3 Interactivity 

The centre of each nucleus can be estimated from 
the above results. Despite accuracy rate is averagely 
high, there is still a possibility of a few failures to 
occur as indicated by white arrows on Figure 2 (E). 
On our images, the error rate varies from 1% to 
10%.  If more than one seed is located inside a 
nucleus, this will cause over-segmentation, 
conversely when no seed is found within a nucleus, 
the object is lost. Therefore, the centres of nuclei are 
very important for the final result. In order to 
prevent error propagation, human interactivity is 
necessary to view and adjust results in this stage. 
Through an interface, the user can make decision 
based on visual examination of the nuclei, so that an 
immediate feedback enables the user to produce 
reliable results e.g.  Figure 2 (F). 
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Figure 4: Refinement by GAC in one Voronoi mesh. 

3.4  Geodesic Active Contour 

From nuclei centres, Voronoi mesh is directly 
produced in Figure 2 (G), which can be regarded as  
a reference map in refining nuclei by geodesic active 
contours (Vicent et al. 1997). Since Voronoi mesh 
gives a limited small region to minimize the GAC 
energy function, it is sure that one nucleus is gotten 
just in one Voronoi-mesh. The refining result is 
shown in Figure 2 (H). 

GAC consists of double forces which control the 
last shape and it is important to balance inside and 
outside forces. When the propagation term is set too 
high, the contour will go too far inside as illustrated 
in Figure 4. In our application to ruminant 
trophoblast cells, all nuclei are nearly rounded so 
that curvature term is responsible for smoothness. 

3.5 Post Processing 

When confocal images are very blurred or tightly 
clustered, a few errors cannot be avoided with 
automatic detection to correct these potential errors 
by human visual system. We provide a 
supplementary module. As an example (Figure 2: I), 
one lost nucleus has been recovered with this 
module. 

4 EXPERIMENTS 

This section describes how our hybrid framework is 
used to segment the nuclei on 2D confocal images 
from ruminant trophoblast. There are more than one 
thousand of images with varying cellular 
characteristics and varying background noise in 
dataset.  Selecting different modules, four types of 
pipeline are designed shown in Table 2.  
 
 
 

Table 2: Pipelines with different modules. 

Module 1 2 3 4 5 6 7 8 9 
Pipeline A × × × ×      
Pipeline B × × ×  ×  × ×  
Pipeline C × × ×  × × × ×  
Pipeline D × × ×  × × × × × 

 
Figure 5 gives four typical images as examples 

to show the results of our framework. Our approach 
is compared with the existing methods in ITK and 
ImageJ which are using fast marching and K-means 
clustering individually. In row 1, when confocal 
images have good quality, all methods can be used 
successfully, with similar errors. However, when 
nuclei are clustered together (see row 2), our method 
keeps stable whereas the other methods lose the 
ability to separate each nucleus in the clusters. For 
example, ITK can only detect the whole cluster edge 
and cannot divide it further while ImageJ produces 
many connected regions. In row 3, when nuclei are 
organised in a special structure, the exiting methods 
(ITK and ImageJ) cannot identify the objects 
whereas the nuclei are correctly detected by our 
method and the contour is closer to the true shape. 
When there are many small nuclei and their size 
changes continuously (row 4), our result is also 
stable and useful. 

Our framework is a scalable system with quality 
control through the selection of modules and the 
setting of the initial parameters based on the 
characteristics of the original image to balance terms 
in the energy function of level set. Through 
adjusting the parameters on propagation and smooth 
term, the nuclear edges can be detected and refined 
step by step by active contour as in Figure 6, from 
(a) to (d).  

It is often necessary to complete a confocal 
image automatic segmentation with an acceptable 
error rate. Successful results can be obtained with 
our scalable procedure. Since the modules related to 
the human interaction are selectable, we can use the 
level set methods directly. Figure 7 gives an 
example. The first column comes from the fast 
marching following the blob-detector and we use 
morphology filter to enhance the result. In the 
second column, results from GAC without 
interactivity are provided. Some error is propagated 
from fast marching module because the gravity 
centre of the nuclei is wrongly estimated from fast 
marching segmentation. GAC can skip the false 
nuclei but will produce good results with coherent 
nuclei. So, the number of nuclei from GAC 
decreases for factual objects. 
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Figure 5: Comparison of proposed algorithm with fast marching in ITK and K-mean clustering in ImageJ (high quality, 
nuclei coalescence, special structure and low quality from left column to right column). The first row is the original 
confocal images. The second, the third and the fourth row respectively correspond segmentation results from ITK, ImageJ 
and proposed algorithm (Pipeline C). 

Table 3: Segmentation results expressed as numbers of detected nuclei with each method. 

Image 
Actual 
number 

Fast marching 
in ITK 

K-means in 
ImageJ 

FM with blob-
detector       

(Pipeline A) 

GAC without 
interactivity 
(Pipeline B) 

GAC with 
interactivity 
(Pipeline C) 

With post 
processing   

(Pipeline D) 
(a) 280 253(-27) 265 (-15) 298 (+18) 294 (+14) 280 (+0) 280 
(b) 378 281(-97) 347 (-31) 402 (+24) 373 (-5) 374 (-4) 378 
(c) 294 236(-58) 179 (-115) 328 (+34) 318 (+24) 292 (-2) 294 
(d) 704 544(-160) 652 (-52) 737 (+33) 729 (+25) 711 (+7) 704 

Number 1656 1314 (-342) 1443 (-213) 1765 (+109) 1714 (+63,-5) 1657 (+7,-6) 1656 
Error rates  20.65% 12.86% 6.58% 4.11% 0.79% 0% 

In Table 3, we conclude and compare the 
error rates from all of the methods discussed 
above. “+” means over-segmented nuclei and “-” 
means under-segmented. Their sum is divided by 
factual total numbers to compute the error rate. 

Normally we do not use post processing module 
and the average error ratio is limited into 0.8%. 
The experimental results show that our hybrid 
segmentation framework is satisfactorily accurate.  
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Figure 6: Refining boundary by GAC method with 
quantity control. 

 
Figure 7: Automatic segmentation results by Pipeline A 
(first row) and Pipeline B (second row). 

5 CONCLUSIONS 

This paper demonstrates the effectiveness of a 
hybrid framework for cellular segmentation. It 
combines the efficiency of the automatic 
segmentation procedures with the accuracy of the 
human visual system. Based on confocal images of 
ruminant trophoblast, our experiments showed that 
the proposed approach provides reliable results and 
presents numerous advantages regarding to manual 
analysis or automatic methods in terms of objectivity 
and applicability.  
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Abstract: This paper presents a method for real-time rendering of a neocortical column in the mouse brain with 10000
individually simulated neurons, as implemented in the software GabrielStudio (TM). It also presents how the
same system is used to create movie sequences of scripted camera keyframes for high resolution outputs.
The current system is running on an SGI Altix Prism Extreme with 16 parallel graphics cards and a shared
memory of 300 GB. Gabrielstudio works as a virtual microscope for computational neuroscientists to analyze
their simulations of neurons.

1 INTRODUCTION

In the field of computational neuroscience simula-
tions of neurons arranged in circuits like the neocor-
tex in the rat brain, are quite complex in the amount
of data that is created for each simulation step. The
simulation computes the electrical membrane poten-
tial of the neurons, at a detail level of each individ-
ual branch in its morphology (Carnevale and Hines,
2006). A typical neuron morphology consists of a
spherical soma of 20 micro meters (see Figure 1),
a tubular axon and tubular dendrites which in turn
can be branched down to very fine segments of tissue
and usually contribute 300 sections (Al-Kofahi et al.,
2002), (Can et al., 1999), (Kuss et al., 2007). Each
of these three basic morphological parts are also sub-
partitioned into electrical compartments, which on av-
erage are five per section depending on the length
of the section. In order to analyze the fully detailed
simulation at electrical compartment level on average
10000 neurons, times 300 sections, times five data
points are inspected, which is 15 million data points
in total per 10 millisecond simulation step. One real
second of activity in the brain is quantized into steps
of 10 milliseconds, so that there are 100 steps per real
second of activity. Each such step can take minutes
to compute even on an IBM Blue Gene (TM) super
computer (BlueBrain, 2007).

Analyzing 15 million data points individually per
time step is not reasonable, to simplify this, compu-
tational neuroscientists generally only have a look at

Figure 1: One neuron is highlighted as red in the column.

the membrane potential at the soma level of the neu-
rons. If a normal color map view is used (see Figure
2) the scientist analyzes the data where each column
of data is one time step and each row is the voltage
value for the soma of that neuron. In visualization
terms the flat 2D view, maps data from four dimen-
sions into two dimensions since the original neuronal
data is in three physical dimensions (position) and one
time dimension (the time step). Data loss is inevitable
if one data point is supposed to represent on average
1500 points. One can argue that only the somas are
important in neuronal research. As simulations get
more complex and include dendrite and synapse de-
tails, debugging the simulation itself becomes next to
impossible, if one cannot access all levels of impor-
tance (Westerhoff, 2003).

Using a 3D real-time view the user can explore
the circuit without any simulation knowledge neces-
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sary in the viewer itself. As an operator of this vir-
tual microscope it is possible to stand in all positions
and view the neocortical circuit from any angle or per-
spective. The amount of information is as overwhelm-
ing as before (15 million data points) but it is rendered
in the positions where it belongs, so that electrical po-
tentials for axons innerving nearby dendrites are close
and visually connected. In this virtual microscope it is
also possible to do virtual clamping in the full circuit
enabling the user to follow and record the electrical
history for a specific clamping point.

Figure 2: Each column is a time step and each row is the
membrane potentials for the soma of one neuron. (Hill and
Tononi, 2004).

The software library capable of rendering the neo-
cortical column is called GabrielStudio. It is generic
in terms of visualization for different areas of com-
putational biology, and is the basis of the virtual mi-
croscope. Since this software is commercial only an
older version of the software and the underlying al-
gorithms are presented here, as the newest version
is confidential. Nevertheless the authors are shar-
ing some of the design decisions, rendering optimiza-
tions, adaptations to the SGI multi-pipe toolkit (MPK)
and general interface decisions. The rendering en-
gine is based on a target centric design where a tar-
get can be a set of neurons represented as triangle
meshes, lines, segments (Melek et al., 2006), (Stoll
et al., 2005) or soma billboards (Tarini et al., 2006),
(Holm et al., 2005). Individual neurons can at all
times be visible, invisible, colored independently and
have simulation applied to them or not. The system is
described in more detail in the following sections of
the paper.

2 GABRIELSTUDIO

The rendering engine is based on the notion of tar-
gets where the total possible neurons to render is a set
called the universe target. Each neuron has morphol-

ogy which is a hierarchical description of a neuron in
a directed acyclic graph manner (DAG), see Section
2.2.1. Several neurons share the same morphology
where a circuit of 10 000 neurons usually contains
700 different morphologies of 100 000 or more tri-
angles. To visuallize the column using a brute force
rendering method, a total of one billion triangles per
frame would have to be rendered. Given that a nor-
mal graphics card of 2007 can render 25 million tri-
angles per second, this would take 40 seconds to ren-
der. Since the system is real-time an acceptable speed
is 25 updates per second, which is 1000 times faster
than one update every 40 seconds. Using the multiple
pipes of an SGI Prism Extreme one can leverage this
speed ten times, which gives us having to speed up
the brute force method by a factor of 100. A factor
of ten is always welcome. The solution proposed in
this paper is the use of a regular grid, which is com-
mon in ray tracing and is a voxelization process on the
triangle data.

2.1 Rendering Pipeline

Figure 3: Action potential on neurons in the exploratory
mode of GabrielStudio.

The neurons are inserted one by one, triangle by tri-
angle, into the grid so that each grid cell contains a
list of pointers to triangle data (3 vertices, uvs, nor-
mals and simulation information). Then the cells are
re-allocated so that each cell contains an offset into
a large continuous array of geometrical data. De-
pending on which neurons are part of the visible tar-
gets and level of detail (LOD), the index tables of
the cell are appropriately called. Each cell has three
LODs for each representation which is either trian-
gle or mesh surface, diameter thick segments and one
pixel wide lines. Two independent modes are ren-
dered separately namely, the soma view using bill-
boarded spheres and the synaptic view also using bill-
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boards. The synapses are rendered connected to the
hierarchy of the lines or branches that are visible.

Figure 4: The visualization pipeline.

2.2 Regular Grid

The world of computer graphics consists mainly in
tradeoffs between complexity and performance: level
of detail (LOD) is a method offering such compro-
mises and is explained in detail in the book (Luebke
et al., 2002). Several examples of usage of this tech-
nique can also be seen in the papers (Gumhold et al.,
2003) and (Schaufler and Stürzlinger, 1995) and Sec-
tion 4 of this paper.

LODs are used to group branches in a priority or-
der, going from always visible (LOD 0) to less im-
portant branches (LOD 2). Those LODs are com-
puted when the neuron data is integrated into the reg-
ular grid with the help of a recursive algorithm which
will be discussed later. This computation need to be
done once, in an initialization phase at the launching
of the program. During this phase, each neuron is
inserted into the grid and its branches are distributed
among the buffers of each LOD. Before going more in
depth into the procedure, it is necessary to recall how
a neuron is defined. It contains one root, from which
several branches reach out, that in turn can be sub-
branched. They are organized in sections which allow
representing the whole hierarchy of the neuron easily.
More precisely, those sections indicate the linkage of
each node going from the root to the extremities.

Figure 5: Neuron morphology branching numbering. No-
tice how at each branching only one section keeps the father
number.

2.2.1 Insertion Into Lods

The insertion into LOD buffers is done according to
a certain branch priority. The branching computation
is done for each neuron morphology independently.
It is made by going through each existing branch of
a neuron, using the corresponding section map, and
then attributing an index to each segment correspond-
ing to the actual priority of its branch. To define this
priority, a recursive algorithm is used, which looks
at the depth of each branching and gives higher pri-
orities to the longer ones. For a better understand-
ing of this, it is possible to represent this scheme as
a tree, where the nodes represent the splitting points
between two branches taking as value the actual dis-
tance from the root (the neuron soma). Assuming the
aim of the algorithm is to compute the sorting of one
of the branches starting from the root; the path with
the highest priority is going from the root to the ex-
tremity children with the largest distance; denoted as
the longest branch of the tree (see Figure 5). Once
this main branch is known, it starts from the root and
goes through all the nodes of the tree. At intersection
i (nodei) it keeps the current priority for the longest
branch of the sub-tree with nodei as root and the other
branch gets this priority increased by 1. Like that we
will have branching index from 0 to a maximum of
255 (fixed limit). From those indices we can enter
each vertices inside the corresponding LOD array re-
specting some ranges defined by the user (e.g. Lod-0:
0,1 / Lod-1: 2,3 / Lod-2: 4,...,255). Then each branch
of a neuron will be rendered or not by comparing its
LOD with the current LOD of the cell. In a similar
manner synapses also need to be rendered condition-
ally to the LOD level.

2.2.2 Usage of the Lods

Employing a LOD system, allows splitting the render-
ing into several levels of detail yielding better perfor-
mance. Those levels are defined by cells accordingly
to the distance to the camera position, such that the
closer cell to the viewer the better its definition is.

2.2.3 Update Function

Another particularity regarding the implementation of
the regular grid is the use of an update target function
which allows to have a per branch visibility capacity
and a per cell representation mode. Each time a neu-
ron state is changed (visibility or representation), the
data is checked once and the right indices of the visi-
ble neurons are entered into the grid. The line buffer
and the mesh buffer are used depending on the cur-
rent cell representation. Since drawing is done using

REALTIME NEOCORTICAL COLUMN VISUALIZATION

285



arrays, it allows having the correct indices always di-
rectly for the rendering phase reducing the real-time
computational expense.

2.3 Stylized Rendering

The implementation seen in the last section allows the
use of different data representations. This is a nec-
essary functionality since sometimes it is preferable
to have a more simple representation using less de-
tails for a better global view. This is possible with
the use of billboarding techniques which allows ren-
dering neurons as spheres (using quadriliterals always
in front of the camera, see Figure 6) and more somas
are visible since no extra branches are occluding each
other.

Figure 6: GabrielStudio also renders using billboards of so-
mas.

2.4 User Interface

In order to interact dynamically with the rendering, a
user interface was created. It offers several possibil-
ities from camera centering to key frame editing. A
lot of useful options are given to the user and allows
having a good feeling about what is happening on the
screen. There is an indication about the current se-
lection, neuron or synapse and the simulation color
mapping allowing to distinguish the current electri-
cal value of each entity as well as the number of key
frames kept for the movie creation, as depicted in Fig-
ure 9.

2.5 Scalable Rendering Architecture

The major difference between rendering on a single
graphics card architecture available on most PCs and

a parallel graphics pipeline, as the SGI Prism, is that
several graphics contexts need to be tracked and up-
dated simultaneously. Since the library uses GLEW
to handle OpenGL extensions, it also keeps a sepa-
rate MX GLEW context per graphics card. However
recompiling such a library including a multi-pipe ver-
sion of a helper library is not sufficient. This comes
as the result that each function in the rendering engine
that uses shaders, textures, vertex buffer objects, dis-
play lists or any other context specific data has a spe-
cial structure sent to it containing the necessary data
for that context. Each graphics card is assigned this
context upon entry into that threads rendering loop.

3 CREATING MOVIES

Science needs to reach out and touch more interested
minds through marketing, which is possible to do
through the movie creation pipeline of GabrielStudio.
Using such a software tool the user has the possibility
to navigate through the scene, using the virtual mi-
croscope view and sample the interesting locations.
A set of sampled view points or camera key frames
are interpolated and rendered using a non-interactive
mode for high resolution and detail as shown in Fig-
ure 7. Standard digital movie production pipelines are
used for editing. In the off-line mode it is also possi-
ble to output stereo images for passive stereo outputs
as displayed in Figure 1. These movies are shown to
various visitors of our clients projects to give them a
better picture of what neuroscience entails and reveal
some of its mysteries. Movies are also shown at con-
ferences for scientific discourses and presentations. It
is also possible to do individual snapshots in high res-
olution for posters that require greater details.

Figure 7: From a stereo flythrough sequence of the den-
dritic forest. The effect of having to dodge parts of neurons
coming out of the screen is quite dramatic.
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4 RESULTS

Rendering the neurons on a SGI Prism Extreme with
16 graphics cards, gives acceptable update rates of
15 frames per second with 5000 neurons in view.
The viewer can observe the neurons from a distance
or a closer range, while having the details preserved
thanks to the employed LOD system.

Figure 8: Simulation mapping applied.

When using the regular grid one must cope with
some additional requirements. A typical example is
the case when the viewer is far away from the col-
umn, such that the cells being just in front of the cam-
era are rendered with a high level of detail i.e. all
LODs are displayed. Those being near to the center
of the column are represented using a lower defini-
tion, and some of the branches belonging to the LOD-
2 are displayed in the front cells and not in the back
ones. Since the branches appear not to be linked, the
user gets a strange impression about the scene. One
possible solution to such cases is to check for each
branch whether one of its parts is drawn; if this is the
case, this branch is rendered in each visible cell. In or-
der to achieve such an implementation, a regular grid
should be somehow replaced, since using the condi-
tional tests increases the computational cost. Other-
wise utilizing a regular grid leads to satisfying results
even when employing the update target function since
it is done only once per update and not per frame, at
the rate of user interactions.

5 CONCLUSIONS

In this paper the software tool for real-time visual-
ization of neurons has been presented. Acceptable
rendering speeds are attained on large shared memory

machines, where geometry duplication is not a limit-
ing factor due to 300 GB memory banks. However,
this is not useful on ordinary PCs, which is the next
challenge for the authors. Using a regular grid gives a
memory bound problem that is comfortable to render
on a parallel rendering architecture. The movie mode
of the described software GabrielStudio allows movie
creation with ease. Finally the possibility of interact-
ing and exploring the data in real-time, offers new
perspectives to neuroscientists to observe their own
simulations. Besides being a powerful tool for neuro-
logical process monitoring, the proposed software has
additional applications for marketing purposes.

Figure 9: Selecting neurons in GabrielStudio.
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Abstract: Medical image analysis requires in the first instance information on the extent of normal variation in a 
biological system in order to identify pathological changes. MicroMod is an L-systems based software 
package available through the World Wide Web that allows modelling of complex branching structures 
such as neurons and glia using deterministic or probabilistic algorithms. In addition, MicroMod includes 
software for assessing complex structures using methods such as fractal and lacunarity analysis.  We 
demonstrated through fractal analysis of simulated microglia that MicroMod can be used for modelling and 
measuring different stages of microglial activation. The fractal dimensions of microglia visualised using 
histochemical techniques showed good agreement with our models made using MicroMod, and changes in 
complexity and heterogeneity as seen during activation and response to pathology were well emulated by 
modifying a few essential parameters (sub to parent branch length, sub to parent branch diameter, and sub 
branch number). These results indicate that MicroMod provides a useful adjunct to neuroscience research 
into understanding complex changes in structure associated with normal function and disease processes. 

1 INTRODUCTION 

The modelling programme described and discussed 
here was inspired from research into the morphology 
of a type of cell called microglia. These small cells 
are a critical component of the brain’s immune 
system, and have been called the brain’s “first line 
of defence” for the critical roles they play in 
mediating effects of injury and disease in the central 
nervous system. (Kreutzberg 1995)  

The feature of microglia particularly relevant to 
this paper is their dynamic morphology.  To explain, 
microglia normally reside in the brain in a highly 
branched resting morphology. In this form, 
microglial cell bodies are small and elongated or 
rounded, surrounded by multiple relatively thin 
extensions known as microglial processes that 
themselves branch to finer and finer levels of 
ramification, extending around neurons and other 
cells deep into the surrounding neural tissue, as 
illustrated in Figure 1.  

Resting microglia are thus perfectly postured to 
continually sample their environment and respond to 
the earliest signs of insult or injury in the 
surrounding structures and milieu of the central 
nervous system, but their role goes beyond that of 

patrolling sentinel. If they detect problems, 
microglia can change dramatically from their 
 

 
Figure 1: Resting microglia are highly branched immune 
system cells found in the brain. 
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highly ramified, resting sensor morphology to an 
unbranched, rounded to amoeboid form that is 
increasingly motile and phagocytic  (Soltys, 
Orzylowska-Sliwinska et al. 2005).  As illustrated in 
Figure 2, this change occurs along a continuum of 
subtle to obvious differences in morphology. 

 
Figure 2: Typical microglial morphologies. Processes 
retract and the soma becomes rounder and expands as 
microglia become increasingly activated to respond to 
pathological changes. 

The morphology a microglial cell might be found 
to adopt reflects variables such as the cell’s position, 
surroundings, and motion, but also generally 
corresponds to differences in functional capacity and 
activity. Indeed, the relative amounts of microglial 
cells adopting certain morphological configurations 
vary in different diseases and in different stages of 
the progression of individual disease states (e.g., the 
overall profile of microglial morphology typical in 
schizophrenia can be differentiated from that in 
Alzheimer’s disease) (Jelinek, Karperien et al. 
2004). It is therefore essential to obtain a good 
understanding of even subtle changes in microglial 
form along the continuum of morphological variety, 
and to be able to relate these changes to cell 
characteristics (Cornforth, Jelinek et al. 2002). 

1.1 The MicroMod Modelling Software 

MicroModV6.0 is biological cell and fractal structure 
modelling software written in Java by one of the 
authors (AK), using the NetBeans IDE 3.5 on the 
Java 2 Platform v1.4.2 (Jelinek, Karperien et al. 
2002). The programme has been tested on 
WindowsXP Pro, Windows2000, Windows98, and 
SUSE Linux.  It is available as a stand-alone Java 
application from Charles Sturt University as 
MModLE.jar (source code is available on request). 
MicroMod contains 28,456 lines of code, 19,313 
non-comment lines, and 7,818 comment lines of 
code. Features available in MicroMod are shown in 
Table 1. 

In addition to the models described in the rest of 
this paper, MicroMod software renders for 
benchmarking and analysis statistical or 
deterministic, skinny or fat fractals, including 
quadric, Koch, Menger, and Sierpinski fractals; 
multifractals such as various Henon Maps; other 
iterated fractal structures (e.g., ferns); and diffusion 
limited aggregates.  

Table 1: MicroMod Features. 

MicroModsrc Main package 

MicroModsrc.GUI Graphic user interface 

MicroModsrc.Help User's guide in html for swing 
browser 

MicroModsrc.MakeSt
ructure 

Methods for generating random 
and deterministic fractals as well 
as branching structures for cell 
modelling 

MicroModsrc.Utils Utilities 
 

Structures can be viewed on a display screen or 
saved to a hard drive as either images (.jpg or .png 
format) or MicroMod model files (.mod format). All 
models can be rendered and saved in coloured, 
shaded, gray-scale, and binary formats. Structures 
are generated from built-in configurations or 
loadable .mod files (some provided with 
MicroMod), or from parameters set by the user. 
Configurable options include structural parameters 
and various rendering options such as background 
colour or whether to view a structure grow or not. 
All models can be modified, saved, and reloaded, 
and can be used to generate single images or sets of 
multiple images.   

MicroMod also includes a fractal analysis 
function. Structures can be assessed on the screen as 
they are generated or in batches of images from the 
user's hard drive. The analysis is delivered on screen 
and in detail in a text file that can be loaded in a 
spread sheet. The fractal analysis algorithms of 
MicroMod are also available in the FracLac 
software, a plug-in for ImageJ freely available from 
the US National Institutes of Health (Karperien 
2007). 

2 MODELLING WITH 
MICROMOD 

To simulate biological structures such as microglia, 
MicroMod employs L-systems principles. As 
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illustrated in Figure 3, a variety of structures at 
different levels of complexity can be generated using 
L-systems.  

 

 
Figure 3: Examples of structures modelled in MicroMod 
using L-systems principles. 

The fundamental algorithm used for modelling 
microglia is based on MicroMod’s built-in 
branching model.  The algorithm generates sets of 
symbols to be rendered on the computer screen.  For 
modelling microglia, one set specifies features for 
one microglial process, where each point within 
each set specifies the size, shape, colour, and 
location of a structural element of the process, and 
rules set by the user are applied recursively to evolve 
each original set into a more complex structure.   

To elaborate, the simplest branching model is a 
set of points representing straight lines, and the next 
level of complexity is a set with one level of sub-
branches (Figure 4). Such a model can be altered by 
changing various parameters including the rate of 
acquiring branching points and the number of 
branches that sprout at each branching point; the 
ratio of the length and diameter of daughter branches 
to the length of the parent; and the taper for each 
branch. 

 
Figure 4: Radial model generated by specifying a 
minimum number of parameters. 

Gross structural features such as the area and general 
shape of the central soma and the number, length, 
and diameter of primary branches can also be 
changed. In addition, directional features such as the 

probability of a branch continuing in a direction 
(related to the tortuousness of a process) and the 
angle of branching can be set.  Moreover, to further 
explore variation within a cell or compare cells, the 
user can modify individual processes of a cell 
separately. 

Furthermore, several of the parameters 
describing a process, such as branching rate and 
tortuousity, can be applied as probabilities rather 
than fixed values (Figure 5). Figure 5A, for instance, 
illustrates a simple radial model generated using a 
probability (rather than a deterministic value) for the 
number of branches along each primary branch, 
whereas Figure 5B shows a simple radial model 
rendered with a deterministic branching rate but 
probabilistic tortuousity features.  

 
Figure 5: Simple branching models. Within each model, 
all branches are statistically identical. 5A. Random 
Variation in Branching Frequency. Nodes show locations 
for daughter branches on primary branches. All nodes 
were sprouted at one statistically identical rate; however, 
nodes on branches extending right were generated 
deterministically and on branches extending left were 
generated probabilistically. 5B. Random Variation in 
Branching Angle and Tortuousity. Daughter branches 
were sprouted at one deterministic rate on all primary 
branches, but their rate and angle of change in direction 
were determined probabilistically. 

The significance of having probabilistic 
parameters available for modelling microglia is that 
the opportunity exists to generate each cell process 
as a statistically identical but unique structure. The 
user can, accordingly, explore overall features of a 
class of structures by generating groups of 
statistically identical but unique images from a 
single set of parameters (Figure 6).  

 
Figure 6: Statistically identical but unique models of 
resting microglia generated using one set of parameters. 
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As was noted in the introduction, microglia adopt a 
wide variety of conformations when they respond to 
events in nervous tissue.  For modelling microglia 
and other biological cells, MicroMod has several 
models in addition to the radial model just discussed.  
Examples of the MicroMod outputs of the Y-model, 
the bushy and narrow models, and the B-model are 
shown in Figure 7. The Y-model (top of Figure 7) 
provides large spherical to amorphous structures 
with short tapered and unbranched projections. The 
bushy model and the narrow model are similar, but 
allow branch diameters and the degree of sprouting 
to be set. These models specify how tortuous images 
are using the single angle functions in MicroMod. 
The B-Model includes options for multiple, 
bifurcating branches as well as for setting branch 
angle, length, tortuosity and twist. The number of 
branches and number of sprouts can be modified 
using the menus.  

 
Figure 7: Modelling options for branched cell structures 
available in MicroMod. 

3 ANALYSING MICROGLIAL 
ACTIVATION USING 
SIMULATED MICROGLIA 

Populations of cells were modelled from real 
microglia, based on measurements such as the length 
and number of branches and the ratios of daughter to 

parent branch length and diameter. To most closely 
emulate real, dynamic microglia in their natural 
environment, cells were generated using 
probabilistic values. Using box-counting fractal 
analysis we compared the simulated cells to the real 
after converting digital images to binary in order to 
assess the complexity of the cell contour.  As 
indicated in previous research, there was close 
agreement between simulated and real cells (Figure 
8) on the box counting dimension (DB). (Smith, 
Marks et al. 1989; Jelinek, Karperien et al. 2002) 

 
Figure 8: Real compared to simulated microglia. The real 
cell had a fractal dimension of 1.423 compared to the 
simulated of 1.425. 

3.1 Scaling Features  

To assess the sensitivity of MicroMod for modelling 
subtle morphological changes associated with 
different levels of microglial activation, we 
manipulated several features of the models and 
assessed both complexity as measured by the DB and 
heterogeneity (lacunarity or Λ). Manipulating the 
size and shape of the modelled soma had essentially 
no effect on the DB, but a slight effect on Λ, where 
in general models with larger and more elongated 
somata had lower values for Λ.  Both the DB and Λ 
were affected by changing the number of primary 
branches, but the effects were not consistent.  
Changing scaling features, in contrast, had several 
noteworthy effects. Changes were made in a manner 
consistent with fractal changes, as the results are 
predictable and therefore useful in judging the utility 
of the software.   

Figure 9 shows that the DB and Λ changed when 
the length of sub-branches relative to the parent 
branch was changed but the number of sprouts 
remained the same. Similarly manipulating the scale 
of sub to parent branch diameter and the number of 
new branches per branch affected the DB.  
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Figure 9: Effect of varying cell features on fractal 
dimension and lacunarity. 

Changing the scaling of sub-branch diameter had 
no effect on either the DB or Λ for models with 
narrow branches, owing to the finite limit on the 
smallest possible diameter of a branch.  For models 
with larger starting diameters, however, the ratio of 
sub-branch to parent diameter affected the DB. The 
DB and Λ were strongly positively correlated for 
models with wider branches, but not as strongly for 
models having narrower branches. The DB mainly 
decreased as the length of primary processes 
decreased, as when microglia withdraw their 
processes in response to noxious stimuli in their 
environment, for example. Although Λ decreased 
overall with decreasing primary process length, it 
initially increased for smaller branch diameters (i.e., 
models resembling resting more than activated 
cells).  

Cells differing only in branch diameter were 
modelled to emulate process swelling in isolation 
from other changes—i.e., only the diameter of 
primary branches (measured where they leave the 
soma then allowed to taper according to a fixed rate) 
was manipulated.  Both the DB and Λ were affected 
by changing this feature, but there were some 
differences in the effects. As long as branch 
diameter remained relatively narrow compared to 
soma span, the DB rose slightly as branch diameter 
increased. As branch diameter continued to increase, 
however, owing to crowding of "swollen" processes, 
some detail disappeared from the final binary 
patterns extracted from the images. In contrast, Λ 
decreased without increasing as branch diameter 
increased, and the effect was more noticeable at 
smaller diameters than it was for the DB. In addition, 
models with greater tortuousity had higher DB and 
lower Λ values. 

4 CONCLUSIONS 

Previous research has shown that microglial 
morphology can be modelled with high fidelity 

using MicroMod.  In addition, recent investigations 
have revealed that the DB and Λ can be used to 
measure the types of graded changes in microglial 
morphology typically associated with microglial 
activation. (Jelinek, Karperien et al. 2002) The work 
presented here goes a step further in describing how 
the progression from ramified to activated (i.e., 
nonpathological to pathological) in microglia can be 
accurately modelled and cellular complexity 
assessed by progressively changing a few essential 
parameters. 

It is important to note that the modelling of 
microglial activation described here is deliberately 
subject to random variation. For perfect patterns 
extracted from perfect theoretical models, the DB 
measures fundamental complexity and Λ measures 
heterogeneity. From a practical perspective applied 
to real cells, though, they will measure at once a 
composite of several features. Because of the 
considerable morphological variation attributable to 
not only activation but also the space microglia 
occupy and the orientation they assume at any point 
in time, variation is predictable when finding DBs 
even for cells in equivalent activation states having 
essentially the same branching ratios.  As was shown 
here, despite that a microglial model's inherent 
complexity is specified by known recursively 
applied rules, an extracted pattern may not 
necessarily convey this fundamental pattern's 
original information fully and without distortion.  In 
real cells, the underlying mechanisms of 
morphological transformation are also not 
necessarily conveyed in values extracted from real 
contexts. But microglia are biological structures we 
hope to understand and assess ultimately in their 
natural environs. Analyses that can be used in this 
way have practical advantages over assessments 
based on uncomplicated theoretical models, and 
modelling, as was shown here, helps bridge our 
knowledge of practical influences. 

In conclusion, the work we report here may have 
important implications for understanding the events 
of microglial activation associated with different 
states of health and disease.  Simulated cells, readily 
available in large numbers and extremely 
manipulable, increase the opportunities to 
objectively study morphological changes and 
random variation in microglia. MicroMod, thus, 
presents a useful adjunct to neuroscience research 
into understanding complex changes in structure 
associated with normal function and disease 
processes. 
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Abstract: A two-phase annotation method for semantic labeling based on the edit distance is proposed. This dynamic 
programming approach stresses on a non-exact string matching technique that takes full advantage of the 
underlying grammatical structure of 65,000 parse trees in a Treebank. It is based on the assumption that 
human language understanding is relevant to concrete past language experiences rather than any abstract 
linguistic rules. This shallow technique is inspired by the research in the area of bio-molecular sequences 
analysis which advocates high sequence similarity usually implies significant function or structural 
similarity. Experimental results for recognizing various labels in 10,000 sentences are used to justify its 
significances.  

1 INTRODUCTION 

Automatic information extraction has received a 
great deal of attention in the latest development of 
information retrieval. While a plethora of issues 
relating to questions of accuracy and efficiency have 
been thoroughly discussed, the problem of extracting 
meaning from natural language has scarcely been 
addressed. When the size and quantity of documents 
available on the Internet are considered, the demand 
for a highly efficient system that identifies the 
semantic meaning is clear. Case frame is one of the 
most important structures that are used to represent 
the meaning of sentences (Fillmore, 1968). One 
could consider a case frame to be a special, or 
distinguishing, form of knowledge structure about 
sentences. Although several criteria for recognizing 
case frames in sentences have been considered in the 
past, none of the criteria serves as a completely 
adequate decision procedure. Most of the studies in 
natural language processing (NLP) do not provide 
any hints on how to map input sentences into case 
frames automatically. As a result, both the efficiency 
and robustness of the techniques used in information 
extraction is highly in doubt when they are applied 
to real world applications. 

The objective of this research is twofold. First, 
a shallow but effective sentence chunking process is 
developed. The process is to extract all the phrases 
from the input sentences, without being bogged 
down into deep semantic parsing and understanding. 

Second, a novel semantic labeling technique that is 
based on the syntactic and semantic tags of the latest 
Treebank is being constructed (CKIP, 2004). One of 
our primary goals in this research is to design a 
shallow but robust mechanism which can annotate 
sentences using a set of semantic labels. While the 
classical syntactic and semantic analysis is 
extremely difficult, if not impossible, to systematize 
the current research in NLP, our approach does not 
require any deep linguistic analysis to be formalized. 
The annotation will provide piecemeal the 
underlying semantic labels of the sentence. The 
organization of the paper is as follows. The related 
work in semantic labeling and sentence chunking are 
first described in Section 2. In this research, each 
word in sentences has two attributes, i.e. part-of-
speech (POS) and semantic classes (SC). Any input 
sentence is first transformed into a feature-enhanced 
string. A two-phase feature-enhanced string 
matching algorithm which is based on the edit 
distance is devised. Section 3 shows how the 
algorithm can be applied in the semantic labeling 
using 65,000 parse trees in a Treebank. The system 
has already been implemented using Java language. 
In order to demonstrate the capability of our system, 
an experiment with 10,000 sentences is conducted. 
A detailed evaluation is explained in Section 4 
followed by a conclusion. 
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2 RELATED WORK 

Following the framework of case grammar which is 
originally proposed by Fillmore in 1968, it has been 
accepted that every nominal constituent in every 
language bears a single syntactic–semantic case 
relation (Jackendoff, 1983; Dowty, 1991). In earlier 
systems, Somers describes a prototype computer 
program that attempts to map surface strings of 
English onto a formalism representing one level of a 
deep structure (Somers, 1982). Weischedel et al. 
(1993) predict the intended interpretation of an 
utterance when more than one interpretation satisfies 
all known syntactic and semantic constraints, and 
ascertain its semantic labels. It is on the basis that 
semantic features inherent in the main verb of a 
sentence can be used to infer the potential semantic 
labels of the sentence. Utsuro et al. (1993) describe a 
method for acquiring surface semantic labels of 
Japanese verbs from bilingual corpora. They make 
use of translation examples in two distinct languages 
that have quite different syntactic structures and 
word meanings. Similarly, Kurohashi and Nagao 
(1994) have developed a powerful parser for 
Japanese sentences based on the case frames 
encoded in a verb dictionary. The dictionary 
contains some typical example sentences for each 
case frame. The dictionary then tags the proper case 
frame for an input sentence based on the sentence 
similarities. 

Any high level language understanding process, 
such as semantic labeling, must involve chunking 
sentences into segments. Motivated by the 
psycholinguistic evidence which demonstrates that 
intonation changes or pauses would affect the 
language understanding processes in humans (Gee & 
Grosjean, 1983), Abney (1991) proposes the concept 
of text chunking as a first step in the full parsing. A 
typical chunk of a text is defined as consisting of a 
single content word surrounded by a constellation of 
function words, matching a fixed template. Church 
also uses a simple model for finding base non-
recursive NPs in sequence of POS tags (Church, 
1988). Turning sentence chunking into a bracketing 
problem, Church calculates the probability of 
inserting both the open and close brackets between 
POS tags. Each chunking alternative is ranked and 
the best alternative is selected. Using 
transformation-based learning with rule-template 
referring to neighboring words, POS tags and chunk 
tags, Ramshaw & Marcus (1995) identify essentially 
the initial portions of non-recursive noun phrases up 
to the head, including determiners. These chunks are 
extracted from the Treebank parses, by selecting 
NPs that contain no nested NPs. While the above 

approaches have been proposed to recognize 
common subsequences and to produce some forms 
of chunked representation of an input sentence, the 
recognized structures do not include any recursively 
embedded NPs. As the result, the resultant fragments 
bear little resemblance to the kind of phrase 
structures that normally appear in our languages.  

While it may be too computationally 
demanding to have a full syntactic and semantic 
analysis of every sentence in every text, Sima’an 
(2000) presents a Tree-gram model which integrates 
bilexical dependencies, and conditions its 
substitutions based on the structural relations of the 
trees that are involved. The Tree-gram model is a 
typical example of data-oriented parsing (DOP) 
advocated by Bod et al. (2003). The basic ideas of 
the Tree-gram model are to (i) take a corpus of 
utterances annotated with labeled trees; (ii) 
decompose every corpus tree into the bag of all its 
subtrees; (iii) treat the union of all these subtree bags 
as a stochastic tree substitution grammar, where the 
substitution probability of each subtree is estimated 
as the relative frequency of this subtree among the 
subtrees with the same root label. Inspired by the 
Tree-gram model, in this research, we propose a 
mechanism in shallow semantic labeling as well as 
sentence chunking by matching any input sentence 
with the trees in a Treebank through a two-phase 
feature-enhanced string matching. Different from the 
stochastic tree substitution grammar proposed in the 
Tree-gram model, our approach, characterized by an 
optimization technique, looks for a transformation 
with a minimum cost, or called edit distance. While 
the concept of edit distance is commonly found in 
the conventional pattern matching techniques 
(Gusfield, 1997; Tsay & Tsai, 1989), we take a step 
further in applying the technique in shallow 
semantic labeling. The detailed discussion of the 
algorithm is shown as follows.  

3 TWO-PHASE  
FEATURE-ENHANCED STRING 
MATCHING ALGORITHM 

Our labeling is defined as a two-phase feature-
enhanced string matching using the edit operations. 
For every input sentence, a coarse-grained syntactic 
matching is conducted in our first phase of matching. 
The matching relies on a set of coarse-grained but 
global part-of-speech (POS) tags. The major 
objective of this phase is to shortlist all the potential 
trees among 65,000 parse trees in the CKIP 
Treebank, which are relevant to the input sentence, 
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without getting bogged down into computational 
complexity with other linguistic details. The second 
phase of the matching is followed to compute the 
dissimilarity measure between the input sentence 
and every short-listed candidate that is identified in 
the first phase. Detailed POS and semantic class (SC) 
tags will be employed. As a result, a candidate tree 
which has the minimum dissimilarity with the input 
sentence will be identified. The underlying semantic 
labels and phrases of the candidate tree are used to 
determine the shallow language patterns of the input 
sentence. The details of the two-phase matching are 
explained in the following. 

3.1 Coarse-Grained Syntactic 
Matching 

In the first phase of matching, each word is 
represented by its corresponding POS. Let S be an 
input sentence and the T be a tree in a Treebank, si 
and tj be two tokens in S and T with attribute POSi 
and POSj respectively. We define the cost function 
for the change operation in the traditional edit 
operations (Wagner & Fischer, 1974) si →  tj to be 

( ) ),( jiji POSPOSutsR =→  (1)
where u(POSi, POSj) defines the cost due to the 
difference between the POS of the two tokens. The 
POS tags from the Chinese Knowledge Information 
Processing Group (CKIP) of Academia Sinica are 
employed (Chen et al., 1996). The tags are 
subdivided into 46 major POS classes which are 
further refined into more than 150 subtypes. 
However, in this coarse-grained matching, only the 
major POS classes will be considered. To figure out 
the cost function u(⋅,⋅) in the coarse-grained 
matching, all the major POS tags are organized into 
a hierarchical structure with an associated hard-
coded cost function. Figure 1 shows the structure of 
notional words and describes the relative distances 
between the adjectives (A), verbs (V), status-verbs 
(VH), measure-words (Nf), nouns (N), position-
words (Ng), time-words (Nd) and place-words (Nc). 
All notional words have definite meanings in the 
language. The cost function is based on their 
interchangeability, the degree of flexibility in 
placement in the syntax, and the similarity of their 
acceptable modifiers. For example, Chinese verbs 
and adjectives share a lot of common features 
syntactically, i.e. both can be predicates or modified 
by adverbs and the word, not. All these features fail 
to appear in nouns. The abbreviations in bracket 
indicate the original POS tags marked by the CKIP. 
The corresponding tree structure of the XML is 
shown in Figure 2. 

 
<Head toll="5"> 
  <NodeB toll="2"> 
    <NodeC toll="2"> 
      <Adjective toll="5"/> 
      <Verb toll="5"/> 
    </NodeC> 
    <Status-Verb toll="7"/> 
  </NodeB> 
  <NodeD toll="2"> 
    <Measure-Word toll="7"/> 
    <NodeE toll="2"> 
      <Noun toll="5"/> 
      <NodeF toll="2"> 
        <Position-word toll="3"/> 
        <NodeG toll="1"> 
          <Time-word toll="2"/> 
          <Place-word toll="2"/> 
        ... 
</Head>  

Figure 1: XML illustrating the relative distances between 
8 different types of POS. 

 

Head 

B D 

C 

G 

(A) (V) 

(Nd) (Nc) 

5 5 

2 2 

2 

1 

2 2 

(VH) 

E 

(Nf) (Ng) (N) 

F 

3 

5 

7 
2 

2 

7 

 
Figure 2: Corresponding tree structure of the XML shown 
in Figure1. 

The cost function u(⋅,⋅) reflects the difference 
based on the tag toll encoded in the XML as 
shown in Figure 1. The function also indicates the 
degree of alignment between the syntactic structure 
of the input sentence and the trees in the Treebank. 
Although two feature-enhanced strings with the 
same POS sequence do not imply they will share the 
same syntactic structure, this coarse-grained 
syntactic matching shortlists the potential trees by 
imposing a necessary, even not sufficient, constraint 
on its syntactic structure and limits the potential 
search space in the subsequent stage of semantic 
matching. 
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3.2 Computation of Semantic 
Dissimilarity 

What this second phase matching basically does is to 
make a detailed comparison between the input 
sentence and the short-listed trees in its earlier stage. 
In this phase, each Chinese token has two attributes, 
i.e. a detailed part-of-speech (POS) and semantic 
class (SC). Similar to the approach in Section 3.1, 
we define the cost function for the change operation 
si →  tj to be 

( ) ( )),(),,( jijiji SCSCvPOSPOSuftsR =→  (2)

where the function f is the dissimilarity function 
relied on two major components. The first 
component u(POSi, POSj) defines the partial cost 
due to the difference between the detailed POS of 
the words. The detailed POS tags are organized in 
XML format, similar to the approach demonstrated 
in Figure 1. Figure 3 shows the further breakdown of 
the nouns (Na) which is divided into in-collective 
(Nae) and collective (Na1) nouns. The collective 
nouns are then subdivided into in-collective concrete 
uncountable nouns (Naa), in-collective concrete 
countable nouns (Nab), in-collective abstract 
countable nouns (Nac), in-collective abstract 
uncountable nouns (Nad). The figure associated 
with the arcs in the Figure 3 illustrates the cost 
function. 

Na 

Na1 Nae 

  

Naa Nab Nac Nad 

Naea Naeb 
1 1 1 1 

1 1 

2 

1 
1 

2 

 
Figure 3: Tree structure of Nouns (Na) based on the CKIP 
Academia Sinica. 

The second term in Eqn. (2) defines another 
partial cost due to the semantic differences. In our 
approach, the words in the input sentences and the 
trees are identified using a bilingual thesaurus 
similar to the Roget’s Thesaurus. The is-a hierarchy 
in the bilingual thesaurus, shown the underlying 
ontology, can be viewed as a directed acyclic graph 
with a single root. Figure 4 shows one of the is-a 
hierarchies in the thesaurus using our Tree Editor. 
While the upward links correspond to generalization, 
the specialization is represented in the downward 

links. The hierarchies demonstrated in the thesaurus 
are based on the idea that linguists classify lexical 
items in terms of similarities and differences. They 
are used to structure or rank lexical items from more 
general to the more special. 

 
Figure 4:  is-a hierarchy in the bilingual thesaurus. 

Based on the is-a hierarchy in the thesaurus, we 
define the conceptual distance d between two 
notional words by their shortest path lengths. Given 
two words t1 and t2 in an is-a hierarchy of the 
thesaurus, the semantic distance d between the 
tokens is defined as follows: 
d(t1, t2) =     minimal number of is-a 

relationships in the shortest path 
between t1 and t2  

(3)

The shortest path lengths in is-a hierarchies are 
calculated. Initially, a search fans out through the is-
a relationships from the original two nodes to all 
nodes pointed to by the originals, until a point of 
intersection is found. The paths from the original 
two nodes are concatenated to form a continuous 
path, which must be a shortest path between the 
originals. The number of links in the shortest path is 
counted. Since d(t1, t2) is positive and symmetric, 
d(t1, t2) is a metric which means (i) d(t1, t1) = 0; (ii) 
d(t1, t2) = d (t2, t1); (iii) d(t1, t2) + d(t2, t3)  ≥  d(t1, t3). 
At the same time, the semantic similarity measure 
between the items is defined by: 

⎩
⎨
⎧ ≤

=
otherwise

),(if),(
:),(

MaxInt
dttdttd

ttv maxjiji
ji

  (4)

where dmax is proportional to the number of lexical 
items in the system and MaxInt is a maximum 
integer of the system. This semantic similarity 
measure defines the degree of relatedness between 
the words. Obviously, strong degree of relatedness 
exists between the lexical tokens under the same 
nodes. On the other hand, for the cost of the insert 
and delete operations, we make use the concept of 
collocation that measures how likely two words are 
to co-occur in a window of text. To better 
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distinguish statistics based ratios, work in this area is 
often presented in terms of the mutual information 
(MI), which is defined as  

)()(
),(

log),(
1

1
21

jj

jj
jj tPtP

ttP
ttMI

×
=

−

−
−

 (5)

where tj-1 and tj are two adjacent words. While P(x, y) 
is the probability of observing x and y together, P(x) 
and P(y) are the probabilities of observing x and y 
anywhere in the text, whether individually or in 
conjunction. Note that tokens that have no 
association with each other and co-occur together 
according to chance will have a MI value close to 
zero. This leads to the cost function for insertion and 
deletion shown in Eqns. (6) and (7) respectively. 

( )
⎩
⎨
⎧ >>×

=→
−

otherwise
0if

MaxInt
zek

tR
z

j
ε

λ  (6)

where z =min {MI(tj-1 , tj), MI(tj , tj+1)} 
 

( )
⎩
⎨
⎧ >>×

=→ +−
− +−

otherwise
0),(if 11

),( 11

MaxInt
ttMIeltR jj

ttMI

j

jj ελ
(7)

where k, l, ε are three constants relied on the size of 
the active corpus. 

Obviously, the insertion operation will be 
penalized if the co-occurrence between the newly 
inserted word and its neighbors is low. Similarly, the 
deletion operation is most likely to happen if there is 
a high co-occurrence between the adjacent pairs 
after the deletion. Using the above cost functions for 
the three types of edit operations, the tree in the 
Treebank with minimum cost is being chosen to be 
the best approximation of the input sentence and its 
associated semantic labels will be adopted. Shallow 
language patterns are then extracted based on the 
recursive structures and semantic labels appeared in 
the Treebank. The experimental results of the 
semantic labeling are shown in the section below. 

4 EXPERIMENTAL RESULTS 

As mentioned in Eqn. (2), several approaches have 
been used to define the dissimilarity function f by 
combining the semantic differences and the detailed 
POS tags in our second phase feature-enhanced 
string matching. In our evaluations, five different 
types of dissimilarity function f are applied. They are  
(i) f1(u, v)  = u(POSi, POSj) 
(ii) f2(u, v)  = v(SCi, SCj)  
(iii) f3(u, v)  = u(POSi, POSj) + v(SCi, SCj) 
(iv) f4(u, v)  = min (u(POSi, POSj) ,  v(SCi, SCj)) 
(v) f5(u, v)  = max (u(POSi, POSj) , v(SCi, SCj)) 

Dissimilarity function f1(u, v) provides a detailed 
version of our coarse-grained syntactic matching. 
Detailed POS tags are used as the dissimilarity 
measure in the labeling. Similarly, f2(u, v) considers 
only the semantic class of the words. The other three 
combine both syntactic and semantic features in 
defining the dissimilarity measures. We have tested 
our shallow semantic labeling with 10,000 sentences 
with the Treebank. Since this research is concerning 
with shallow semantic labeling, we have no 
incentive to match the trees/subtrees in the Treebank 
with very complicated structures. The average 
sentence length is around 13.7 characters per 
sentence. Table 1 summarizes the results of our 
system evaluation. The third and fourth columns in 
the table are number of sentences in each range of 
edit distance and their average edit distances. The 
edit distance is defined as a minimum cost in 
transforming the input sentence with the closest 
sentence pattern in the Treebank. In other words, the 
smaller the distance, the higher similarity they have. 

Table 1: Sentence analysis in the experiment. Edit distance 
is defined as a minimum cost in transforming the input 
sentence with the closest sentence pattern in the Treebank. 
The smaller the distance, the higher similarity they have.  

Dissimilarity 
function f 

Range of 
Edit distance

% of 
sentences 

Average edit 
distance 

0-25 13.9 19.2 
26-50 16.3 40.5 
51-75 19.7 63.6 

76-100 27.9 89.6 

f1(u, v) 

101-150 22.2 124.9 
0-25 11.3 19.3 
26-50 15.6 41.4 
51-75 17.7 65.2 

76-100 29.3 91.8 

f2(u, v) 

101-150 26.1 125.7 
0-25 24.1 17.9 
26-50 31.6 38.2 
51-75 22.7 62.3 

76-100 12.8 85.5 

f3(u, v) 

101-150 8.8 121.4 
0-25 18.6 19.1 
26-50 19.1 41.3 
51-75 30.2 64.7 

76-100 14.7 88.6 

f4(u, v) 

101-150 17.4 124.2 
0-25 20.5 19.6 
26-50 22.4 40.9 
51-75 26.9 58.2 

76-100 15.3 87.9 

f5(u, v) 

101-150 14.9 128.4 
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If it is considered as a good match where the 
edit distances are equal to or less than 50, then it can 
be observed, in Table 1, that the dissimilarity 
functions f3,  f5 and f 4 all produce higher percentage 
of sentences with lower edit distance. This reflects 
both the information from syntactic tags and 
semantic classes provide useful clues in our shallow 
semantic labeling. Our experiments are not 
conducted with perfect information. It is worthwhile 
to mention that more than 530 sentences have 
incomplete information which mainly comes from 
proper nouns, or out-of-vocabulary (OOV) words. 
Both of them have neither defined POS nor semantic 
class. All these information will be annotated with a 
default value which will certainly induce errors in 
our labeling. While it is inevitable to have OOV 
words in any real corpus, the performance, due to 
the coverage of POS and semantic classes, does not 
deteriorate much in our system. The labeling is still 
feasible over the sentences with OOV words. This 
tolerance ability provides the graceful degradation in 
our shallow semantic labeling. While other systems 
are brittle and working only in all-or-none basis, the 
robustness of our system is guaranteed. At the same 
time, while real text tends to have grammatical 
mistakes and error-prone, these problems can be 
tackled with an acceptable tolerance in our system. 

 In our second evaluation, we have tested our 
algorithm in recognizing several major semantic 
labels that appear in our sentences. The semantic 
labels include theme, goal, property, range, 
agent, predication, location, time. As 
with other text analysis, the effectiveness of the 
system appears to be dictated by recall and precision 
parameters where recall (R) is a percentage of how 
many correct labels can be identified while precision 
(P) is the percentage of labels, tackled by our system, 
which are actually correct. In addition, a common 
parameter F is used as a single-figure measure of 
performance which combines recall (R) and 
precision (P) as in follows, 

RP
RPF

+×
××+

= 2

2 )1(
β

β  (8)

We set β = 1 to give no special preference to either 
recall or precision. The recall, precision and F-score 
for the semantic labels in dissimilarity function f3 are 
shown in Table 2. 

As shown in the last row in Table 2, the 
precision and recall of all semantic labels are 
calculated by considering all the semantic labels that 
appear in the sentences, rather than by averaging the 
measures for individual semantic labels. It is worth 
noting that the greatest differences in performance 
are the recall while the precision remains relatively 
steady in most semantic labels. 

Table 2: Evaluation of different semantic labels in the 
dissimilarity function f3. Brackets show the results 
obtained in the derivation subtrees. 

 Elementary Subtree (Derivation 
b )Semantic Label Recall Precision F-score 

theme 0.79 (0.88) 0.82 (0.85) 0.805 
( )goal 0.80 (0.78) 0.79 (0.76) 0.795 
( )property 0.89 (0.78) 0.91 (0.83) 0.900 
( )range 0.94 (0.93) 0.92 (0.91) 0.930 
( )agent 0.92 (0.92) 0.87 (0.85) 0.894 
( )

predication 0.76 (0.80) 0.81 (0.78) 0.784 
( )location 0.92 (0.92) 0.91 (0.89) 0.915 
( )Time 0.93 (0.93) 0.95 (0.94) 0.940 
( )

experiencer 0.87 (0.89) 0.86 (0.88) 0.865 
( )manner 0.79 (0.85) 0.84 (0.83) 0.814 
( )possessor 0.91 (0.93) 0.88 (0.89) 0.895 
( )condition 0.80 (0.84) 0.82 (0.81) 0.810 
( )all labels 0.88 (0.84) 0.89 (0.88) 0.885 
( )

One possible explanation is that the low recall rates 
in some labels are due to less complete coverage of 
linguistic phenomena. In addition, we define an 
elementary subtree that spans only on a sequence of 
words, as well as a derivation subtree that contains 
at least one branch of elementary subtree. It may be 
expected the F-score of the derivation subtrees will 
be much worse than its counterpart, however, Table 
2 shows surprisingly the differences in the overall 
accuracy in two main types of subtrees are not 
significant. An explanation is that we have 
approached chunking as well as assigning the most 
salient semantic label to the chunks based on the 
POS and semantic tags. Even though there may be 
some misclassification in the terminal nodes, this 
will not hinder the system to tag the semantic labels 
in the longer chunks. In other words, the longer 
chunks are less error prone in our semantic labeling. 
This shallow semantic labeling technique produces 
an output that abstract away the details but retains 
the core semantic structure of the actual sentence. 
Pure linguistic theories may well have solutions to 
the semantic labeling that tends to be highly theory-
specific with less emphasis on real text. Our shallow 
approach does not focus on how well it explains 
various structural and interpretive phenomena in 
linguistics perceptive, but on how well it predicts the 
semantic label of sentences. It aims at theory-neutral 
annotation and derives linguistically-plausible 
semantic labels or short phrase structures using a 
Treebank. We have suggested that semantic labels 
can be detected by grouping sequences of words that 
occur together more often with high mutual 
information. While the approach has been 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

300



 

 

implemented successfully in the Chinese language 
as illustrated in our evaluation, the idea delineated 
certainly does not limit or tailor-made for any 
particular language. Only a minor modification is 
needed to apply the technique to other languages. 

5 CONCLUSIONS 

In this paper, we have illustrated a shallow technique 
in which semantic labels are extracted in forms of 
chunks of phrases or words using a two-phase 
feature-enhanced string matching algorithm. While 
the first phase is to shortlist the potential trees in the 
Treebank, chunks are further tagged with semantic 
labels in the second phase. Based on the linguist’s 
conception of phrase structure, our approach does 
not require a full syntactic parse to pursue semantic 
analysis and the recursively embedded phrases can 
also be identified without pain. This shallow 
technique is inspired by the research in the area of 
bio-molecular sequences analysis which advocates 
high sequence similarity usually implies significant 
function or structural similarity. It is characteristic 
of biological systems that objects have a certain 
form that has arisen by evolution from related 
objects of similar but not identical form. This 
sequence-to-structure mapping is a tractable, though 
partly heuristic, way to search for functional or 
structural universality in biological systems. With 
the support from the results as shown, we conjecture 
this sequence-to-structure phenomenon appears in 
our sentences. The sentence sequence encodes and 
reflects the more complex linguistic structures and 
mechanisms described by linguists. While our 
system does not claim to deal with all aspects of 
language, we suggest an alternate, but plausible, way 
to handle the real corpus. 
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Abstract: Multivariate pattern recognition has recently gained in popularity as an alternative to univariate fMRI ana-
lyis, although the exceedingly high spatial dimensionality has proven problematic. Addressing this issue, we
have explored the effectiveness of evolutionary algorithms in determining a limited number of voxels that,
in combination, optimally discriminate between single volumes of fMRI. Using a simple multiple linear re-
gression classifier in conjunction with as few as five evolutionarily selected voxels, a subject mean single trial
binary prediction rate of 74.3% was achieved on data generated by tactile stimulation of the arm compared
to rest. On the same data, feature selection based on statistical parametric mapping resulted in 63.8% correct
classification. Our evolutionary feature selection approach thus illustrates how, using appropriate multivariate
feature selection, surprising amounts of information can be extracted from very few voxels in single volumes
of fMRI. Moreover, the resulting voxel discrimination relevance maps (VDRMs) showed considerable overlap
with traditional statistical activation maps, providing a model-free alternative to statistical voxel activation
detection.

1 INTRODUCTION

We recently showed that the evolutionary algorithm
is an effective tool for classifier and feature subset
optimization for single-trial discrimination of electro-
encephalography (EEG) (Åberg and Wessberg, 2007).
In this study, we extend our approach to functional
magnetic resonance imaging (fMRI).

Similar to the EEG, fMRI data is non-stationary,
multivariate, noisy and very high-dimensional. These
properties are typically dealt with by applying statis-
tical parametric mapping (SPM) methods, where the
average level of voxel activity is computed offline in a
univariate, model-based fashion (Friston et al., 1994).

However, by being univariate, the SPM-based
method is not appropriately sensitive to cognitive in-
formation that is encoded in the combined effect of
numerous voxels. Pattern recognition approaches, on
the other hand, provide tools that are multivariate,
that is, based on the combined effect of several vox-
els. Moreover, trained pattern classifiers can be used
in situations that demand real-time results, including

online detection and identification of brain patterns.
Several recent studies have established the feasibility
of multivariate methods (Norman et al., 2006; Haynes
and Rees, 2006).

Due to the vast spatial dimensionality (in the or-
der of tens to hundreds of thousands of voxels), ef-
ficient feature selection has been identified as a ma-
jor challenge in the development of pattern classifica-
tion algorithms for fMRI (Norman et al., 2006). In
this study we therefore present an algorithm based on
evolutionary techniques, proven effective in numer-
ous optimization areas, including feature subset se-
lection (Hussein, 2001; Reeves and Rowe, 2002), that
detects which number and combination of individual
voxels that optimally carry information relevant to a
stimulus. These voxels are used as features in a classi-
fier, and we have chosen to use rudimentary multiple
linear regression (MLR) to show that even a very sim-
ple classification scheme can detect and distinguish
relevant cortical information in noisy fMRI data given
proper feature selection.

Our algorithm also generates a voxel selection
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frequency ranking, illustrating how relevant each
voxel is in discriminating between given patterns.
This ranking can be presented slicewise as a two-
dimensional image, or what we propose to call a voxel
discrimination relevance map (VDRM), showing the
anatomical location of brain regions involved in the
stimulus.

In this study we thus aim to evaluate the effective-
ness of the evolutionary approach in automatic voxel
subset selection, aspiring to improve single-volume
discrimination of cortical patterns. We also explore
how the results compare with established statistical
methods for detecting activated areas of the brain.
The data is acquired from a tactile stimulation exper-
iment where the physiology of brain activation is rea-
sonably well understood (Olausson et al., 2002). Part
of the findings have been previously presented in ab-
stract format (Åberg et al., 2006).

2 METHODS

Data Acquisition and Paradigm

A 1.5 T fMRI scanner (Philips Intera, Eindhoven,
Netherlands) with a sense head coil (acceleration fac-
tor 1) and a BOLD (blood oxygenation level depen-
dent) protocol with a T2*-weighted gradient echo-
planar imaging sequence (TR 3.5 s; TE 51 ms; flip an-
gle 90◦) was used to acquire brain scans in six healthy
human volunteers. The scanning planes (6 mm thick-
ness, 2.3 x 2.3 mm in-plane resolution) were oriented
parallel to the line between the anterior and posterior
commissure and covered the brain from the top of the
cortex to the base of the cerebellum. Each scan vol-
ume contained 25 slices at a spatial resolution of 128
x 128 voxels.

Following cues from the scanner, an experimenter
stroked a 7 cm wide soft brush over a 16 cm distance
in the distal direction on the right arm. Each brushing,
lasting 3.5 seconds (one single scan volume), was re-
peated three times and rest periods of equal duration
were interleaved. The Regional Ethical Review Board
at Goteborg University approved the study, and the
experiments were performed in accordance with the
Declaration of Helsinki.

Data Pre-processing

Data pre-processing was carried out with soft-
ware developed at the Montreal Neurologi-
cal Institute (Montreal, Canada; available at
http://www.bic.mni.mcgill.ca/software/). Functional

data were motion corrected and low-pass filtered with
a 6 mm full-width half-maximum Gaussian kernel.

Slices and voxels not containing brain matter were
discarded. To correct for hemodynamic delay, the re-
maining data (slices 2-20) was shifted by one volume.
An arm/rest data set containing 456 3.5 second pat-
terns of each class was formed per subject and slice,
and the samples were linearly normalized to the range
[0 1]. The first 80% of the patterns were randomized
and used in the evolutionary process (training data).
The remaining volumes were exclusively used in esti-
mating the prediction accuracy on already optimized
classifiers (validation data).

Feature Selection using Evolutionary Algorithms

An evolutionary algorithm is an optimization scheme
inspired by Darwinian evolution (Reeves and Rowe,
2002). The aim of the algorithm in this study is to se-
lect a limited number of voxels that, in combination
with a classifier, are maximally optimal in discrimi-
nating between the brain states induced by brushing
on the skin compared to rest.

Tournament selection is used here, where, for each
parent, a subset of individuals is randomly chosen
from the population and the fittest of these is selected.
The tournament size is set to a third of the total popu-
lation size. Reproduction is asexual, meaning that the
offspring is identical copies of the parents.

The fitness is computed as the proportion of cor-
rectly classified patterns using multiple linear regres-
sion. In order to avoid overfitting, the classifier pa-
rameters are established on the training data, whereas
a designated 25% of the training data (termed testing
data) is used for fitness computation.

The only mutation operation is substitution of a
voxel in the individual voxel subset with another, un-
used voxel. The frequency of mutation is regulated by
a constant mutation rate parameter.

Due to the stochastic nature of evolutionary algo-
rithms and the low signal-to-noise levels in the data,
the algorithm is unlikely to evolve the same voxel sub-
set at every attempt. To achieve robust results, the
algorithm is thus run numerous times.

The algorithm was implemented in Matlab (The
Mathworks, Massachusetts, USA) and C on a stan-
dard PC by one of the authors (M. Åberg).

Brain State Discrimination Performance

The prediction accuracy was evaluated on the valida-
tion data using the classifier and voxels from the run
that achieved best results on the training and testing
data. A discrimination accuracy of 50% corresponds
to chance.
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For comparison, the prediction accuracy using the
voxels with highest activation according to a statisti-
cal parametric mapping (SPM) method was also de-
termined. To this end, a statistical reference analysis
was performed on the training data (Worsley et al.,
2002).

Voxel Discrimination Relevance Maps

By aggregating the best feature subsets from each al-
gorithm run a voxel discrimination relevance ranking,
specifying the number of times each voxel has been
selected, can be obtained. This can be presented as a
slicewise two-dimensional voxel discrimination rele-
vance map (VDRM).

In order to mimic a classic block-design study
for comparison with the univariate SPM approach, all
data were used in the training process and there was
no prediction involved when generating the VDRMs.

3 RESULTS

Brain State Prediction Performance

The classification algorithm was applied to all sub-
jects individually using five voxels and 500 runs. The
prediction accuracies are well above chance (figure
1); a subject mean maximum prediction accuracy of
74.34% (range 65.79%-81.58%) was achieved. Us-
ing the five most active voxels as judged by the SPM
analysis, the subject mean maximum prediction ac-
curacy was significantly lower at 63.81% (Wilcoxon,
p=0.031; range 59.21-73.68%). Random classifica-
tion results in a prediction rate of 50%. Measuring the
prediction success in terms of information bits (Krip-
pendorf, 1986; Laubach et al., 2000), the difference
between methods is even more apparent: the SPMt-
based subject mean result is 0.094 bits (range 0.025-
0.22 bits), whereas the EA-based approach achieves
more than the double at 0.21 bits (range 0.077-0.32
bits).

The primary and secondary sensory cortices (SI
and SII), expected to be activated by tactile stimuli,
are approximately found in slices 4-7 and 11-12 (slice
numbers in the dorsal-ventral direction). As shown
in the bar chart in figure 2, the subject mean predic-
tion accuracies obtained in these slices are markedly
higher than in less relevant slices. Interestingly, the
prediction trend is clearly similar to the behavior of
the highest |SPMt|-value, a measure of brain activa-
tion (figure 2). It should be noted, however, that all
data is analyzed individually in native space rather

than at group level and that any anatomical congru-
ence between subjects is approximate at best.
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Figure 1: Brain state prediction accuracies for all sub-
jects, as evaluated on the validation data set using the five
best voxels and corresponding classifiers obtained after 500
training runs. The prediction accuracy using the five most
activated voxels according to SPMt computations of the
training data is also shown. The level of chance is 50%.
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Figure 2: The subject mean brain state prediction perfor-
mance and maximum |SPMt|-values per slice. The two
variables show high correlation, and slices with voxels
where a BOLD response was expected (SI: slices 4-7, SII:
slices 11-12) show consistently higher values. The mea-
sures have been scaled to the range [0 1] within subjects to
emphasize trends.

Voxel Discrimination Relevance Maps

The VDRMs also show striking visual similarity to
the SPMt (figure 3), although the VDRMs appear less
noisy overall. SI (slices 5-6), for example, is detected
in the SPMt as well as in the VDRM. Similarly, the
location of SII (slices 11-12) and also the insular cor-
tex (slices 11), to which unmyelinated tactile afferents
project (Olausson et al., 2002), is clear from either
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Figure 3: Voxel discrimination relevance maps for subject one, generated using five voxels over 500 runs, with corresponding
SPMts. The VDRMs and SPMts are clearly correlated. The right side of the images corresponds to the right side of the brain.

map. The SPMt also suggests several activated areas
that are not found in the VDRM. It should be noted,
however, that the SPMt maps are not thresholded, and
that all voxels with a |t|-value of less than 5.2 are
below the required significance levels. The VDRM
appears to detect highly activated negative and posi-
tive BOLD responses equally well, but does not dis-
tinguish between them (e.g. slice 5).

The Rffect of Voxel Subset Size

Including as few as two evolutionarily selected vox-
els yields voxel discrimination relevance maps where
some visual correlation with the SPM is clear (fig-
ure 4A). Further addition of voxels results in more
pronounced clustering at relevant sites, but also adds
noise. At 30 voxels the noise levels render the map
barely interpretable. Similarly, the subject mean
evolution-based prediction accuracy (figure 4B), in-
creases rapidly with the addition of up to three vox-
els, after which it levels out. Addition of more than 11
voxels decreases the performance drastically. SPMt-
based voxel selection behaves differently: the per-
formance for low numbers of voxels is poor, and in-
creases linearly with addition of voxels. Note that the
maximum number of available voxels is in the order
of thousands.

4 DISCUSSION

This study demonstrates the effectiveness of evolu-
tionary algorithms in selecting an optimal combina-
tion of voxels for highly accurate discrimination be-
tween single volumes of brain patterns — even in con-
junction with an exceedingly simple classifier. Us-
ing as few as five evolutionarily selected voxels and
a standard multiple linear regression classifier, a sub-
ject mean single-trial brain state prediction accuracy
of over 74% was achieved. Moreover, the voxel dis-
crimination relevance maps correlate clearly with sta-
tistical parametric maps, and the expected patterns
of brain activation were detected. Not surprisingly,
evolutionary feature selection achieved higher clas-
sification accuracy than voxel selection using SPM
ranking. The latter approach merely selects voxels
that show the largest individual average difference be-
tween brain states, whereas the evolutionary method
determines a combination of voxels that is tailored
for brain pattern discrimination. The feasibility of the
multivariate approach is further established by the fact
that the contribution of so little temporal and spatial
information — 3.5 seconds worth of data from only
five voxels — allows for accurate brain state predic-
tion. The maximum prediction accuracy using evolu-
tionary feature selection is achieved at drastically less
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Figure 4: A: The effect of number of included voxels on the voxel discrimination relevance maps for subject one, slice
five. The maximum number of possible voxels is in the order of thousands. B: Subject mean evolutionary and SPMt-based
prediction accuracy as a function of voxels subset size. The SPMt-based feature selection peaks at 65 voxels. The data has
been scaled within subjects to the range [0 1] to emphasize trends.

voxels than the SPMt approach (figure 4), indicating
that a large number of SPMt voxels are irrelevant for
the discrimination task. In addition, univariate fMRI-
analysis requires averaging over time to overcome the
inherently low signal quality, and lacks any prediction
qualities.

Our approach is not limited to brain state identi-
fication, but also provides two distinct approaches to
information localization. The fact that the slicewise
prediction accuracy correlates very well with the cor-
responding maximum |SPMt|-value — the classical
method of detecting activation — is a clear indication
that the information revealed by the prediction perfor-
mance is physiologically related to the stimulus (fig-
ure 2). The algorithm can be applied to voxel clusters
of any size and shape, defined either beforehand or
through evolution, thus optimizing the classification-
based information localization. Alternatively, the
voxel discrimination relevance maps serve as relative
activation detection charts, visually showing which
voxels are highly related to the stimulus. Signifi-
cance levels akin to SPMt values can be computed
using boot-strap statistical methods, involving data
permutations, allowing for proper VDRM threshold-
ing (Efron and Tibshirani, 1993). Although not done
here, the algorithm can be applied to a whole head
volume, resulting in a global rather than slicewise
VDRM.

In combination with excessive amounts of data,
typical for fMRI studies, the time taken to run an
evolutionary algorithm can be staggering. However,
in our design the number of included voxels is very
small, and using a standard PC (3.20GHz processor,
3GB RAM) one five-voxel training run on one indi-
vidual (20 slices) takes only approximately 1.5 min-
utes, whereas the validation is done in (biological)
real-time. Furthermore, several refinements can be
added to make the algorithm considerably more ef-
ficient.

The multiple linear regression method used for

classification in this study is sensitive to noise and
limited to linearly separable problems. In its sim-
plicity, however, the MLR effectively illustrates the
power of evolutionary algorithms in extracting rel-
evant information buried in substantial amounts of
noise. Pattern analysis using advanced non-linear al-
gorithms, such as artificial neural networks, have been
attempted and show promising results. Additional
discrimination algorithms, such as support vector ma-
chines and other state-of-the-art classifiers, can easily
be incorporated into the evolutionary scheme as re-
quired.

5 CONCLUSIONS

We have shown that evolutionary based multivoxel
feature selection is effective in extracting relevant
characterizing information from single volumes by
utilizing the multivariate properties of fMRI. More-
over, our approach provides a data-driven alternative
to voxel activation detection based on statistical meth-
ods.
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Abstract: Functional magnetic resonance imaging (fMRI) captures brain activity by measuring the hemodynamic re-
sponse. It is often used to associate specific brain activitywith specific behavior or tasks. The analysis of
fMRI scans seeks to recover this association by differentiating between task and non-task related activation
and by spatially isolating brain activity. In this paper, weframe the association problem as a convolution of
activation patterns. We project fMRI scans into a low dimensional space using manifold learning techniques.
In this subspace, we transform the time course of each projected fMRI volume into the frequency domain. We
use independent component analysis to discover task related activations. The combination of these methods
discovers sources that show stronger correlation with the activation reference function than previous methods.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) cap-
tures neural activation patterns by measuring the
hemodynamic response in cranial tissue through sam-
pling discrete regions of the brain, referred to as vox-
els (Dogil et al., 2002). Each voxel represents the
aggregate hemodynamic response of a region of neu-
rons. Behavioral experiments using fMRI are de-
signed to evoke activation in a hypothesizedregion
of interest (ROI) in the brain. The ROI represents an
anatomical region of the brain believed to be where
functional processing of a specific behavioral task oc-
curs. Experimental trials in these designs use a be-
havioral task meant to evoke activation in the ROI.
Control trials do not evoke ROI activation.

Unfortunately, locating significant differences be-
tween active and non-active voxels is challenging be-
cause of the inherent latencies and artifacts in fMRI
signal acquisition (Josephs et al., 1997). Furthermore,
the hemodynamic activation level of neighboring vox-
els influences voxel activation, producing less accu-
rate spatial activation maps.

Traditional analysis methods such as statistical
parametric mapping (SPM) use statistical tests to
demonstrate significant differences between the time
course activation of particular voxels in the control
and experimental tasks (Friston, 2003). By con-

trast, the objective of component analysis methods—
such as independent components analysis (ICA)—
is to recover components whose time course activa-
tion correlates with the task-based reference function:
argmaxa∈{A}ρ(r,a), wherer is the reference activa-
tion time course that represents the ideal activation
during the trial, anda is the component activation
time course.

Although ICA has been shown to work for simple
block experimental designs, it has some limitations.
In particular, ICA has been used successfully when
combined witha priori anatomical information about
activation areas (McKeown et al., 1998). Further-
more, simple ICA does not account for the delayed
composition effects that can arise in fMRI analysis.

The contribution of this work is to frame the prob-
lem of the combined latencies of the hemodynamic
response and the signal acquisition process as a con-
volution of the hemodynamic response functions of
spatially independent components. Framed this way,
we can address these confounding spatial and tem-
poral influences, by first using nonlinear manifold
learning to constrain source separation and to remove
voxels that do not help distinguish between task and
non-task activation. We generate a frequency space
representation of the reduced features for convolutive
source separation using ICA. Our method allows us to
handle delayed composition effects and to select ROIs
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without specific a priori anatomical knowledge of the
ROI. Thus, we are able to limit type II errors.

2 PREVIOUS WORK

Independent Components Analysis. Time domain
independent component analysis (ICA) works on dis-
crete time, linear dynamical systems where a latent
process generates a set of observables (McKeown
et al., 1998). Ak-vector of random variables rep-
resents the state of the process at each time step.
In such a system, latent variables are linearly mixed
to give rise to the observable variables at each time
step. First-order Markov dynamics govern state tran-
sitions within the process defined by ak× k matrix
M (Roweis and Ghahramani, 1999).

Formally, X = AS, whereX is a k× t observa-
tion matrix, A is a mixing matrix and S is the k× t
matrix representing the time course evolution of the
latent random variables. ICA recovers anunmixing
matrix A−1 for the observation matrixX . A−1 pro-
duces a set of statistically independent components
from the data. Under certain assumptions, the com-
ponents represent the (possibly scaled) evolution of
the original latent process. In this case, the mixing
matrix A represents the degree to which a component
participates in the generation of the observation data
at each time step. For the analysis of fMRI scans, we
assume that the separation problem in the reduced di-
mension problem is determined, which means that the
number of sources is equal to the number of sensors
(voxels). In the determined case, the discovered inde-
pendent components can be interpreted as underlying
causes of observations, especially when one believes
that: (1) observed features are generated by the in-
teraction of a set of independent hidden random vari-
ables, and (2) these hidden variables are likely to be
kurtotic (i.e. discriminative and sparse). These as-
sumptions are reasonable for fMRI analysis because
of existing neurological evidence for functional mod-
ularity in the brain and the specific requirements of
the experimental task.

Time domain applications of ICA assume an in-
stantaneous linear mixture model at each time step.
McKeownet al. (McKeown et al., 1998) applied ICA
to fMRI data from a simple block-design experiment
and found correlated activation signal for a compo-
nent corresponding to the region of interest (McKe-
own et al., 1998).

Manifold Learning and fMRI. Manifold learning
has been applied to fMRI time domain data directly
(Shen and Meyer, 2006). In this case, the intrinsic

dimensionality represents spatially independent voxel
activations and the objective is to generate clusters
matching ground truth classification. The intuition is
that task related activated voxels will cluster together
in the representation. The interpretation of the mani-
fold is that it captures information about the geometry
of the volume space. A key issue with direct appli-
cation is that target signals in a behavioral study are
often not the high ranking elements generated using
principle components analysis (PCA) and ICA (McK-
eown et al., 1998). These less significant activations
typically rank in the latter component quartiles.

Convolutional Blind Source Separation. Blind sep-
aration of convolutional sources has applications in
a number of signal processing domains, including
fMRI (Pederson et al., 2007; Anemuller et al., 2003).
Here, we assume a linear convolution of sources in
the time domain and model observations at timet as:

x(t) =
K−1

∑
k=0

Aks(t− k)+ v(t) (1)

whereK is the finite impulse response (FIR) length.
In frequency space, source separation is performed
for each frequency. For the purpose of analyzing
fMRI data, where there is a relatively limited tempo-
ral extent, we choose a window function that mini-
mizes band overlap.

W(ω) = A(ω)S(ω)+ V(ω) (2)

3 COMBINED APPROACH

Our approach to fMRI analysis seeks to combine the
strengths of manifold learning, convolution in fre-
quency space, and complex ICA in order to improve
the accuracy of recovered brain activity components.

Manifold learning has not been applied to time do-
main data as preprocessing for component analysis.
Furthermore, manifold learning techniques reduce the
dimensionality of the ROI, making component analy-
sis more effective at source separation. In fact, much
of the ROI is not significantly activated and correlated
to the reference function. We want to reduce the di-
mensionality of these voxels before source separation.

Using ICA in the frequency domain allows us to
treat convolution of components as a product, which
in turn allows a computationally feasible algorithm
to solve the convolutive blind source separation prob-
lem. Using this version of the source separation prob-
lem is important because voxels near each other in the
brain may exhibit delayed influences during record-
ing. Using a convolutive model instead of an instan-
taneous mixing model provides the ability to capture
this influence and properly separate the components.
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3.1 Manifold Learning

Before transformation into the frequency domain and
subsequent component analysis, we apply a manifold
learning algorithm to reduce the size of the voxel
set. The dimensionality reduction serves two pur-
poses. First, it reduces the computational burden of
the relatively expensive ICA computation. More im-
portantly, manifold learning allows researchers to in-
clude a large ROI in order to avoid Type II errors
caused by failing to include a relevant voxel in the
analysis. The dimensionality reduction algorithm can
then reduce the region based on the observed activa-
tion levels, thereby achieving a manageable size while
minimizing the risk of excluding relevant voxels.

We experiment with several different mani-
fold learning methods: local linear embedding
(LLE) (Roweis and Saul, 2000), isomap (Tenen-
baum et al., 2000), Laplacian eigenmaps (Belkin and
Niyogi, 2003) and diffusion maps (Coifman and La-
fon, 2006). Diffusion maps were used in previous
work with fMRI (Shen and Meyer, 2006), while LLE
and isomap are both standard methods for manifold
learning and provide a basis for comparison.

3.2 Complex ICA

In order to convert the time course of voxel activa-
tions into the frequency domain, we use the short–
time Fourier transform (STFT) with a window size
adapted for each dataset. In the case of the left/right
dataset (described in detail in the following section),
the window size equals the ratio of the hemody-
namic response latency to volume acquisition latency.
Each STFT generates frequency vectors for a spe-
cific temporal window, which are grouped into fre-
quency vectors and analyzed via complex ICA. The
Fourier transforms represent signals in each bin in
the frequency domain as complex values. We apply
complex-fastICA (Bingham and Hyvarinen, 2000) to
each bin, so that the generated components are fre-
quency specific.

3.3 Component Comparison

We select components with activation sharing high
correlation to the reference activation function. We
consider these components to be task related. In the
time domain, application of ICA generates the acti-
vation of independent sources in the columns of the
unmixing matrixA, and correlation of these columns
to the reference function indicates task relatedness. In
the frequency domain, where there STFT generates a
set of frequency bins, the objective is to find com-

ponents in each frequency bin that are task related.
We generate the reference activation function using
the same parameters (same spectral extent, same bin
parameters) used to generate the STFT for the obser-
vation set. We use the standard distance measure for
complex vectors:∑i |x|

2. For each bin, we find the
highest correlated activation course: argmaxa ρ(a,r).

4 EXPERIMENTS

Here, we present results of experiments comparing
performance of the manifold learning techniques and
complex source separation alone. The datasets are
meant to demonstrate method performance in a sim-
ple, controlled task as well as actual study data.

4.1 Left/right Motor Task

To evaluate our method, we begin with a simple ex-
ample: consider an fMRI scan sequence of a single
subject performing a repetitive right- or left-hand fin-
ger movement task (Hurd, 2000). The objective is to
find task related activated components of hand move-
ments in the ROI. For the ROI, we selected a window
of voxels in a region based on correlation values to the
reference function using time domain ICA. In the mo-
tor task, 80 volumes were sampled at a constant rate
for each task: left-hand/right-hand finger move. We
defined a ROI in slices 13,14,15,16, loosely defined
around the temporal area of the motor cortex. Scans
of left hand tasks are concatenated to scans of right
hand tasks, 160 scans total. Given this organization,
the reference activation function for left hand tasks is
defined as a delta function:δ(x≥ 80).

First, we want to test how manifold learning tech-
niques assist in time domain separation. In this case,
we compare the correlation of component activations
recovered by ICA to reference function activation.
We compare the best correlation values generated us-
ing ICA alone as well as with the various manifold
learning techniques. These are all performed using
the time domain data (see Table 1). The manifold
learning methods do not recover correlated activation
of components as well as using ICA alone in this case.

For the STFT, we use a parameterization for each
dataset. In the case of the left/right dataset, the win-
dow size is the ratio of the hemodynamic response la-
tency to volume acquisition latency. We consider the
measured values of voxelsvi through timeti∈{1...τ}.
Each STFT generates frequency vectors for each win-
dow. We group frequency vectors from each STFT
and apply component analysis to the resulting matri-
ces. Computing the inverse transform of the compo-
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Table 1: Comparison of correlation values to reference
function using manifold learning in time domain.

Method Maxρ p-value
Diff Map 0.1407 0.1
Isomap 0.3470 0.001
LLE 0.2052 0.01
LE 0.2236 0.005
ICA 0.7395 0.0001
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Figure 1: Comparison of minimum distances to reference
function between manifold learning method preprocessing
and complex ICA. Minimum distance for each method in
each STFT frequency bin.

nent produces a time domain representation of the sig-
nal. However, due to the window overlap in the STFT,
this time scale is not appropriate for comparison in the
original observation space.

We compare the performance in the left/right task
between the various manifold learning algorithms and
complex ICA in the frequency domain without mani-
fold learning (see Table 1). To compare methods, we
use the minimum distance of component activation to
reference function activation in each frequency bin. In
this case, manifold learning using diffusion maps and
local linear embedding perform slightly better than
complex ICA alone.

4.2 Postle et Al. Study

Postleet al. (Postle et al., 2000) measured activation
of five participants in four behavioral tasks: forward
memory, manipulate memory, guided saccade, and a
free saccade task. Subjects completed 96 trials: 8
blocks of 12 trials each. Within each block, subjects
received an equal number of task trials, in random or-
der. Subjects were presented with a static arrange-
ment of squares on a screen. Signals were acquired
using a GE 1.5T scanner with 3.75mm2 in-plane res-
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Encoding/Guided 
Saccades

6 sec

Pre-delay 
Instructions

1 sec

Delay

7 sec

Probe

2 sec

Time

Figure 2: Trial event sequence (Postle et al., 2000). Initial
instructions indicate what the memory task will be. After
ISI, a sequence of highlighted boxes (see Figure 3) or fixa-
tion points appear. Pre-delay instructions indicate whether
the memory task is “forward,” “down to up,” or “fixate.”
After the delay, the probe is shown.

olution and 5mm inter-slice distance. Volumes were
21 slices, and volume acquisition time was 2s; 17 vol-
umes were acquired per trial. Inter-trial time was 7s.
By comparing voxel activation values in each experi-
mental task in the ROI, Postleet al. showed no signif-
icant difference in voxel activations between control
and experimental tasks.

Figure 2 shows the trial sequence. First, subjects
are told what the trial task will be: “memory,” “no
memory,” or “free eye movements.” Following an in-
terstimulus interval (ISI) of 500ms, subjects receive
the sequence of highlighted squares (Figure 3) fol-
lowed by further instructions: “forward,” “down-to-
up,” or “fixate.” After the return to baseline delay,
subjects receive the probe: a highlighted square in the
sequence.

5

1

4

6

3

2

Figure 3: Memory task stimulus. A fixed number of squares
are oriented on a screen. During memory tasks, a sequence
of the squares are highlighted in a random order. An exam-
ple highlight sequence for memory is shown.

Behavioral Tasks. During forward memory, manip-
ulate memory, and guided saccade tasks, a sequence
of squares was highlighted followed by a delay and
then a task prompt (see Figures 2&3). In forward
memory tasks, subjects were presented a sequence of
highlighted squares. Then, given one of highlighted
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Table 3: Comparison of minimum distances to reference function activation between manifold learning methods in combina-
tion with complex ICA and complex ICA alone. For each bin (columns), the minimum distance for each method is shown
(i.e. the distance of the best matching components in each frequency bin).

1 2 3 4 5 6 7 8 9
Subject H
ICA 30.9077 29.5631 28.0292 25.5206 22.1484 18.0443 13.3546 8.1448 2.8922
Isomap 29.9395 29.4552 27.8957 25.4514 22.1252 18.0155 13.3221 8.1521 2.8443
Diff Map 30.2166 29.6940 28.1611 25.6646 22.3125 18.1816 13.4606 8.2916 2.9831
LLE 30.2003 29.6894 28.1652 25.6854 22.3254 18.1924 13.4682 8.2789 2.9805
Subject K
ICA 30.1220 29.5681 28.0250 25.5203 22.1783 18.0569 13.3136 8.2129 2.9432
Isomap 30.1864 29.6640 28.1538 25.6675 22.2939 18.1749 13.4683 8.2771 2.9618
Diff Map 30.2093 29.7037 28.1519 25.6816 22.3158 18.2034 13.4654 8.2952 2.9904
LLE 30.2080 29.6818 28.1548 25.6716 22.3262 18.1962 13.4695 8.2875 2.9790
Subject S
ICA 30.2240 29.7156 28.1836 25.6819 22.3365 18.2140 13.4956 8.3269 3.0025
Isomap 30.2044 29.7038 28.1697 25.6823 22.3215 18.2035 13.4576 8.2912 2.9832
Diff Map 30.2066 29.6898 28.1527 25.6871 22.3178 18.1870 13.4652 8.2941 2.9765
LLE 30.1965 29.6953 28.1583 25.6731 22.3160 18.1937 13.4655 8.2990 2.9525
Subject T
ICA 30.2336 29.7114 28.1868 25.6938 22.3342 18.2210 13.4869 8.3183 3.0027
Isomap 30.2077 29.6922 28.1493 25.6869 22.3167 18.1991 13.4576 8.2959 2.9792
Diff Map 30.2115 29.6900 28.1641 25.6714 22.3120 18.1877 13.4735 8.2751 2.9868
LLE 30.2100 29.6754 28.1444 25.6737 22.3142 18.1942 13.4569 8.2977 2.9799
Subject W
ICA 30.2307 29.7087 28.1928 25.7006 22.3436 18.2214 13.4755 8.3068 2.9984
Isomap 30.1833 29.6769 28.1525 25.6727 22.3140 18.1835 13.4538 8.2765 2.9460
Diff Map 30.2106 29.6915 28.1508 25.6780 22.3146 18.1972 13.4617 8.2923 2.9748
LLE 30.2044 29.6896 28.1588 25.6591 22.3199 18.1946 13.4617 8.3007 2.9805

Table 2: Time domain comparison using Postleet al.
dataset. Correlation of power spectra for activation time
courses generated for each subject using ICA and the var-
ious dimensionality reduction methods: ICA (ICA alone),
Isomap (Isomap and ICA), LE (Laplacian eigenmap and
ICA), and LLE (Local linear embedding and ICA).

Subject ICA Isomap LE LLE
H 0.7771 0.6944 0.8600 0.8774
K 0.9412 0.7288 0.8229 0.7897
S 0.8423 0.7319 n/a 0.8719
T 0.8903 0.7657 0.8274 0.8094
W 0.9262 0.7156 0.8268 0.8711

squares, subjects were asked to recreate the sequence
from that point on. In the manipulate memory task,
subjects were asked to reorder the highlighted se-
quence of squares from bottom to top, so that the low-
est highlighted square should be first in the sequence
and the highest should be last. In the guided sac-
cade task, subjects were asked to simply follow an-
other highlighted sequence on the screen. In the free
saccade task, subjects were not shown a highlighted
sequence, and were asked to simply saccade left and
right repeatedly.

In these experiments, we consider a ROI based

on the reported areas in each subject. We constrain
the ROI to be even smaller. In this experiment, we
use the manipulate memory task as the experimen-
tal task alone and generate the reference function for
each subject.

Time Domain Experiment. We apply the method to
time domain signals, as in the left/right task. In this
case, dimensionality reduction methods produce sig-
nals that do not compare on the time axis. In this case,
we compare the correlation of the power spectra from
activation time courses to the reference power spec-
trum. Here we compare the first 50 frequency values,
accounting for over 99% of the frequency content in
the reference signal. ICA generated components are
well correlated across subjects. However, local linear
embedding appears to outperform ICA in subjects H
and S (see Table 2).

Frequency Domain Experiment. We apply the
method to the frequency domain signals using the
same comparison method used in the left/right
dataset. In this case, dimensionality reduction meth-
ods outperform ICA alone for most subjects. For sub-
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ject H, Isomap appears to recover sources whose acti-
vation better matches the reference function. For sub-
ject K, ICA alone appears to outperform the manifold
learning methods. For subjects S,T, and W, manifold
learning appears to generate better source separation.

5 DISCUSSION

In our method, we motivate manifold learning as a
pre-processing step to convolutive source separation
by appealing to the need for dimensionality reduc-
tion. The idea in using manifold learning to reduce di-
mensionality is that we can automatically identify the
voxels in the ROI that contain the most information
about the activation sequence of the area. Further-
more, the frequency space representation of voxels
results in much higher dimensionality; therefore, re-
ducing the dimensionality is critical to feasible com-
ponent analysis. The computational cost of filtering
unneeded dimensions at component analysis time is
far greater than at manifold learning time.

An additional side effect of manifold learning is
that we not only find features representing the acti-
vation in an area, but we also space the data along
these features so that we implicitly perform whiten-
ing of the data. In the normal use of time domain ICA
one explicitly performs PCA as a first step in order to
whiten the data. In the time domain this decorrelates
the data, making the source separation task return bet-
ter results.

We have shown improvement by using manifold
learning as a preprocessing step to complex source
separation. One benefit of this method is that the
reduced dimensionality representation requires less
computation by complex ICA. Furthermore, little
prior information is needed to define the ROI. These
results suggest that a more tightly integrated approach
would lead to better separation performance.
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Abstract: This paper attempt to investigate the relationships between relaxation effect of music and rhythm of human
body (in this paper fingerplethysmogram (so called ”pulse”)is adopted) using EEG and HRV based two relax-
ation indicators. We focus on following viewpoints: synchronization between pulse and music, the tendency of
pulse beat and pulse-music tempo ratio (µ). This paper reports the experimental results that the pulse decreas-
ing state is effective for EEG based indicator while HRV based indicator is high value at the pulse increasing
state. Furthermore, we classify subjects into 3 groups by the analysis of synchronization between pulse and
music tempo. This papar also reports the analysis of relationships between pulse-music tempo ratio (µ) and
relaxation effect under the classification.

1 INTRODUCTION

Nowadays, ”Kansei” (emotion, feelings) evaluation
has become more important keyword because many
products are used by human and its feeling effects
good or bad impression for the user. Many re-
searchers are now researching the design and another
factors bringing us better feelings. However, it is dif-
ficult to evaluate emotions because there are too many
variations in ”emotion” and there is no general way to
describe it. On the other hand, the objective way of
evaluating emotion is studied in many institutes using
bio signals. To evaluate the feelings, many indica-
tors are adopted. For example, brain wave is popular
one. Alpha wave of brain waves is usually adopted
as a indicator of relaxation. In the ”Kansei” eval-
uation, a study about relaxation effect is performed
flourishingly because many people needs relaxation
in this demanding society. We focused on the re-
laxation effect of music because we can get the mu-
sic relaxation easily sitting at the sofa in the house
and no any special equipment is needed. (T. Naka-
mura, 2002) described the relationships between the
tone of the sound and power spectrum of the alpha
wave using electroencephalography (EEG). On the
other hand, investigation on musical tempo and im-

pression change using subjective valuation has been
reported (K. Kurashima, 2004). In the other case, the
substance in saliva is used as a indicator of stresses.
Music research is also performed in many viewpoints
because music has so many elements: rhythm, tempo,
harmony, instrumental and more. Various researches
focused on the music tempo has been reported. For
example, synchronization between pulse and music
tempo is described in (M. Fukumoto, 2004). The pa-
per stated that synchronization effect is related to re-
laxation effect calculated from heart rate variability.
In this paper, we try to investigate the relaxation ef-
fect of music based on the relationships between the
rhythm of human body and music tempo in addition
to synchronization effect, and report many empirical
results about relaxation effect.

2 SUBJECT OF ANALYSIS

Relaxation indicators:
In this paper, we adopted electroencephalography
(EEG) and heart rate variability (HRV) to calcualte
relaxation indicators. EEG analysis was performed
using the HSK central rhythm monitor system devel-
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Figure 1: Brain wave and pulse sensor.

oped by Human Sensing Inc in Japan.
This equipment measures the Fp1 and Fp2 chan-

nels of the EEG and estimates the Comfortable-
Degree (CD) (Yoshida, 2000). Ordinarily, EEG is
measured with the International 10:20 method, but we
adopted the method described in (Yoshida, 2000) be-
cause it lightens a burden of the subject. We used the
content ratio of high frequency (HF) as the HRV indi-
cator calculated from the finger plethysmogram (sim-
ply called, pulse).

• Comfortable-Degree
We used Comfortable-Degree as an indicator of
relaxation at brain. This indicator is calcu-
lated from the frequency fluctuation of the brain
waves. Tomoyuki Yoshida tried to make a in-
dicator of comfortable-feelings (Yoshida, 2000).
He insisted that human psychological condition
changes every time if the physical situation was
same. So we have to evaluate the fluctuation of
the human emotion in an objective way. The re-
search groups performed the experiment that ex-
hibit many good or bad smells, sounds and musics
for the subject and investigated the fluctuation of
the alpha wave frequency. According to the result,
the gradient of the spectrum of brain waves in the
left frontal area is get closed to 1.0 in the situation
of comfortable. Conversely, that is get closed to
0 in the situation of uncomfortable. On the other
hand, the gradient of the spectrum of brain wave
in the right frontal area is get closed to 0 in the
condition of subject felt awakening. As a result,
the expression of comfortable degree is consisted
below.

CD(%) =
√

F p1slope
2 +Fp2slope

2/2∗100, (1)

whereF p1slopeandF p2slopemean the gradient of
the spectrum of alpha wave in Fp1 and Fp2 chan-
nel, respectively.

• Content Ratio of HF
Our heart beat is varying every time and R-R In-
terval (peak to peak) also changes every time.

Many researches focused on this phenomenon
clarified that the changes of R-R interval is re-
lated to autonomic nerve system (Task Force of
the European Society of Cardiology, 1996). This
evaluation method is called Heart Rate Variability
(HRV). The method is performed following steps.

– calculate R-R interval from pulse data (shown
in Figure 2).

Figure 2: A sample of pulse data.

– generate an interpolated R-R interval line
(shown in Figure 3).

Figure 3: Interpolated R-R line.

– Apply the Coarse Graining Spectral Analysis
(CGSA) (Y. Yamamoto, 1991)(Y. Yamamoto,
1993) to make the indicator of autonomic nerve
system clear.

– In CGSA method, FFT is performed to obtain
the frequency power spectrum.

– separate the spectrum into Low frequency
(From 0.024 Hz to 0.15 Hz) and High fre-
quency (From 0.15 Hz to 0.6 Hz).

We used Content Ratio of HF as an indicator of
relaxation at body.LF/HF is used as an indicator
of the sympathetic nervous system (SNS). Con-
tent ratio of HF, i.e.,HF/(HF +LF), is used as an
indicator of the parasympathetic nervous system
(PNS) that is also used as a relaxation indicator
because parasympathetic nervous system is dom-
inant during relaxation. We calculated the content
ratio of HF by the HRV method from the pulse.

Relationships between pulse and music:

• Synchronization between pulse and music tempo
(Y. Kusunoki, 2003) stated the synchronization
phenomenon between pulse and music tempo
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Figure 4: Spectrum of HF/LF valance (in rest).

Figure 5: Spectrum of HF/LF valance (in tilt).

(Later, it is simply called as ”synchronization”)
as a relationship between pulse and music tempo.
(M. Fukumoto, 2004) explained that synchroniza-
tion period is the period where the ratio between
heart rate and the number of music beats is kept
constant, and indicated that a total of the short
synchronization periods in the music experiment
were significantly larger than in the control exper-
iment. For example, a state that the subject’s pulse
beats 3 times while a certain music played in one
musical unit continues for a certain period of time
(see Figure 6).

Figure 6: Example of synchronization.

To analyze the synchronization between pulse and
music tempo, we adopted the method described
in (Y. Kusunoki, 2003). The data (relaxation in-
dicator) obtained are classified into three groups:
no sound, no synchronization, pulse and music

synchronization. In addition to this classification,
no synchronization state is further more classified
into two groups; pulse beat increased and pulse
beat decreased.

• Pulse-Music Tempo Ratio
In this paper, we introduce a scale that is called the
pulse-music tempo ratio. By classifying the con-
dition of the subject from the pulse-music tempo
ratio, we can evaluate the relationships between
relaxation indicator and the state of the subject’ s
pulse and the tempo of music. Musical tempo T
in every minute is expressed by the sequenceTj
( j = tm,tm+1, ...,M), where j is the minute with
music presence,tm is the starting minute of music
presence, and M is the total minutes of measure-
ment. Subject i’ s average value of each indicator
in the j-th minute is described asCDi, j andHFi, j .
The average value of each indicator in all listen-
ing terms is described asCD andHF . Subject i’ s
average pulse beats in the j-th minute is described
asPi, j . Then, we denote the pulse-music tempo
ratio asµµµi . Theµµµi value for subject i is calculated
every minute using the following equation:

µµµi = {µi,tm,µi,tm+1, ...,µi,M}, (2)

where
µi, j = Pi, j/Tj , (3)

For example, (Reinhaldt, 1999) reported that synchro-
nization is well observed in the 2:3 state of pulse and
music tempo ratio. In this case, 2:3 state of the pulse-
music tempo ratio corresponds toµ= 1.5.

Finally, we define the efficiency valuesτHF and
τCD for each indicator calculated from the following
equations:

τHF(µ) =
ΣN

i=1ΣM
j=tm{s(µi, j ,µ)comp(HFi, j ,HF)}

ΣN
i=1ΣM

j=tm
{s(µi, j ,µ)}

, (4)

τCD(µ) =
ΣN

i=1ΣM
j=tm{s(µi, j ,µ)comp(HFi, j ,HF)}

ΣN
i=1ΣM

j=tm{s(µi, j ,µ)}
,

(5)
where N is the number of subjects, and

s(µ1,µ2) = {
1 (0≤ µ1−µ2 < K)
0 otherwise , (6)

comp(a,b) = {
1 (a > b)
0 otherwise

(7)

In this definition,τ is the ratio of the frequency
where each indicator (HFi, j , CDi, j ) is higher than its
average value (CD, HF ) to the frequency whereµi, j
is classified intoµ. Function s classifies the condition
of µi, j into each value of the pulse-music tempo ratio
by the appropriate value K.
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Figure 7: Experiment environment.

3 EXPERIMENT PROCEDURE

The subjects were 12 males in their 20s (N = 12).
During the experiment, the subjects sat on a sofa and
closed their eyes. The experiment consisted of two
parts. In the first 4 min, no sound was presented, and
then music was played for the next 10 min (tm = 5
andM = 14). The experimental environment is shown
in Figure 7. We presented an MIDI (Musical In-
struments Data Interface) digital file ’Gymnopedie,
No.1 (E. Satie)’ as the musical stimulus, as used in
(M. Fukumoto, 2004), and the tempo of the music
was gradually decreased from 66 to 48 BPM every
minute. The filter of the EEG analysis system was ad-
justed to the following settings; low pass filter: 13 Hz,
high pass filter: 8 Hz. During the period of the experi-
ment, a finger plethysmogram (simply called ’Pulse’)
that sampled at 500 Hz was measured from a sub-
ject’s forefinger. The analog data obtained were trans-
lated to digital data and transferred to a PC through an
USB port. To detect the synchronization of musical
tempo and pulse, we adopted the method described
in (Y. Kusunoki, 2003). The output signal from the
MIDI device was transferred to the amplifier through
a fibre optical cable. The volume of sound was fixed
at a level that was not annoying for the subject.

4 RESULTS AND DISCUSSION

4.1 Analysis by Time

Measured average pulse tempo and presented music
tempo is shown in Figure 8. Figure 8 indicate that
the average value of pulse beat decreased 2.9 BPM in
all the listening term, while the change of pulse beat
includes the individual differences.

Figure 8: Music tempo and pulse tempo.

In next section we tried to analyze the relaxation
indicator for each state of the subject using the pulse-
music tempo ratio. According to the variance of the
obtained pulse-music tempo ratio (µi, j ), we consid-
eredK = 0.1 to be appropriate to classifyµi, j values
in this experiment.

4.2 Analysis by Synchronization

The experimental results have some different tenden-
cies of synchronization. So we classified observation
type of synchronization into 3 groups (shown in Fig.
9): observed at low ratio, observed at high ratio and
observed in wide range of ratio. In this paper ”ratio”
means the pulse-music tempo ratio.

Figure 9: Classification of synchronization.

Experimental result of synchronization were clas-
sified into 3 groups shown in from Fig. 10 to Fig. 12.
The number of person in each groups is following:

• group A(observed at low ratio): 4 subjects

• group B(observed at high ratio): 3 subjects

• group C(observed in wide range of ratio): 5 subjects
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Figure 10: Synchronization observed at low ratio (type A).

Figure 11: Synchronization observed at high ratio (type B).

Figure 12: Synchronization observed at wide ratio (type C).

Figure 13: Synchronization and pulse tendencies and
changes ofCD (each groups).

Figure 14: Synchronization and pulse tendencies and
changes ofHF (each groups).

Synchronization is observed in spreadµarea as shown
in figures. There is no correlation between synchro-
nization occurrence and pulse-music tempo ratio. But
the pulse-music tempo ratio that synchronization is
well observed exists for each subject and the range
has large individual differences (see Fig. 10, 11 and
12).

Next we considered the tendency of the pulse beat.
In this paper, we adopted the gradient of the instan-
taneous pulse beats in every minute as an indicator
of the pulse beat tendency as well as synchroniza-
tion. Experimental result of Comfortable-degree and
content ratio of HF were classified into four groups:
no sound, tempo and pulse synchronization, pulse de-
crease at no synchronization, pulse increase at no syn-
chronization, shown in Fig. 13 and 14.
In Figure 13, the changes of Comfortable-degree in
type C (”observed in wide ratio” group) is smaller
than the other groups. The results in Figure 13 says
that Comfortable-degree is higher in both of syn-
chronization state and pulse decreasing state. Fur-
thermore, Comfortable-degree with listening to music
(involves synchronization and no synchronization) is
higher than no sound state. As well as Comfortable-
degrees, Figure 14 indicates that the changes of con-
tent ratio of HF in type C group is smaller than any
other groups. On the other hand, content ratio of
HF is higher at the synchronization state same as re-
ported in (M. Fukumoto, 2004). Comparing two indi-
cators (Comfortable-degree and content ratio of HF),
the tendency of content ratio of HF is uneven with
Comfortable-degree. The relationships among relax-
ation effect and synchronization and pulse tendency
in all group is shown in Figure 15 and 16.

Figure 15: Sync. pulse tendency andCD.

Figure 16: Sync. pulse tendency andHF.

We first considered the variance of each relaxation
indicators. The result indicates that HF increases in
the synchronization state, that is same as the result of
each groups. However, the HF value in the no sound
state is higher than that in the pulse decreasing state of
no synchronization. On the other hand, Comfortable-
degree in both the synchronization and no synchro-
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nization was higher than that in the no sound state.
This result implies that decreasing of the pulse tempo
is as important as synchronization.

4.3 Analyze by Pulse-music Tempo
Ratio

In this section, we calculatedµi from the pulse tempo
Pi, j for all subjects and the musical tempoTj , and the
frequency ratiosτCD andτHF from the relaxation indi-
cators (HFi, j ,CDi, j ) for all subjects with the following
µ values (µ= 0.8,0.9,1.0, ...,1.4).

Figure 17:τCD in each group.

Figure 18:τHF in each group.

At first, the relationships betweenµ andτCD,τHF
every groups (see Fig. 9) are shown in Figure 17
and Figure 18. The result in Figure 17 indicate that
the effect for Comfortable-degree in type A group
(”observed at low ratio”) changed constantly in ob-
served pulse-music tempo ratio. In the other groups,
Comfortable-degree was higher in the ratio around
µ = 1.3. In comparison with Comfortable-degree,
content ratio of HF was more effective in lower pulse-
music tempo ratio (aroundµ= 1.0).

5 CONCLUSIONS

In this paper we reported the relationships among re-
laxation effect, pulse tempo and musical tempo based
on two relaxation indicators. Experimental result in-
dicate that the pulse decreasing state is effective for

comfortable-degree calculated from brain waves as
well as synchronization state. On The other hand,
content ratio of HF calculated from pulse is high value
in pulse increasing state. In analysis of synchroniza-
tion, the tendency of synchronization occurrence is
classified into 3 types. The analysis of pulse-music
tempo ratio showed that each relaxation indicator has
optimumµ value. According to these result, we sug-
gest a new way of using music for relaxation. That is,
selectively presenting music with slower tempo than
the user’s pulse when the user wants the brain relax-
ation, or music with a tempo near to the user’s pulse
when the user wants body relaxation. If there is a
music music that has both two characteristics, that
kind of music is better for us. In the future work,
we will attempt to generate innovative music that de-
pending on the tempo of the user’ s pulse at the be-
ginning of music, the tempo of music is gradually de-
creased toµ = 1.3. We will study whether that kind
of music is effective for both content ratio of HF and
Comfortable-degree.
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Abstract: This paper proposes a new framework for the on-line monitoring and adaptive control of 
psychophysiological markers relating to humans under stress. The starting point of this framework relates to 
the assessment of the so-called operator functional state (OFS) using physical as well as psychological 
measures. An adaptive neural-fuzzy model linking Heart-Rate Variability (HRV) and Task Load Index 
(TLI) with the subjects’ optimal performance has been elicited and validated via a series of real-life 
experiments involving process control tasks simulated on an Automation-Enhanced Cabin Air Management 
System (aCAMS). The elicited model has been used as the basis for an on-line control system, whereby the 
model predictions which indicate whether the actual system is in error or not, have been used to modify the 
level of automation which the system may operates under.  

1 INTRODUCTION 

With increasingly complex design of automation in 
safety-critical applications, there is a growing 
concern for the consequences of performance 
breakdown. This is because the human operator’s 
role has become compromised with increasing 
operational demand, stress and fatigue, which all 
threaten safety and reliability (Hockey et al., 2003). 
The approach taken to this problem in this paper is 
based on an ‘Operator Functional State’ (OFS) 
framework in which the performance of the operator 
is constrained by requirements to manage the 
automation tasks and his/her own personal state. 

The OFS model should predict that, for a period 
before manifest breakdown occurs, the operator will 
be in a vulnerable state, because of reduced spare 
capacity to respond to emergencies. The goal of the 
current programme of work is to develop models for 
evaluating psychophysiological markers of this high 
risk strain state. If such states can be reliably 
detected, they can be used to trigger a switch of 

control from human to computer, through an 
adaptive automation (AA) interface, reducing the 
risk of operational breakdown (Kaber et al. 2001). 

A likely marker is the ‘task load index’ (TLI) 
identified by Gevins and his group (Gevins and 
Smith, 1999). TLI is based on the presence of high 
levels of theta activity at frontal midline sites, with 
concomitant attenuation of alpha power in parietal 
sites [theta/alpha]. Observation of reduced frontal-
midline theta power may reflect direct effects of 
fatigue or strategic disengagement from the 
executive requirements of the task management 
(Lorenz and Parasuraman, 2003). 

To investigate this, a task known as automation-
enhanced Cabin Air Management System (aCAMS) 
(Figure 1), developed by Hockey and colleagues 
(Hockey et al., 1998, Lorenz, 2002) to simulate the 
atmospheric environment within a space capsule, is 
used. This semi-automatic system required operators 
to maintain an appropriate quantity and quality of 
breathable air by keeping system parameters 
(temperature, humidity, pressure, O2, CO2) within 
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normal ranges (primary task). The operators 
interacted with a dynamic visual display that 
provides data on system variables and functions via 
a range of controls and automation tools; this is a 
large mental burden to the operator. 
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Figure 1: The aCAMS human-machine system. 

The main objective of the research work presented 
in this paper is to propose a new framework for the 
on-line (real-time) monitoring of the human 
operator’s performance for breakdown, stress or 
fatigure and the adaptive control of the level of 
automation.  In order to achieve this a model that 
describes the input and output relationship between 
the psychophysiological measures (e.g. 
cardiovascular and EEG activities) and functional 
(i.e. cognitive, mental or psychological) states of the 
operator in a simulated process control environment 
is built first. The model can then be implemented in 
an adaptive automation control system to represent a 
kernel in OFS estimation. In the present 
investigation, the OFSs identification is achieved by 
using adaptive fuzzy modelling which requires the 
measured psychophysiological and primary task 
performance data only. The proposed modelling 
approaches are shown by simulation results to be 
capable of effectively exploiting the information 
contained in the measured physiological and 
performance data. By using this model the OFS may 
be identified or predicted by monitoring the changes 
in the psychophysiological and performance data, 
and hence the model output can be used as a bio-
feedback signal in closed-loop automation control.  

This paper is organised as follows: Section 2 will 
outline the chosen technical paradigm behind the 
intelligent systems-based modelling strategy. 
Section 3 will present the final models which were 
adopted and Section 4 shows how such models can 
be included in the real-time framework for 
monitoring and adaptive control. Finally, Section 5 
will draw some conclusions in relation to this overall 
research study. 

2 FUZZY MODELLING OF 
OPERATOR FUNCTIONAL 
STATE (OFS) 

For the purpose of modelling fuzzy logic (Zadeh, 
1965) was chosen as the main paradigm for 
characterising the input/output mappings because of 
its tolerance to uncertainties and also for the fact it 
can model human perception in a transparent way 
without a greater loss in accuracy. As a result, two 
types of fuzzy models were constructed and 
optimised automatically: one using neural networks 
leading to the Artificial Network Fuzzy Inference 
System (ANFIS) architecture (Jang, 1993) which 
utilises and the other using Genetic Algorithms 
(Goldberg, 1989) to estimate the parameters of the 
membership functions and the fuzzy rules of a 
Mamdani-type structure (Mamdani, 1974). In order 
to carry-out this modelling operation successfully it 
is important to first specify the variables associated 
with this input/output mapping and then carry-out 
the real-time experiments (Mahfouf et al., 2006) 
which will enable one to collect the input/output 
data information as will be explained next. 

2.1 Model Inputs and Output 

The candidate inputs of the fuzzy model may 
include Heart Rate Variability (HRV) and EEG 
markers (TLI), which were found to be most 
sensitive to the changes in mental workload 
((Fehrengerg and Wientjes, 2000);Nickel et al., 
2005; Zhang et al., 2006). The optimal number of 
inputs selected from the above candidate inputs was 
determined by linear correlation analysis of the 
relationship between the input and output data. The 
single output of the model is ‘Time in Range’ related 
to the primary task performance.  

2.2 Data Acquisition and Analysis 

The BioSemi® system (Biosemi, the Netherland) 
was used for EEG recording at 32 electrode sites 
defined by the international 10-20 system (Jasper, 
1958). The electrodes were re-referenced to two 
linked mastoids. The EEG signal, sampled at a rate 
of 2048 Hz, was pre-processed with a band-pass 
filter between 1.6 and 25 Hz. The power in the three 
bands (i.e., theta, alpha and beta) for each of the 
selected electrode sites was calculated. The primary-
task performance data (‘Time in Range’) were 
sampled every 1 min. 

The heart rate (HR) signal was recorded every 1 
s as soon as the aCAMS was started up. HRV1 is 
defined as the average of the 0.1 Hz component 
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powers. HRV2 is defined as the HR variation 
coefficient and given by the following expression: 

HR

HRHRV
μ
σ

=2
 (1) 

where σ and μ denote the standard deviation and 
average of a HR segment of 7.5 min. 

The TLI calculated using different EEG band 
powers was proposed in (Gevins et al., 1997). The 
TLI indices, TLI1 and TLI2 used in this paper, are 
given as follows: 
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where θP  and αP  denote the theta- and alpha-band 
power, respectively; the EEG frequency bands  are 
defined in order as: θ, Fz: 6-7 Hz; α, Pz: 10-12 Hz; 
θ, AFz: 5-7 Hz; α, CPz: 8-10.5 Hz; α, POz: 10-13.5 
Hz; and Fz, Pz, AFz, CPz, and POz are the five EEG 
electrode sites on the scalp introduced in the 
standard 10-20 system (Jasper, 1958). 

3 RESULTS AND DISCUSSIONS 

In this simulation the signal data sampling interval 
was taken to be 7.5 min and Gaussian MFs were 
used for both fuzzy models.  The choice of the 
candidate input was mainly driven by the value of 
the input-output correlation factor (the higher the 
better), the training and testing data correlation 
factor (the higher the better) and the MSE values of 
the training and testing data. As a result, the two 
inputs HRV1 and TLI2 were selected for both fuzzy 
models. The training and testing data set was 
obtained from the 1st and 2nd experimental sessions, 
respectively. The ANFIS modelling result for P2 is 
shown in Figure 2.  

Due to the large differences between the MSE 
values of the model output for each subject another 
index was introduced to differentiate between 
models. This index was named "Error Factor" and is 
defined by the ratio between the MSE of the model 
output when using the validating data and the MSE 
between the training and validating data as shown in 
Equ. (3). 

chk-Tr

chk-output modelFactorError 
MSE

MSE
=  (3) 

Using this new index it was found that Subjects 
P2, P4, and P10 led to the highest values, i.e. the 
worst performing models compared to the other 
subjects. So, those subjects' data have been chosen 
for the next study. The optimised rules of Mamdani-
type fuzzy model and their weights are illustrated in 
Table 1. The optimal MFs and degrees of belief 
(rules’ weight) in each rule are identified by using a 
GA approach. It is noted that the 1st, 2nd, 3rd, 11th, 
12th, 13th, 15th and 16th rules (see Table 1 in ‘bold’ 
characters) are less important in terms of the smaller 
weights. The comparison of the model output and 
desired output is shown in Figure 3 for P2. Figure 4 
illustrates the model output when HRV2 and TLI2 
are used as inputs 
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Figure 2: ANFIS modelling results for P2; HRV1 and TLI2 
as inputs. 
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Figure 3: Modelling results via the GA-based Mamdani-
type model for P2; HRV1 and TLI2 as inputs. 
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Table 1: The Mamdani-type fuzzy rules after optimization 
and their corresponding weights for P2 with the inputs 
HRV1 and TLI2. 
 

No Rule 
1 If HRV1 is M and TLI2 is S then TIR is VH (0.197)

2 If HRV1 is M and TLI2 is S then TIR is VH (0.446)

3 If HRV1 is M and TLI2 is M then TIR is H (0.159)

4 If HRV1 is B and TLI2 is S then TIR is VH (0.527)

5 If HRV1 is M and TLI2 is B then TIR is VH (0.798)

6 If HRV1 is B and TLI2 is M then TIR is H (0.983)

7 If HRV1 is M and TLI2 is B then TIR is H (0.778)

8 If HRV1 is B and TLI2 is B then TIR is N (0.470)

9 If HRV1 is S and TLI2 is B then TIR is L (0.904)

10 If HRV1 is M and TLI2 is VB then TIR is L (0.853)

11 If HRV1 is S and TLI2 is B then TIR is N (0.010)

12 If HRV1 is S and TLI2 is B then TIR is N (0.013)

13 If HRV1 is B and TLI2 is M then TIR is N (0.313)

14 If HRV1 is B and TLI2 is VB then TIR is N (0.864)

15 If HRV1 is B and TLI2 is B then TIR is N  (0.331)

16 If HRV1 is VB and TLI2 is M then TIR is N (0.352)

17 If HRV1 is VB and TLI2 is M then TIR is N (0.906)

18 If HRV1 is B and TLI2 is M then TIR is VH (0.819)

 
Tables 2 and 3 show the model MSE’s and the 

correlation factors for the three subjects data which 
only justify the initial choice of the criteria proposed 
for choosing the candidates' inputs and show that the 
model output  is improved by using HRV1 instead of 
HRV2. 
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Figure 4: Model output of the GA Mamdani-type model of 
P2 for TLI2 and HRV2 as inputs. 

Table 2: Training and testing MSEs and correlations of 
Mamdani fuzzy model for P2, P4 and P10 when inputs are 
HRV1and TLI2 

MSE Correlation Error 
Factor No 

Train Check Train Check 2 
inputs 

P2 6.7506 130.340 0.983 0.712 2.931 
P4 1.0860 93.672 0.997 0.8304 1.022 

P10 8.4722 67.533 0.965 0.664 2.578 

Table 3: Training and testing MSE and correlation values 
of the Mamdani fuzzy model for P2, P4 and P10 when the 
inputs are HRV2 andTLI2. 

MSE Correlation Error 
Factor No 

Train Check Train Check 2 
inputs 

P2 7.213 194.930 0.981 0.518 4.383 
P4 2.455 478.763 0.986 0.112 5.227 

P10 2.840 130.624 0.988 0.541 4.987 

4 THE NEW FRAMEWORK FOR 
REAL-TIME ADAPTIVE 
AUTOMATION 

The adaptive fuzzy models developed previously 
allow for the OFSs to be used as bio-feedback 
signals in order to switch operations between human 
and machine. Hence, a conceptual adaptive 
automation control system built around aCAMS for 
the automation tasks is proposed as shown in Figure 
5. The system was implemented using MFC (Visual 
C++ 8.0, Microsoft, USA) on a Window-XP 
computer. Psycho-physiological signals were 
collected using the BioSemi system with the 
recording scheme as described in Section 2.2. The 
two peripherals, aCAMS and BioSemi computers, 
communicate with the host system through Ethernet 
networking that uses the TCP/IP communication 
protocol. 

Figure 6 shows a conceptual automation control 
system with the developed fuzzy OFS model for 
predictive control and primary task performance for 
immediate feedback reaction. The model analyzes 
psychophysiological responses every 128 s to 
provide information of how the system may drift 
into ‘error’. Once a possible system abnormality is 
foreseen, the LOA Reallocator either switches 
system operation from human to machine or changes 
the level of automation (LOA). A “System in Error” 
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reported by aCAMS represents an anticipated 
system catastrophe if the system operation is not 
immediately intervened. The occurrence of such a 
fault elicits the LOA Reallocator for immediate 
automation intervention. This feedback correction is 
synchronized with aCAMS, 1 s in this case. Once an 
error occurs, the control is brought to a hysteresis 
loop which imposes a refractory duration to LOA 
commands to avoid adversary chattering effect.  
This coordinating scheme assures function allocation 
between human and machine for persistent system 
safety and operation performance. 
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Figure 5: Conceptual adaptive automation control for the 
aCAMS human-machine system. 
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Figure 6: The control system of adaptive automation with 
OFS prediction and process feedback.  

Figure 7 demonstrates the screenshot of a 
tentative experiment for which only the feedback 
correction loop of Figure 6 was activated. The 
screenshot shows aCAMS performance, 
psychophysiological responses, LOA allocation 
commands, subjective ratings, and system 
communication status on line. The automation 
controller took over the operation task from the 
operator and re-allocated LOA immediately 
responding to the occurrence of a system 
abnormality. The system operation recovered to a 
normal state subject to the LOA manipulation.  

 

 

Figure 7: Screenshot of a tentative system operation. Top-
left: aCAMS performance; top-right: psychophysiological 
response; bottom-left: LOA allocation; bottom-right: 
subjective ratings; status bar: monitoring of the system 
communication. 

5 CONCLUSIONS 

The first part of this paper related to the elicitation 
of ANFIS and Mamdani-type models for identifying 
OFSs using psychophysiological and performance 
measures. Model analyses revealed that the GA-
based Mamdani-type model generalised better across 
the data used and that HRV 1 and TLI 2 represented 
the best correlating inputs to the performance output 
‘time in range’. The model represents a concise, 
transparent (easily understandable) and robust 
characterization of OFS and can be easily extended 
or modified to accommodate additional input 
variables, membership functions and fuzzy rules. 
The identification of these OFSs paved the way for 
proposing a new framework the real-time 
monitoring and adaptive control of automation in 
complex and safety-critical human-machine systems. 
Preliminary simulation studies using aCAMS, the 
OFSs predictor and the LOA fuzzy decision-maker 
showed that successful switching of system 
automation is possible. It is hoped that real-time 
experiments involving the same group of volunteers 
who partook in earlier experiments whose data were 
used for modelling will be conducted in the near 
future. 
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Abstract: In this paper, a partial supervision strategy for a recentlydeveloped clustering algorithmNNCA(Salem et al.,
2006), Nearest Neighbour Clustering Algorithm, is proposed. The proposed method (NNCA-PS) offers clas-
sification capability with smaller amount of a priori knowledge, where a small number of data objects from the
entire dataset are used as labelled objects to guide the clustering process towards a better search space. Results
from the proposed supervision method indicate its robustness in classification compared with other classifiers.

1 INTRODUCTION

Data clustering is a common technique for data anal-
ysis, which is used in many fields, including ma-
chine learning, data mining, pattern recognition, im-
age analysis and bioinformatics. Clustering is the
grouping of individuals in a population in order to dis-
cover structures in the data. In some sense, we would
like the individuals within a group to be close or sim-
ilar to one another, but dissimilar from the individu-
als in the other groups (Webb, 2003; Theodoridis and
Koutroubas, 2003). Recently, a number of clustering
algorithms has been proposed. The basic two types
of clustering algorithms are partitional and hierarchi-
cal algorithms. Their main purpose (Xu and Wunsch,
2005; Jain et al., 1999; Jain and Dubes, 1988) is to
evolve aNC × n partition matrixU(X) of a dataset
X (X = {x1,x2, . . . ,xn}) in Rp, representing its parti-
tioning into a number ofNC clusters(C1,C2, . . . ,CNC).
The partition matrixU(X) may be represented as
U = [um j], m= 1, . . . ,NC and j = 1, . . . ,n, whereum j
is the membership of patternx j to clusterCm. In hard
partitioning of the data, the following conditions hold:
um j = 1 if x j ∈Cm; otherwise,um j = 0.

Clustering is unsupervised classification where
there are no predefined classes (labels) and no a priori
knowledge of the data, while supervised classification
requires a complete knowledge of the data where the
class label and the number of classes (labels) are pre-

defined (Bouchachia and Pedrycz, 2006). The pro-
cess of labeling data objects is always an expensive
and error-prone task that requires time and human in-
tervention. In many situations, objects are neither per-
fectly labelled nor completely labelled. Therefore, the
main idea of clustering with partial supervision strat-
egy is to take the advantage of the smaller proportion
of labelled objects to guide the clustering process of
the unlabelled objects.

One of the typical applications of clustering
with partial supervision is Computer-Aided Diagnosis
(CAD) which has become one of the major research
subjects in medical imaging and diagnostic radiology
(Doi, 2005). The basic concept of CAD is to provide
a computer output as a second opinion to assist radi-
ologists’ image interpretation by improving the accu-
racy and consistency of radiological diagnosis (Doi,
2005). The design of clustering with partial supervi-
sion in CAD can play an important role in improv-
ing CAD performance at small amount of knowledge,
where only some labelled objects or regions of an im-
age can assist in identification of any suspicious ob-
jects or regions.

This paper proposes a novel partial supervision
strategy for the recently developed clustering algo-
rithm NNCA (Salem et al., 2006). We examine its
applicability and reliability using datasets from real-
world problems, where the proposed method is used
to segment the blood vessels in retinal images which
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can help in early detection and diagnosis of many eye
diseases, and it is used to classify breast tumors into
either malignant or benign. Additionally, this paper
presents a comparative evaluation of the proposed al-
gorithm with some other algorithms.

2 THE NNCA CLUSTERING
ALGORITHM

NNCA (Salem et al., 2006) is a modified version of
theKNN classifier, and it is divided into two stages for
creatingNC clusters. First stage is to selectN objects
randomly. Then non-overlapping clusters are created
from theseN objects, each of maximum sizeKinit ob-
jects (the choice ofKinit ensures that more thanNC
clusters are generated here). Afterwards an iterative
control strategy is applied to update the clusters and
their memberships by increasing the number of neigh-
bours untilNC non-overlapping clusters are created.
Second stage is to cluster the remaining objects. For
each unclustered objectq, K nearest clustered objects
are found. Then, the cluster to which most of theseK
clustered objects belong is deemed to be one to which
the objectq belongs to.

TheNNCAclustering algorithm is detailed in Al-
gorithm 1. Let each objectx be described by the fea-
ture vector:

< a1(x)a2(x) , . . . . . . , ap(x) >

wherear(x) is used to denote the values of thep-th
attribute of data pointx. If we consider two objectsxi
andx j , then the distance between them is defined as
d(xi ,x j), which is expressed in Eq. 1.

d(xi ,x j) =

√

p

∑
r=1

(ar(xi)−ar(x j))2 (1)

A fuzzy clustering, where all objects are allowed to
belong to all clusters with different degrees of mem-
bership, is achieved by obtaining the mean value
of the K nearest neighbours for each object in the
dataset. Therefore, hard partition as well as soft parti-
tion can be obtained. For an objectxq to be clustered,
let x1 . . .xK denote the nearestK clustered objects to
xq andC(xi) ∈ {1, . . . , NC} is the cluster index for ob-
ject xi . Hard partition value forxq is:

C(xq) = argmax
n∈NC

K

∑
r=1

δ(n−C(xr)), (2)

and soft partition vector is:

C(xq) =

K

∑
r=1

δ(C(xr)−C(xi))

K
(3)

Algorithm 1 Nearest Neighbour Clustering Algo-
rithm (Salem et al., 2006)
Input (data,N, Kinit , NC, K) where:

∗ N is the number of random objects to be clus-
tered.

∗ Kinit is the nearest neighbour objects fromN.
∗ NC is the user defined number of clusters.
∗ K is the number of nearest clustered objects.

# Step 1: CreateNC non-overlapped clusters
# (a) Create initial clusters:

* Initially, all the N objects are unclustered.
let M = 1
For i = 1 toN

IF ( objecti is unclustered )
- Assigni and its unclustered neighbours (fromN)

of theKinit nearest neighbours to cluster #M.
- M = M +1

End IF
End For

# (b) Merge clusters:
* DO
- Kinit = Kinit +1
- Assign each clustered object to the common

cluster of theKinit nearest neighbours.
- Update the number of clusters→ M

WHILE ( M > NC)

# Step 2: Find the nearestK neighbours for each
remaining object

- Assign each unclustered object to the common
cluster of theK nearest clustered objects.

- Use Eq. 2 to find hard partition and Eq. 3 to
find soft partition.

Output ( Hard partition vector, Soft partition matrix)

Figure 1 shows a sub-image from a colour retinal im-
age and its ground truth along with the corresponding
segmented sub-images after applyingNNCA.

3 NNCA WITH PARTIAL
SUPERVISION STRATEGY
(NNCA-PS)

In this section, we propose to adaptNNCAalgorithm
with some labelled objects to guide the clustering pro-
cess of the unlabelled objects, i.e.,NNCAwith partial
supervision (NNCA-PS). The proposed method is di-
vided into two stages. First stage is to selectNP ob-
jects randomly from the dataset to be labelled data ob-
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(a) (b) (c)

Figure 1: (a) Original sub-image, (b) ground truth sub-image, and (b) sub-image with blood vessels clustered usingNNCA.

jects and cluster theseNP objects intoNC clusters, as
described in Sec. 2. Second stage is to classify each
cluster according to the class label of the majority of
its objects. For each labelled data objectxl of class
Ci , assigned to clusterj (1≤ j ≤ NC), if its cluster is
classified to different class (label), then this data ob-
ject will be assigned to the cluster that has the nearest
objects and with the same label of it as in Eq. 4.

j =







j i f cluster j ∈Ci

argmin
k∈Ci

∑z∈k dzxl

|cluster k|
i f cluster j /∈Ci

(4)

where|cluster k| is the number of objects in clusterk,
anddzxl is the Euclidean distance between an objectz
and the labelled objectxl .
This process continues until all labelled objects within
a cluster have the same class label. Then, the process
continues to assign each unlabelled objectxu to the
cluster that has the nearest labelled objects as in Eq.
5. Then, all the data objects that belong to different
clusters with the same class labels can be assigned to
that label.

j = arg min
1≤k≤NC

∑z∈k dzxu

|cluster k|
(5)

wheredzxu is the Euclidean distance between an ob-
ject zand the unlabelled objectxu.
This proposed method will bias clustering towards a
better search space. The proposed supervised method
is detailed in Algorithm 2. Figure 2 shows two ex-
amples; abnormal (top) and normal (bottom) images
and their results after blood vessels segmentation us-
ing NNCA, NNCA-PS, andKNN classifier.

A soft classification, where all objects are allowed
in principle to belong to all classes with different de-
grees of membership, is achieved by adding the fuzzy
memberships for each object with the clusters that be-
long to the same class label. Equations 6 and 7 show
the fuzzy membership (uix) of object x to clusteri,

and the soft membership (UCix) of objectx to classCi
respectively.

uix =
1

NC

∑
j=1

(

dix
d jx

)2/(q−1)
(6)

UCix =
NC

∑
j

u jx i f cluster j∈ classCi (7)

wheredix is the distance from objectx to the current
cluster centrei (the average of all objects in clusteri),
d jx is the distance from objectx and the other cluster
centrej (1≤ j ≤NC), andq is the weighting exponent
which controls the fuzziness of the resulting clusters
(q≥ 1) (Webb, 2003). A value ofq = 1 gives the hard
membership, i.e.uix = 1 if x ∈ clusteri; otherwise,
uix = 0. In this study,q = 1.5 is used.

4 DATASETS

Two different types of real-world data are used to in-
vestigate whether the proposed algorithm scales well
with the size and dimension of the dataset.

4.1 Retinal Images

For performance evaluation, a publicly available
dataset is used (STARE, ). The dataset consists of 20
images which are digitised slides captured by a Top-
Con TRV-50 fundus camera at 35◦ FOV. Each slide
was digitized to produce a 605×700 pixels image,
standard RGB, 8 bits per colour channel. Every im-
age has been manually segmented by two observers
to produce ground truth vessels segmentation. Ten of
these images contain pathology and the other ten are
normal, giving a good opportunity to test the proposed
method in both normal and abnormal retinas.
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(a) (b) (c) (d)

Figure 2: (a) Original images, (b) output from theNNCA(hard decision), (c) output from theNNCA-PS(hard decision), and
(d) output from theKNN classifier (hard decision).

Algorithm 2 NNCA with partial supervision strategy
(NNCA-PS)

• Step 1: Clustering using NNCA algorithm

1. Randomly selectNP points from the ground
truth to be labelled objects.

2. Cluster theNP objects intoNC cluster using
NNCAclustering algorithm.

• Step 2: Apply the supervision strategy as follow:

1. Classify the clusters obtained byNNCA al-
gorithm to the class of its most labelled objects.

2. For each labelled object, if its cluster is
classified to different class (label), then this
object will be assigned to the cluster that has
the nearest objects and with the same label of it.

3. Each unlabelled object is assigned to the cluster
that has the nearest objects and then classified
to the class (label) of this cluster.

4.2 Breast Cancer Data

Two Wisconsin breast cancer datasets (UCI, ) are con-
sidered in this paper. The first dataset contains 569
samples of 30 features each, and two classes: Benign
(class 1 and 357 samples) and Malignant (class 2 and
212 samples). The second dataset contains 683 sam-
ples of 9 features each, and two classes: Benign (class
1 and 444 samples) and Malignant (class 2 and 239

samples).

5 EXPERIMENTAL RESULTS

5.1 Retinal Images

In our experiments, retinal blood vessels are seg-
mented using theNNCAwith partial supervised strat-
egy (NNCA-PS). The performance is measured by the
true and false positive rates. These rates are defined
in the same way as in (Hoover et al., 2000), where
the true (false) positive is any pixel which was hand-
labelled as a vessel (not vessel), whose intensity af-
ter segmentation is above a given threshold. The true
(false) positive rate is established by the dividing the
number of true (false) positives by the total number of
pixels hand-labelled as vessels (not vessels).

For purposes of comparison, we have compared
the performance ofNNCA-PSwith KNN classifier
(Salem and Nandi, 2006a) andRACALwith partial su-
pervision strategy (Salem et al., 2007). For theKNN
classifiers, two sets are required; one for training and
the other for testing, so the dataset is randomly di-
vided into two sets of images, each contains 5 nor-
mal and 5 abnormal images. The training set con-
tains large number of training samples (423500 pix-
els/image), which is huge and is the main problem
with this type of classifiers. To overcome such a prob-
lem, a random number of pixels are chosen from the
field of view (FOV) of each image in the training set.
The targets for these training samples are available
from the manually segmented images. The testing
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Table 1:NNCA-PS, RACALandKNN hard decision results (average from 10 images (testing set)).

NNCA-PS RACAL(Salem et al., 2007) KNN (Salem and Nandi, 2006a)
Image type Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

% % % % % %
Normal 95.4% 90.2% 97.2% 85.9% 93.6% 88.6%

Abnormal 94.4% 87.8% 96.9% 80.3% 91.9% 82.4%
All images 94.8% 89.0% 97.0% 83.1% 92.7% 85.5%

Table 2: Average sensitivity at certain specificity values for 10 images.

NNCA-PS RACAL(Salem et al., 2007) KNN (Salem and Nandi, 2006a)
Image Specificity Sensitivity Sensitivity Sensitivity
type % % % %
Normal 90.8% 85.3% 86.6%
Abnormal 95% 86.7% 81.0% 76.2%
All images 88.8% 83.2% 81.4%

Normal 95.1% 92.9% 92.6%
Abnormal 90% 92.8% 93.5% 86.1%
All images 93.9% 93.2% 89.4%

Normal 96.9% 94.1% 95.1%
Abnormal 85% 95.4% 97.7% 90.9%
All images 96.1% 95.9% 92.9%

Normal 98.1% 98.1% 96.5%
Abnormal 80% 96.9% 96.6% 93.7%
All images 97.5% 97.4% 95.1%

set contains 10 images to test the performance of the
classifier. The value ofK = 60 and each feature is
normalised to zero mean and unit standard deviation.
While for NNCA-PSandRACALwith partial supervi-
sion strategy, only 30% of all the pixels are known (as
vessels or non-vessels pixels) to demonstrate the ad-
vantage of using a small proportion of labelled pixels
in clustering the unlabelled pixels.

For hard classification, the same set of images is
used when comparing with theKNN classifier. As
shown in Table 1,NNCA-PSachieves average sensi-
tivity (true positive rate) of 89% at average specificity
(1-false positive rate) of 94.8%, while theKNN clas-
sifier achieves sensitivity of 85.5% at average speci-
ficity of 92.7%. On average, the proposedNNCA-PS
achieves better specificity as well as sensitivity than
KNN classifier. On average,RACAL (Salem et al.,
2007) achieves 2% higher specificity thanNNCA-PS,
but it offers 6% less sensitivity thanNNCA-PS.

For soft classification as shown in Table 2, the soft
classification results of the proposedNNCA-PSare
compared with the soft results ofRACALandKNN.
As shown, at 95% specificity, the proposedNNCA-
PS achieves 5.5% and 4.2% higher sensitivity than
RACALandKNN respectively in case of normal im-
ages. Also in abnormal images at 95% specificity,
NNCA-PSachieves 5.7% and 10.5% higher sensitiv-

ity than RACALand KNN respectively. For higher
specificity,KNN classifier achieves the lowest aver-
age sensitivity compared withNNCA-PSandRACAL,
while bothNNCA-PSandRACALachieves on aver-
age comparable sensitivity.

5.2 Breast Cancer Datasets

For purposes of comparison, a series of experiments
were carried out to examine the performance of
NNCAwhen applying the proposed supervision strat-
egy (NNCA-PS) on breast cancer datasets, where the
classification results obtained byNNCAwith the su-
pervision strategy on breast cancer dataset 1 are com-
pared with the results (Guo and Nandi, 2006) of dif-
ferent classifiers (PCA/MDC “Principal Component
Analysis / Minimum Distance Classifier” (Theodor-
idis and Koutroubas, 2003; Cios et al., 1998),
FLDA/MDC “Fisher Linear Discriminant Analysis /
MDC” (Cios et al., 1998),MLP “Multi-Layer Per-
cepton“ (Duha et al., 2001),SVM “Support Vector
Machine” (Hsu and Lin, 2002), andGP/MDC “Ge-
netic Programming/ MDC” (Guo and Nandi, 2006;
Kishore et al., 2002)). In order to achieve fair com-
parisons as in (Guo and Nandi, 2006), we randomly
selected, without replacement, 100 samples (from the
entire dataset) for training, and 100 samples for test-
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Table 3: Comparison of classification accuracy (%) for breast cancer dataset 1 (testing set) usingNNCA-PSand different
classifiers, based on 100 experiments.

Algorithms Best (%) Average (%) Std (%)
PCA/MDC (Guo and Nandi, 2006) 88.7 88.6 N/A
FLDA/MDC (Guo and Nandi, 2006) 88.9 88.6 N/A
MLP (Guo and Nandi, 2006) 97.3 96.2 1.7
SVM (Guo and Nandi, 2006) 96.7 96.3 0.8
GP/MDC (Guo and Nandi, 2006) 98.9 97.4 1.5
NNCA-PS 99.5 97.2 1.2

ing; this process has been repeated 100 times. The tar-
get information, class labels, of the training samples
is used to guide the clustering process of the testing
samples usingNNCA-PSalgorithm. Table 3 shows
comparison results ofNNCA-PSalong with different
methods for classification. As shown, the best clas-
sification accuracy is achieved byNNCA-PS(99.5%),
with the lowest being 88.7% obtained byPCA/MDC
which gives comparable results asFLDA/MDC. Al-
though the average classification accuracy obtained
by GP/MDCare comparable withNNCA-PS, it gives
0.6% less than the best performance ofNNCA-PS
with higher standard deviation in classification accu-
racy. Therefore, the proposed method is more robust
compared with other methods.

In order to reduce the amount of a priori knowl-
edge, a small number of objects from the entire
dataset are used as labelled objects. In these exper-
iments, the effect of the number of labelled objects on
the classification accuracy are investigated. We ran-
domly selected a fraction from the entire dataset to be
labelled objects. For each fraction, this process is re-
peated one hundred times without replacement. The
best, average, and standard deviation of classification
accuracy are obtained over one hundred runs for each
fraction of labelled objects. For breast cancer dataset
1, as demonstrated in Table 4, the best and average
classification accuracies increase with the increas-
ing fraction of the labelled objects. As shown, the
best and average classification accuracy of 98.2% and
96.3% respectively were achieved at 30% labelled ob-
jects, with the lowest being 96.2% and 91.5% for best
and average accuracies respectively at 5% labelled
objects. By examining the average and standard de-
viation of the classification performance, when 5%
of the entire dataset are labelled, the average perfor-
mance is the lowest, while it has the highest standard
deviation compared with the other fractions of la-
belled objects. For breast cancer dataset 2 as recorded
in Table 5, the standard deviations is lower than the
standard deviations of breast cancer dataset 1. It is
conjectured that the clusters on breast cancer dataset
2 are more compact with those in breast cancer dataset

Table 4: Classification accuracy (%) for breast cancer
dataset 1 (entire dataset) usingNNCA with partial super-
vision (NNCA-PS), based on 100 experiments.

labelled
objects % Best (%) Average (%) Std (%)

5 96.2 91.5 2.3
10 96.3 93.1 1.8
15 97.0 94.4 1.3
20 97.2 95.3 1.0
25 97.6 95.6 0.9
30 98.2 96.3 0.7

Table 5: Classification accuracy (%) for breast cancer
dataset 2 (entire dataset) usingNNCA with partial super-
vision (NNCA-PS), based on 100 experiments.

labelled
objects % Best (%) Average (%) Std (%)

5 98.0 96.0 1.2
10 98.1 96.3 1.1
15 98.5 96.7 0.9
20 98.7 97.0 0.8
25 98.7 97.4 0.7
30 99.2 97.9 0.5

1, as indicated in (Salem and Nandi, 2005). For 5%
labelled objects and higher, the best classification ac-
curacy is higher than 98% with a small decrease in the
standard deviation and a significant increase in the av-
erage classification accuracy as demonstrated in Table
5.

When comparing the proposedNNCA-PSwith
RACAL for breast cancer data classification, where
a small number of objects from the entire dataset
are used as labelled objects. The average classi-
fication accuracy for breast cancer dataset 1 using
NNCA-PSis 1% higher thanRACALalgorithm while
it achieves comparable accuracy for breast cancer
dataset 2 as demonstrated in Tables 6 and 7. More-
over, the standard deviation of the classification per-
formance ofNNCA-PSfor breast cancer dataset 1 is
lower thanRACAL which favors compact clusters,
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Table 6: Comparison of classification accuracy (%) for breast cancer dataset 1 (entire dataset) usingNNCAandRACALwith
partial supervisions, based on 100 experiments.

NNCA-PS RACAL
labelled (Salem and Nandi, 2006b)

objects % Average(%)± Std(%) Average(%)± Std(%)

5 91.5 ± 2.3 90.6 ± 4.7
10 93.1 ± 1.8 92.1 ± 3.2
15 94.4 ± 1.3 93.5 ± 2.3
20 95.3 ± 1.0 94.4 ± 1.8
25 95.6 ± 0.9 94.9 ± 1.6
30 96.3 ± 0.7 95.2 ± 1.7

Table 7: Comparison of classification accuracy (%) for breast cancer dataset 2 (entire dataset) using NNCA and RACAL with
partial supervisions, based on 100 experiments.

NNCA-PS RACAL
labelled (Salem and Nandi, 2006b)

objects % Average(%)± Std(%) Average(%)± Std(%)

5 98.0 ± 1.2 97.5 ± 1.4
10 98.1 ± 1.1 97.9 ± 0.3
15 98.5 ± 0.9 98.2 ± 0.3
20 98.7 ± 0.8 98.6 ± 0.3
25 98.7 ± 0.7 98.6 ± 0.3
30 99.2 ± 0.5 98.6 ± 0.3

while it achieves slightly higher standard deviations
in breast cancer dataset 2. This may be the result of
the NNCA-PSachieving clustering without any con-
trol of cluster sizes whileRACALis constrained with
a radius parameterδ0 which controls the size of the
clusters.

6 CONCLUSIONS

In this paper, we have proposed a partial supervision
strategy for a recently developed clustering algorithm
(NNCA) to act as a classifier. We examined its appli-
cability and reliability using datasets from real-world
problems. As shown, the proposedNNCA-PShas the
ability to classify pixels of retinal images into those
belonging to blood vessels and others not belonging
to blood vessels, and it also has the ability to classify
breast tumors into either benign or malignant. Ex-
perimental results show that the proposed algorithm
offers better classification accuracies compared with
certain other classifiers.
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Abstract: Breast cancer diagnosis have been investigated by different machine learning methods. This paper proposes a
new method for breast cancer diagnosis using a single feature generated by Genetic Programming (GP). GP as
an evolutionary mechanism that provides a training structure to generate features. The presented approach is
experimentally compared with some kernel feature extraction methods: Kernel Principal Component Analysis
(KPCA) and Kernel Generalised Discriminant Analysis (KGDA). Results demonstrate the capability of the
proposed method to transform information from high dimensional feature space into one dimensional space
for breast cancer diagnosis.

1 INTRODUCTION

Breast Cancer is the second most common cancer in
the UK after non-melanoma skin cancer (Can). The
early detection of breast cancer is becoming very im-
portant to ameliorate breast cancer survival rate. In
recent years, various machine learning methods have
been proposed for breast cancer diagnosis and prog-
nosis. Yao and Liu described two neural network
based approaches to breast cancer diagnosis; a feed-
forward neural networks was evolved using evolu-
tionary programming algorithm in the first approach,
while the second approach was based on neural net-
work ensembles (Yao and Liu, 1999). The perfor-
mance of four fuzzy rule generation methods on Wis-
consin breast cancer data was studied in (Jain and
Abraham, 2004). In (Kermani et al., 1995), a hy-
brid genetic algorithm and neural network (GANN)
was shown to extract the important features and train
a NN in breast cancer classification. Guo and Nandi
developed a modified Fisher criterion to help genetic
programming optimism features for breast cancer di-
agnosis (Guo and Nandi, 2006). Nandiet al. used
GP successfully for classification of breast masses in
mammogram (Nandi et al., 2006).

In recent years, the application of genetic pro-
gramming to pattern recognition problem has become

increasingly common. Genetic Programming was
first introduced by Koza (Koza, 1992), and has been
proposed as a machine learning method in different
fields. In (Benyahia and Potvin, 1998), GP technique
was used to develop a decision support system for ve-
hicle dispatching considering a population of utility
functions that evaluate candidate vehicles for servic-
ing requests. GP was tested in six medical diagno-
sis problems (Brameier and Banzhaf, 2001) and the
results were compared with those obtained by neu-
ral networks. In (Kishore et al., 2000) the feasibility
of applying GP to multi-category pattern classifica-
tion problem was studied. Zhang et al. (Zhang et al.,
2003) applied genetic programming for fault detec-
tion in machine condition monitoring field. However,
in all the above applications (Benyahia and Potvin,
1998; Brameier and Banzhaf, 2001; Kishore et al.,
2000; Zhang et al., 2003), GP was employed solely
as a classifier based on manually developed features.
In (Sherrah et al., 1997), GP-based feature extraction
was used to improve the classification results and re-
duce the dimensionality of the data in the medical
domain. GP exhibits pseudo-intelligent behaviour by
deciding whether to perform feature extraction or fea-
ture selection during the evolutionary process. Unfor-
tunately, the system is unable to sample adequately
the search space for high-dimensional problems and

334



the main disadvantage lies in its computational com-
plexity. Kotani et al. (Kotani et al., 1997) performed
feature extraction using GP with a KNN classifier on
one artificial task and one acoustic diagnosis exper-
iment with the conclusion that the genetic program-
ming is an effective tool for the feature extraction
task.

In this paper, GP is employed to generate a single
nonlinear feature to improve the classification accu-
racy for breast cancer diagnosis. As a machine learn-
ing method, GP exhibits intelligent behaviour to per-
form feature generation. During the evolutionary pro-
cess, a new fitness function is developed to evaluate
the effectiveness of each feature in helping GP select
the best features by which the patterns from benign
are well separated from patterns from malignant.

This paper is organized as follows: The data
preparation of breast cancer is addressed in Section
2. Section 3 presents the proposed feature generator
using genetic programming. Two kernel feature ex-
traction methods kernel principal component analysis
(KPCA) and kernel generalized discriminant analy-
sis (KGDA) are briefly presented in section 4. Three
classifiers Multi-Layer Prceptron (MLP),k-Nearest
Neighbor (KNN) and Minimum Distance Classifier
(MDC) are presented in section 5. In section 6, a num-
ber of experiments for breast cancer detection prob-
lems are reported using kernel Principal Component
Analysis, kernel Generalized Discriminant Analysis
extracted features and GP generated feature. Finally,
based on the experimental results, conclusions on this
proposed method are presented in section 7.

2 THE PROBLEM

It is of prime importance to be able to detect the breast
cancer in early stages. In this paper, the Wisconsin
diagnostic breast cancer (WDBC) dataset from the
UCI Machine Learning repository (D.J. Newman and
Merz, 1998) is used to examine the capability of GP
for the breast cancer detection problem.

2.1 Image Preparation

The Wisconsin diagnostic breast cancer (WDBC)
dataset was created by Wolberg et al., University of
Wisconsin (Street et al., 1993). The diagnosis proce-
dure begins by obtaining a small drop of fluid from
a breast tumour using a fine needle. The image for
digital analysis is generated by JVC TK-1070 colour
video camera mounted atop an Olympus microscope
and the image is projected into the camera with a

63× objective and a 2.5× ocular. The image is cap-
tured by a ComputerEyes/RT colour frame grabber
board (Digital Vision, Inc., Dedham MA 02026) as
a 512×480, 8-bit-per-pixel Targa file.

2.2 Data Preparation

An active model located in the actual boundary of cell
nucleus is defined as a snake. The ten different fea-
tures from the snake-generated cell nuclei boundaries
are extracted by following techniques:

• Radius: The radius of an individual nucleus is
measured by averaging the length of the radial line
segments defined by the centroid of the snake and
the individual snake points.

• Perimeter: The nuclear perimeter is defined by
calculating the total distance between the snake
points.

• Area: The nuclear area is defined by counting the
number of pixels on the interior of the snake and
adding one-half of the pixels in the perimeter.

• Compactness: The perimeter2/area is used as
the compactness of the cell nuclei.

• Smoothness: The smoothness of a nuclear con-
tour is quantified by measuring of difference be-
tween the length of a radial line and the mean
length of the lines surrounding it.

• Concavity: Concavity is defined as the severity of
indentations in a cell nucleus. For a line connect-
ing any two non-adjacent snake points, if the ac-
tual boundary drop inside the line, an indentation
occurs and the distance to the line is a measure of
the severity.

• Concave Points: This feature is similar to Con-
cavity but measures only the number, rather than
the magnitude, of contour concavities.

• Symmetry: The length difference between lines
perpendicular to the major axis to the cell bound-
ary in both directions is defined as symmetry.

• Fractal Dimension: The fractural dimension is an
indication of the regularity of the nucleus. Higher
values of the downward slops of the coastlines
correspond to less regular contour and vice-versa.

• Texture: The texture of the cell nucleus is defined
by finding the variance of the gray scale intensities
in the component pixels.
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Figure 1: Tree Representation.

The mean value, largest value and standard error of
each feature are computed for each image. A set of
569 images has been processed, yielding a database of
30-dimensional points (Street et al., 1993). In this pa-
per, we randomly selected, without replacement, 100
samples for benign case, and 100 samples for malig-
nant case respectively. Two 30×200 matrices are ob-
tained for training and test datasets. One of them as
the training dataset forms the terminator set to the GP.
Another matrix is used as the test dataset. For each
given pattern vector of training and test datasets, a
corresponding vector is created in a matrix contain-
ing the target information.

3 GENETIC
PROGRAMMING-BASED
FEATURE GENERATOR

In this paper, we introduce a new method for a feature
generator based on GP, for breast cancer detection
problem. Genetic Programming, as a form of evo-
lutionary algorithm and an extension of genetic algo-
rithms, extracts the information from the real-valued
parameter vector to create features based on the evo-
lutionary algorithm. The surviving feature from the
feature generator will be used to provide the solution
to pattern recognition problems.

3.1 The Representation of Each
Individual

Since expressions can be represented as trees or-
dered by operator precedence, GP systems in this pa-
per evolve programs using tree representation. Each
member can be written as a polynomial expression
consisting of several non-linear functions up to a max-
imum specified depth. Using this function, each in-
dividual in the population is a mathematical formula
that transforms the time series signals into a feature
data. FormulaTRoot= tanh( f eature1)+ f eature2
can be represented by the Fig. 1.

3.2 Process of Genetic Programming

The GP-based feature extractor is used to extract use-
ful information from the thirty features of breast can-
cer dataset in order to provide discriminating input
features for the classifiers. The purpose of GP is to try
to maximise the extra information content in the sam-
ple of the original feature set, and it implicitly max-
imises the separation between benign condition and
malignant condition within the data. The evolution-
ary process of GP-based feature generation system is
described by following steps. First, an initial popula-
tion with a chosen number of individuals is generated
on a random basis, meaning that there is no human in-
fluence or bias in the generation of original features.
Original feature set are fed as the inputs to the ini-
tial population. Each individual represents a transfor-
mation network, which tries to transform dataset into
information for classification.

In terms of the usefulness of each individual for
classification, a fitness value is assigned to each in-
dividual by fitness function. The members with the
best fitness values survive from the current genera-
tion and will be chosen as the origins of the next gen-
eration. In our design, only the elite will survive the
natural selection. This mechanism allows the feature
to evolve in a direction towards the best classification
performance, thus achieving the automatic generation
of features. At the beginning of the next generation,
three operations - reproduction, crossover and muta-
tion - are conducted to produce new members based
on the surviving member. If the termination criterion
is met, the best solution is preserved.

3.3 Fitness Function

The fitness function is one of the most important com-
ponents. It determines the performance of the GP sys-
tem. A good fitness function provides an improved
solution by rating the performance of each member
and giving the stronger one a better chance of surviv-
ing. It is well known that the computational demands
are relatively high in training a classifier for each in-
dividual when the classification results are used as
the fitness value for breast cancan diagnosis problem.
Hence in this study it is decided that classification re-
sults are not used as a measure of fitness. This deci-
sion reduces the computational complexity of the pro-
posed method significantly

Within the one-dimensional effective feature
space, the achievable classification success is de-
pendent upon the overlapping areas between classes.
Usually, a threshold is set within the area to sepa-
rate data belonging to different classes. However, it
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Figure 2: Crossover operation

is inevitable that some data points are misclassified.
Apparently the smaller the overlapping area, by the
smaller number of data points within the overlapping
area, the higher is the classification success. This rule
is explored in our fitness function to reveal quickly
and effectively the discriminating ability of the candi-
date features. Specifically, the higher boundary of the
lower class and the lower boundary of the higher class
are calculated. The number of data points present
within these two boundaries are found out and then
normalised by the total number of data points. A
small percentage of the overlapping points is an in-
dication how well the two classes can be separated.

3.4 Primitive Operations

Genetic programming evolves tree individuals repre-
senting possible solutions to the problem at hand. A
population of such individuals is randomly created
and then evolved by probability of genetic operations:

• Crossover: GP carries out a crossover operation
to create new individuals with a probabilityPc,
which controls the occurrence of the crossover
throughout generations. Two new individuals
are generated by selecting compatible nodes ran-
domly from each parent and swapping them, as
illustrated in Fig. 2.

• Mutation: The mutation operation is performed
by the creation of a subtree at a randomly selected
node with the probabilityPm. First, for a given
parent, there is an index assigned to each node
for identification. A random index number is gen-
erated to indicate the place where mutation will
happen. The node is located, then the tree down-
stream from this node is deleted and a new subtree
is generated from this node (see Fig. 3), exactly
in the same way as growing initial population.

• Reproduction: The reproduction operation is per-
formed by copying individuals to the next pop-
ulation without any change in terms of a certain
probabilityPr .

Figure 3: Mutation operation.

Table 1: The Operator sets for the GP.

Symbol No. of Inputs Description

+, - 2 Addition, Subtraction
*, / 2 Multiplication, Division

square, sqrt 1 Square, Square Root
sin, cos 1 Trigonometric functions

asin, acos 1 Trigonometric functions
tan, tanh 1 Trigonometric functions

reciprocal 1 Reciprocal
log 1 Natural Logarithm

abs, negator 1 Absolute, Change Sign

All these three operations happen within one gen-
eration based on three probabilities, such that:

Pc +Pm+Pr = 1 (1)

3.5 Primitive Terminators

Terminators act as the interface between GP and the
experimental dataset. They are required to collect re-
lated information as much as possible from the orig-
inal feature set and to provide inputs to the feature
generator. In our GP-based feature extractor, the ter-
minator set is constructed by thirty original feature set
(see Section 2) and some numerical values, which are
randomly generated at the construction cycle of new
individuals. These numerical values could be either
integer or floating point numbers, both ranging from
1 to 100.

3.6 Primitive Operators

One of the main building blocks of the GP is the oper-
ator pool. The functions stored in the pool are math-
ematical operators that perform an operation on one
or more inputs to give an output result. Table 1 lists
the mathematical functions used as operators in this
paper.
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4 KERNEL FEATURE
EXTRACTION METHODS

In recent years, kernel-based methods are becoming
popular for their ability to solving nonlinear prob-
lems. It is first applied to overcome the computational
and statistical difficultly of SVM classifier for seek-
ing an optimal separating hyperplane in the feature
space(E.Osuna et al., 1997). It is demonstrated to be
able to represent complicated nonlinear relationship
of the input data efficiently.

The Kernel Principal Component Analysis
(KPCA) and Kernel Generalised Discriminant
Analysis (KGDA) are two independent nonlinear
feature extraction/selection methods, both of which
perform the mapping in the feature spaceF with
kernel functions and use a linear analysis algorithm
to discover patterns in the kernel-defined space.
The mapping functionΦ is defined implicitly by
specifying the form of the dot product in the feature
space (Scholkopf et al., 1998).

4.1 Kernel Principal Component
Analysis

Kernel PCA is the non-linear extension of the PCA in
a kernel-defined feature space making use of the dual
representation (Shawe-Taylor and Cristianini, 2004).

Given a set of observations{~xi ∈ Rn : i = 1 toN},
we first map the data into a feature spaceF and com-
pute the covariance matrix(Muller et al., 2001):

C =
1
N

N

∑
j=1

Φ(x j )Φ(x j)
T (2)

TheN×N Kernel Matrix is defined as,

Ki j := Φ(~xi)•Φ(~x j) = K(~xi ,~x j); i, j = 1, . . . ,N
(3)

The data need to be centred in the mapped feature
spaceF

K̃i j ≡ Φ̃(~xi)• Φ̃(~xj ) = Ki j −
1
N

N

∑
p=1

Kip−
1
N

N

∑
q=1

Kq j +
1

N2

N

∑
p,q=1

Kpq

(4)

Now the eigenvalue problem for the expansion coef-
ficientsαi is solely dependent on the kernel function,

λα = K̃α (5)

Projects the mapped patternΦ(x) ontoVk to extract
features of new datasetx with kernel PCA.

(Vk ·Φ(x)) =
N

∑
i=1

αk
i (Φ(xi) ·Φ(x)) =

N

∑
i=1

αk
i K(xi ,x)

(6)

4.2 Kernel Generalized Discriminant
Analysis (KGDA)

KGDA is derived from a linear version of the dis-
criminant analysis, namely, Fisher linear discriminant
analysis FLDA. FLDA is designed optimally with its
ability to maximise the ratio of within-class scatter
and between-class scatter of projected features. For
c (c > 2) classes, theith observation vector from the
classl is defined byxli , where 1≤ l ≤ c, 1≤ i ≤ Nl ,
andNl is the number of observations from classl . The
within-class covariance matrix is given by

Sω =
c

∑
l=1

Sl , (7)

where

Sl =
Nl

∑
i=1

(xli −µl)(xli −µl)
T (8)

The between-class covariance matrix is defined by

Sb =
c

∑
l=1

Nl (µl −µ)(µl −µ)T (9)

whereµl is the mean of classl and µ is the global
mean.

The idea of KGDA is to solve the problem of
FLDA in a kernel feature space, thereby yielding a
nonlinear discriminant in the input space. In term
of the dot product, the optimisation problem for the
KGDA in the feature space can be written as

J(α) =
αTSΦ

b α
αTSΦ

ωα
(10)

where

SΦ
b =

c

∑
l=1

[kl k
T
l −kkT ] (11)

SΦ
ω = K2−

c

∑
l=1

Nl kl k
T
l (12)

kl =
1
Nl

Nl

∑
l=1

Ki j i, j = 1, . . . ,Nl (13)

k =
1
N

N

∑
i=1

Ki j i, j = 1, . . . ,N (14)

wherekl is the mean vector of kernel matrix of class
l , k indicates the global mean vector of kernel matrix
of Ki j .

The projection of the test datasetx into the dis-
criminant is given by

W ·Φ(x) =
N

∑
i=1

αik(xi ,x) (15)
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5 CLASSIFIERS

Three classifiers - Artificial Neural Networks
(ANNs), K-Nearest Neighbour (KNN) and Minimum
Distance Classifier (MDC) - are employed in this
paper to evaluate the discriminating ability of features
generated by GP and other kernel feature extraction
methods discussed previously.

The Multi-Layer Peceptron (MLP) is chosen here
as the structure of the network for its overall perfor-
mance over other configurations. The MLP used here
consists of one hidden layer varying between 1 and 14
neurons and one output layer, with the hidden layer
having a logistic activation function and the output
layer using a linear activation function. For training
procedure, the back propagation algorithm with adap-
tive learning and momentum is used. The network is
trained for 10000 epochs using each feature set.

KNN is a supervised learning algorithm to classify
a test object based on majority of K-nearest neighbor
category. Given that the version ofK = 1 is often
rather successful (Ripley, 2004). 1-NN is used as the
classifier to examine the performance of features in
this paper.

MDC is the simplest classification criterion. Basi-
cally, the method finds centres of classes and mea-
sures distances between these centres and the test
data. The distance is defined as a measure of similar-
ity so that the minimum distance indicates the max-
imum similarity. In this paper, Euclidean distance is
used to investigate the capability of any feature ex-
tracted by this approach.

6 EXPERIMENTAL RESULTS

6.1 Feature Generation Result

Fig. 4 is obtained for detection of breast cancer by
running GP-based feature extractor with population
size 100, maximum tree depth 10 and terminating af-
ter the number of generations reaches 5000. Fig. 4
shows the output of a single feature, generated from
the original feature set with 30 dimensions, for the
training dataset and test dataset respectively. There
are 200 examples in total from two conditions, with
100 examples in the benign case and 100 examples
in the malignant case. It is clear from Figure 4 that
the two conditions are perfectly separated from each
other at training dataset, and three examples misclas-
sified in test dataset.

0 50 100 150 200
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−0.5

0

0.5

1

Training data

0 50 100 150 200

−1

−0.5

0

0.5

1

Test data

Figure 4: Output of a single feature, generated by GP from
the original feature set with 30 dimensional breast cancer
data, for the 200 examples in each of the training dataset
and test dataset respectively.

6.2 Classification Results

A number of experiments were carried out to evalu-
ate the discriminating ability of features generated by
GP and other classical feature extraction methods in
term of classification performance using MLP, 1-NN
and the simplest classifier MDC respectively. Twenty
runs of GP has been conducted for generating fea-
tures. Also, fifty MLP have conducted using original
features and feature extracted by KPCA, KGDA and
GP respectively.

Table 2 presents the comparison results of classifi-
cation success rate using feature set extracted by dif-
ferent method as the inputs to MLP, 1-NN and MDC.
It can be seen that the best classification accuracy is
achieved by MLP when thirty original features are
used as input. One KPCA feature achieved the best
94.5% when MDC is use as the classifier. one KGDA
feature with MLP and MDC achieved the same clas-
sification results 93.5%. When a GP extracted fea-
ture is employed, the improvement is significant com-
pared with other classical feature extraction methods.
Together with MLP, KNN and MDC, it performs the
best with success rate at 98.5% among all of pattern
recognition systems. From the best classification ac-
curacy it can be seen that GP generated features are
more robust compared with other methods.
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Table 2: The best classification accuracy (%) using originalfeatures, one KPCA-extracted features, one KGDA-extracted
features and one GP-generated features respectively, witha MLP, a KNN and a MDC classifier respectively on breast cancer
dataset.

Classifier Original Feature KPCA Feature KGDA Feature GP Feature
MLP 97% 90% 93.5% 98.5%
KNN 87.5% 85.5% 93% 98.5%
MDC 84% 94.5% 93.5% 98.5%

7 CONCLUSIONS

It is now clear from Figure 4 that values of the single
feature obtained from our proposed method cluster
naturally into largely non-overlapping groups. Thus
no computationally complex classifier may be needed
for successful classification, instead some simple
thresholds are enough. Summarizing all the results
obtained from different approaches for breast cancer
diagnosis problem, it can be said that performances
from a single GP-generated feature are the most accu-
rate and reliable in all experiments. From the results
of different pattern recognition problems, GP is not
only capable of reducing the dimensionality, but also
achieving a significant improvement in the classifica-
tion accuracy. Using the single feature generated by
GP makes a significant contribution to the improve-
ment in classification accuracy and robustness, com-
pared with other sets of features extracted by KPCA
and KGDA.

Generally in pattern recognition problems, there is
a reliance on the classifier to find the discriminating
information from a large feature set in case of stand-
alone MLP. In this paper, GP as a machine learning
method is proposed for nonlinear feature extraction
for breast cancer diagnosis. This approach is able
to learn directly from the data just like conventional
methods (such as FLDA and PCA), but in an evolu-
tionary process. Under this framework, an effective
feature can be formed for pattern recognition prob-
lems without the knowledge of probabilistic distribu-
tion of data.

From the experimental results it can be seen that
with the combination of a simple form of classifier
MDC, GP outperforms the other two feature extrac-
tors which are using more sophisticate classifier MLP,
indicating an overwhelming advantage of GP in fea-
ture extraction for breast cancer diagnosis.
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Abstract: The medical applications of several advanced, kernel-based classifiers to breast cancer diagnosis and progno-
sis are studied and compared in this paper, including kernel Fisher’s discriminative analysis, support vector
machines (SVMs), multisurface proximal SVMs, as well as the pairwise Rayleigh quotient classifier and the
strict 2-surface proximal classifier that we recently proposed. The radial basis function kernel is employed
to incorporate nonlinearity. Studies are conducted with the Wisconsin diagnosis and prognosis breast cancer
datasets generated from fine-needle-aspiration samples by image processing. Comparative analysis is pro-
vided in terms of classification accuracy, computing time, and sensitivity to the regularization parameters for
the above classifiers.

1 INTRODUCTION

Despite the increasing public awareness and scientific
research, breast cancer continues to be the most com-
mon form of cancer and the second most common
cause of cancer deaths in females; the disease affects
approximately 10% of all women at some stage of
their life in the western world (Marshall, 1993). The
long-term survival of a patient with breast cancer are
improved by the early detection of the disease, which
is enhanced by an accurate diagnosis. The choice
of appropriate treatments following surgery is influ-
enced by the expected long-term behavior of the dis-
ease, so-called prognosis.

Definitive diagnosis of a breast mass can only
be established through fine-needle aspiration (FNA)
biopsy, core needle biopsy, or excisional biopsy.
Among these methods, FNA is the easiest and fastest
method of obtaining a breast biopsy, and is effec-
tive for women who have fluid-filled cysts. Research
works on the Wisconsin Diagnosis Breast Cancer
(WDBC) data grew out of the desire of Dr. Wolberg
to diagnose breast masses accurately based solely on
FNA (Wolberg et al., 1993; Street et al., 1993). Later,
a number of research projects have been developed
with the WDBC dataset, focusing on computer-aided
diagnosis (CAD) using machine learning techniques
(Wolberg et al., 1994; Wolberg et al., 1995; Man-
gasarian et al., 1995; Guo and Nandi, 2006; Mu and
Nandi, 2007). Breast cancer prognosis is a more dif-
ficult problem, that is, the long-term outlook for the

disease for patients whose cancer has been surgically
removed. Till now, few works have been developed
on predicting the time to recur (TTR) for a patient
for whom cancer has not recurred and may never re-
cur (Wolberg et al., 1995; Mangasarian et al., 1995;
Street et al., 1995). The detection of malignant breast
tumors from a set of benign and malignant samples
for diagnosis, and the simple prediction of patients
as ’recurred’ or ’not recurred’ without predicting the
TTR for prognosis, both belong to the pattern classi-
fication problems.

The idea of using kernel functions as inner prod-
uct in a feature space was introduced into machine
learning in 1964 by the work of Aizerman, Braver-
man and Rozonoer (Aizerman et al., 1964). Ker-
nel methods to pattern analysis embeds the data in
a suitable feature space, and then uses algorithms
based on linear algebra, geometry, and statistics to
discover patterns in the embedded data. Different
kernel-based classifiers have been proposed. Boser,
Guyon, and Vapnik (Boser et al., 1992) first combined
the kernel function with the large margin hyperplanes,
leading to support vector machines (SVMs) that are
highly successful in solving various nonlinear and
non-separable problems in machine learning. In addi-
tion to the original C-SVM learning method (Cortes
and Vapnik, 1995), the ν-SVM learning method was
proposed by Schölkopf et al. (Schölkopf et al., 2000),
which is closely related to the C-SVM but with a dif-
ferent optimization risk. The famous Fisher’s linear
discriminant analysis (FLDA), dating back to 1936
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(Fisher, 1936), seeks separating hyperplanes which
best separate two or more classes of samples based
on the Fisher criterion with the between- and within-
class scatters built on individual samples. Mika et al.
(Mika et al., 1999) combined kernels functions with
FLDA leading to kernel Fisher’s discriminant analy-
sis (KFDA). Mu et al. (Mu et al., 2007a) proposed to
seek the optimal separating hyperplane based on the
pairwise Rayleigh quotient (PRQ) criterion with the
between- and within- class scatters built on the pair-
wise information; they also proposed to combine ker-
nels functions with the linear PRQ classifier leading
to the nonlinear PRQ classifier. Multiplane learning
is a comparatively new machine learning method de-
veloped in recent years. Mangasarian and Wild (Man-
gasarian and Wild, 2006) proposed the kernel-based
multisurface proximal SVM (MPSVM) that seeks two
cross proximal planes by optimizing a regularized
optimization objective with Tikhonov regularization
term employed. More recently, Mu et al. (Mu et al.,
2007b) proposed the strict 2-surface proximal (S2SP)
classifier that seeks two cross proximal planes by em-
ploying a “square of sum” optimization factor with-
out any regularization term, which is mathematically
stricter than the optimization objective of MPSVM;
and kernel functions were employed to incorporate
nonlinearity.

In this paper, studies are conduced on the WDBC
and WPBC datasets to investigate the benefits of ap-
plying different kernel-based classifiers to breast can-
cer diagnosis and prognosis, including SVM, KFDA,
PRQ classifier, MPSVM, regularized δ-MPSVM
(Mangasarian and Wild, 2006), and S2SP classifier.
The detecting accuracies, computing times, and sensi-
tivities to regularization parameters are compared for
the above kernel-based classifiers.

2 CLASSIFICATION METHODS

Given a set of l labeled training samples z =
{(xi,yi)}l

i=1 ∈ (Rn × Y ), where Rn is the n-
dimensional real feature space with a binary label
space Y = {1,−1}, and yi ∈ Y is the label assigned
to the sample xi ∈ Rn, the purpose of classification is
to seek the best prediction of the label for an input
sample x. All the kernel-based classifiers are devel-
oped in the kernel-transformed feature space κ, with
a nonlinear mapping φ : Rn→ κ.

2.1 Discriminant Classification

The basic idea of the discriminant classification is
to seek one optimal hyperplane that best separates

the two classes of samples in a corresponding feature
space. In the kernel-transformed feature space κ, by
expanding the direction vector of the hyperplane into
a linear summation of all training samples, the sepa-
rating hyperplane can be given as

f (x) =
l

∑
i=1

αiK(xi,x)+b, (1)

where {αi}l
i=1 denote the summating weights, b de-

notes the bias of the separating hyperplane, and K(·, ·)
is a kernel function used to compute the inner product
matrix, the so-called kernel matrix, on pairs of sam-
ples in the kernel-transformed feature space κ. Dif-
ferent classification methods lead to different ways to
determine the optimal separating hyperplane f ∗(x).
The label of a given test sample x can be predicted by

p(x) = sgn( f ∗(x)), (2)

where sgn(x) is equal to 1 when x≥ 0, and −1 other-
wise.

2.1.1 Support Vector Machines

The basic idea of SVMs is to construct a separat-
ing hyperplane as the decision surface in such a way
that the margin of separation between the positive and
negative samples is maximized in an appropriate fea-
ture space. To determine f ∗(x) based on the maxi-
mal margin rule, the following constrained quadratic
programming problem is solved (Cortes and Vapnik,
1995), as

O(β) =
l

∑
i=1

βi−
1
2

l

∑
i=1

l

∑
j=1

yiy jβiβ jK(xi,x j), (3)

subject to
l

∑
i=1

yiβi = 0,

0≤ βi ≤C, i = 1,2, . . . , l,

where {βi}l
i=1 are Lagrange multipliers, and C is

the regularization parameter set by the user. Letting
{β∗i }l

i=1 denote the optimal solution of O(β), the op-
timal value of the summating weights {αi}l

i=1 and the
bias b are obtained by

α
∗
i = yiβ

∗
i , i = 1,2, . . . , l, (4)

b∗ =− 1
2S ∑

x∈S+
⋃

S−

l

∑
i=1

yiβ
∗
i K(x,xi), (5)

where S+ and S− are two sets of support vectors with
the same size of S but different labels of +1 and −1.
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2.1.2 Kernel Fisher’s Discriminant Analysis

KFDA determines f ∗(x) by maximizing the follow-
ing Fisher criterion (Shawe-Taylor and Cristianini,
2004), as

O( f ) =
(µ+−µ−)2

(σ+)2 +(σ−)2 , (6)

where

µ+ =
1
l+

(
l+

∑
i=1

f (xi)

)2

,

µ− =
1
l−

(
l−

∑
i=1

f (xi)

)2

,

(σ+)2 =
1
l+

l+

∑
i=1

( f (xi)−µ+)2,

(σ−)2 =
1
l−

l−

∑
i=1

( f (xi)−µ−)2,

where µ+ and µ− denote the mean projections of the
positive and negative samples, respectively; σ+ and
σ− are the corresponding standard deviations; and l+

and l− denote the number of samples from the pos-
itive and negative classes, respectively. By incorpo-
rating Eq. (1) into Eq. (6), the optimal values of
{αi}l

i=1 and b can be calculated by solving a general-
ized eigenvalue problem (Shawe-Taylor and Cristian-
ini, 2004).

2.1.3 Pairwise Rayleigh Quotient Classifier

The PRQ classifier helps in classification with insuf-
ficient training samples by employing pairwise con-
straints instead of individual samples. To determine
the optimal separating hyperplane f ∗(x), the follow-
ing PRQ criterion is maximized (Mu et al., 2007a),
as

O( f ) =
d̃

d̃+ + d̃−
, (7)

where

d̃ =

[
m

∑
i=1

1
2
(1− zi)( fi1− fi2)

]2

,

d̃+ =
1

l+(l+−1)

m

∑
i=1

1
4
(1+ zi)(1+ yi1)( fi1− fi2)2

d̃− =
1

l−(l−−1)

m

∑
i=1

1
4
(1+ zi)(1− yi1)( fi1− fi2)2,

where d̃ denotes the differences of projections be-
tween samples from different classes; d̃+ denotes the
differences of projections between samples from the

positive class; d̃− denotes the differences of projec-
tions between samples from the negative class; yi1 de-
notes the label of the sample xi1; zi ∈ {1,−1} is the
pairwise constraint assigned to the two samples in the
pair (xi1,xi2), and zi = 1 if the two samples (xi1,xi2)
belong to the same class, whereas zi = −1 if the two
samples (xi1,xi2) belong to different classes; fi1 and
fi2 are used to denote f (xi1) and f (xi2); and m is the
total number of available pairwise constraints. By in-
corporating Eq. (1) into Eq. (7), the optimal values
of {αi}l

i=1 and b can be simply calculated by matrix
computation (Mu et al., 2007a). Compared with the
Fisher criterion built on individual samples from a to-
tal number of l available samples, the PRQ criterion
offers more possibilities by employing pairwise con-
straints from a total number of l ∗ (l − 1) available
constraints.

2.2 Proximal Classification

The basic idea of proximal classification is to seek
two proximal planes in a corresponding feature space,
so that the first plane is as close to the points of the
positive class while being as far as possible from the
points of the negative class, whereas the second plane
is as close to the points of the negative class while
being as far as possible from the points of the positive
class. In the kernel-transformed feature space κ, by
expanding the direction vector of the hyperplane into
a linear summation of all training samples, the two
proximal hyperplanes are given as

f1(x) =
l

∑
i=1

αi1K(xi,x)+b1, (8)

f2(x) =
l

∑
i=1

αi2K(xi,x)+b2, (9)

where the subscripts 1 and 2 denote the first and sec-
ond proximal plane, respectively. Let d1 and d2 de-
note the Euclidean distance between the sample and
the two proximal planes, respectively, in the feature
space κ. The label of a given test sample x can be
predicted by considering values of d1, d2, and d1

d2
to-

gether using linear discriminant analysis.

2.2.1 Multisurface Proximal SVMs

MPSVMs obtain the first proximal hyperplane by
maximizing the following objective function, as
(Mangasarian and Wild, 2006)

O1(α1,b1) =
‖K−α1 + eb1‖2

‖K+α1 + eb1‖2 ; (10)
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and obtain the second proximal hyperplane by maxi-
mizing (Mangasarian and Wild, 2006)

O2(α2,b2) =
‖K+α2 + eb2‖2

‖K−α2 + eb2‖2 , (11)

where α1 and α2 are two column vectors each with
elements equal to {αi1}l

i=1 and {αi2}l
i=1, respectively;

the l+× l matrix K+ represents the kernel matrix be-
tween the samples from the positive class and all the
training samples; the l−× l matrix K− represents the
kernel matrix between the samples from the negative
class and all the training samples; and e is a column
vector with all elements equal to one. The optimal
values of α1, b1, α2, and b2 can be calculated by
solving two generalized eigenvalue problems (Man-
gasarian and Wild, 2006), respectively.

Letting α̃1
T =

[
αT

1 ,b1
]
, and α̃2

T =
[
αT

2 ,b2
]
,

to improve the classification performance of the
MPSVMs, Mangasarian and Wild (Mangasarian and
Wild, 2006) proposed to employ a Tikhonov regular-
ization term, the two optimization objective shown in
Eq. (10) and Eq. (11) become

O1(α1,b1) =
‖K−α1 + eb1‖2 +δ‖α̃1‖2

‖K+α1 + eb1‖2 , (12)

O2(α2,b2) =
‖K−α2 + eb2‖2 +δ‖α̃2‖2

‖K+α2 + eb2‖2 , (13)

where δ is a nonnegative regularization parameter set
by the user. However, similar to the regularization pa-
rameter of the SVM, such as C for the C-SVM (Cortes
and Vapnik, 1995) and ν for the ν-SVM (Schölkopf
et al., 2000), performance of the above regularized δ-
MPSVM is sensitive to the setting of the regulariza-
tion parameter δ.

2.2.2 Strict 2-Surface Proximal Classifier

With consideration of the sign effect under the situa-
tion of misclassification with large projections onto
the separating plane, the S2SP classifier eliminates
the regularization term by employing the “square of
sum” numerator. To obtain the first proximal hyper-
plane, the following objective function is to be maxi-
mized (Mu et al., 2007b), as

O1(α1,b1) =
dK−α1 + eb1e2

‖K+α1 + eb1‖2 , (14)

and obtain the second proximal hyperplane by maxi-
mizing (Mu et al., 2007b)

O2(α2,b2) =
dK+α2 + eb2e2

‖K−α2 + eb2‖2 , (15)

where dvectore is used to denote the sum of the ele-
ments of the vector; and dmatrixe is used to denote

a column vector with the sum of each row. The op-
timal values of α1, b1, α2, and b2 can be calculated
by matrix computation (Mu et al., 2007b). There is
no regularization parameter to be tuned for the S2SP
classifier, which makes this method more convenient
for the users, as compared with MPSVMs.

3 FEATURE PREPARATION

The WDBC and WPBC datasets were obtained from
the University of Wisconsin Hospitals, Madison, of
which the features were computed from digitized
FNA samples. A portion of well-differentiated cells
was scanned using a digital camera. The image anal-
ysis software system Xcyt was used to isolate indi-
vidual nuclei (Wolberg et al., 1994; Wolberg et al.,
1995; Mangasarian et al., 1995). In order to evalu-
ate the size, shape, and texture of each cell nuclei, ten
characteristics were derived and described as follows.

• Radius is computed by averaging the length of
radial line segments from the center of mass of
the boundary to each of the boundary points.

• Perimeter is measured as the sum of the distances
between consecutive boundary points.

• Area is measured by counting the number of pix-
els on the interior of the boundary and adding one-
half of the pixels on the perimeter, to correct for
the error caused by digitization.

• Compactness combines the perimeter and area to
give a measure of the compactness of the cell, cal-
culated as perimeter2

area .

• Smoothness is quantified by measuring the differ-
ence between the length of each radial line and the
mean length of the two radial lines surrounding it,
calculated by

∑points |ri− (ri + ri+1)/2|
perimeter

,

where ri is the length of the line from the center
of mass of the boundary to each boundary point.

• Concavity is captured by measuring the size of
any indentations in the boundary of the cell nu-
cleus.

• Concave points is similar to concavity, but counts
only the number of boundary points lying on the
concave regions of the boundary, rather than the
magnitude of such concavities.

• Symmetry is measured by finding the relative dif-
ference in length between pairs of line segments
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perpendicular to the major axis of the contour of
the cell nucleus, calculated by

symmetry = ∑i |lefti− righti|
∑i(lefti + righti)

,

where lefti and righti denote the lengths of perpen-
dicular segments on the left and right of the major
axis, respectively.

• Fractal dimension is approximated using the
“coastline approximation” described by Mandel-
brot (Mandelbrot, 1997). The perimeter of the
nucleus is measured using increasingly larger
“rulers”. As the ruler size increases, the precision
of the measurement decreases, and the observed
perimeter decreases. Plotting these values on a
log-log scale and measuring the downward slope
gives the negative of an approximation to the frac-
tal dimension.

• Texture is measured by finding the variance of the
gray-scale intensities in the component pixels.

The mean value, standard error, and the extreme
(largest or “worst” ) value of each characteristic were
computed for each image, which resulted in 30 fea-
tures of 569 images, yielding a database of 569×30
samples representing 357 benign and 212 malignant
cases, for the WDBC dataset; and 30 features of 198
images, yielding a database of 198×30 samples rep-
resenting 151 nonrecurring and 47 recurring cases, for
the WPBC dataset.

4 EXPERIMENTS

Experiments and comparative analysis were con-
ducted on the WDBC and WPBC datasets, using
SVM, KFDA, PRQ classifier, MPSVM, regularized
δ-MPSVM, and S2SP classifier. The features were
normalized to have zero mean and unit variance be-
fore being used as the input of a classifier. Clas-
sification performance is shown in terms of classi-
fication accuracy in percentage. The radial basis
function (RBF) kernel was employed to calculate the
inner-product matrix between samples in the kernel-
transformed feature space, given as

K(xa,xb) = exp
(
−‖xa−xb‖2

2σ2

)
,

where σ is the kernel width set by the user. The SVM
was trained by using the “SVM and kernel methods
MATLAB toolbox” (Canu et al., 2003).

The 10-fold-cross validation was used to evaluate
the classifiers, which was executed by randomly di-
viding all the available samples into ten subsets each

Table 1: Performance comparison in percentage accuracy
and computing time for different kernel-based classifiers.

WDBC WPBC
Accu. Time Accu. Time

Methods (%) (Sec.) (%) (Sec.)
SVM 98.8 0.09 76.3 0.08
KFDA 97.2 0.09 76.3 0.02
PRQ 97.7 8.02 76.3 1.07
MPSVM 85.3 0.90 75.3 0.21
δ-MPSVM 91.6 0.67 76.3 0.09
S2SP 99.2 0.10 77.3 0.02
Lam et al. 95.6 N/A 76.3 N/A

with nearly the same number of samples. The same
ten sets of training-test trials were employed for every
classification method, each with one subset for test
and the remaining nine subsets for training. Param-
eters of each classifier were selected by using the 5-
fold-cross validation within the training set of the first
trial. The same five sets of training-test trials were
conducted to select parameters for each classification
method. Finally, the mean value of the ten test clas-
sification accuracies with the selected parameters was
used to represent the generalized performance.

The classification performance and the corre-
sponding computing time of each classifier are
recorded in Table 1 using the WDBC and WPBC
datasets; the results were also compared with the
10-fold-cross-validation performance obtained by the
edited nearest-neighbor (ENN) with pure filtering
(Lam et al., 2002) using the same datasets. The S2SP
classifier provided the best classification accuracy of
99.2% as compared with the other five kernel-based
classifiers. Nearly all of our obtained results (above
97%) were better than the published result of 95.6%
(Lam et al., 2002) (see Table 1). For the more dif-
ficult WPBC dataset, the S2SP classifier provided
the best classification accuracy of 77.3%. KFDA,
SVM, δ-MPSVMs, and the PRQ classifier provided
the same performance of 76.3% as that obtained by
ENN (Lam et al., 2002) (see Table 1). KFDA, SVM,
and the S2SP classifier possess faster training speed
than MPSVMs, δ-MPSVMs, and the PRQ classifier,
and performs better than MPSVMs and δ-MPSVMs.
The classification performance of the PRQ classifier
is comparable to those obtained by KFDA, SVM, and
the S2SP classifier.

For a reasonable comparison of the classification
capabilities, a score is calculated by averaging the
classification performance over the two datasets and
timing by 100 for each classifier, and recorded in
Table 2. It can be seen from Table 2 that the S2SP
classifier provides the highest score and requires

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

346



−10 −5 0 5 10
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

log
10

δ

10
−

F
ol

d 
A

cc
ur

ac
y

WDBC Dataset

Figure 1: Performance variations of the δ-MPSVM classi-
fier versus different values of log10.. δ, with the RBF kernel
width σ fixed as the selected values, for the WDBC dataset.
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Figure 2: Performance variations of the δ-MPSVM classi-
fier versus different values of log10.. δ, with the RBF kernel
width σ fixed as the selected values, for the WPBC dataset.

the least parameters to be tuned. Both the SVM
and δ-MPSVM classifiers require to determine one
extra regularization parameter. For SVM, C controls
the tradeoff between the complexity of a SVM and
the number of non-separable points. The SVM
performance is not very sensitive to the setting of
C. The performance variations of the δ-MPSVM
are provided in Fig. 1 and Fig. 2, by varying the
value of log10 δ from -10 to 10, for the WDBC and
WPBC datasets, respectively. It can be seen from
Fig. 1 and Fig. 2 that performance of the δ-MPSVM
classifier is sensitive to the setting of δ. Without
using the regularization term, the average score of the
MPSVM classifier falls down from 84.0 to 80.3 (see
Table 2). However, tuning of the values of the kernel
parameters is unavoidable for all these kernel-based
classifiers.

Table 2: Comparison of classification capability in average
percentage accuracy for different classifiers.

Rank Classifiers Score Parameters
1 S2SP 88.3 1 (σ)
2 SVM 87.6 2 (σ, C)
3 PRQ 87.0 1 (σ)
4 KFDA 86.8 1(σ)
5 δ-MPSVM 84.0 2 (σ, δ)
6 MPSVM 80.3 1 (σ)

5 CONCLUSIONS

Five recently developed, kernel-based, nonlinear
classifiers, including SVM, KFDA, PRQ classifier,
MPSVMs (unregularized MPSVM and regularized δ-
MPSVM), and S2SP classifier, have been applied to
breast cancer diagnosis and prognosis. We have stud-
ied and compared the benefits of the above classi-
fiers in terms of classification accuracy, computing
time, and sensitivity to the regularization parameter.
Studies were conducted with the WDBC and WPBC
datasets. Experimental results demonstrate that the
classification accuracies of SVM, KFDA, S2SP, and
PRQ classifiers are comparable. However, the PRQ
classifier possesses the slowest computing speed, as
the PRQ criterion built on pairwise constrains leads to
an increase of the computing speed by l2 as the size
(l) of the training samples increases. The classifica-
tion performance of MPSVM is unsatisfactory, and
sensitive to the setting of the regularization parameter
δ. From an overall consideration, the S2SP classifier
is more favorable to users with not only higher clas-
sification accuracy but also faster computing speed;
furthermore, there is no regularization parameter to
be tuned for the S2SP classifier.
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Keywords: Raman Spectroscopy, Paraffin-Embedded Cutaneous Biopsies, Blind Source Separation, Independent Com-
ponent Analysis, Non-negative Matrix Factorization, Maximum Likelihood Positive Source Separation.

Abstract: Raman spectroscopy is a powerful tool for the study of molecular composition of biological samples. Digital
processing techniques are needed to separate the wealthy but complex information recorded by Raman spec-
tra. Blind source separation methods can be used to efficiently extract the spectra of chemical constituents.
We propose in this study to analyze the performances of four blind source separation methods. Two Inde-
pendent Component Analysis methods using the JADE and FastICA algorithms are based uniquely on the
independence of the spectra. The Non-Negative Matrix Factorization takes into account only the positivity of
underlying spectra and mixing coefficients. The Maximum Likelihood Positive Source Separation assumes
both the independence and positivity of the spectra. A realistic simulated dataset allows a quantitative study of
these methods while a real dataset recorded on a paraffin-embedded skin biopsy provides a qualitative study.

1 INTRODUCTION

Raman spectroscopy is a light scattering technique
used in numerous biomedical applications (Choo-
Smith et al., 2002). For example, it was success-
fully used in oncology to discriminate between ma-
lignant and benign tumors (Haka et al., 2002; Gni-
adecka et al., 2004). Recording the Raman scattering
of a laser on a biopsy, the Raman spectroscopy gives
information about the vibrational modes of the ana-
lyzed sample. Based on the uniqueness of Raman sig-
natures of each molecular constituent, this technique
extracts wealthy but complex information about the
molecular composition of biopsies.

To be studied in optimal and reproducible condi-
tions by Raman spectroscopy, thin sections of biop-
sies are required. A conservative property of these
biopsies is also needed for their storage in tissue
banks (tumor banks in oncology) for further analysis.
To satisfy these requirements, the biopsies are fixed
by formalin and embedded into paraffin. However,
the paraffin has a Raman signature made up of ener-
getic peaks that strongly overlap the signature of the
biopsy. Visual analysis of Raman bands (shape, wave-

length localization, etc.) or classical signal process-
ing methods such as Principal Component Analysis
(Haka et al., 2002) will be biased for a signature ex-
traction objective. A solution is to chemically dewax
and rehydrate the biopsies before analyzing them by
Raman spectroscopy. Nevertheless, this process has
several drawbacks such as: it is time and reagent con-
suming, the biopsies are altered and a residual layer
of paraffin may remain (Faoláin et al., 2005).
To overcome these problems, an advanced signal pro-
cessing method based on Independent Component
Analysis (ICA) was recently proposed (Vrabie et al.,
2007). This method has been shown efficient to model
the recorded spectra as a linear mixing of independent
Raman spectra, allowing to extract the signatures of
the paraffin and, thus, to numerically dewax the biop-
sies. It also allows to extract the spectrum of the un-
derlying biopsy (human skin) and therefore to define
molecular descriptors specific to melanomas and nevi.
However, the extraction of Raman spectra is not per-
fect because some residual paraffin peaks remain on
estimated spectra. This might be a consequence of es-
timated negative peaks, as this method does not take
into account the positivity of the spectra and associ-
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ated mixing coefficients.
In this paper we propose a comparative study of

four methods of blind source separation for numerical
dewaxing of paraffin-embedded skin biopsies. The
first one employs the Joint Approximate Diagonaliza-
tion of Eigenmatrices (JADE) algorithm (Cardoso and
Souloumiac, 1993). The second one, named FastICA
(Hyvärinen et al., 2001), uses a fast fixed-point algo-
rithm. It is employed here in its deflation scheme in
which the spectra are estimated one by one. These
two methods are ICA-based methods that only as-
sume the independence of the spectra to be estimated.
Next, we consider the Non-Negative Matrix Factor-
ization (NMF) which takes into account only the pos-
itivity of underlying spectra and mixing coefficients
(Lee and Seung, 1999). Finally, the Maximum Like-
lihood Positive Source Separation (MLPSS) assumes
both the independence and positivity of the spectra to
be estimated and was developed for the blind separa-
tion of Raman spectra (Moussaoui, 2005). A quantita-
tive study is proposed by considering the results given
by these methods on a realistic simulated dataset,
while a qualitative study is illustrated on a dataset
recorded on a paraffin-embedded skin biopsy.

2 RAMAN SPECTRA

The Raman spectrumRk is defined as aNν di-
mensional vector made up by the Raman intensities
recorded at different wavenumbers into a measure-
ment pointk. By scanningK points of a sample,
the Raman spectroscopy provides a matrix dataset
R = [. . . , Rk , . . . ] ∈ R

K×Nν .
The recorded datasetR can be modeled as a lin-

ear sum of spectraSi ∈ R
Nν of chemical constituents,

called also sources, weighted by the corresponding
mixing coefficientsAi ∈ R

K , called also concentra-
tion profiles (Vrabie et al., 2007):

R =
M

∑
i=1

AiST
i + N1+ N2 . (1)

The noiseN1 describes a part of the noise that is made
up by sources related to useless chemical constituents
that might be present in acquisition or by a linear ad-
ditive recorded noise. The noiseN2 denotes a non-
linear additive noise (i.e. not having a linear behavior
from a spectrum to another) made up principally by
slow-varying parasitic fluorescence. Since they are
generated by unrelated phenomena, the noiseN1 is
supposed decorrelated from the interesting spectraSi .
Note that the spectra of the chemical constituents and
the mixing coefficients admit only positive values by
definition.

This model does not take into account the deform-
ing effects that might appear in real acquisitions such
as the spectral shifts or width variations of the Raman
peaks. These deforming effects and the noiseN2 can
be removed from the recorded spectra by preprocess-
ing techniques (Gobinet et al., 2007). We note there-
after with Rsig = R−N2 the subspace of dimension
P obtained after the preprocessing, which is made up
by the interesting spectra and the linear noiseN1.

For paraffin-embedded biopsies, the value ofM
can be usually fixed at 5 for cases where the Ra-
man signature of the fixation slide (as for example
CaF2 slide) is owing to the recorded spectral range
or at 4 otherwise. Moreover, it was proved that
the paraffin is completely described by three sources
S1,S2,S3 having non-overlapping thin peaks (Vrabie
et al., 2007). These sources being modeled as sparse
and non-Gaussian, all higher-order cross cumulants of
the M sources considered in (1) vanish, assuring the
independence of these sources.

Retrieving the spectra of the chemical constituents
can be thus formulated as a source separation problem
based on the assumption that these sources are posi-
tive and independent.

3 BSS METHODS

Blind source separation (BSS) consists in recovering
unobserved sourcesSi from several observed mix-
turesR with no a priori information about the mix-
ing coefficientsAi . The lack of a priori knowledge
about the mixture is compensated by physically plau-
sible assumption on the sources such as decorrelation,
independence and/or positivity. A review of the BSS
approaches can be found in (Cardoso, 1998).

BSS methods usually suppose that the number of
sources is smaller than the number of observed mix-
tures and that the dataset is noise-free. Generally, the
number of recorded spectra (i.e.K in our case) be-
ing at least one hundred spectra, the first assumption
holds. The second one is not respected by the sub-
spaceRsig since the noiseN1 remains after the pre-
processing. Based on the assumption that this noise
is decorrelated from the interesting spectra, it can be
estimated and removed by decomposing the subspace
Rsig in two orthogonal subspaces by the use of the
Singular Value Decomposition (Vrabie et al., 2007):

Rsig =
M

∑
j=1

δ jU j
˜ST

j +
P

∑
j=M+1

δ jU j
˜ST

j , (2)

Note that this decomposition can be linked with the
well known Principal Component Analysis (PCA).
The second subspace is an estimate of the noise
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N1. The first subspace is constructed by decorrelated
spectra˜S j , which are still a linear mixing of inter-
esting spectra, and fit the BSS model. The spectra
of paraffin being modeled by independent sources,
stronger criteria than decorrelation must be used to
extract them. Note that this decomposition may intro-
duce negative values in the first subspace, especially
when the recorded intensities are weak, which is not
usually the case in Raman spectroscopy. In these
cases, the above subspace reduction can be replaced
by a random projection of the datasetRsig into a pos-
itive matrix havingM lines (Moussaoui, 2005).

3.1 ICA

The Independent Component Analysis (ICA) is a
computational technique for the BSS problem based
on the only assumption that the sources are mutu-
ally independent and at most one is Gaussian. A de-
tailed description can be found in (Hyvärinen et al.,
2001). We focus here only on two ICA algorithms:
JADE (Cardoso and Souloumiac, 1993) and FastICA
(Hyvärinen et al., 2001).

ICA has two indeterminacies: the energies (vari-
ances) and the order of the independent components
(estimated spectra) cannot be determined. The first
ambiguity is avoided by estimating independent com-
ponents of unit variances. This is not a restriction
for this kind of application since we are interested to
identify the spectrum of the biopsy in order to find
molecular descriptors. Moreover, the ambiguity of
the sign of the estimated spectra is not avoided, but
this is insignificant since the sign can be found in the
mixing coefficients. For these reasons and to simplify
the theory and the algorithms, the datasetRsig is cen-
tered by subtracting the mean of each spectrum. Each
observation is also normalized to unit variance, ensur-
ing that even weak-amplitude recorded observations
are well represented within the input data.

3.1.1 JADE Algorithm

The 4th order cross-cumulants of the decorrelated
sources˜S j given by PCA in Eq. (2) are firstly com-
puted. AM ×M ×M×M dimensional tensor is ob-
tained, which must be diagonalized in order to find
independent sources. The Joint Approximate Diago-
nalization of Eigenmatrices (JADE) algorithm (Car-
doso and Souloumiac, 1993) uses the joint diagonal-
ization of cumulant matrices obtained by unfolding
the obtained 4th order tensor. This step provides a
M×M rotation matrixB that is used to find indepen-
dent sourceŝSi by multiplying the matrix made up by
the decorrelated sources˜S j with this matrixB. The

̂Si ’s are centered and normalized estimators of the in-
teresting spectraSi .

3.1.2 FastICA

The FastICA algorithm is based on a fixed-point iter-
ation scheme for finding directions in which the ne-
gentropy is maximized. Beyond the very fast conver-
gence of this algorithm (at least quadratic), the algo-
rithm finds directly independent components of (prac-
tically) any non-Gaussian distribution using a nonlin-
earityg, so no estimate of the probability distribution
function has to be first available. The nonlinearity can
optimize the performance of the method allowing to
obtain algorithms that are robust and/or of minimum
variance. Moreover, the independent components can
be estimated one by one, which is equivalent to a pro-
jection pursuit. A detailed description of this algo-
rithm can be found in (Hyvärinen et al., 2001).

This algorithm was employed here in its defla-
tion scheme. The algorithm iteratively finds direc-
tions in which the estimated independent components
are maximally nongaussian. This technique is appro-
priate to initially estimate the spectra of the paraffin
S1,S2,S3. The spectrum of the biopsy is hence ob-
tained by deflation as the remaining source.

3.2 NMF

Broadly speaking, the Non-Negative Matrix Factor-
ization (NMF) factorizes a matrix made up of non-
negative values in two other matrices composed of
non-negative values, which multiplied will approxi-
mately equalize the original result (Lee and Seung,
1999). The factorization algorithms are based on iter-
ative updates which minimize a criterion such as the
least squares error or generalized Kullback-Leibler di-
vergence. These algorithms can only be guaranteed to
find local minima, rather than a global minimum, and
the obtained results depend on the initialization.

The NMF using a least squares error algorithm
was used here in order to test if it is possible to find
positive spectraSi and mixing coefficientsAi from the
datasetRsig without further a priori information.

3.3 MLPSS

The Maximum Likelihood Positive Source Separation
(MLPSS) assumes both the independence and posi-
tivity of the spectra to be estimated and has been de-
veloped especially for the blind separation of Raman
spectra (Moussaoui, 2005). It models the positive in-
dependent spectra to be estimated by gamma prob-
ability density functions (pdf) with anα parameter
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greater than one. This model is well adapted to spec-
tra of the paraffinS1,S2,S3.

To solve this problem, two algorithms were pro-
posed. The first one is based on the maximization of
the likelihood by using a Monte-Carlo Expectation-
Maximization scheme, while the second one com-
bines the above assumptions and the maximum like-
lihood technique to derive a steepest gradient algo-
rithm. This last algorithm was used here because it is
faster and it is well adapted for cases where the noise
is small, which is the case of large acquisitions after
the noise removal by PCA.

3.4 Application

A quantitative study on a realistic simulated dataset is
firstly presented followed by a qualitative study on a
dataset recorded on a paraffin-embedded skin biopsy.

3.4.1 Simulated Dataset

We consider here four spectraS1, . . . ,S4 ∈ R
990 rep-

resented in Figure 1. The first three were constructed
from a recording on a paraffin block. The peaks were
selected by the use of a Hanning window accordingly
with the fact that the paraffin is defined by three spec-
tra (Vrabie et al., 2007). The last one is the spectrum
of the human skin estimated on a real dataset by an
ICA-based BSS method. Note however that linear in-
terpolations were used to eliminate the imperfections
corresponding to contributions of paraffin peaks.

Figure 1: Simulated spectra.

These spectra were linearly mixed to constructK =
250 observations by randomly picking positive mix-
ing coefficients from a mixing matrix obtained on a
real dataset. Figure 2 shows one observation. The
mixing coefficients ofS4 are very low compared to
the others, due to the energetic Raman signatures of
the paraffin that are present in real acquisitions. Note
that this dataset is free of noise, so the decomposition
given in Eq. (2) was not performed here.

Figure 2: Example of one observation.

The number of sources to be estimated was set at
M = 4 for all BSS methods. The dataset was centered
and each observation normalized to unit variance be-
fore applying the ICA-based methods. A ”pow3”
nonlinearityg was chosen for the FastICA because
it gives the best estimator for the last spectrum.

The threshold of the least squares error algorithm
for NMF was set at 10−10. As the convergence was
very slow, a second stop condition was used: the vari-
ations of the least squares error from one iteration to
other must be smaller than 10−5. Even in this case the
convergence was very slow, the number of iterations,
which depends on the initialization, was about 6·105.
Note that the results presented here are the best ob-
tained for 20 different initializations of the NMF.

The gradient step size of the MLPSS method was
set at 10−3, which is a usual value for this kind of data.
The MLPSS method has a faster convergence than
NMF, around 104 iterations are necessary to obtain
a good estimate of the spectra. However, the MLPSS
did not have a convergence toward a stationary point,
so it was stopped after 5·105 iterations.

Figure 3 shows the estimated spectrâS4 of the last
spectrumS4 by the presented BSS methods. We fo-
cus here only on this spectrum because it corresponds
to the underlying biopsy in real applications and its
estimation is of interest.

Figure 3: Estimators of the 4th spectrum. From top to bot-
tom: JADE, FastICA, NMF and MLPSS.

As we can see, the NMF fails to estimate this spec-
trum. This is due to the fact that NMF requires the
existence of a monomial submatrix in the dataset in
order to ensure the convergence of the algorithm to
the right solution (Moussaoui, 2005). The MLPSS
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provides a good positive estimate with few imperfec-
tions corresponding to contributions of paraffin peaks
at 1065 cm−1 and 1300 cm−1. The two ICA-based
methods give the same results. The estimated spec-
tra have zero mean and unit variance and follow the
shape of the original spectrum except some imper-
fections at 1175 cm−1 and 1470 cm−1. Note that all
estimated mixing coefficients have uniquely positive
values, even for the ICA-based methods.

In order to provide a quantitative study we com-
pute the root mean square error (RMSE):

RMSE=
∥

∥

∥
S4−̂S4

∥

∥

∥
/
√

Nν (3)

where‖.‖ denotes the Frobenius norm andS4 the cen-
tered and normalized version of the original spectrum
S4 used to construct the mixtures.̂S4 denotes either
the spectra estimated by ICA-based methods or the
centered and normalized versions of the spectra esti-
mated by NMF or MLPSS.

The values of RMSEs obtained for the estimated
spectra (see figure 3) are: 0.1605 for JADE, 0.1603
for FastICA, 0.8017 for NMF and 0.1264 for the
MLPSS algorithm. These values confirm that ICA-
based methods give practically the same results and
that NMF fails to estimate this spectrum. Moreover,
we can conclude that the MLPSS method gives the
best estimate, which, additionally, has positive values.

In the following we consider the case where a lin-
ear noiseN1, decorrelated from the interesting spec-
tra, is added to the observations. We have chosen here
a Gaussian noise for the sake of simplicity. This noise
also simulates slight deforming effects on the peaks of
paraffin that may remain after the preprocessing steps
in real cases. This study is done by varying the signal-
to-noise ratio (SNR):

SNR= 20log10

∥

∥∑4
i=1 AiST

i

∥

∥

‖N1‖
[dB] (4)

Note that the decomposition (2) does not com-
pletely remove the noiseN1. After this step, a gain of
17dB is obtained for high values of SNR (i.e. SNR=
50dB). This gain linearly decreases with the SNR, a
gain of 6.5dBbeing obtained for a SNR= 2.5dB.

Figure 4 shows the evolutions of the RMSEs for
the estimated spectrum̂S4 with respect to the SNR.
These values are averaged over 4 independent realiza-
tions of the noise. The values obtained by the JADE
algorithm (represented by “�”) are superposed on
those obtained for the FastICA (represented by “×”).
These evolutions confirm the conclusion stated above
even if, punctually, the RMSE of the MLPSS is larger
than the ones obtained by ICA methods.

Although these results give the MLPSS as the best
separation method, it is interesting to study the errors

Figure 4: RMSEs of̂S4 with respect to the SNR: “�” JADE,
“×” FastICA, “•” NMF, “ �” MLPSS.

of, for example, the estimator̂S3 of the third spectrum
of the paraffin. These errors are shown in Figure 5.

Figure 5: RMSEs of̂S3 with respect to the SNR: “�” JADE,
“×” FastICA, “•” NMF, “ �” MLPSS.

The result obtained for the MLPSS method is due to
the fact that the same peak of the paraffin is extracted
by two estimators,̂S2 and̂S3. For real applications
this effect can perturb the estimator of the biopsy, es-
pecially when the preprocessing does not completely
compensate the deforming effects.

3.4.2 Real Dataset

The study is done on a dataset composed ofK = 1254
Raman spectra acquired on a paraffin-embedded skin
biopsy. Spectral data were recorded intoNν = 990
points in the 650-1816cm−1 range by using a Labram
microspectrometer. The preprocessing techniques de-
veloped in (Gobinet et al., 2007) are firstly used in
order to improve the estimated spectra.

Figures 6, 7 and 8 show the results obtained by
the JADE, NMF and MLPSS algorithms. The results
of the FastICA being the same with those given by
JADE are not presented here. The same parameters
as in the simulated case were used. Some residual
peaks of paraffin, which sometimes are negative, are
present on spectra estimated by the JADE algorithm.
However, this technique provides positive mixing co-
efficients. The spectrum of the biopsy estimated by
NMF contains more energetic residual peaks of the
paraffin than the JADE estimator, whereas the spectra
of the paraffin are not well estimated. Spectra esti-
mated by MLPSS are close to the JADE results, but
the same peak of the paraffin (1135 cm−1) is extracted
by two estimators as in the simulated case. Moreover,
the application of this algorithm on another paraffin-
embedded skin biopsy led to a wrong estimation of
spectra, contrary to JADE.
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Figure 6: Spectra estimated by JADE.

Figure 7: Spectra estimated by NMF.

Figure 8: Spectra estimated by MLPSS.

4 CONCLUSIONS

Four BSS methods were studied on simulated and real
datasets. Taking into account only the positivity, the
NMF fails to estimate the interesting spectra. The
positivity combined with the independence allows the
MLPSS method to provide a good estimator for the
biopsy, but artefacts are obtained for the paraffin for
which the same peak is extracted by more than one
estimator. Furthermore, the results obtained by this
method depend on the analyzed biopsy. ICA-based
methods give good estimators for all spectra, which
do not depend on the biopsies, and extract positive
mixing coefficients. These last methods can thus be
employed as an efficient tool for the extraction of Ra-

man spectra of chemical species and consequently for
a numerical dewaxing of biopsies. However, all these
methods allow to extract a unique spectrum of the
skin, which might be insufficient for a classification
purpose. Investigations are under way for the study of
a numerical dewaxing based on least square methods,
taking into account the Raman spectra of the parafin
estimated on paraffin blocks.
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Abstract: This paper introduces the work developed by the authors in the study of tremor time series. First, it introduces
a novel technique for the study of tremor. The technique presented is a high-resolution technique that solves
most of limitations of the Fourier Analysis (the standard technique to the study of tremor time series). This
technique was used for the study of tremorous movement in joints of the upper limb. After, some conclusions
about tremor behaviour in upper limb based on the technique introduces are presented. Furthermore, an
algorithm able to estimated in real-time the voluntary and the tremorous movement was presented. This
algorithm was validated in two contexts with successful results. Finally, some conclusions and future work
are given.

1 INTRODUCTION

Tremor is a rhythmic, involuntary muscular contrac-
tion characterized by oscillations of a part of the body
(Anouti and Koller, 1998). The oscillatory activi-
ties are related to various combinations of four basic
mechanisms: (a)mechanically induced oscillations,
(b) oscillations due to reflexes, (c) oscillations gen-
erated by neuronal generators in the central nervous
system, (d) oscillations resulting from impaired feed-
forward and feedback loops.

It is well established that tremorous activity is
composed of deterministic and stochastic compo-
nents, (Timmer et al., 2000). The detection and quan-
tification of tremor are of clinical interest for diag-
nosis of neurological disorders and objective evalu-
ation of their treatment, (Gao and Wen-wen, 2002).
Furthermore, the estimation of tremor is an important
stage in systems that aim to control limb oscillations,
and also in biofeedback studies. In this regard, es-
timation techniques have been developed for tremor
suppression. Methods based on the Fourier transform
(FT) are commonly employed for this purpose, spe-
cially because of the similarity between the tremor to

a sine wave, (Elble and Koller, 1990). For instance,
the weighted Fourier linear combiner (WFLC) char-
acterizes the tremor based on its approximation by a
sinusoidal waveform, (Riviere, 1995). Riviere also in-
vestigated the application of neural networks to aug-
ment manual precision by cancelling involuntary mo-
tion. Another example is the extraction of frequency
parameters from the power spectrum (based on the
FT) of the tremor for classification purposes, (Rocon
et al., 2004).

This paper introduces an original study for tremor
characterization. First, experiments were performed
with 31 patients suffering from tremor diseases in
order to study tremor characteristics. The data col-
lected in this experiments were analyzed by means of
a novel methodology for the study of tremor time se-
ries based onEmpirical Mode Decomposition. This
technique allows an automatic detection of tremorous
movement and the study of nonlinear and nonstation-
ary characteristics of tremor, (Rocon et al., 2006).
Based on the information provided by this study, a
novel algorithm able to estimate in real time and com-
posed by two stages, one for the detection of vol-
untary movements and other for the estimation of
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Figure 1: Hilbert Spectrum of an Essential tremor patient
performing the task of Keeping the arms outstretched. The
high levels of energy activities are perceived when the pa-
tient is performing the task.

tremorous movements, is presented. Finally, exper-
iments for the validation of the algorithm presented
are given.

2 THE EXPERIMENTAL
PROTOCOL

In order to assess tremor characteristics we studied
its behavior in 31 patients suffering from different
pathologies. The average age of patients was 52.3
years old (ranging from 23 to 84 years old). All pa-
tients provided their written consent for the experi-
ments.

The diagnosis of the condition of patients was
given by the neurological staff of the General Hospi-
tal of Valencia (GHV, Spain) and the functional state
of patients was evaluated by means of the Faher scale,
(Fahn et al., 1998). Ethical approval for this research
has been granted by the Ethical Committee of the
GHV.

2.1 Sensors

The tremor was detected by a customized sensor,
which is based on the combination of two indepen-
dent gyroscopes placed distally and proximally to the
joint of interest. The joint angular speed is obtained
by subtraction of the angular speed measured by one
gyroscope from the angular speed measured by the
other one. The weight of the system is roughly 15
g, which is a low-mass system when compared to
other sensors used in the field, (Rocon et al., 2004).
The use of a low-mass sensor is important to reduce
the effect of low-pass filtering on the detected signal.
Gyroscopes were placed in order to estimate follow-
ing movements of the upper limb: 1) Elbow flexion-

extension, 2) Forearm pronation-supination, 3) Wrist
flexion-extension, and 4) Wrist deviation.

2.2 Tasks

Six different tasks were employed for excitation of
tremor: 1) Rest, 2) Reaching for an object, 3) Draw-
ing a spiral, 4) Arm outstretched, 5) Touching nose,
and 6) Moving a cup. In all tasks the patient was sit-
ting on a chair. This set of tasks aims to stimulate all
different types of tremor.

3 ANALYSIS OF TREMOROUS
MOVEMENT

In order to analyze the tremorous movement acquired
during the experiments,Empirical Mode Decomposi-
tion was used. This technique was proposed in (Ro-
con et al., 2006). This technique was identified as
a very useful tool for an automatic decomposition of
the signal into tremor and voluntary signal. Moreover,
this technique enables the representation of the ampli-
tude and the instantaneous frequency of the input sig-
nal as function of time in which the amplitude could
be contoured on the time-frequency plane. The tech-
nique presented is a high-resolution technique that
solves most of limitations of the Fourier Analysis (the
standard technique to the study of tremor time series).
This technique provides, in a time-frequency-energy
plot, a clear visualization of local activities of tremor
energy over the time, see figure 1.

Based on this technique, a study of the tremorous
movement at different joints of the upper limb was
developed. The study was performed with the data
collect from the experiments introduced in the previ-
ous section and aim at understanding tremorous be-
haviour. The main conclusions of this study are the
following: 1)the amplitude of the tremorous move-
ment is larger in distal joints than in proximal joints,
2)the frequency of tremorous movements is com-
prised in the bandwidth between 3 and 8 Hz, 3)tremor
frequency at different joints of the upper limb has very
similar values, 4)tremor frequency is not related to
the task performed by the patient, 5)the frequency of
tremorous movement is constant during the execution
of a task, nevertheless it could change during repe-
titions of the same task, 6)tremor activity is not al-
ways present during the experiments. Patients showed
tremor activity just during 40% of the time measured,
7) sex and age does not influence tremor behaviour.
The main novelty of this study is that it is centered in
tremor at joint level while the majority of the studies
presented in the literature are centered in the study of
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tremor at finger tip. The main drawback of this tech-
nique is the impossibility to implement it in real-time
(RT). In order to address this issue, next section de-
scribes the development of an algorithm able to dis-
tinguish in RT tremorous movement from voluntary
movement.

4 TREMOR ESTIMATION

A number of estimation algorithms have been devel-
oped for tremor suppression. As a first approach,
we evaluated robust algorithms based on IEEE-STD-
1057, which is a standard for fitting sine waves to
noisy discrete-time observations. In particular, the
weighted-frequency Fourier linear combiner (WFLC)
developed by Riviere, (Riviere, 1995), in the context
of actively counteracting physiological tremor in mi-
crosurgery was implemented. The WFLC is an adap-
tive algorithm that estimates tremor using a sinusoidal
model, estimating its time-varying frequency, ampli-
tude, and phase. The WFLC can be described by
equation 1. It assumes that the tremor can be mathe-
matically modelled as a pure sinusoidal signal of fre-
quencyω0 plusM harmonics and computes the error,
εk, between the motion,sk, and its harmonic model.

εk = sk−
M

∑
r=1

[wrk sin(rω0kk)+wr+Mk cos(rω0kk)] (1)

In its recursive implementation, see equations 2
and 3, the WFLC can be used online to obtain estima-
tions of both tremor frequency and amplitude, (Riv-
iere, 1995).

w0k+1 = w0k +2µ0εk

M

∑
r=1

r (wrkxM+rk−wM+rkxrk) (2)

where,

xrk =







sin(rω0k), 1≤ r ≤M

cos((r−M)ω0k), M +1≤ r ≤ 2M
(3)

The WFLC algorithm was evaluated with the sig-
nals measured in the experiments described in pre-
vious section. In the completed trials, the algorithm
was able to estimate the tremor movement of all the
patients with accuracy always lower than 2 degrees,
see figure 2. The main disadvantage of the WFLC
is the need for a preliminary filtering stage to elimi-
nate the voluntary component of the movement, (Riv-
iere, 1995). This filtering stage introduces an unde-
sired time lag for our system when estimating tremor
movement, this time lag introduces a time delay that
could considerably affect the implementation of the
control strategies for tremor suppression.
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Figure 2: Estimation of tremor, solid line, based on WFLC
algorithm, red dashed line.

4.1 Estimation of Voluntary Movement

The tremor literature indicates that voluntary move-
ments and tremor movements are considerably dif-
ferent, (Elble and Koller, 1990). Voluntary move-
ments are slower while tremor movements are brus-
quer. This indicates that adaptive algorithms to esti-
mate and track movement would be useful when sep-
arating the two movements with an appropriate de-
sign. The underlying idea is to design the filters so
that they only estimate the less dynamic component of
the input signal, which in our case we consider to be
voluntary movement, thereby filtering out the tremor
movement.

A set of algorithms was considered for the estima-
tion of the voluntary motion: two point-extrapolator,
critically damped g-h estimator, Benedict-Bordner g-
h estimator, and Kalman filter. These algorithms im-
plement both estimation and filtering equations. The
combination of these actions allows the algorithm to
filter out the tremorous movement from the overall
motion at the same time it reduces the phase lag intro-
duced, (Bar-Shalom and Li, 1998). The equation pa-
rameters were adjusted to track the movements with
lower dynamics (voluntary movement) since tremors
present a behaviour characterised by quick move-
ments. The performance of these algorithms were
compared based on their accuracy when estimating
voluntary movements of tremor time series from pa-
tients.

4.1.1 Two Points Extrapolator

It is the simplest tracking algorithm. This algorithm
uses the current position measured,yn, and the past
measured position,yn−1, to estimate the velocity, ˙x∗n,
and the future positionx∗n+1.

ẋ∗n =
yn−Yn−1

T
, (4)
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x∗n+1 = yn +T ∗ ẋ∗n, (5)

whereT is the sample time and “∗” denotes an esti-
mated value.

4.1.2 Critically Damped G-h Estimator

This estimation algorithm is a g-h filter composed
by g-h track update equations and by g-h prediction
equations

update







ẋ∗k,k = ẋ∗k,k−1 +hk

(

yk−x∗k,k−1
T

)

x∗k,k = x∗k,k−1 +gk

(

yk−x∗k,k−1

) (6)

predict

{

ẋ∗k+1,k = ẋ∗k,k
x∗k+1,k = x∗k,k +Tẋ∗k+1,k

(7)

The track update equations or estimation equa-
tions, 6, provide us the velocity and position of tremor
at timekT after the measurement of the angular posi-
tion of the joint,yk. The estimated position is based
on the use of the actual measurement as well as the
past prediction. As a consequence of filtering, the
measured noise is reduced. The predicted position is
an estimate ofxn+1 based on past states and predic-
tion (equation 7), and take into account the current
measurement by means of updated states.

4.1.3 Benedict-Bordner G-h Estimator

This estimation algorithm have the same equations
that the Critically Damped g-h estimator but with dif-
ferent values in the parameters g-h, (Bar-Shalom and
Li, 1998). The Benedict-Bordner estimator is de-
signed to minimize the transient error. Filter g-h pa-
rameters are related by:

h =
g2

2−g
(8)

4.1.4 The Kalman Filter

The Kalman filter is a g-h filter where the weights g
and h are a function ofn and are updated recursively.
This filter has the advantage of allowing the optimum
use of the information if it is available. In addition,
permits the use of the target dynamics information
to optimize the filter parameters. More complete in-
formation about Kalman filter can be found in (Bar-
Shalom and Li, 1998).

4.2 Figure of Merit

In order to quantitative compare the estimators pro-
posed a metric,Cinematic Estimation Error (CEE),

was proposed. The equation that define this metrics
is:

CEE=
√

ϕ2
|b∗|+ σ2

x∗ , (9)

whereϕ2
|b∗| is the mean square of errors of the esti-

mators: |b∗| = |xk− x∗k,k−1|, andσ2
x∗ variance of the

estimation.
CEE quantifies the transient response through

ϕ2
|b∗| and, at the same time, the averaging or filter-

ing capabilities of the filter through the termσ2
x∗ . The

accuracy and transient response of the estimation al-
gorithms are important. Another important parameter
taken into account in our analysis was the execution
time of each algorithm in view of the fact that the sys-
tem was designed to work in real time. The result
of such analysis indicated that Benedict-Bordner fil-
ter presents the best results with the lowest computa-
tional cost.

4.3 Real-time Estimation of Voluntary
and Tremorous Movement

The solution adopted was the development of an algo-
rithm capable of estimating voluntary and tremorous
motion with a small phase lag based on a two-stage al-
gorithm. In the first stage, the Benedict-Bordner filter
estimates the voluntary component of the movements.
In the second stage, the estimated voluntary motion is
removed from the overall motion and it is assumed
that the remaining movement is tremor. After this,
the WFLC was used in order to estimate tremor pa-
rameters. In this stage, the algorithm estimates both
the amplitude and the time-varying frequency of the
tremorous movement.

The algorithm proposed was evaluated with data
obtained from the patients measured in our experi-
ments. The estimation error of the first stage was
1.4±1.3 degrees. The second stage algorithm has a
convergence time always smaller than 2 s for all sig-
nals evaluated and the Mean Square Error (MSE) be-
tween the estimated tremor and thereal tremor, after
the convergence, is smaller than 1 degree. The com-
bination of both techniques resulted in a very efficient
algorithm with small processing cost for estimating in
real time the voluntary and the tremorous components
of the overall motion.

5 EXPERIMENTS AND RESULTS

The performance of the algorithm proposed was eval-
uated in two different contexts: 1)Tremor suppres-
sion based on exoskeleton devices, and 2)Filtering
tremorous movement from PC mouse cursor.
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5.1 Tremor Suppression based on
Exoskeleton Devices

The algorithm for tremor estimation was incorpo-
rated to the WOTAS (Wearable Orthosis for Tremor
Assessment and Suppression) active exoskeleton for
tremor suppression, (Rocon et al., 2007). In order
to evaluate the performance of the device developed
to suppress tremor we have planned an experimen-
tal phase involving 10 patients suffering from differ-
ent tremor diseases. During the first clinical trials the
algorithm was able to measure and estimate tremor
parameters, see Figure 3. The capacity of applying
dynamic internal forces to the upper limb for tremor
suppression (based on the information provided by
the tremor estimation algorithm) was also evaluated.
Based on this parameter it was found that the device
could achieve a consistent 30% tremor power reduc-
tion, with reduction peaks in the order of 80% in the
tremor power for patients exhibiting severe tremor,
see Figure 3. Moreover, patients related that they
felt small influence of the WOTAS device on their
intended motion, which indicates a proper function-
ing of the algorithms proposed in the precious section,
(Rocon et al., 2007).

5.2 Filtering Tremorous Movement
From PC Mouse Cursor

In these experiments the algorithm was integrated in
a device connected between the mouse and the com-
puter that should remove tremorous movements from
PC mouse cursor. These experiments were carried out
in cooperation with Spanish Foundation of Multiple
Sclerosis. Previously to the realization of the experi-
ment, the operation of the system was explained to the
user. After, the patient was asked to achieve a com-
fortable position in the chair and to grab and use the
mouse as natural as possible. After a time of adap-
tation and relaxation, roughly 10 minutes, the patient
was asked to perform 2 typical movements when us-
ing a computer mouse:

1. Draw a spiral - The patient was asked to follow
with the cursor of the mouse a path with the form
of a spiral drawn on the screen of the computer.
The trajectory described by the user is not illus-
trated in the screen; with this approach it is possi-
ble to avoid the attempts of the user to correct the
trajectory. The patient just has the reference of the
model spiral on the screen. During this tasks the
buttons are disabled and the trajectory described
by the user was recorded by the software.
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Figure 3: The graphics illustrated the reduction in the
tremor power when WOTAS is applying viscosity to the
tremorous movement.

2. Goal and click - To move the cursor over 10 icons
that appear in a random sequence on the screen of
the computer.The patient was asked to click over
the picture every time he/she reaches it. In this
way, the next picture will appear just after the pa-
tient click on the actual one. The trajectories and
the number of erroneous clicks were recorded.

The total time of each experiment was 40 minutes
and the main objective was to quantify the effective-
ness of the device in tremor suppression. Each task
was repeated 3 times, one with the filter disabled, an-
other one with the filter activated and in the last trial,
the filter is deactivated again. The order of trials was
randomized. The figures of merit used to quantify the
improvement in the ability of the patient in the real-
ization of the tasks were:

1. The relation between the number of times the user
leaves the boundaries of the path defined by the
spiral, with and without the help of the algorithms,
in the taskdraw a spiral, es.

2. The relation between the number of erroneous
clicks, with and without the help of the algo-
rithms, during theclick and goaltask,ec.

Table 1: Results of the experiments.

Patient es ec

1 20 % 44 %
2 33 % 100 %
3 30 % 28 %
4 50 % 33 %

Table 1 summarizes the results obtained in the
data analysis. The results show that all patients im-
proved their performance using the algorithm. In the
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Figure 4: Results of a patient performing the task of draw-
ing a spiral.

case of thedraw a espiraltask, the mean reduction in
the error during the realization of the task was in order
of 33,3%. This is a sign of a improvement of the pa-
tient ability in tracking a shape in the screen. The pa-
tients also presented a mean reduction of 52 % in the
number of erroneous clicks during the execution of
thegoal and clicktask. These results indicates a con-
sistent improvement in the ability of the patient in the
execution of the tasks, see Figure 4. During the trials
it was noticed that feedback of a smooth movement
has a positive impact. Two patients spontaneously re-
lated that they felt a decrease in the amplitude of their
tremorous movement.

6 CONCLUSIONS

This paper summarizes the work developed by the au-
thors in the study of tremor time series. First, it in-
troduces a novel technique for the study of tremor.
The main advantage of this technique it that it allows
an automatic estimate of the tremulous movement for
different pathologies. The technique presented is a
high-resolution technique that solves most of limita-
tions of the Fourier Analysis (the standard technique
to the study of tremor time series). This technique
provides, in a time-frequency-energy plot, a clear vi-
sualization of local activities of tremor energy over
the time.

The technique was used for the study of tremorous
movement in joints of the upper limb. This study

generates some conclusions about tremor behaviour
in upper limb.

Furthermore, an algorithm able to estimated in
real-time the voluntary and the tremorous movement
was presented. This algorithm was validated in two
contexts with successful results. The algorithm in-
troduced presents a learning behavior that adapts to
personal characteristics of each user. This algorithm
was implemented in a novel device able to filter
tremorous movement from a mouse cursor before it
reaches computer interface. The device was success-
fully tested with patients. The results of the experi-
ments showed an improvement of the patient ability
in tracking a shape in the screen and a consistent im-
provement in the ability of the patient in the accom-
plishment of tasks, for instance, the number of erro-
neous clicks was reduced in 52%.
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Abstract: We conducted a nonlinear analysis of fingertip pulse waves and found that the Lyapunov exponent having 
the “divergence” property of attractor trajectory was an effective index for estimating human mental health. 
We showed that this method is effective for an early detection of dementia and depression, as well as in the 
detection of changes in mental status. In addition, based on these results obtained from time series analysis 
of the recorded pulse waves, we developed an application device allowing easily installed and convenient 
measurement for daily check and monitoring mental/physical status. It was an easy-to-use and cost-less 
device installed in a PC mouse. Also, we studied a representation method of constellation graphs to disclose 
the fluctuation details of the Lyapunov exponents. In the representation, changes in mental status were 
assessed and graphically visible by using of the fluctuation factor of the Lyapunov exponents.   

1 INTRODUCTION 

Some serious mental health problems exist in Japan. 
For example, the number of annual suicides has 
reached 30,000 for three consecutive years 2004 to 
2006.Most suicides are related to depressive 
symptoms. In addition, although Japan has the 
world’s highest longevity rate, the cases of dementia 
increase along with the rapidly increase in the aged 
population, thereby leading to some social problems 
(ref. plala, http). Social and family responses are 
essential to help those with depression and dementia, 
but in most cases, these diseases progress without 
self-acknowledged, and hence need the necessary 
methods for an early detection and treatment.   
It is generally necessary to check the status of 
behavior and mental health in daily life to detect the 
onset of depression and dementia. Subjective 
observation alone is insufficient; it is required to 
evaluate objective data using scientific methods. So 
far, scientific methods include the analysis of brain 
waves and image diagnosis of the brain, which 
require high levels of technology and knowledge; 
these are not simple measurement methods in terms 

of time or cost. Therefore, easy and economical 
measurement methods are required.  
The Lyapunov exponent referencing the 
“divergence” of an attractor trajectory in the 
nonlinear analysis of fingertip pulse waves is an 
effective method for assessing mental health in 
humans (Tsuda 1992). In particular, it was found to 
be effective for the detection of dementia and the 
diagnosis of depression (Oyama-Higa 2006). In 
section 2, we describe the method used to calculate 
the “divergence value” using the nonlinear analysis 
of fingertip waves. In section 3, we explain the 
meaning of the use of fingertip pulse waves and the 
relation between the “divergence value” and 
cognitive psychology. In section 4, the relation 
between the Lyapunov exponent and mental health 
is explained. In section 5, we show the 
representation method of constellation graphs 
developed for mental health self-checks. Finally, we 
outline our future work, and make some discussions 
in relating to possible applications. 
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2 METHODS OF RECORDING 
AND ANALYSIS OF FINGERTIP 
PULSE WAVES  

2.1 Recording Method of Fingertip 
Pulse Wave 

Fingertip pulse waves were measured by photo-
plethysmography method. Changes in the amount of 
hemoglobin flowing through the capillaries were 
measured by infrared photo-electric method (Fig. 1). 
The waveform is naturally synchronized with the 
beating of the heart. Dynamics changes in 
hemoglobin levels caused by the constriction of 
capillaries in the fingertip constitute time series data 
from a complex system that includes information 
from the sympathetic and parasympathetic nerve.  
Changes in hemoglobin levels in the capillaries are 
thought to be related to the baroreceptor, which are 
linked to the sympathetic and parasympathetic nerve 
via the brain stem and spinal cord (Figure. 2). Pulse 
wave data were collected at a sampling frequency of 
200 Hz with a resolution of 12 bits. The 
measurement duration was variable, depending on 
the experimental conditions. Time series data 
consisting of 12,000 points can be obtained in 1 min 
of measurement.   

 

Figure 1: Measurement of pulse waves using infrared 
irradiation of capillaries. 

 

Figure 2: Diagrammatic representation of the interaction 
from brain stem to peripheral blood vessels through the 
action of sympathetic and parasympathetic nerves. 

 

This is a convenient measurement method because it 
does not require special care with regard to room 
temperature, place of measurement, and 
measurement conditions. Moreover, because the 
measurement time is very short, the collection of 
data is not a burden to the subject. 

2.2 Chaos Analysis of the Pulse Wave  

Fingertip pulse waves were demonstrated to have 
chaotic characteristics (Tsuda1992, Sumida 2000, 
and Miao 2006). On the basis of chaotic analysis of 
time series, we analyzed the recorded data to 
determine divergence properties of the pulse waves.  
In chaos analysis, the attractor was reconstructing 
using time delay method (Tarkens,1981,1985). The 
parameters used are delay time of 50 ms and 
embedding dimension 4.    

 
Figure 3: Procedure from measurement of pulse waves to 
Lyapunov exponent computations. 

Beside of the effective information obtainable from 
the shape of the four-dimensional attractor, we 
calculated the Lyapunov exponent, which is an 
index of trajectory instability and a characteristic of 
chaos, using Sano and Sawada algorithm (Sano and 
Sawada 1985).  
As shown in Figure 4, we used the following method 
to calculate the Lyapunov exponent. We assumed 
that a small sphere (hypersphere) of radius ε is the 
initial value for a three-dimensional chaotic dynamic 
system. After being mapped once, the sphere was 
stretched in the e1 direction and compressed in the 
e3 direction, and assumed the shape of an ellipsoid 
(Figure. 4). We designated the logarithm of the 
expansion rate per unit time along the directions e1, 
e2, and e3 as λ1, λ2, and λ3, respectively. Here, λ1, 
λ2, and λ3 are the Lyapunov exponents and their set 
is the Lyapunov spectrum. Because four embedded 
dimensions were set as the optimum number of 
dimensions for the pulse wave, w obtained the four 
Lyapunov exponents, λ1, λ2, λ3 and λ4, as the 
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Lyapunov spectrum. Of these, the largest Lyapunov 
exponent, λ1, was used in the calculation to prepare 
the constellation graphs. 
 The following equations show the method of 
calculating the Lyapunov exponent. For the time 
series data x(i), with i = 1, 2,…, N obtained from the 
fingertip pulse waves, the phase space was 
reconstructed using the method of time delays. 
Assuming that we create a d-dimensional phase 
space using a constant time delay τ, the vectors in 
the space are generated as d-tuples from the time 
series and are given by 

)}({)))1((),...,(()( ixdixixi k=−−= τX      (1) 
where ))1(()( τ−−= kixixk , with k = 1, 2,..., d.  

To reconstruct the phase space correctly, the 
parameters of delay (τ) and embedding dimensions 
(d) should be chosen optimally (Sano and Sawada, 
1985). In time series data recorded from human 
finger photoplethysmograms, we chose the 
parameters τ = 50 ms and d = 4, as in (Tsuda, 1992) 
and (Sumida, 2000).  
 In the reconstructed phase space, one of the 
important measures of complexity is the largest 
Lyapunov exponent λ1. If )(tX  is the evolution of 
some initial orbit )0(X  in the phase space with time, 
then 

||
|)(|
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01 ε
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λ ε
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                         (2) 

where 
)()()( ttt εεδ XXX −=  and )0()0( εε XX −=  

for almost all initial difference vectors 
)0()0( εε XX −= . We estimated 1λ  using the algorithm 

of Sano and Sawada (1985), where 1λ  describes the 
divergence and instability of the orbits in phase 
space. 

 
Figure 4: Method used to calculate the Lyapunov 
exponent. 

The initial 8000 points of pulse wave data were 
taken as one window to calculate the largest 
Lyapunov exponent, λ1. In the next step, the 

window was shifted by 200 points and the exponent 
was calculated from the next window of 8000 points. 
This procedure was repeated until the pulse wave 
data were exhausted. Three minutes of measurement 
yielded 36,000 data points; therefore, we can obtain 
a (36,000 – 8000)/200 = 140-point time series of 
Lyapunov exponents. With 1 min of measurement, 
we can achieve a (12,000 – 8000)/200 = 20-point 
time series of Lyapunov exponents. The variation in 
the largest Lyapunov exponent is a measure of the 
variation in the trajectory of the four-dimensional 
attractor. The largest Lyapunov exponent is the 
divergence of the attractor trajectory and is an 
important value related to psychological indices 
(Oyama-Higa, 2005, 2006).   

3 ESTIMATING 
PHYSIOLOGICAL AND 
PSYCHOLOGY STATUS 

3.1 Outline of Self-checking Method  

The subjects were asked to answer some simple 
questions to ensure the normal measurement of pulse 
waves. This information was used to interpret the 
observed divergence in measured values. The 
questions were status-checking items regarding 
physical conditions and a simple assessment of their 
mood at the time of measurement. Answers were 
chosen from one of three available levels (Table 1). 
In addition to these questions, the subjects were 
asked to describe their mood and condition at the 
time of the measurement in more definite terms 
(Table 1). This enabled the person to identify factors 
that can affect divergence values. Because these 
records were made in free-form style, key words 
alone could be used. However, when a subject is 
allowed to write freely, for example, about things 
that he or she had communicated to a friend, music 
he or she enjoyed, positive results in a sporting 
activity, and good or bad news that had been 
received, it is easier to study the relationships 
between these events and the divergence value. 

The types of situations that elicit emotions such 
as delight, anger, sorrow, and pleasure differ from 
person to person. For example, a condition that 
creates a suitable level of divergence, such as 
listening to music or having a conversation with 
someone, must be recorded as data unique to that 
subject. In addition, extreme tension, fatigue, and 
low spirits also cause changes in divergence. 
Therefore, comparing the status recorded at the time 
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of measurement with the corresponding divergence 
values helps a person to assess his or her own mental 
status. The responses and simple comments on the 
subject’s condition are stored so that they can be 
seen by clicking the corresponding divergence value 
on the graph. We plan to vary the simple questions 
asked according to the category of the subject, e.g., 
child, adult, or aged person. 

Table 1: Checking items of subjective evaluation of 
subject’s state.  

Freestyle reporting: The subject enters a note on his or her 
condition at the time of measurement. These notes can be in the 
form of a descriptive comment on the subject’s condition, 
keywords, and other comments. 
Comment example 1: [Had a pleasant chat with a friend about 
hobbies.] 
Comment example 2: [Feeling low after failing a test.] 

3.2 Divergence Analysis for Various 
Physiological and Psychological 
Status  

Biological systems are considered to be complex and 
fluctuating, with chaotic characteristics. Although 
chaotic systems appear to be extremely complicated 
and to behave in a random and unstable manner, 
they in fact change according to deterministic rules. 
Biological signals emanating from humans or vital 
signs come in many types, such as body 
temperature, blood pressure, and pulse rate. 
Fingertip pulse waves are biological signals that 
produce time series data with chaotic characteristics. 
Moreover, unlike cardiac waves, fingertip pulse 

waves contain various types of information, 
including information from the nervous system. In 
the field of psychology, several methods have been 
suggested as indices for assessing mental health. 
However, these methods are generally subjective 
and therefore intrinsically lacking in objectivity. 
Questionnaires have often been used as relatively 
simple psychological tests, and the measurement and 
analysis of brain waves can be used to objectively 
assess the neurological state at the time of 
measurement. However, the measurements are not 
simple and the analysis methods are not yet suitable 
for analyzing detailed psychological changes. 
Another possible method for measuring biological 
information is to analyze the R–R intervals of 
heartbeats and pulse waves. However, no analysis 
has attempted to take into account the chaotic 
characteristics of biological information.        

The Lyapunov exponent is a property of chaotic 
systems that expresses the attractor and represents 
the “divergence” of the attractor trajectory. We 
focused on the Lyapunov exponent, which has not 
previously been evaluated quantitatively as an index 
of psychological change in humans, and investigated 
its relationships to dementia and communication 
skills (an ADL index) in aged persons (Oyama-
Higa,2006), its relationship to error rate at work 
(Imanishi,2006), its relationship to diurnal changes 
and indices of cumulative fatigue in employees 
(Miao,2006),(Oyama-Higa,2006), and time series 
fluctuations in divergence in 0- to 5-year-old 
children, as well as the effects of parental affection 
toward children (Oyama-Higa,2006).        

It became clear that suitable functioning and 
harmony of the sympathetic nerves, which are 
related to adaptability to the external environment 
and to society, as well as to flexibility, spontaneity, 
and cooperativeness of the mind, are important for 
humans to live in a mentally healthy state. These 
values were related to the largest Lyapunov 
exponent obtained using nonlinear analysis (Oyama-
Higa, 2005, 2006). The largest Lyapunov exponent, 
which represents the time series variation in the 
attractor trajectory, is defined as the “divergence.” 
When this value remains low continuously (i.e., 
when a long period with low divergence persists), 
the person has low ability to adapt to the external 
world in daily life and is incapable of maintaining a 
mentally healthy state. However, a continuously 
high level of divergence indicates an extremely tense 
or stressful state. A mentally healthy state also 
cannot be maintained in this situation. Normally in 
humans, a healthy state is indicated by the condition 
in which constant variation occurs in the divergence. 

Status Good Normal  Poor 

 Sleep ∨      

 Appetite   ∨    

Health ∨      

Will to work   ∨    

Mental health     ∨  

Current mood     ∨  
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Emotions are a part of being human, and these are 
believed to cause the variation in divergence.    
Physical immunity is critical for the maintenance of 
human health, and lowered immunity causes various 
diseases. Therefore, to prevent the lowering of 
physical immunity and to increase resistance and 
prevent diseases, we pay attention to what we eat 
and we rest, take medicine when necessary, and 
exercise to improve our stamina. However, mental 
toughness, as reflected in the ability to communicate 
in a positive manner, willingness to perform a given 
job, and the ability of mental toughness to withstand 
dramatic changes in the external world, are also very 
important. We can call these “mental immunity,” but 
no methods have been developed to scientifically 
investigate this kind of immunity. We analyzed 
fingertip pulse waves using nonlinear analysis, 
examined their relationships to various 
psychological indices, and found that the largest 
Lyapunov exponent obtained through chaos 
analysis, which corresponds to the “divergence” of 
the attractor, was closely related to mental 
immunity. This value was also closely linked with 
the functioning of the sympathetic nerves of the 
autonomic nervous system.   

For humans, a mentally healthy condition means 
having the ability to cope flexibly with external 
changes in “divergence.” This can be considered 
mental flexibility or mental immunity, in contrast to 
physical immunity. Mental immunity represents 
adaptability to the external changes that a person has 
to face in his or her everyday life, including a 
person’s ability to communicate and express oneself, 
and the suitability of psychological flexibility. When 
expressing themselves, humans skilfully fend off 
various types of changes, contacts, and assaults from 
the external environment, and deal with or cope with 
them. This is the essence of mental immunity. 
Change occurs constantly in day-to-day life. 
“Divergence,” which represents a change in the state 
of mental immunity, is a critical index. At the same 
time, divergence varies depending on the condition 
of the person. For example, a long period without 
“divergence” suggests that the person is not in a 
normal state. In examples of the attractors of a 
mentally healthy person and patients with depressive 
psychosis, the depressed patients have low 
divergence (Figure. 5). In patients with dementia, 
the divergence becomes smaller as dementia 
advances (Figure. 6).  

In a normal state, the level of divergence 
fluctuates constantly. During times of extreme 
tension and stress, the divergence will be 
continuously high. Afterward, however, a mentally 

healthy person naturally finds a way to relax, which 
brings the divergence back to its normal state. A low 
level of divergence would continue when a person is 
in a depressed state or when age-related dementia is 
present. This suggests that the person is incapable of 
bringing the divergence back to its natural level on 
his or her own, indicating decreased adaptability to 
the external environment. 
 

 
Healthy person             Depressed patient 

Figure 5: Attractors of a healthy person and a depressed 
patient prepared from 30 s of measurements.  

 

Figure 6: Attractors in elderly subjects with dementia of 
(severity = 0) and (severity = 4) severity. 

4 CASE STUDIES AND A SYSTEM 
FOR MENTAL HEALTH 

All measurements were taken after obtaining the 
informed consent of subjects. 

4.1 Studies of Aged Subjects with 
Different Communication Skills  

Subjects: Data were obtained from 179 subjects (40 
males; 139 females) at three nursing homes for the 
aged in Shiga prefecture, Japan.  
Date of measurement: August to November 2003. 
Measurement method: Fingertip pulse waves were 
measured three times for 3 min each. Systolic blood 
pressure, diastolic blood pressure, pulse, and body 
temperature were measured with the patient in a 
relaxed state at 25ºC (room temperature) prior to the 
measurement of pulse waves.  
Indices: Five grades indicating the severity of 
dementia judged by a doctor. We obtained data for 
the ADL index of communication skills (three-
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graded evaluation), composed of seven items and 
estimated by a care manager. We examined the 
relation between the data and the maximum 
Lyapunov exponent calculated from the fingertip 
pulse waves. 
Results: There was a significant relation between 
the maximum Lyapunov exponent and  
communication skills (Figure 7 A) and severity of 
dementia (Figure 7 B). t-student test was used. 

 
Figure 7: Relation of the Lyapunov exponent and (A) 
communication skills and (B) severity of dementia in 
elderly patients. 

In constellation graphs, the right side indicates small 
Lyapunov exponents and the left side indicates large 
Lyapunov exponents (Figures. 7, 8). Because of the 
large quantity of data, five cases that were similar to 
the median of data for each rank in index (i.e., 
dementia, 0–4; communication skills, a–c) are 
shown. 
Fifteen subjects with high cognition were selected 
and measurements were retaken after 9 months, in 
August 2004 (Figure. 10). Values of the Lyapunov 
exponent increased in some subjects and decreased 
in others compared to the first measurements taken 
in November 2003. These results indicate that 
changes in the Lyapunov exponent always occur. 
However, attention is needed to understand the 
causes of very low values. 
 

 
Figure 8: Relation between severity of dementia (0–4) and 
the Lyapunov exponent. One line indicates one subject. 

 
Figure 9: Relation between communication skills (a–c) 
and the Lyapunov exponent. One line indicates one 
subject. 

 
Figure 10: Results of the re-measurement of the Lyapunov 
exponent after 9 months (15 subjects). Subject e7 had died 
prior to the second measurement. 

4.2 Case Studies of Maternal 
Attachment of Children 

Subjects: Data were obtained from 242 children 0- 
to 5 years old from nurseries in Osaka and Himeji. 
Date of measurement: January 2004–March 2005. 
Measurement method: Fingertip pulse waves were 
measured twice for 1 min each.  
Pulse waves were measured in a relaxed 
environment at 25ºC (room temperature). Within the 
age range of children tested, 3-year-olds had lower 
mean values in the largest Lyapunov exponent than 
ones of the other ages. There was a significant 
relation between mean values in the largest 
Lyapunov exponent and children ages  (p < 0.05 
using t-student test). Divergence was highest in 0-
year-olds, followed by 1-year-olds and 2-year-olds, 
and was lowest in 3-year-olds (Fig. 11). For 3-year-
old children, some widely held beliefs concerning 
their states and attachment seemed to correspond 
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scientifically to the divergence of the attractor 
trajectory in pulse waves. 

Table 2: Relation between the age and number of children. 

                       Males                Females             Total 
0-year old           2                        5                       7 
1-year old          13                     10                      23 
2-year old          19                     13                      32 
3-year old          27                     27                      54 
4-year old          44                     25                      69 
5-year old          34                     23                      57   
Total                139                   103                     242 
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Figure 11: Relation between the Lyapunov exponent and 
the age of children (242 subjects). 

Figure 12: Relation between the Lyapunov exponent and 
maternal attachment to the child.  

Additionally, questionnaires were completed by the 
mothers to study maternal attachment to the children 
(Index: Maternal Attachment Inventory MAI 
(Muller, 1994). After measurements were taken, the 
children were divided into two groups: a group with 
high maternal and a group with low maternal 
attachment. There was a significant relation between 
attachment and the Lyapunov exponent (p < 0.05 
using t-student test; Fig. 12). These results indicate 
that problems of maternal attachment are also related 

to divergence in children, and could therefore be of 
help to mothers in child rearing.  

4.3 Studies of Employees and the 
Tiredness Index 

The Lyapunov exponents of 12 employees of a 
specific company were measured three times during 
the day: in the morning, immediately after arriving 
at the office; in the afternoon, 1 h after lunch; and in 
the evening, before leaving the office for the day. At 
the same time, the subjects were questioned to 
determine their tiredness index. We then examined 
the relation between the Lyapunov exponent and the 
tiredness index. Changes in the Lyapunov exponent 
with the time of day differed among the employees 
(Figure. 13). Because  the  management of mental 
health in business has caused many problems, 
including occurrences of depression, the Lyapunov 
exponent is a useful index not only for employees’ 
self-management, but also for employers. 

 
Figure 13: Changes in the Lyapunov exponents of 
employees of a specific company in the morning, 
afternoon, and evening.  

The relation of the Lyapunov exponent to the 
tiredness index indicated that subjects with a low 
Lyapunov exponent in the afternoon tended to have 
depressive tendencies and strong anxiety (Table 3).  

4.4 Experiments of Arithmetic 
Operations  

Kraepelin tests that is addition work of numerical 
value were conducted twice for 15 min each on 
subjects in their 20s and 40s, and changes in the 
Lyapunov exponent were studied before and after 
the tests. The Lyapunov exponent increased in all 
subjects after the Kraepelin test. The subjects gave 
the impression that they felt better after the 
Kraepelin test than they did before the test (Fig. 14). 
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Table 3: Relation between the Lyapunov exponent in the 
afternoon and the tiredness index of employees. An 
inverse correlation greater than –0.7 means that a low 
Lyapunov exponent indicates a depressive tendency and a 
strong tendency toward anxiety. 

 

 
Figure 14: Changes in the Lyapunov exponent before and 
after the Kraepelin test. 

4.5 Studies of Operation Error in 
Monitoring and Judgment Work 

An apparatus used to simulate monitoring on a 
personal computer was developed to examine the 
relation between the Lyapunov exponent and the 
human error rate. The experiment was conducted by 
increasing the number of monitoring images from 
three to six, and then to nine images. In all cases, the 
error rate was high when the Lyapunov exponent 
was low (Figure. 15).  
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Figure 15: Relation between the Lyapunov exponent and 
human error rate in monitoring work over 30 min. 
Symbols and line indicate the Lyapunov exponent by 
block (3min); bars indicate the human error rates by block. 

4.6 Studies of Painting Work  

We measured the Lyapunov exponent when a certain 
artist did nothing and again 3 min after he began 
painting. The Lyapunov exponent increased while 
the artist painted (Figure. 16).  

 
Figure 16: Changes in the Lyapunov exponent while 
painting. Orange, before painting; blue, during painting. 

4.7 Studies of giving Birth Processes 

The Lyapunov exponent was measured in seven 
pregnant women before and after giving birth 
(obstetrics and gynaecology in Nara city; Figure 17). 
Comparisons were made between the values 
measured within 1.5 h before birth and after birth. 
The Lyapunov exponent was significantly higher 
before birth than after birth (Student t-test, p < 0.05). 
Giving birth increased the functioning of the 
sympathetic nervous system.  
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Figure 17: Comparison of the Lyapunov exponent 
measured in pregnant women within 1.5 h before and 1.5 h 
after giving birth. 

5 SELF-CHECK SYSTEM 

5.1 Equipment Components 

A device that is easy to use and gives minimum 
burden on the subject is needed to measure the pulse 

  t-student test  
  significance 0.05 
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waves. It is not possible to check the mental health 
of a person through just one round of measurements. 
For these reasons, the device must be convenient to 
use. We took note of the fact many people often do 
their work with PCs, and therefore developed a 
device that can make these measurements using a 
mouse. The pulse wave sensor is installed on one 
side of the pulse wave mouse; measurements can be 
made by simply touching the sensor with a finger. 
The mouse is connected to the PC through a USB 
port and can also be used as an ordinary mouse 
(patent pending).  
Software installed on the PC starts and ends the 
measurements, and sets their duration. 

5.2 Representation System using 
Constellation Graphs in Mental 
Health Self-Checks 

Previous studies indicated the possibility of using 
the Lyapunov exponent as a new psychological 
index. However, as noted above, it is dangerous to 
judge mental health using only one measurement. 
Therefore, even over the period of a single minute, 
several measurements are necessary to assess daily 
fluctuations. It is also necessary to prepare a self-
feedback system to determine when changes in the 
values of the Lyapunov exponent can be observed.  
 

 
Figure 17: Example of a time series constellation graph for 
a self-diagnosis system. The right area of the graph 
indicates large Lyapunov exponents; the left area indicates 
small Lyapunov exponents. Changes among seven 
measurements are shown; circles indicate the standard 
deviation of the Lyapunov exponent for each 
measurement. If the point constitutes a change, the self-
stated status at that point is shown. 

To do this, a time series of the Lyapunov exponent 
must be recorded over several days and weeks to 
monitor natural variation, and the status of the pulse 
wave data should be recorded using simple words or 
keywords. To accomplish these measurements, the 

development of apparatus capable of taking 
measurements easily and of software that can 
indicate changes in mental health is necessary (Fig. 
17).  

5.3 Future Plan and Some Problems  

There are three potential types of self-diagnosis 
system that use the divergence of fingertip pulse 
wave attractor. The first type is the personal 
computer (PC)-completed type, in which all 
operations from measurement to display are 
performed on one PC. In the second type, pulse 
wave data stored on a PC are transferred to a server 
via the Internet to construct a database. The software 
used to analyze the pulse waves on the server is 
either downloaded or pulse wave data are sent 
through the server. In the third type, a sensor for 
taking pulse wave measurements is installed on a 
cellular phone and the display of the results is 
provided as an image on the cellular phone. In this 
case, the Internet is also used. In the second and 
third types, results are accumulated in a database via 
the Internet, and a system is constructed for an 
available search. We expected that data will be 
accumulated through Internet use, enabling further 
advanced study. However, sufficient caution should 
be taken to protect the security of personal 
information. 

If the self-management of mental health and 
early detection and treatment of diseases can be 
accomplished using this system, many people might 
be saved from terrible situations resulting from 
mental problems or instability. In addition, sending 
data regarding the mental indexes of humans using a 
network may lead to innovations in communication. 
However, sufficient care should be taken in the data 
management because of recent problems concerning 
the protection of personal information. However, in 
terms of the effectiveness in promoting further 
research, the accumulation of information would be 
extremely helpful for various future studies. 

6 CONCLUSIONS 

Mental management in humans is increasingly 
important as society continues to change. Accurate 
measurements have been difficult to obtain in the 
past using both subjective and objective methods, 
and the time and cost required to take brain 
measurements have imposed heavy burdens on 
patients. Measurement of pulse waves is simple and 
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has the merit of imposing a comparatively minor 
burden on the subjects. 

The complete realm of information obtainable 
from pulse waves has not yet been fully elucidated, 
but we have found that the information is deeply 
related to the behavior of the autonomous system 
networked throughout the body via the spinal cord 
from the part of the brain stem responsible for much 
of human activity and responses. The divergence of 
pulse waves is thought to be the value most related 
to the function of the nervous system, including the 
sympathetic and parasympathetic nerves that are 
integrated with the brain stem. In the future, we plan 
to further document these relations through various 
experiments.   
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Abstract: Recent technologic breakthroughs have enabled the usage of minimal invasive biometric hardware devices
that no longer interfere with the audience immersion feeling. The usage of EMG to extend traditional mouse-
oriented user interfaces is a proof-of-concept prototype integrated in a wider horizon project. A subset of
the main project’s architecture was reused, specially the communication middleware, as a stable development
platform. An originally intended EEG hardware was adapted to perform EMG and therefore detect muscular
activity. It was chosen, as a practical proof-of-concept, that it was desired to detect winking as a triggering
device to perform a given traditional user interface action. The described application achieved extremely
positive records with hit rates of around 90%. The volume of false positives and undetected desired actions
are considered negligible due to both system development stage and application contextualization - non critical
systems. The success and acceptance levels of the project are really encouraging not only to the enhancement
of the proposed application but also to the global system continuous development.

1 INTRODUCTION

In this global scenario, the authors have defined and
already started a research project precisely with the
intention of using biosignals to assess user emotions
and use this information to enable subconscious in-
teraction. The contextualization of this work has nu-
merous points of interest both in the academic com-
munity and in commercial applications. The usage
of new hardware solutions and biosignals to enhance
traditional user interface paradigms or even to enable
new ones has managed to bring together multidisci-
plinary private organizations and research communi-
ties. In spite of the main project being still in an initial
stage, several high-level decisions have already been
taken and a high percentage of them have been either
implemented or designed.

Perfectly integrated in this scope, it was decided
to produce a spin-off application capable of testing
the global architecture and, simultaneously, generate
experimental results capable of test initial hypothesis
and therefore confirm them or generate new discus-
sion paths. The mouse control tool enabled trough

EMG is a proof-of-concept project with two distinct
sets of objectives.

The first encloses the goals directly related to
the experimentation and test of new interaction
paradigms by using innovative hardware solutions.
More specifically, it is intended to trigger regular
mouse interaction like right click or drag operations
by detecting user winking. Once again, these defined
actions have merely conceptualization purposes and
can be easily altered.

The second group of objectives regards the reuse
and consequent validation of the main project archi-
tecture, namely communication protocol and multiple
sensors data integration. With this option, the authors
are able to validate the defined approach by early pro-
ducing research results.

This document is organized as follows: in the next
section the current state of the art is presented, in sec-
tion 3 the mouse control project is described, specially
the most significant decisions are detailed and justi-
fied. In section 4, experimental results are presented
and related conclusions are extracted in section 5 as
well as future work areas are identified.
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2 STATE OF THE ART

Regarding the main project nature, this section is
structured in three wide components, namely, hard-
ware solutions for emotion classification, biologi-
cal data format standards and dynamic interaction
paradigms.

2.1 Hardware Solutions

Since the beginning of the last century that there have
been efforts to correlate biological signals to emo-
tional states (Marston, 1917). The most traditional ap-
proaches are based on the standard polygraph where
physiological variables such as blood pressure, pulse,
respiration and skin conductivity are recorded in or-
der to detect different levels of anxiety. Although the
polygraph lie detection accuracy is arguable, the fact
that it is an efficient tool to detect basic emotional
states, especially individual related, anxiety levels, is
not.

The human brain always performance an al-
most hypnotic attraction to several research fields,
so in 1912, the Russian physiologist, Vladimir
Vladimirovich Pravdich-Neminsky published the first
EEG (Pravdich-Neminsky, 1913) and the evoked po-
tential of the mammalian. This discover was only pos-
sible due to previous studies of Richard Caton that
thirty years earlier presented his findings about elec-
trical phenomena of the exposed cerebral hemispheres
of rabbits and monkeys. In the 1950s, the English
physician William Grey Walter developed an adjunct
to EEG called EEG topography which allowed for the
mapping of electrical activity across the surface of the
brain. This enjoyed a brief period of popularity in the
1980s and seemed especially promising for psychia-
try. It was never accepted by neurologists and remains
primarily a research tool.

Due to the medical community skepticism, EEG,
in clinical use, it is considered a gross correlate of
brain activity (Ebersole, 2002). In spite of this reality,
recent medical research studies (Pascalis, 1998)(Af-
tanas, 1997) have been trying to revert this scenario
by suggesting that increased cortical dynamics, up to
a certain level, are probably necessary for emotion
functioning and by relating EEG activity and heart
rate during recall of emotional events. Similar efforts,
but using invasive technology like ECoG1, have en-
able complex BCI2 like playing a videogame or oper-

1Electrocorticography (ECoG) is the practice of using
an electrode placed directly on the brain to record electrical
activity directly from the cerebral cortex

2Brain-computer interface (BCI), also called direct neu-
ral interface, is a direct communication between a brain (or

ating a robot (Leuthardt, 2004).
Some more recent studies have successfully

used just EEG information for emotion assessment
(K. Ishino, 2003). These approaches have the great
advantage of being based on non-invasive solutions,
enabling its usage in general population in a non-
medical environment. Encouraged by these results,
the current research direction seems to be the addi-
tion of other inexpensive, non-invasive hardware to
the equation. Practical examples of this are the intro-
duction of GSR3 and oximeters by Takahashi (Taka-
hashi, 2004) and Chanel et al(G. Chanel, 2005). The
sensorial fusion, enabled by the conjugation of differ-
ent equipments, have made possible to achieve a 40%
accuracy in detecting six distinct emotional states and
levels of about 90% in distinguishing positive from
negative feelings. These results indicate that using
multi-modal bio-potential signals is feasible in emo-
tion recognition (Takahashi, 2004).

There also have been recorded serious commer-
cial initiatives regarding automatic minimal-invasive
emotion assessment. One of the most promising
ones is being developed by NeuroSky, a startup com-
pany headquarted in Silicon Valley, which has already
granted five million dollars, from diverse business an-
gels, to perform research activities (Rachel Konrad,
2007). There are two cornerstone modules, still in the
prototyping phase, yet already in the market. The first
is the ThinkGear module with Dry-Active sensor, that
basically is the product hardware component. Its main
particularity resides in the usage of dry active sen-
sors that do not use contact gels. Despite the intrinsic
value of this module, the most innovative distinct fac-
tor is the eSense Algorithm Library that is a powerful
signal processing unit that runs proprietary interpreta-
tion software to translate biosignals into useful logic
commands.

As previously referred it is still a cutting edge
technology, still in a development stage, nevertheless
it has proven its fundamental worth through participa-
tion in several game conferences(Authors, 2007c).

2.2 Data Formats

As an intermediate project subject, one must refer to
biological data format definition. This topic is partic-
ularly important to this project due to the absolute ne-
cessity of accessing, recording and processing, even-
tually in a distributed system, data which origin may
vary from multiple hardware solutions. The European
Data Format – EDF – is a simple digital format sup-

cell culture) and an external device.
3Galvanic skin response (GSR) is a method of measur-

ing the electrical resistance of the skin.

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

372



porting the technical aspects of exchange and stor-
age of polygraphic signals. This format dates from
1992 and, nowadays, is a widely accepted standard for
exchange of electroencephalogram and polysomno-
gram data between different equipment and laborato-
ries (Kemp, 1992). This data format’s implementation
is simple and independent of hardware or software en-
vironments and has the peculiarity of enabling both
XML and raw text definition. This duality is espe-
cially important if there is any computing power limi-
tation and/or interoperability is a project requirement.

Although the unquestionable positive points of
EDF, hardly accommodates other investigations top-
ics. In order to overcome this critical hurdle, EDF+
is presented in 2003 as a more flexible but still sim-
ple format which is compatible to EDF that can not
only store annotations but also electromyography,
evoked potentials, electroneurography, electrocardio-
graphy and many more types of investigations. Its au-
thors believe that EDF+ offers a format for a wide
range of neurophysiological investigations which can
become a standard within a few years (Kemp, 2003).

2.3 User Interaction Paradigms

On the pure interactive multimedia systems domain,
one must refer to the growing immersion sensation
provided to the audience by several factors in di-
verse fields. As examples of this statement one must
consider the success of new generation videogame
consoles that have boosted audiovisual quality and
brought new interaction paradigms. Also worldwide
multimedia players, like Microsoft with table com-
puter and Apple with iPhone have invested hard in
the so-called ”multi-touch” interfaces, which allow
the user to move several fingers on a screen to manip-
ulate data, rather than relying on a mouse and menus.

In spite of these advances, the mainstream enter-
tainment industry has not changed the storyline lin-
earity yet, but some promising research projects are
trying to alter this reality. In this domain, one must
refer to Glorianna Davenport’s MIT Interactive Cin-
ema Group (Authors, 2007b) that have been focusing
its efforts on formal structures, construction methods,
and social impact of highly distributed motion video
stories.

Another recent interesting project is the apart-
ment drama, 15-minute interactive story called Faade
(Authors, 2007a), where two virtual characters pow-
ered by artificial intelligence techniques, allow them
to change their emotional state in fairly complicated
ways in response to the conversational english being
typed in by the human player.

3 PROJECT DESCRIPTION

In this section both global and specific projects are
described. With this intention, three subsections were
designed: in the first global IT architecture is pre-
sented and depicted; afterwards the main decisions
regarding the mouse control project are listed and de-
tailed; and finally the key features of the action clas-
sifier are explained.

3.1 Global Architecture

In order to best understand the mouse control project,
the main project IT design shall be considered and
described as it is used and tested. The architecture’s
key concept regards the possibility to access biosig-

Figure 1: System Global Architecture.

nals independently of the resources physical location
and nature. In other words, one must be able to read
biosignals from a variety of equipments that might be
connected to an arbitrary subject in a remote location
without perceiving that other entities might be per-
forming similar accesses, processing and actions.

With this concept in mind, Figure 1 is more under-
standable, as it shows the several project dimensions.

MOUSE CONTROL THROUGH ELECTROMYOGRAPHY - Using Biosignals Towards New User Interface Paradigms

373



First, an arbitrary number and diversity of devices are
connected to one or more subjects. Each device driver
is encapsulated in a particular server software tool,
responsible for signal diffusion, securing third-party
code in a given logical compartment. These devices,
as illustrated, might have distinct communication pro-
tocols but their are normalized to standard TCP/IP
socket communication with a in-house developed log-
ical protocol. Having this communication base estab-
lished biosignal diffusion is possible to a wide kind
of receivers that must explicitly connect to the broad-
cast server(s). These clients might have distinct ob-
jectives, namely signal visualization and/or process-
ing; data storage; semantic extraction; etcetera.

3.2 Specific Decisions

Having the global system design being described in
the previous subsection, the authors believed that a
natural spin-off tool for proof of concept and test pur-
poses would be materialized in a simple, yet effective,
efficient and significant client application, capable of
receiving realtime biosignals, process them and ex-
tract semantic information.

Two main specific decisions were taken. The first
one resided in the choice of the base interaction mech-
anism. The decision fell to a traditional mouse hard-
ware piece due to its simplicity and global usage. Two
mouse functions/modes were selected for extension
with the developed tool: right click and drag. Once
the first is an operation less used than the left-click
and some interaction paradigms do not contemplate it
– original Macintosh machines – the second is a alter-
native mouse action with visual repercussions.

Regarding action classification, the authors chose
wink detection, mainly, for three reasons: it is an ac-
tion that most people are able to perform – at least
with the non-dominant eye; it has a clear signal sig-
nature; and it stills remains as an unused potential in-
teraction mechanism.

3.3 Action Classifier

The action classifier module resides its success in the
correct detection of user winking. In order to achieve
realtime high classification hit rates – and once again
having in mind the concept decisions referred in the
previous subsection – this module had to keep low
levels of complexity without loosing its efficiency.

A signal study showed that muscular activity re-
garding quick winks had a very recognizable pattern
with two consecutive signal peeks, having the second
a lower strength. Figure 2 illustrates the shape of two

possible consecutive winks delimited by the two ver-
tical segments.

Figure 2: Classifier Parameters Appliance.

Once again keeping the approach simple enough
to be enable realtime computation even in mobile
devices, two distinct parameters where defined to,
through signal monitoring, enable reliable action clas-
sification. These parameters were designated peek
value and time span and are also visible in the re-
ferred illustration. The peek value can be understood
as a threshold and is illustrated as the dotted horizon-
tal line. Only signal values above this threshold are
considered for further analysis. Again in Figure 2 it
is visible that only to signal intervals respect this pri-
mary condition. The time span parameter is designed
to prevent extemporary phenomenons like jitters and
represent the minimum temporal interval that the sig-
nal must consistently be above the peek value. If a
closer look is given to the reference illustration, one
is able to perceive that the first wink candidate is dis-
carded because its signal is too brief and only the sec-
ond is valid. One important note is that either of these
parameters is configurable to best fit the user natural
abilities. More on this feature is elaborated in sections
4 and 5.

4 RESULTS

In this section experimental results are objectively
presented. In the first subsection, experimental con-
ditions are detailed and in the second, collected data
is depicted and treated for analysis purposes.

4.1 Experimental Conditions

In order to perceive the accuracy and adequacy of the
developed software tool, there were conducted sev-
eral experiments. There were formed two distinct
groups of subjects: one where users attended a fif-
teen minute theoretical formation, where the authors
explained the tool’s basics and how actions were de-
tected. After these sessions, subjects had another ten
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minutes to free practice and to get in touch with the
application. The second group of users did not have
any kind of training specific regarding the presented
software. Experimental subjects were randomly se-
lected among laboratory researchers and college stu-
dents, constituting two groups os user with fifteen el-
ements.

Test sessions were similar both to trained and un-
trained user groups. Each session was supervised by
one of the authors and each subject was asked to close
his non-dominant eye ten times, as winking, when-
ever the subjected wanted to perform a mouse action
– either it was a right-click or activate drag mode op-
eration. Environment conditions were similar to both
groups either in terms of noise, illumination and time
of day.

As sessions were defined in performing a given
action ten times, or equal number of actions were de-
tected – false positives – accuracy rates have been
fractioned in steps of five percent.

4.2 Collected Data

As described in the previous subsection, experiments
were conducted considering two sets of fifteen sub-
jects, one with trained elements and the other with
untrained ones. The thirty sessions have been com-
pleted in on week and the collected data distribution
is illustrated in Figure 3. One must clearly refer that

Figure 3: Experiment Result Distributions.

the trained users group has a greater performance with
an average success rate of around ninety percent, min-
imum values of sixty-five and registry error free ses-
sions. If we consider the untrained set, the average
rate drops to less than sixty percent with lower bounds
of twenty-five and maximum values of eighty percent.

These result distributions were translated into his-
tograms, for analysis purposes, as visible through Fig-
ure 4. If a deeper study is conducted, one must re-
fer that eighty percent of the trained subjects regis-
tered three or less errors. On the other hand, the
untrained user group results are more distributed, al-
though they are slightly concentrated in success rates
between fifty-five and seventy percent.

Figure 4: Experiment Result Histograms.

5 CONCLUSIONS

In this section, extracted conclusions are presented
and future work topics are identified. Regarding the
first theme, one must state that the objectives depicted
at the beginning were completed achieved. In what
concerns to the main project goals, the communica-
tion protocol was successfully tested, the IT archi-
tecture was used and validated and it was proved the
versatile equipment usage, once again, sustaining the
defined structural design. The specific project goals
were also accomplished as it was proved the concept
of utilizing biosignals to control interaction facets,
even when this case study is merely a proof of con-
cept.

Another important conclusion is the need of dis-
tinguish trained users from untrained ones, when con-
sidering the tool’s usability values. One ought to refer
that previous contact with the concept allied with a
few minutes of practice enhances the software utiliza-
tion success rates. However, even the untrained group
of users has registered fair results. These can be rated
as more than acceptable if one considers the whole
project’s intention.

Considering only the classification engine, a reg-
istered positive key point is the system ability to dis-
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tinguish user winking from user blinking, especially
if user specific parameterization is considered. How-
ever, even if this last feature is discarded, the default
parameter values are sufficient to discard weaker sig-
nals that, with high probability, refer to blinking.

Despite the enunciated positive features and con-
clusions, there were identified some issues, namely
the existence of false-positive results that refer to
other user muscular activity. These faults are included
in the numbers presented in section 4 and are, in most
cases, related to sudden and wide head movements.
On the other hand, some winks are not detected as
it is necessary some vigor. However, this issue, as
referred, can be suppressed by tuning classification
parameters. At last, some minor occasional, applica-
tion stability issues were detected, especially in what
concerns the mapping between wink detection and ac-
tion triggering, mainly due to the tool’s lack of matu-
rity. This last issue is development-oriented and does
not have a negative impact in what concerns the main
project’s concept.

5.1 Future Work

The main future work topics are not related to this
particular tool, once it is a proof of concept one, but
rather with the main global project. With this in mind,
there were identified the following areas:

• Reading Hardware Diversity Reinforcement: It is
intended to handle a greater number and diversity
of devices capable of acquiring biosignals so that
information fusion, conjugation and complemen-
tary is possible;

• Semantic Leap: It is intended to use syntactic in-
formation – biological signal – to extract more
complex information like emotions and simple
commands;

• Software Control: The accomplishment of the
previous item would enable both conscious and
subconscious control of several tools and/or mul-
timedia contents;

• IT Architecture and Network Reinforcement:
Full-duplex data transfer would enhance user
training and system adaptation levels.

Considering the main project’s intentions and the
future work topics referred, diverse practical appli-
cations come into sight. Some of them might be
the videogame and virtual entertainment industry,
multimedia contents adaptability, user interfaces en-
hancement, direct advertising, medical applications,
namely in phobia treatments and psychological eval-
uations.
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Abstract: This contribution presents a new approach for the enhanced analysis of uterine surface electromyography
(EMG). First, a pulse detection separates the pulses, whichcontain the essential information about the uterine
contractibility, from the flat line sections during relaxation. The functionality of this semi-automatic algorithm
is controlled by two comprehensible parameters. Subsequently, the mean frequency, which serves as a crite-
rion for imminent delivery, is evaluated from the extractedpulses. Although the pulse detection reduces the
deviation of the mean frequency significantly, the results are still sensitive to parameter variations in the pulse
detection. A stochastic analysis based on the Karhunen-Lo`eve transform (KLT) derives generalised patterns,
the eigenforms, from the pulse ensemble. The mean frequencyof the first eigenform is less sensitive to pa-
rameter variations. Additionally, the correlation between the eigenforms of the left and right surface electrode
can serve as a criterion for the measurement’s quality.

1 INTRODUCTION

Even in modern obstetrics, the point of delivery can-
not be precisely predicted. Although the majority
of pregnancies passes without any complications, the
significance of an enhanced analysis of uterine activ-
ity arises from the diagnosis of preterm labor as well
as the treatment of delayed delivery.

The uterine muscle (myometrium), which has
maintained a quiescent state during the majority of
pregnancy, is prepared for labor by local contractions.
These contractions, called training labors, improve
the synchronisation between the single muscle cells
in order to obtain a defined contraction sequence dur-
ing delivery. Therefore, the identification of imminent
labor requires an elaborate analysis and interpretation
of this preparatory phase.

Several methods for the evaluation of uterine con-
tractibility are commonly used: TOCO, IUPC and
EMG. Uterine contractions cause variations in the
abdomen’s contour, which can be detected by pres-
sure sensors. Due to the indirect measurement, this
so-called external tocodynamometry (TOCO) is not
sensitive and reliable enough. A more reliable ap-

proach consists of measuring the uterine’s internal
pressure (intrauterine pressure catheter, IUPC). The
surface electromyography (EMG) combines the non-
invasiveness property of TOCO with a sensitivity sim-
ilar to that of the IUPC (Maul et al., 2004). The
muscular activity is accompanied by variations of the
electric potential at the neuromuscular junction be-
tween nerve and muscle cells. This potential can
be picked up directly by needle electrodes and range
from−70mV (relaxation) up to+30mV during con-
traction. In case of surface electrodes, the voltage has
to be transmitted via the tissue to the skin, yielding to
lower peak values as well as deformations in the time
history of the voltage signal. For the measurement
of the uterine contractions two surface electrodes are
used. They are located on the right and left side of the
abdomen. The time-history of a single electromyo-
gram (EMG)-signal is displayed in Figure 1 above.
The pulses, which belong to uterine contractions, are
separated by flat line sections. Up to now, the fre-
quency characteristics have been derived from large
sections of its time history by means of the Fourier
transform. Based on the assumption that ongoing syn-
chronisation leads to an increase of the pulse’s attack
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Figure 1: Surface Electromyogram: Time history (above)
and its short-time Fourier transform (below).

and decay slope, the mean frequency of the calculated
spectrum serves as a criterion to judge imminent de-
livery.

But a detailed analysis in the time-frequency do-
main reveals a strongly varying frequency content.
This analysis is done by a discrete short-time Fourier
transform (STFT) based on a Hann-Window 5s long.
An additional zero-padding and a logarithmic scal-
ing of the resulting amplitude-coefficients unveils all
the significant details. An introduction into the time-
frequency transforms can be found in (Mertins, 1999),
practical aspects are discussed e.g. in (Reicke et al.,
2006).

The logarithmic representation of the STFT co-
efficients in Figure 1 does not only show the broad
frequency content of the pulses, it even unveils the
heart beat of the foetus at 1.6Hz as well as its harmon-
ics. Due to the fact that the pulses rather than the flat
line sections contain the information about the uterine
contractibility, the authors suggest an enhanced anal-
ysis which is restricted to the EMG-pulses. This new
approach is supported by Figure 2. The diagram on
the top shows the instantaneous mean frequency

fm(t) =

∞
∫

0

f ·
|XSTFT( f ,t)|2

||XSTFT(t)||2
d f (1)

derived from the amplitude coefficientsXSTFT( f ,t) of
the STFT. The norm||XSTFT(t)|| denotes the instanta-
neous energy

∫

|XSTFT( f ,t)2|d f of the STFT. The red
line represents the level of the original EMG-signal.
The lower diagram shows the evolution of the mean
frequency’s standard deviation

σ f (t) =

√

√

√

√

∞
∫

0

( f − fm)2 ·
|XSTFT( f ,t)|2

||XSTFT(t)||2
d f (2)

over time. It underlines that a reliable estimation of
the mean frequency is restricted to the pulses. Only

in these time intervals, the standard deviation is less
than 3Hz.
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Figure 2: Instantaneous mean frequency (above) and its
standard deviation (below) of the signal shown in Fig. 1.

As only the pulses contain the relevant informa-
tion, it is convenient to analyse the pulses without
the intervals of relaxation. This contribution presents
a semi-automatic pulse detection, which extracts the
pulses out of the measured EMG-signal. The expres-
sion semi-automaticunderlines that the operation is
controlled by the physician, whereas the algorithm
undertakes the time-consuming and exhausting work
of scanning through the signal searching for pulses.
Additionally, the use of surface electrodes causes de-
formations of the pulse shape. Therefore, the pulses
are processed by a stochastic method based on the
Karhunen-Loève transform to evaluate a generalised
pattern.

2 PULSE DETECTION

2.1 Conditioning

The surface-EMG signals are distorted by noise and
a low frequency drift. A low-pass filter, which rejects
frequencies higher than 7.5Hz, is applied to attenu-
ate the noise. The low frequency drift is reduced by a
high-pass filter with a cut-off frequency of 0.1Hz and
a transition band of 0.2Hz. Both are implemented as
finite impulse response (FIR) filters based on a Kaiser
window design (Oppenheim and Schafer, 1999). An
additional noise-reduction is achieved by the pulse
detection: the flat line intervals, which are charac-
terised by a low signal-to-noise ratio, are excluded
from the further analysis.
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2.2 Pulse Detection

The pulse detection extracts those parts of the sig-
nal which contain the relevant information about the
uterine contractibility. The localisation of the pulses
is done regarding the magnitude of the signal. First,
the global maximum and the mean value of the sig-
nal’s magnitude as an approximation of the noise level
are determined. All local peaks in the range between
these two values can be considered as potential pulse
centres. But only pulses whose peak values largely
exceed the noise limit offer a sufficient signal-to-noise
ratio. Therefore, the first parameter of the pulse detec-
tion, thelevel value, is introduced. This value deter-
mines the percentage of the range between noise level
and global maximum which is added to the noise level
in order to define the lower level limit. If the level
value is chosen equal to zero, the lower level limit is
identical to the noise level. Hence, any peak value
higher than the noise level is considered as a pulse
centre. In case of a level value equal to ”1”, the lower
level limit reaches the global maximum and any peak
except for the global maximum will be rejected. Fig-
ure 3 shows a particular lower level limit which cor-
responds to a level value of 0.3.
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Figure 3: EMG-signal (above) and its magnitude with
global maximum, noise level and a particular level value.

After the localisation of the pulse centres in the
signal, the initial and end point of each pulse are de-
termined. The pulse detection is based on the assump-
tion that a pulse begins and ends at roots. Therefore,
any low frequent drift has to be removed (cp. 2.1)
before the execution of the pulse detection algorithm.
Starting with the pulse centre, the adjoining roots tem-
porary describe the initial and end points. In the fol-
lowing, this part of the pulse between these two roots
is called the inner pulse. If these points were finally
considered as the pulse’s initial and end points, ad-
jacent over- and undershoots, which might belong to
the pulse and therefore contain valuable information,
would not be extracted. Hence, the surroundings of

the inner pulse have to be taken into consideration.
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Figure 4: Evaluation of inner and outer area.

Figure 4 displays a pulse with a preceding and
subsequent undershoot. To determine whether these
undershoots are part of the pulse, the roots before and
after the temporary initial and end points are consid-
ered. For example, the temporary end point and the
root located on its right enclose the subsequent under-
shoot. Now, the area of the undershoot is calculated
and related to the area of the inner pulse. In Figure 4,
the area of the undershoot (”outer area”) and the in-
ner pulse (”inner area”) are hatched in black and red,
respectively. If the ratio of the outer and inner area
exceeds a given value, the corresponding undershoot
belongs to the pulse. If the right undershoot in Figure
4 fulfils this area criterion, the inner pulse is expanded
by the right undershoot and the temporary end point
is shifted by one root to the right.

This given value is called thearea valueand can
be chosen anywhere between ”0”, which connects any
adjacent undershoot to the inner pulse, and ”1”. In
case of an area value equal to ”1”, only undershoots
exhibiting an area greater than the inner area are at-
tached to the pulse. The same procedure is done with
the undershoot on the left. This algorithm goes on
in both directions until the area of the current over-
or undershoot is less than that of the original inner
pulse. In this case, the temporary root becomes the
final root, which borders the pulse to one side. As
soon as the left and right final roots are determined,
the pulse can be extracted from the signal. The de-
tection of the next pulses follows the same algorithm.
In order to avoid overlapping of closely neighbouring
pulses, the extracted pulse data are replaced by zeros.

The level value influences the quantity of detected
pulses. The lower the level value, the more peaks
of the signal are regarded as pulse centres. The area
value controls the lengths of the pulses. The greater
the area value, the less over- and undershoots belong
to the inner pulse and therefore the less pulses are
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lengthened beyond their inner pulse. However, the
area value has an influence on the quantity of the
pulses, too. If the area value is very low, the pulses
extracted from the signal are so long that less pulses
can be detected in the remaining signal parts.

2.3 Characteristic Values

The pulse detection scans through the signal and cuts
out single time histories belonging to those pulses
whose shapes match the pattern specified by the level
and area value. The extracted pulses are described
in the time domain by their peak values and lengths.
Additionally, each pulse is analysed in the frequency
domain by the discrete Fourier transform (DFT). Con-
trary to the short-time Fourier transformXSTFT( f ,t)
of the entire signal, the spectrumXpulse( f ) of an indi-
vidual pulse is not time-dependent. Hence, each pulse
is characterised by two values in the frequency do-
main, the mean frequencyfm and the varianceσ2

f .
Based on a measured EMG-signal, Figure 5 shows

the characteristic values of those pulses that fulfill a
level value equal to ”0.3”, i.e. 30 % of the global max-
imum, and an area value of ”0.4”. In the diagrams, the
horizontal line denotes the arithmetic mean. The third
diagram exhibits a strong variation in the pulse length.
Particularly, the 2nd and 4th pulse length strongly
deviate from the mean of≈ 650samples. The 2nd
pulse’s mean frequencyfm largely exceeds the mean
of ≈ 0.16Hz. The reason may be the short duration
of ≈ 200Samples, which also increases the variance
σ2

f .
In order to demonstrate the influence of the two

parameterslevel valueand area valueon the num-
ber, length and mean frequency of the pulses extracted
from the EMG-signal, the results of five different
pairs, shown in Table 1, are compared in Figures 6,
7 and 8.

Table 1: Pairs of parameters used for pulse detection.

parameter level area
settings value value

E1 0.05 0.1
E2 0.1 0.1
E3 0.1 0.3
E4 0.3 0.4
E5 0.3 0.7

For each pair, denoted with E1 up to E5, the left
and right bars represent the left and right channel of
the electromyogram, respectively. With increasing
level value, the number of pulses decreases because
pulses with lower peak values are now rejected. A
comparison between pair E2 and E3 as well as E4
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Figure 5: Characteristic values of a pulse ensemble cut out
from a measured EMG-signal.

and E5 unveils the influence of the area value on the
length and number of pulses. An increasing area value
leads to a shorter maximum pulse length. On the
other hand, a higher level value increases the mini-
mum pulse length because the pulses with low peak
values, which are obviously shorter, are not consid-
ered anymore. As it is mentioned in 2.2, a more re-
strictive area value can resolve and separate closely
neighbouring pulses into two individual pulse shapes.
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Figure 6: Influence of parameters in Table 1 on number of
pulses extracted.
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Figure 7: Influence of parameters in Table 1 on minimum
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Figure 8: Influence of parameters in Table 1 on mean fre-
quency.

The variation of the pulse length takes effect on
the mean frequency, which is shown in Figure 8. It
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reveals a strong sensitivity of the mean frequency to
the given level and area values. This insufficient un-
certainty motivated the authors to improve the anal-
ysis by a stochastic signal processing, which is de-
scribed in the next section. Additionally, a criterion is
required to give reliable information about the qual-
ity of the signal. A straightforward approach is the
consideration of the signal-to-noise ratio, but this will
not take into account any correlation between the two
channels .

3 STOCHASTIC ANALYSIS

3.1 Karhunen-Loève Transform

The electric potential, which occurs at a neuromuscu-
lar junction, is transmitted via a quite complex elec-
tric network to the two electrodes at the abdomen’s
surface. This leads to an amplitude attenuation of
≈−20dB and deformations in the pulse shape. In ad-
dition, the location of the contraction is randomly dis-
tributed over the entire uterine muscle, which implies
a random distortion of the EMG-signal with regard to
the peak value and pulse shape.

Due to the fact that the measuring time of about
30min is very short compared to the ongoing preg-
nancy, a stationary stochastic process is assumed. The
individual pulse shapes extracted by the pulse detec-
tion are considered as the realisations of this stochas-
tic process. The new approach uses the Karhunen-
Loève transform (KLT), also referred to as Principal
Component Analysis (PCA), to determine a charac-
teristic pulse shape out of the pulse ensemble.

The Karhunen-Loève transform is a signal-
depending decomposition based on the covariance
matrix

Rx̃x̃ = E
{

x̃ x̃T} , (3)

in which E{ } denotes the statistic expectation and ˜x
the stochastic process. The decomposition requires
the eigenvectorsu of the eigenvalue problem

Rx̃x̃ u = λ u. (4)

The eigenvectorsu can be regarded as the characteris-
tic shapes of the stochastic process. The eigenvalueλ
represents the degree of similarity between the corre-
sponding eigenvector and the individual pulses. In the
following, the product of eigenvector and eigenvalue
is denoted aseigenform. The more similar the individ-
ual pulses of the ensemble are to each other, the more
dominant becomes the first eigenform. If the ensem-
ble consists of identical pulse shapes, the first eigen-
value will contain the whole variance of the stochastic

process, while all other eigenvalues are equal to 0. A
brief introduction into the Karhunen-Loève transform
is given in (Mertins, 1999), a detailed description can
be found in (Jolliffe, 2002).
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Figure 9: Ensemble of centred pulses.

For the stochastic analysis, a preprocessing of the
pulses is necessary. The calculation of the covariance
matrix requires an identical length of all the pulse
shapes. Therefore, the pulses are centered with re-
gard to their centres of area, followed by padding ze-
ros on both sides to obtain an identical pulse length.
The result of this preprocessing is shown in Figure 9,
in which the longest pulse, the blue one, specifies the
dimension of the covariance matrix. The other pulse
shapes are shifted in such a way that all area centres
coincide.

The result of the KLT of Figure 9 is displayed
in Figure 10: The first and second eigenforms (EF)
are dominant and contain≈ 90% of the process’ vari-
ance. This can be seen from the time history on the
left side as well as the loadings on the right. In this
context, the loading denotes the normalised variance
of the stochastic process.

1. EF: 67,13%
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Figure 10: KLT: Eigenforms (left) and loadings (right).

Instead of deriving the mean frequency directly
from the pulse ensemble (cp. subsection 2.3), the
DFT of the first eigenform yields to a mean frequency
which is less sensitive to parameter variations. On
top of Figure 11, the global mean frequency, which
is evaluated as the arithmetic mean of the individual
eigenforms’ mean frequencies, is displayed accord-
ing to the parameter settings shown in Table 1. While
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the global mean frequency is susceptible to parameter
variations, the mean frequency derived from the first
eigenform seems to be less sensitive. Here, research
is in progress to confirm this observation.
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Figure 11: KLT: global mean frequency (above) and mean
frequency of the first eigenform (below) for different pa-
rameter settings.

The Karhunen-Loève transform does not only ex-
tract a characteristic pulse pattern, the first eigenform,
out of the pulse ensemble. It can also provide a reli-
able criterion of the electromyogram’s reliability. If
the first eigenvalue is dominant, the pattern of the first
eigenform is similar to the shapes of the majority of
pulses in the ensemble, while the other eigenforms
represent the deformations in the pulse shapes.

3.2 Correlation Analysis

So far, the two channels of the electromyogram have
been analysed separately. In case of a dominant
eigenvalue (see subsection 3.1), the corresponding
eigenform characterises the pulse pattern of the in-
dividual channel’s pulse ensemble very well. There-
fore, the correlation between the left and right EMG-
channel can be evaluated by regarding their first
eigenforms.

Even in case of identical pulse shapes, a time shift
between the left and right eigenform can occur. This
may be caused by different transmission delays from
the neuromuscular junction to the surface electrodes
in combination with the centring of the pulses before
the KLT is performed.

In order to evaluate the similarities between the
left and right eigenformuℓ(t) and ur(t) the cross-
correlation function (CCF)

Ruℓur(τ) =

∞
∫

−∞

uℓ(t) ·ur(t + τ) dt (5)

is used. If the two eigenforms are of identical shape
but shifted to each other,ur(t) = uℓ(t−∆t), the CCF
resembles an autocorrelation function (ACF) whose
maximum value is shifted along the time axis. Due
to the fact that an ACF is symmetric to its originτ =
0, the CCF of two identical but shifted eigenforms is

symmetric with regard to the time shift∆t:

Ruℓur(∆t− τ) = Ruℓur(∆t + τ) . (6)

Because the eigenvector’s orientation is not specified
by Equation 4, the left and right eigenforms can dif-
fer in their signs. Therefore, maximum correlation in
the CCF appears at its global maximum or minimum.
First of all, the time shift of the CCF is determined by
its global extremum. Subsequently the CCF is divided
into a symmetric

Rsymm(τ) =
Ruℓur(∆t + τ)+Ruℓur(∆t− τ)

2
(7)

and antimetric

Ranti(τ) =
Ruℓur(∆t + τ)−Ruℓur(∆t− τ)

2
(8)

component. This decomposition is displayed in Fig-
ure 12. The extremum is located at≈ 2000samples,
at which a vertical symmetry axis (dashed line) is
drawn. According to Equations 7 and 8 the cross-
correlation function (blue line) is decomposed into its
symmetric (green line) and antimetric (red line) com-
ponents.
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Figure 12: Decomposition of the CCF (blue) at its ex-
tremum into a symmetric (green) and antimetric (red) com-
ponent.

Based on this decomposition a symmetry value

Csymm= 1−

∞
∫

−∞

(

Ruℓur(τ)−Rsymm(τ)
)2

dτ

∞
∫

−∞
R2

uℓur
(τ) dτ

(9)

can be specified as the square deviation of the CCF
from its symmetric component. In case of full axis
symmetry, the symmetric value in Equation 9 reaches
”1” or 100%. The cross-correlation function of the
left and right eigenforms for the parameter settings
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in Table 1 are displayed in Figure 13. The CCF’s
oscillations are caused by the under- and overshoots
of the EMG-pulses. With an increasing area value,
these parts diminish in the pulse shapes and eigen-
forms. The CCFs are dominated by their symmetric
components, which is also confirmed in Table 2 by
symmetry values close to 100%.
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Figure 13: Cross-correlation functions for the parameter
settings of Table 1.

Table 2: Symmetry values for parameter settings in Table 1.

parameter symmetry
settings value in %

E1 99.79
E2 99.74
E3 99.43
E4 99.97
E5 99.96

Figure 14 displays the eigenform’s cross-
correlation functions of another EMG-signal. The
eigenforms are based on a pulse detection whose
parameters are shown in Table 3. Due to a poorer
signal-to-noise ratio, the minimum level value is set
to 0.2. Only CCFE8, the CCF for the third parameter
set (level value of 0.2, area value equal to 0.7) seems

quite symmetric. This assumption is confirmed by a
symmetry valueCsymm= 0.9975 in Table 3.

This means that the eigenforms of the second
EMG-signal are more sensitive to variations of the
pulse detection’s parameters. This may be caused by
an incorrect application of the surface sensors, which
induces additional noise and deformations. There-
fore, the combination of the eigenforms’ loadings and
the symmetry value indicates the quality of the mea-
surement.
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Figure 14: Cross-correlation function of another EMG-
signal with parameter settings of Table 3.

Table 3: Symmetry values of the second EMG-signal.

parameter level area symmetry
settings value value value in %

E6 0.2 0.1 86.29
E7 0.2 0.4 97.16
E8 0.2 0.7 99.75
E9 0.3 0.1 77.23
E10 0.3 0.4 96.19
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4 CONCLUSIONS

The existing methods for the analysis of EMG-signals
are not precise enough for a reliable prediction of
the point of delivery. The new approach presented
in this contribution is based on the distinction be-
tween pulses (muscular contraction) and flat line sec-
tions during relaxation. A time-frequncy analysis re-
veals that only the pulses contain relevant information
whereas the flat line sections can be neglected. For
this reason, a semi-automatic pulse detection is de-
veloped. The physician controls the functionality of
the pulse detection by adapting two comprehensible
parameters, while the time-consuming work of pulse
extraction is done automatically. The first parame-
ter, the level value, influences the number of extracted
pulses, whereas the second parameter, the area value,
determines the length of the pulses. Therefore, the
physician integrates his current observations as well
as his medical experiences into the pulse detection.

The use of surface electrodes leads to deforma-
tions in the individual pulse shapes. In this ap-
proach, the pulses extracted by the pulse detection
are treated as realisations of a stationary stochastic
process. In order to derive a generalized pattern, a
stochastic analysis, the Karhunen-Loève-Transform
(KLT), is carried out. The KLT is based on the eigen-
value/eigenvector problem of the covariance matrix.
While an eigenvector represents a generalised pattern,
the corresponding eigenvalue specifies the degree of
similarity with regard to the pulse ensemble. Eigen-
value and eigenvector yield to the eigenform. The
more dominant the first eigenform is, the better it rep-
resents the pulses of the ensemble.

Until now, the mean frequency has been used for
the prediction of the point of delivery. Although the
pulse detection reduces the frequency deviation sig-
nificantly, the mean frequency remains sensitive to
variations of the pulse detection’s parameters because
the individual pulses are randomly distorted by con-
ductivity effects. The first eigenform of the KLT is
less susceptible to parameter variations. Particular
in case of a dominant first eigenform, the mean fre-
quency becomes a reliable criterion.

Furthermore, a new characteristic value is devel-
oped: the symmetry value. It is derived from the
cross-correlation function of the first eigenforms of
the left and right EMG-channel. If the quality of
the electromyogram is high, the pulse ensembles of
the left and right channel will yield to quite identical
eigenforms and a symmetry value close to 100%. To-
gether with the eigenvalues of the KLT, the symmetry
value serves as a criterion for the measurement’s reli-
ability.

In the future, the pulse detection combined with
the stochastic analysis will be applied on a sufficiently
large amount of electromyograms taken from various
women during the last period of pregnancy. With
these results, the reliability of this new approach as
well as the improvement with regards to the present
methods will be be quantified.
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Abstract: This paper describes a new platform for monitoring elderly people living alone. An architecture is proposed,
it includes three subsystems, with various types of sensors for different sensing modalities incorporated into
a smart house. The originality of this system is the combination and the synchronization of three different
televigilance modalities for acquiring and recording data. The paper focuses on the acquisition step of the
system, usage and point out possibilities for future work.

1 INTRODUCTION

As the society is increasingly aging there is an im-
portant need to find an intelligent support system able
to facilitate the maintenance at home of the disabled
and/or old people with safety and providing their au-
tonomy. The maintaining at home in safety of elderly
people is a new major challenge to social and health
government services: given limited resources, more
and more elderly people living alone at home are par-
ticularly prone to accidents and falls in the home and
can often lie injured and undiscovered for long peri-
ods of time. A statistical study indicates that 7% of
elderly people have a home accident due to every-
day life activity and in 84% of cases a fall occurs
(B.Thélot, 2003). In practice all the industrialized
countries are affected by this phenomenon.
Very few systems that support the home life and
healthcare of elderly persons have been developed
to improve quality of life and the alleviation of
risk. Among established systems we can mention,

the TelePat project (French RNTS Program) (Boudy
et al., 2006) where certain physiological data and the
person’s activity are measured by different sensors
connected to a microcontroller based computing unit,
are sent through radio connection to a remote central
server application for exploitation and alarm decision.
Now, within the Tandem project (French RNTS Pro-
gram), accelerometer sensors are added to this sys-
tem for the detection of falls. In the framework of
DESDHIS project a medical home monitoring sys-
tem which use an accelerometer based sensor, infra-
red sensor, an oxymeter and a blood pressure device
has been developed at Grenoble (G.L.Bellego et al.,
2006). A system of multi-channel sound acquisition
is presented in (D.Istrate et al., 2006a), to analyze in
real time the sound environment of the home to detect
abnormal noises (i.e., call for helps or screams).
In this article a new multimodal platform for a home
remote monitoring is proposed, using a large num-
ber of sensors in order to reinforce the secure de-
tection of abnormal situations, in particular patient’s
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fall event. Our software implementation gathers three
subsystems which have been technically validated
from end to end, through their hardware and soft-
ware. This specific platform is multimodal since it
allows us to record physiological data via the RFpat
(J.L.Baldinger et al., 2004) subsystem, audio infor-
mation via Anason (D.Istrate et al., 2006a) subsys-
tem and patient’s localization through infra-red sen-
sors via Gardien (S.Banerjee et al., 2003) subsystem.
An additional simulation process is added and will be
integrated to our platform as a way to overcome the
lack of experimental data required to design the deci-
sion part of the system, such as the cardiac frequency
during distress situations.

2 MONITORING SYSTEM
HARDWARE ARCHITECTURE

We define an intelligent environment as one that is
able to acquire and apply knowledge about its inhab-
itants and their surroundings in order to adapt to the
inhabitant and to improve its comfort and efficiency.
To record the multimodal medical database our first
aim is focused on providing such an environment. We
consider our system as an intelligent agent, which
perceives the state of the environment using sensors
and acts consequently using device controllers. The
first part of this intelligent environment was realized
within the framework of TelePat project, in order to
study the secure detection of patient’s fall event. The
present work is developed in the framework of the
Tandem project.
Our platform is a surface of 20 m2 in our laboratory
which is arranged in two rooms with a technical area
in order to evaluate and to supervise the experiments.
It integrate smart sensors (infra-red, audio, physiolog-
ical,) linked to a smart PC .The two microphones for
audio monitoring are linked to the PC through an ex-
ternal sound card, and can be interpreted as a single
smart audio sensor for the Anason software. Eight
infra-red sensors are fixed on specific places of the
house (walls and ceiling) and connected to an acqui-
sition card (ADAM) (F.Steenkeste et al., 1999), which
is linked to the serial port of the PC. The card output is
RS485 which is converted in RS232 in order to allow
Gardien software to acquire the patient position at any
time. The RFpat subsystem is composed of two main
components: (1) a wearable terminal carried by the
patient, continuously recording his physiological data
and urgency call, (2) an in-door reception base station
linked to the PC via RS232 serial link providing the
information usually every 30 seconds. The layout of
our house environment is shown in Figure 1.

Figure 1: Layout of the house environment.

3 MONITORING SYSTEM
SOFTWARE ARCHITECTURE

The multimodal system has three main subsystems
like in Figure 2 and provides a general user inter-
face which encapsulates the Anason subsystem. It is
implemented under LabWindows/CVI software and
communicates with RFpat subsystem and Gardien
subsystem by client-server model using TCP/IP and
appropriate application protocols. Gardien is imple-
mented under C++ and recovers data every 500 mil-
liseconds. RFpat is also implemented under C++ and
receives data from receiver every 30 seconds. The use
of the inter-module communication through TCP/IP
socket allows each module (subsystem) to be run on
a different computer, and to synchronize each televig-
ilance modality channel. The user can interact with
the system via internet navigator and supervises the
different applications. For example, we use this web
server to communicate with the person, who inter-
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Figure 2: Software architecture of the system.

prets a patient’s activity by displaying a reference sce-
nario on the monitoring screen. This feedback can
significantly help the system manipulation. The sys-
tem flexibility obtained through TCP/IP socket com-
munication allows to add others sensors like heart
monitoring sensor (ECG).
Currently these three modalities work individually,
we investigate multimodal data fusion methods by ex-
ploiting the measurements coming from the platform
in order to increase reliability and to reinforce the se-
cure detection of patient’s distress events.

3.1 RFpat

Patient

Reception 
base station

Data

Wearable 
Terminal

A Smart PC

Figure 3: Architecture of RFpat system.

RFpat subsystem is composed of two fundamental el-
ements (Figure 3):

• Wearable terminal carried out by the patient con-
tinuously recording his physiological and activity
data.

• A reception base station (receptor connected to a
PC), which receives signals from the patient’s ter-
minal, analyses data in order to generate an alarm
after identification of an emergency situations.

All the sensors data are processed within the wireless
portable device by using low consumption electronic
components in order to face autonomy problems
which are also crucial in that application. The circuit
architecture is based on different micro-controllers

devoted to acquisition, signal processing and emis-
sion. The wearable terminal includes chain of various
physiological signals, their possible pre-processing in
order to eliminate the power-line interference signal
(50 Hz) and the various measurement noises, such as
generated by the displacements of the sensors fixed on
the patient’s body. The latter type of noise is generally
a factor limiting the use of such systems in ambula-
tory mode because the patient is often moving, even if
slightly. In this system, the noise problem was solved
in the acquisition stage of the portable device, by ap-
plying a digital noise reduction filter to the different
sensors signals, movements, attitude and namely the
pulse signal (heart rate). The performances of sig-
nal acquisition could be substantially improved when
the patient performs movements. The noise reduc-
tion processing (J.L.Baldinger et al., 2004) reduces
the variations of pulse measurement lower than 10%,
even 5%, which remains in conformity with the rec-
ommendations of the health professionals.
The design of sensors and embedded processing has
led to the realization of a remote wearable monitor-
ing terminal, equipped with actimetry and physio-
logical sensors, indicating the attitude of the patient
(vertical/horizontal positions, activity) and his heart
rate (pulse measurement); these specific sensors to
recorded physical data type are, either integrated in
the terminal, or externally fixed .
Data generated from the different sensors are trans-
mitted, via an electronic signal conditioner, to a
micro-controller based computing unit, embedded in
the mobile terminal fixed on the patient’s waist. Cur-
rently, a fall-impact detector sensor is added to this
system for robustizing the detection of falls.

3.2 Anason

The sound remote monitoring subsystem analyzes the
acoustical environment in real time and is made up
of four main modules which are presented in the Fig-
ure 4 (D.Istrate et al., 2006b). The first module M1
continuously, supervises the sound environment in
order to detect and extract useful sounds or speech
from environmental noise. The signal extracted by
the M1 module is classified like sound or speech
by the M2 module. In the case of sound label, the
sound recognition module M3.1 classifies the signal
between eight predefined sound classes, while in the
case of speech label, the extracted signal is analyzed
by a speech recognition engine in order to detect dis-
tress sentences. For both cases, if an alarm situation
has been identified (the sound or the sentence belong
to an alarm class) this information is sent to the data
fusion system.
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Figure 4: Sound monitoring architecture.

Sound Event Detection Module (M1). The sound
flow is analyzed through a wavelet based algorithm
aiming at sound event detection. This algorithm
must be robust to noise like neighborhood environ-
mental noise, water flow noise, ventilator or electric
shaver. Therefore an algorithm based on energy of
wavelet coefficients was proposed and evaluated in
(D.Istrate et al., 2006a). This algorithm detects pre-
cisely the signal beginning and its end, using proper-
ties of wavelet transform.

Sound/Speech Classification Module (M2). The
method used by this module is based on Gaussian
Mixture Model (GMM) (D.A.Reynolds, 1995) (K-
means followed by Expectation Maximisation in 20
steps). There are other possibilities for signal clas-
sification: Hidden Markov Model (HMM), Bayesian
method, etc. Even if similar results have been ob-
tained with other methods, their high complexity and
high time consumption prevent from real-time imple-
mentation. A preliminary step before signal classifi-
cation is the extraction of acoustic parameters: LFCC
(Linear Frequency Cepstral Coefficients)-24 filters.
The choice of this type of parameters relies on their
properties: bank of filters with constant bandwidth,
which leads to equal resolution at high frequencies
often encountered in life sounds.
The BIC (Bayesian Information Criterion) is used
in order to find the optimal number of Gaussians
(G.Schwarz, 1978). The best performances have been
obtained with 24 Gaussians.

Sound Recognition Module (M3.1). This module
is based, also, on a GMM algorithm. The LFCC
acoustical parameters have been used for the same
reasons than for sound/speech module and with the
same composition: 24 filters. The method BIC has
been used in order to determine the optimum num-

ber of Gaussians: 12 in the case of sounds. A log-
likelihood is computed for the unknown signal ac-
cording to each predefined sound classes; the sound
class with the biggest log likelihood is the output of
this module.

Speech Recognition Module (M3.2). For Speech
Recognition, the autonomous system RAPHAEL is
used (M.Akbar and J.Caelen, 1998). The language
model of this system is a medium vocabulary statisti-
cal model (around 11,000 words). This model is ob-
tained by using textual information extracted from the
Internet as described in (D.Vaufreydaz et al., 1999)
and from ”Le Monde” corpora. It is then optimized
for the distress sentences of our corpus. In order to in-
sure a good speaker independence, the training of the
acoustic models of RAPHAEL has been made with
large corpora recorded with near 300 French speakers
(J.L.Gauvain et al., 1990): BREF80, BREF120 and
BRAF100 corpora.

3.3 Gardien

Figure 5: The Gardien system.

The subsystem knows as Gardien (Figure 5) consists
of passive infra-red sensors placed in a residence and
connected to a remote computer. All the sensors are
connected through cables to an Input/Output parallel
card (ADAM 4053) which is connected to a master
PC. The computer automatically captures and regis-
teres data obtained from the different sensors, with
the help of Gardien software. Data corresponding to
movements are collected twice per second, and stored
with the time of the event in a specific file. When
several consecutive data are identical, only the first
instance is stored.
The sensors are activated by passage of person un-
derneath, and remained activated as long as there is
movement under that sensor and for an additional
time period of 1/2 seconds after the movement end.
The results from the automatic processing of this data
are displayed in the form of list with all movements
noted together with the time and each movement’s
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duration. Gardien is also able to display the data
either in the form of graph (activity duration versus
days) or as three-dimensional histograms (each sensor
activation versus time). To validate the system, the
results from the automatic processing are compared
with manual analysis by an expert.

4 GENERAL INTERFACE OF THE
SYSTEM

Figure 6: Main windows of the system during the acquisi-
tion step.

Figure 6 shows the front panel of the software sys-
tem, where we can supervise the multimodal data ac-
quisition step. The user must firstly select the modal-
ity to record and to configure its parameters. RFpat
and Gardien need only to select the IP address and
the TC/IP port number, while Anason requests the se-
lection of the sound card (if two are present), the sam-
pling rate and the location of the backup file.

5 THE BIOPHYSICAL SIGNALS
SIMULATION STAGE (BSS)

The aim of this stage is to create pathological or crit-
ical situations for the patient at home. Indeed most of
actual signals recorded on domotic platform are gen-
erally and hopefully in normal conditions. The sim-
ulator is based on the existing RFpat sensors device.
The first main goal was to simulate cardiac patholog-
ical profiles such as in particular bradycardias: the
design was done with the helpful collaboration of
SAMU-92 (French emergencies service. In its im-
plementation, are also foreseen functional stages for
the actimetry simulation: patient’s inclination (hori-
zontal or vertical position), his body movement and

Start

INCLINATION status choice:
Data already recorded (a)

Or Create a profile (b)

MOVEMENT ratio choice:
Data already recorded (a)

Or Data simulated (b)
Or Create a profile (c)

PULSE (cardiac frequency)
Data already recorded (a)

Normal profile (b)
Abnormal profile : Bradycardia (c)

File MESOR pattern (a)
Or Cardiac cost model (b)

Correcting Vectors dimension

Creating the storage file

Results

(a) (b)

Use normal file (a)
Or Generate a 

profile (b)

(c)

Figure 7: The Biophysical Signals Simulation.

in a larger extent patient’s fall situations. The simula-
tor software architecture is summarized in the Figure
7. For the cardiac frequency generation, three cases
were proposed:
• A first normal cardiac category, based on the

COSINOR method (F.Halberg, 1969), providing
a global pulse variations trend within one day;
this formula gives the cardiac frequency or pulse
Fc in quiet situation under the following form:
Frest(t) = Fmoy+Asin(2pi/24∗ t), where Fmoy
(around 70 bpm), A are respectively the average
pulse or MESOR value and its maximal ampli-
tude variation (about 6 bpm) along one circadian
cycle; the Akrophase or maximal amplitude is sta-
tistically located around 16 hour.

• A second normal situation, called ”Cost model”,
providing a pulse variation model, still denoted
Fc, depending on the patient’s activity; the for-
mula is based on the pulse in a quiet situa-
tion (Fcrest) and the delta-variation due to pa-
tient efforts, namely representing the cardiac cost:
Fc(t) = Frest(t)+ DFc(t). This part is develop-
ing stage.

• Bradycardia model corresponding to a situation
met with elderly persons, by assuming no specific
medication having a cardiac impact: the model is
either artificially inserted inside an existing pulse
signal sequence by taking into account the actual
pulse variance, or is completely substituting the
actual pulse sequence.

This tool is still open to other simulation process,
namely for the actimetry where presently are per-
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formed investigations on the potential correlations be-
tween the Cardiac cost model and the body moveme-
nent. The BSS stage has been designed to be fully
interfaced to the multimodal patient database.

6 APPLICATION

6.1 Recording of a Multimodal Medical
Database

Most of monitoring systems use some form of learn-
ing method to discriminate between different types of
normal and abnormal events. This methodology re-
quires large amounts of training data that can be dif-
ficult to obtain especially data describing abnormal
events that are by definition rare occurrences. An im-
portant issue for this problem, is to record a multi-
modal medical database which is the first application
of our platform.
Data acquired from the patient are stored on the Mas-
ter PC in a folder named with a code number corre-
sponding to the patient. Each recording is composed
from five files corresponding to the different subsys-
tems.
The first one, named ”personnel.xml”, contains the
patient’s identifier and some personal information like
age, native language, usual drugs treatments, etc. The
second, named ”scenario.xml ”, describes the refer-
ence scenario. All these data relative to the tester are
protected for his privacy and let to his agreement.
The sound data is saved in real time, in a wav file with
16 bit of resolution and a sampling rate of 16 KHz, a
frequency usually used for speech applications.
The clinical data acquired from RFpat are saved in
a separate file which contains information about pa-
tient’s attitude (lied down or upright/seated), his agi-
tation (between 0% and 100%), his cardiac frequency,
fall events and emergency call in a binary type. The
acquisition sample rate is 1/30 seconds.
The data acquired every 500 milliseconds by Gardien
subsystem are saved in a separate text file, fully re-
specting the original storage format of the GARDIEN
application. Each line of this file contains the infra-
red sensors which are excited (they are represented
by hexadecimal numbers from 1 to D) plus the corre-
sponding date and hour.
To tackle the problem of the variety of each data sam-
pling rates, a synchronization prototype between the
three subsystems is obtained through TCP/IP proto-
col. RFpat is the master and supervise Gardien and
Anason by TCP/IP commands.
Thus, our multimodal database acquisition software

provides a very helpful and well-targeted application
to elaborate and assess the data fusion-based decision
methods. The low level data recorded by our system
will be useful for the development of processing algo-
rithms of each modality.

Figure 8: Sound file (*.wav) and its corresponding SAM
file.

In order to index our multimodal database, we have
retained the SAM standard indexing file (D.Well
et al., 2004) generally used for Speech Databases de-
scriptions. The SAM labeling of a sound file is shown
in Figure 8; it indicates information about the sound
file and describes this file by delimiting the useful part
for analyzing and processing. For each modality of
the database a corresponding indexing file is created,
we have adapted this type of files to the specificities
of each modality, and we have added another indexing
file for the entire database.

6.2 The First Approach of Fusion:
Bimodal Fusion between RFpat and
Gardien

This work is a first step for a multi-modal experiment.
Indeed, this was performed with only two of the tele-
vigilance modalities presented in this paper: the fixed
infra-red sensors based Gardien system and the mo-
bile sensors RFpat device. Its conclusions have mo-
tivated the extension of these modalities to the com-
bination with the sound detector AnaSon through the
current investigations led by ESIGETEL, INT and IN-
SERM.
In this first step we have used a PCA analysis in or-
der to preliminary determine potential correlation be-
tween the combined data and in order to obtain a data
reduction. After preliminary evaluations with the K-
Nearest Neighbors algorithm, the Gaussian Mixtures
Models and Neural Network on RFPAT data, a Bi-
modal fusion was carried out by using the Neural Net-
work .
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6.2.1 Principal Components Analysis

The data resulting from RFpat subsystem and Gardien
subsystem were analyzed simultaneously through
their respective variables: posture, activity, cardiac
frequency, exposure time under the infra-red sensor
C3 (sensor indicating the input/output of the person in
the home), and exposure time under the infra-red sen-
sor C5 (sensor indicating the fall of the person). The
analysis of the PCA algorithm results made it possible
to propose a set of decision rules on several levels:

• To define an estimator in two levels: a ”physio-
logical” distance between two parameters (cardiac
frequency, activity) normally correlated: normal
state if they are close or pathological state if they
are distant. Then, a ”actimetric” distance (Slope,
C5): normal if distant or pathological if close.

• There are a correlation between the cardiac fre-
quency and the activity which will allow the fu-
sion system to avoid a malfunction of one of the
two sensors.

6.2.2 Application of the Neural Networks

The Neural Networks (NN) consist in an input layer,
the sensors signals, several transition layers (denoted
as hidden layers) and of an output layer delivering
the classification of the data observed in situation ei-
ther ‘Normal’, or critical ‘detected Fall’. A classi-
cal NN structure was implemented by using a Multi-
Layer Perceptron (MLP) based on only one hidden
layer consisting in eight neurons after an optimal tun-
ing.

Each neuron realizes a scalar product between its
input vector and the weight vector, where a deviation
is added, then operates an activation function in order
to generate its output value y: y = f (x.w+b).
The activation function must be strictly crescent and
bounded. A classical function used in our experiment
is the standard sigmoid function whose equation is re-
minded hereafter: f (x) = tanh(x)+1

2 .
Two types of networks were compared, with respec-
tively as input vector of the MLP first layer:

• Single actimetric data of RFpat in entry of the
network, giving a rate of recognition of the order
84%.

• The actimetric data of RFpat and horizontal infa-
red sensors of Gardien, providing a rate of 86%.

The improvement nevertheless remains quite limited.
One improvement track is to increase the data cor-
pus used for the learning phase, namely by recording
more specific actual and simulated emergency situa-
tions thanks to the multi-modal recording tool previ-

ously described in this paper. Another main improve-
ment track will be investigated by adding the AnaSon
(abnormal sound detector) modality. Therefore that
is why the need of a new multi-modal recording tool
was considered as crucial for the follow-up. Thor-
ough investigations will also be performed again on
KNN and GMM techniques, namely by working on
the data pre-processing (normalized, transformed in-
put data).

7 CONCLUSIONS

This paper has focused on the technology used for
implementing the acquisition step of the platform.
Preliminary results are encouraging with the achieve-
ment a multimodal medical database including pa-
tient’s clinical data, usual environment sounds and pa-
tient localization. The platform enables us to have a
full and tightly controlled universe of data sets and to
evaluate the decision part of remote monitoring sys-
tems.
Our platform is in the research phase targeting a pro-
totype, the system will be completed and improved by
adding a data fusion-based decision element exploit-
ing the measurements coming from this platform in
order to propose new processes to reinforce the secure
detection of patient’s distress events. In particular the
fall situations are studied: indeed one or more televig-
ilance modalities might be out of order, or a particular
environmental situation (ambiant noise, bad wireless
conditions, sensors disabilities . . .) can hide one par-
ticular modality or more. This is a very challenging
issue for hospital emergency units such as for instance
SAMU in France or Telecare services providers in
general. Studies of usability are planned, in order to
test the satisfactoriness of patients towards this system
and to get a standardization prototype for our plat-
form. This constitutes indeed, a first concrete step
before a prototype deployment. In actual situation,
evaluation and connection to smart home system are
also planed to be performed in the framework of a
new European project.
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Abstract: This paper describes two methods for the measurement of loft time in vertical jumps using signals from an 
acceleration sensor. The vertical jump accelerometer characteristic curve is presented and notable regions  
corresponding to key stages of the kinetic activity are identified. Using the accelerometer signals along three 
dimensions two different algorithms were devised to compute the loft time. These algorithms are based on 
the morphology of the signal. The first uses the the maximum value of the curve during the landing stage; 
the second uses the time interval between minimum and maximum values of the acceleration during the 
flight and landing stages, respectively. To validate these algorithms, a standard algorithm to compute the 
loft time from force platform signals was employed and these values taken as ground truth. Performance 
assessment was performed by computing the relative errors between the loft time determined from the force 
signal and the values obtained with each of the proposed approaches. Preliminary results for a set of 60 
jumps let to relative errors of 7.0% for the first method and 2.9% for the second method.

1 INTRODUCTION 

Vertical jumps are part of a variety of sports. In 
athletic field vertical jump measurements are used 
both to optimize and measure the performance of 
various types of movements.  

Performance of standing vertical jumps can be 
accessed by measuring the time the athlete is in the 
air – jump loft or flight time (Linthorne N. P., 2001). 
The typical approach for measuring the loft time 
uses force platform signals. With this approach the 
jump must be performed while standing on the force 
platform, that collects vertical force data. Force-time 
curves contain kinetic and temporal information that 
can be used to determine parameters that objectively  
measure the performance of athletic movements 
(Dowling, 1993). These platforms are rectangular 
metal plates provided with force sensors and 
connected by cabling to a data acquisition system 
and computer. Due to their weight (ranging from 
about 11 kg to 57 kg) and dimensions (usually 
between 0.4 m × 0.6 m and 1.2 m × 1.2 m) 
(amtiweb) the platforms are usually used only in 

laboratory work, restrained the outside work by the 
portability issues. 
Acceleration data can be used to study the 
characteristics of human movement (Hassan, M. R., 
2006) and assess parameters that identify one's state 
of physical activity. In jumping studies, acceleration 
signals are also an important source of information. 
In this paper we present two different algorithms for 
determining vertical jumps loft times using a three 
axial accelerometer. In this case, the portability 
issues are lessened because the accelerometer and 
the acquisition system employed are light-weighted 
wireless devices. 

The two algorithms were applied to a set of 60  
vertical jumps and validated with a standard 
algorithm for computation of loft time from force 
platform signals.  

Like on the vertical force curve, six interest 
regions can be identified on the acceleration-time 
curve: rest, preparation, take-off, flight, landing. and 
recovery. Following the last stage a rest period can 
also be present. Figure 1 shows the vertical force 
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and acceleration signals acquired during a vertical 
squat jump. 

Figure 1: Stages of a vertical squat jump. 

Some key points can be identified on the 
acceleration signal that are characteristic of the 
different stages of the jump and that are repeated as 
a pattern when a series of jumps is acquired. The 
biggest oscillations of the signal are noticed at the 
beginning of the flight stage and the landing stage - 
when the jumper leaves the ground and when his 
feet first contact the ground after the flight, 
respectively. A recovery phase follows the landing. 
During this period of time the acceleration oscillates 
and converges to its rest value which is reached 
when the jumper finishes the jump. The fact that the 
flight stage is clearly demarcated on the force curve 
is usually used to compute the duration of the flight 
– loft time. As we can see in Figure 1, the 
acceleration curve has also characteristic features 
that can be related with the loft time. Two of these 
features were used in this work to estimate the 
duration of the flight stage.  

2 MATERIALS 

The experimental set-up consisted of a bioPlux8 
wireless electrophysiological data acquisition system  
(Silva, H., 2005, plux.info) to which we connected a 
xyzPlux triaxial accelerometer and a force platform 
(AMTI- LG 6-4-2000). With this apparatus force 
and acceleration (along three dimensions) were 
synchronously recorded during the vertical standing 
jumps.  

The accelerometer was placed at the jumper's 
low back on the skin surface (Figure 2). The force 
platform signal was used for result comparison.  

 

 

Figure 2: Placement of the accelerometer at the jumper's 
low back skin. 

3 METHODS 

The methodology for determining the flight time 
was based on the morphological analysis of the 
acceleration curves of a set of 60 jumps.  

Figure 3: Acceleration and force curves of a series of 3 
vertical jumps. 

By comparing the acceleration curve of a set of 
jumps with the respective vertical force curve 
(Figure 3) we observe that some of the acceleration 
curve characteristic features seem to be related with 
the duration of the flight stage, namely at the flight 
and landing stages. Using notable points of these 
stages we devised two different algorithms to 
compute the loft time. The average acceleration 
curve was determined from the acceleration signals 
of the three dimensions and low passed using a  
moving average filter using a window of 250 points 
(Proakis J. G.,1995). Each of the algorithms uses 
different measurements of time and amplitude taken 
from this signal.  

The first algorithm uses the landing stage curve 
amplitude (Figure 4). This stage is characterized by  
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sharp variations of the acceleration signal due to the 
vibration of the accelerometer when the feet first 
contact the force platform on the landing. The low-
passed signal obtained from the smoothing still 
preserves this impact peak whose amplitude (va1) 
was measured and used as a predictor variable for 
the loft time. 

Figure 4: Jump parameter used on the first algorithm. 

The second algorithm determines the time 
interval between the minimum of the smoothed 
signal on the flight stage and the impact peak. With 
this algorithm, a direct measure of the loft time is 
obtained (Figure 5). 

Figure 5: Jump parameter used on the second algorithm. 

Figure 6: Jump parameter used by the standard algorithm. 

For result comparison purposes, we determined 
the jump loft time of the 60 jumps from the force 
platform signal and took these values as ground 
truth. A standard algorithm was employed that 
computes the time during which the jumper is not 
touching the force platform - the time interval 
between the take-off and landing instants - where the 
force signal has a negative plateau (Figure 6). 

4 RESULTS 

The two independent variables measured on the 
acceleration signal (vai) were plotted against the loft 
time determined from the force platform signal (tp). 
The scattergrams of these two variables are shown in 
Figure 7. 

(a) 

(b) 

Figure 7: Scattergrams of the loft time measured with the 
standard algorithm versus (a) the variable measured with 
algorithm 1 and (b) the variable measured with algorithm 
2. 

A high correlation between the loft time 
measured from the force platform signal and the 
time interval measured from the acceleration curve 
(va2) can be seen is Figure 7b. This is a much better 
predictor of the flight time than the amplitude of the 
landing stage impact peak (r=0.382 and r=0.933 
respectively). The regression equations for both 
variables are given by (1) and (2): 
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14 104,102106,406 −− ×× +v=t a1p1 (s) (1)
 

0,0680,967 −a2p2 v=t (s) (2)

 
Using these equations we can obtain estimates of 

the loft time (tpi) from the variables measured from 
the  accelerometer signal (vai). 

The loft time relative error associated with each 
of the algorithms i was determined for each jump j 
(δεij), taking as “real” loft times the values measured 
from the force platform signal(tpj). 

( )
1,2 1,... 60

p pj ij
εij

p j

t t
δ = ,i = ; j = ,

t

−
   (3) 

The accuracy of the algorithms was assessed by 
determining the corresponding average loft time 
relative errors: 

δ εi=
∑ δεij

n
,i=1,2 j=1, .. . , 60

 
(4)

 
The results led to relative errors of 7,0% for the 

first algorithm and 2,9% for the second algorithm 
Taking as reference the mean loft time determined  
for the set of 60 jumps with the regression equations 
(1) and (2) these relative errors correspond to 32 ms 
and 13 ms, respectively.  

Both algorithms are also affected by a common 
base error of 0.1% which is characteristic of the 
acquisition unit and inversely proportional to its 
sampling rate. 

Usually, when the force platform is used to 
determine the loft time an associated error of 0,5% is 
introduced because the algorithm is susceptible of 
the parameters chosen by the user as the initial and 
final points of the flight stage. In contrast, the 
algorithms we propose are automatic. 

5 CONCLUSIONS 

The time interval between the minimum acceleration 
value of the flying stage and the maximum 
acceleration value of the landing stage is the best of 
the two devised measures, showing a good 
correlation with the real loft times (r=0.933 and 
δε.=2,9%). 

Although associated with errors, these 
preliminary results indicate that these algorithms are 
good alternative methods for the computation of loft 
time, taking advantage of the use of an 

accelerometer instead of a force platform, which is 
more expensive and less portable.  

In addition to the flight time other parameters 
used to assess the performance of the jump can be 
found on the acceleration signal, such as the height 
of the jump. Furthermore, information on the 
dynamic behaviour of the jumper, namely during the 
flight stage can also be obtained from the 
acceleration signal, which is impossible to study 
with only the vertical force signal.  

In the future, we plan to study the load 
distribution between inferior members during the 
take-off and landing stages by combining 
acceleration and force analysis and study the on-
flight behaviour of the jumper. 
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Abstract: The here presented work illustrates a novel circuit topology for the conditioning of biomedical signals.  The 
system is composed of an amplification chain and relies on a double feedback path which assures the 
stability of the system, regardless of the amplification block gain and the order of the low-pass filter 
settings. During the normal operation, the offset recovery circuit has a linear transfer function, when it 
detects a saturation of the amplifier, it automatically switches to the fast recovery mode and restores the 
baseline in few milliseconds. The proposed configuration has been developed in order to make wearable 
biosignal acquisition devices more robust, simpler and smaller. Thanks to the used AC coupling method, 
very low high-pass cut-off frequencies, can be achieved even using small valued passive components with 
advantages in terms of circuit bulkiness. The noise rejection filter between the pre-amplification and the 
amplification stages eliminates the out-of-band noise before the amplification reducing the possibility of 
having clipping noise and minimizing the dynamic power consumption. The presented topology is currently 
used in a prototypal EEG acquisition device in a Brain Computer Interface (BCI) system, and in a 
commercial polygraph which will be soon certificated for clinical use. 

1 INTRODUCTION 

Wearable systems ought to be totally unobtrusive 
devices that allow physicians to overcome the 
limitations of standard ambulatory technology, 
aiming at providing a response to the need for 
monitoring individuals over weeks or even months 
without or limiting their usual behaviour. Such a 
systems typically rely on wireless, miniature sensors 
embedded in patches, bandages, or in items that can 
be worn, such as a ring or a shirt. They take 
advantage of hand-held units to temporarily store 
physiological data, which can be uploaded 
periodically to a database server through a wireless 
LAN or different gateways that allow Internet 
connection. The data sets recorded using these 
systems are then processed to detect events able to 
indicate a possible worsening of the patient’s clinical 
situation or providing information explored to assess 
the impact of clinical interventions (Park, 2003).  

Wearable devices are usually battery powered: 
low voltage supply and low power consumption are 
mandatory features for this kind of devices, in order 
to provide a good battery life to dimension ratio. In 
the last 10 years many garments with embedded 
sensors have been developed: the intrinsic 
characteristics of such electrodes and the possible 
instability of the contact make the design of 
wearable acquisition devices more difficult 
(Webster, 1991). The main aspects we have to take 
into account in the design of a wearable surface 
biopotential amplifier (e.g. Electrocardiogram-ECG, 
Electroencephalogram–EEG and Electromiogram-
EMG) are: 

• Dynamic reserve; 
• Max offset rejection; 
• Fast recovery from artefacts. 

Although the operational amplifiers production 
technology has developed several low power and 
low cost devices, the development of dedicated 
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topologies is still necessary in order to maximize the 
overall circuit performance. 

2 METHODS 

2.1 Background 

Figure 1 shows a typical, state of the art biosignal 
detection circuit which is composed of a set of 
independent stages connected in a chain. At the 
beginning there is a pre-filtering stage, the pre-
amplification stage which is followed by the offset 
rejection circuit and by an amplification and filtering 
circuit.  
This kind of solution is simple and effective when 
the wide power supply range provides a high 
dynamic reserve (avoiding clipping problems) and 
when the mechanical specifications allow the use of 
high capacity capacitor or the specific application 
doesn’t require very low frequency high pass filter. 
It is worth to underline that the maximum tolerable 
offset is given by the following equation: 
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Where Vsup are the value of the supply rails and 
Gpreamp is the gain of the preamplification stage. 
It is worth noting that in case of a change in the 
input signal that causes the amplifier saturation, the 
output of the system will remain latched for a time 
which depends on the signal amplitude; it is possible 
to overcome this limitation by increasing the system 
complexity and inserting a baseline reset circuit 

which is activated by the saturation of the system 
itself. 

2.2 General Description 

The proposed system is composed of a differential 
pre-amplification stage P(s): usually realized using 
an Instrumentation Amplifier (INA). The F(s) block 
is a unity gain inverting filter (low-pass or low-pass 
plus notch filter) of any order. A(s) is an 
amplification stage, while I(s) is an offset 
compensation network. In the proposed version it is 
a non-linear circuit which acts as an attenuated 
inverting integrator when the Vin is inside the linear 
region and as an amplified inverting integrator when 
the signal is over threshold whose behaviour can be 
expressed as follow: 
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where Th is threshold value which identifies a 
saturated state, ‘a’ is an attenuation factor and ‘k’ 
the amplification factor.  

The small signal transfer function and the GLoop 
of the system are represented by the following 
equation: 
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Figure 1: The amplification chain proposed by the OpenEEG project. 
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Figure 2: Block structure of the system. 

considering that I(s) and F(s) are inverting the 
equation can be expressed as follows: 
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The transfer function is a band-pass amplifier with a 
single pole high-pass and a low-pass whose shape 
depends on F(s). Figure 3 shows the bode diagram 
of a system with the following characteristics: 
 

• F(s): 2nd order low pass at 75Hz; 
• A(s): amplifier gain 100 V/V; 
• P(s): pre-amplifier gain 5V/V; 
• I(s): integrator 1/100 * 1/s. 

 
Figure 3: Frequency response of a sistem with 500V/V 
gain and a 2nd order low pass 75Hz filter. 

2.3 Offset Compensation Issues 

On the basis of the final output, the offset 
compensation value is fed both directly to the 
preamplifier P(s) reference pin, and by modifying 
polarization of the amplifier A(s). The proposed 

structure introduces a systemic offset compensation 
method which ensures that, thanks to the double 
feedback path, even when the pre-amplification 
output is close to the power supply rail, the 
following stages work inside the linear region this 
property doubles the maximum tolerable offset: 
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Thanks to this improvement it is possible to increase 
the gain of the pre-amplification stage taking major 
advantages of the qualities of the INA in terms of 
CMRR a noise figure.  

As proposed in our previous work, the AC-
coupling of the amplifier using a feedback integrator 
allows the tuning of the high-pass pole frequency 
just by varying the open loop gain of the system 
(Maggi, 2004). When setting the parameters for 
biosignals acquisition, it is useful to insert an 
attenuation factor in the I(s) block in order to 
compensate the amplifier gain: keeping the Gloop 
below the unity gain the high pass pole is moved to 
the lower frequencies. 

The I(s) automatically identifies a saturation of 
the amplifier using a threshold method: if the value 
is outside a predefined interval, the attenuated 
integrator is switched into an amplified integrator 
that quickly brings the system output inside the 
linear interval.  

The k value defines the delay of the offset 
recovery of the system: for example we can have a 
0.05Hz high pass pole during the linear phase and 
switch it to a 100Hz one during the offset recovery 
phase, achieving a baseline recovery in about 10ms. 

2.4 Stability of the Loop 

During the normal operation the Gloop is usually kept 
low using the attenuation net of I(s) in order to 
achieve the desired high-pass frequency; when the 
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saturation occurs the I(s) is switched to a high gain 
configuration: in this section the stability of this 
configuration will be discussed both by considering 
the Bode Stability Criterion and the root-locus 
method.  

2.4.1 Bode Stability Criterion 

Provided that A(s) have a sufficient bandwidth to be 
considered like an ideal amplifier and that F(s) and 
I(s) are stable, the poles in F(s) and I(s) are the 
possible instability causes of the system. 
Considering the open-loop transfer function, the I(s) 
provides a single pole at low frequencies, while the 
F(s) put a variable number of poles at the higher 
bandwidth limit. Thanks to the second feedback path 
the poles of F(s) are compensated by the same 
number of zeroes. The figure 4 shows the Bode 
diagram of the original F(s) and the compensated 
one.  
The newly created zeros must be very close to the 
F(s) poles in order to allow a difference between the 
DC gain and the high frequency one of just 6dB. The 
nearness of poles and zeroes makes the phase plot 
very flat: for any complexity of the filter the plot is 
between +90 and +270 degrees. 
 

 
Figure 4: Bode plot of the compensate filter against the 
original one. 

Figure 5 shows the phase diagram of the resulting 
Gloop, including the pole introduced by the 
integration process, it is possible to notice that it 
never cross the instability region. 
 

 
Figure 5: Phase diagram of the resulting Gloop. 

2.4.2 Root Locus Study 

The root locus (figure 6 and 7) show that the all the 
resulting closed loop poles are in the left semi-plane 
even with a 9th order low pass filter. For the higher 
open loop gains the phase margin can be less than 45 
degrees, but during the nonlinear phase the 
overshoot can make the settling faster.  

 
Figure 6: Root locus of a 4th order system. 

 
Figure 7: Root a 9th order filter system.  
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3 RESULTS 

The configuration has been adopted both in a 
commercial wearable polygraph, in order to acquire 
the ECG signal and on a EEG acquisition prototype 
devoted to Brain Computer Interface applications. 
Figure 8 shows the proposed implementation for the 
EEG acquisition device. The system is 3,3V single 
supply powered using a li-ion battery and a low-
dropout linear voltage regulator. The 
preamplification stage has a gain of 100V/V and 
P(s) is realized using a INA118 (Texas Instruments). 
The other four operational amplifiers are contained 
in a single integrated circuit (TLC2254, Texas 
Instruments).  

The F(s) is an inverting double pole low pass 
filter, and A(s) is an amplification chain. The I(s) is 
composed by and attenuation network (R30 and 
R31), an inverting integrator (IC2B, C1 and R12) 
and the nonlinear activation network (K2, H2, R22, 
R23, R25, R27, R26). 

The R27 and R26 network are used in order to 
set the intervention threshold of the offset recovery 
circuit: when the Vbe of K2 and H2 are kept below 
0,7 Volt the transistor are turned off. The Th 
parameter is defined also follows: 
 

27
26277,0

R
RRVTh +

⋅=  (6) 

 
 K2 is switched on when the amplifier output voltage 
reaches the upper saturation limit, while H2 is 
switched on in case of lower saturation. When one 
of the transistor is turned on, it injects a current into 

the inverting integrator causing the fast offset 
recovery. R22, R23, R25 are necessary in order to 
limit the transistor current and avoid instabilities 
related to 2nd order effects of the components. The 
final amplification stage is optional an provides a 
last anti aliasing filtering. 
The system circuit has been successfully used in a 
brain computer interface application (Piccini, 2005 
and Maggi, 2006) and has an offset recovery time of 
less than 10ms. 

4 DISCUSSION 

The proposed architecture is a smart and cost 
effective solution to the problems related to the 
acquisition of biosignal in difficult acquisition 
situations based on an analog design; thanks to the 
evolution of modern digital devices, it is possible to 
adopt other method in order to achieve similar 
results. 
The strength of the proposed topology is that a 
simple local solution doesn’t require a full systemic 
redesign and support development of modular 
multiparametric wearable devices. 
The discussion doesn’t take into account second 
order effects related the components physical 
limitations: even if the architecture is robust and the 
frequency range of biosignals is reduced, the design 
of an amplifier based on the proposed topology 
should be approached with care.  
 
 
 

Figure 8: Schematic of the EEG amplification circuit.  
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5 CONCLUSIONS 

The analysis proposed in this paper shows an 
interesting approach for providing a cost effective 
solution for AC coupled, low power amplifiers. 
Although born in a biomedical research laboratory, 
it faces problems related to a wide range of different 
applications. Also for this reason, this generic 
topology has been patented in Italy, and successfully 
revised by the European Patent Office for the PCT 
extension. 
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Abstract: Biomedical signal processing is an important but underestimated area of medical informatics. In order to 
overcome this limitation, the open source software library BioSig has been established. The tools can be 
used to compare the recordings of different equipment providers, it provides validated methods for artifact 
processing and supports over 40 different data formats (more than any other software in this area). BioSig 
provides reference implementations for biomedical signal processing questions and holds the top rank 
among all biomedical signal processing projects registered at SourceForge. Thus is provides standardization 
and quality control for the field of biomedical signal processing.

1 INTRODUCTION 

Biomedical signal processing is an important area of 
medical informatics and is used in many subject area 
(neurology, psychiatry, cardiology, pulmology, 
cognitive neuroscience, psychology, biophysics, 
biomedical engineer etc) with many different 
applications. Unlike other areas of medical 
informatics (Imaging, labor diagnostics, patient 
information system etc.), biomedical signals are not 
well represented in health information systems.  

A likely explanation is the fact that many 
different disciplines and many small groups do 
biomedical signal processing. The interaction 
between the various groups is not well organized; 

often the same well-known methods are 
implemented again and again, the wheel is re-
invented again and again. In order to overcome this 
problem, the open source software project BioSig 
was founded with the aim to provide a software 
library for biomedical signal processing. Motivated 
by the successful development model of the Linux 
operating system, it was decided that the library 
should be also open source, everyone is invited to 
use and to contribute to BioSig, and the GNU 
General Purpose License (GPL) ensures that BioSig 
will stay open source.  

Section 2, presents several subprojects that have 
been developed within BioSig. Section 3 provides 
some numbers about the success of BioSig, Sections 
4 and 5 discuss open issues summarize the project. 
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2 METHOD 

Software development and programming is an 
important aspect of biomedical signal processing. In 
order to address different needs, several 
programming languages are supported. The Matlab 
scripting language is widely used in biomedical 
signal processing and engineering. For this reason, 
the first part of BioSig has been implemented in 
Matlab language. Matlab is an proprietary software 
product from “The Mathworks Inc”, short TMW, but 
there are also some open source alternatives 
available; Octave (http://www.octave.org) is 
probably the most widely known alternative. Special 
effort was undertaken to make the code also 
compatible to Octave. This part is now call “BioSig 
for Octave and Matlab”, or short “BioSig4OctMat”. 

Moreover, C/C++ is a very flexible 
programming language and provides a very efficient 
(i.e. fast) software; although the software 
development takes more time. There is now a 
common C/C++ interface to access various data 
formats including the SCP-ECG standard (EN1064), 
the HL7aECG, GDF (Schlögl et al. 1999b, Schlögl, 
2006b) and several other data formats.  

Furthermore, projects for the languages Python 
(BioSig4Python) and Java (BioSig4Java) have been 
started.  

2.1 Converter between SCP-ECG and 
HL7 aECG 

SCP-ECG (Standard Communications Protocol for 
Computer-Assisted Electrocardiography) is a 
European standard (EN1064:2005) for interpretive 
resting ECG. This ECG Standard is the result of an 
EU supported project that European, American and 
Japanese Manufacturers and Users have jointly 
worked and agreed on (1989-1990). In 1993 it 
became a European ENV, later was positively 
balloted within AAMI (AAMI EC71), and finally 
became a European EN at the beginning of 2005. 

In 2002 the FDA launched the need of having 
the full disclosure digital waveforms submitted for 
the support of clinical trials with a flexible XML 
schema and a rich set of annotations. The main  

American manufacturers thus defined the so-
called FDA XML Data Format Design Specification 
that was an FDA XML-based specification covering 
the design for the waveform data format as well as 
the relevant submission information. This 
specification of rising popularity, known also as 

Annotated ECG in XML, also became a part of HL7 
V.3 currently balloted (HL7 aECG). 

OpenECG is a world-wide network supporting 
interoperability in electrocardiography through the 
consistent implementation of standards. In 2007 it 
has about 850 members from more than 60 
countries. The development of open source 
converters among ECG formats is supported and 
encouraged by OpenECG. 

At the beginning of 2006 a international working 
group formed by people with different expertise was 
created by the OpenECG network, with the support 
of IEEE 1073 and CEN and the coordination of TU 
Graz and Biosig, for the development of an open 
source two way converter in C++ between the SCP-
ECG and the HL7 aECG standards. In the 
conversion, GDF, the BioSig format was used as an 
intermediate form. ECG data sets available in the 
OpenECG portal (http://www.openecg.net) were 
used to test the converter in different environments 
included Linux and Cygwin.  

Once the first version was available, there were 
some issues that remained open and most of them 
were related to an incomplete mapping between the 
two standards. This information was an important 
retrofit for the relevant Standard Developing 
Organizations and some actions in order to solve 
these open issues have already been done. In fact, a 
harmonization of the ECG lead standard 
terminology between the two standards has already 
been done leading to the creation of the SCP-ECG 
amendment (EN1064:2005+A1:2007) and a similar 
revision for the HL7 aECG standard. 

The converter has been released as open source 
and is currently available in the Biosig Sourceforge 
site (http://biosig.sf.net/). Figure 1 shows SCP data 
that has been converted into the GDF v1 data format 
(Schlögl et al. 2007b).  

2.2 BioSig for BCI Research 

Brain computer interfacing is one topic closely 
related to EEG processing that needs of techniques 
capable to work under on-line conditions. Besides, 
efficient methods for artifact rejection and/or 
correction, online feature extraction techniques, 
classifiers, single trial analysis and performance 
measurements are important issues in this field. 

A Brain Computer Interface (BCI) consists in 
general of 4 modules: EEG pre-processing, feature 
extraction, classification and feedback. Biosig 
provides useful tools for on-line artefact processing;
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Figure 1: Screenshot of SigViewer showing 10s of 8-channel ECG data. The smaller “window” shows the editable event 
table. The data set was converted from the SCP (EN1064) to the GDF v1 (Schögl et al. 1999b) data format using 
BioSig4C++. 

several on-line feature extractors are also available, 
such as adaptive autoregressive parameters or band 
power estimates. It also provides many classifiers 
(including but not limited to LDA, QDA/MDA, 
SVM, NBC, etc) and several single trial analysis 
methods to test the performance of systems/subjects. 
It can be used to provide initial conditions to all 
these modules before starting a BCI on-line session 
(see also for the section “rtsBCI below), in which 
the system is in general tuned for the subject. Also, 
it is especially useful for the analysis of 
experimental BCI data. BioSig was the reference 
tool for the development of on-line adaptive 
classifiers (which were tested in BCI experiments) 
(Vidaurre et al. 2006). 

2.3 Artifact Processing and Quality 
Control  

Biomedical signal recordings are often contaminated 
by various artifacts. BioSig provides several tools to 
address this issue. This include tools for (i) quality 
control and determining the saturation values of the 

recording systems are provided (Schlögl et al 
1999a), (ii) a fully automated reduction methods of 
EOG artifacts in EEG recording (Schlögl et al 
2007a), and (iii) inverse filtering for detecting 
muscle artifacts (Schlögl et al 2000).  

2.4 Coupling Analyzing  

In order to investigate the interaction and coupling 
between brain areas, various coupling measures like 
coherency, phase, partial coherence, partial directed 
coherence (PDC), directed transfer function (DTF) 
etc. can be used. As shown in Schlögl and Supp 
(2006), all these coupling measures can be derived 
from a multivariate autoregressive (MVAR) model. 
The MVAR estimator  (Schlögl, 2006a) can be also 
applied to data with missing values, thus the various 
coupling measures can be obtained from data with 
missing values, too. BioSig supports also a non-
parametric statistical analysis using a jackknife 
procedure (Efron, 1981) for estimating the 
confidence intervals of all the coupling measures. 
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2.5 QRS Detection and HRV Analysis  

An important area of biomedical signal processing is 
analysing the electrocardiogram (ECG). BioSig 
contains several algorithms for QRS detection 
(Nygard et al, 1983, Afonso et al 1999), detecting 
extrasystoles and other irregular detections (Mateo 
and Lugano, 2003) and analyzing the heart rate 
variability (Taskforce, 1996). Furthermore, the 
efficient algorithm of Berger et al. (1986) for an 
equidistant sampling of the heart rate is 
implemented.  

2.6 rtsBCI 

The Graz-BCI open source software package rtsBCI 
provides a framework for the development and rapid 
prototyping of real-time BCI systems. The software 
is based on Matlab/Simulink (The Mathworks, Inc, 
Natick, MA, USA) running on Microsoft Windows 
(Microsoft Corporation, Redmond, WA, USA) and 
licensed under the GNU GPL. For hard real-time 
computing and the generation of stand-alone C code 
the Real-Time Windows Target (RTWT) and the 
Real-Time Workshop (RTW), respectively, are 
required. Both toolboxes are extensions of Simulink. 
Furthermore, BioSig for Octave and Matlab is 
needed for data format handling, and TCP/UDP/IP 
toolbox for network communication support. 
Additionally to these software requirements, a data 
acquisition device is indispensable. 

After installation, all rtsBCI modules are listed 
in the Simulink Library Browser and can be used to 
design (model) the BCI system. Several Matlab 
functions and Simulink blocks for (i) data 
acquisition and conversion, (ii) storage, (iii) digital 
signal processing (e. g. band power feature 
estimation, Split-Radix discrete Fourier transform, 
adaptive autoregressive parameters (AAR) estimated 
with Kalman filtering, linear discriminant analysis, 
etc.), (iv) visualization (e. g. signal scope, 
presentation of cue information or feedback of a 
moving bar), (v) paradigm control (cue-based and 
self-paced operation mode) and (vi) network support 
(e. g. remote monitoring) are available.  

Tunable parameters as well as other information 
relevant for the experiment (e.g. subject information, 
amplifier settings, electrode setup, paradigm timing) 
are stored in an individual configuration file (.INI 
file). Before a model is executed, the configuration 
is transferred to the model and stored altogether with 
the biosignals for further analysis. The division of 
model and parameters makes it very easy to deal 
with changes: For example, a new classifier requires 

only the replacement of the classification block. A 
new subject requires only the modification of the 
related data in the configuration file.  

Modular architecture and rapid prototyping 
allow a fast extension and incorporation of new 
software as well as hardware components. This 
flexibility is a big advantage as is the fact that 
Matlab is very popular. The period of vocational 
adjustment is reduced, as well as the costs, because 
only a reduced number of toolboxes are required.  

2.7 SigViewer 

SigViewer is a powerful stand-alone viewing and 
scoring program for biosignals, originally designed 
to process electroencephalogram (EEG) signals. 
SigViewer has among its features the ability to load 
multi-channel signals such as EEG, ECG, EMG, and 
EOG recordings, and display these in various scales. 
At the moment, only GDF v1 (Schlögl et al. 1999b) 
is supported, but as a workaround, users can convert 
other data formats to GDF using the function 
“save2gdf” (available in BioSig4OctMat and 
BioSig4C++). Figure 1 shows a screenshot of 
SigViewer displaying ECG data.  

The other major capability besides the viewing 
functions is the scoring of biosignals, which permits 
the user to make various annotations to the signals 
(e.g. mark segments as artifactious, mark specific 
events, like QRS-complexes, etc) and save this 
information into a file. 

It is also possible to view basic information 
about a specific file (e.g. number of channels, 
sampling frequency, number of events, time of 
recording, and so on). In addition to graphically 
scoring the data, the event table is available as a list-
based widget for viewing and deleting events and 
annotations (Figure 1).  

SigViewer is written in C++ using the open-
source platform-independent graphical user interface 
(GUI) toolkit Qt 4 (Trolltech®). SigViewer runs 
under many different operating systems such as 
Linux, Windows and Mac OS X – in other words, it 
is designed to be platform-independent (or more 
accurately cross platform). Moreover, it does not 
depend on any proprietary software, making it a 
truly free program. The source code does not have to 
be changed when compiling binaries for specific 
platforms, it is enough to take one and the same 
source tree and compile it on the target platform. 
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2.8 Analysis of Cardiac Near-Field 
(CNF) Signals 

An ongoing research project is the investigation of 
the cardiac near-field (CNF) signal. The 
spatiotemporal electrical activation at the surface of 
heart tissue is assumed to propagate with a smooth 
elliptical wave front. Micro-obstacles like embedded 
connective tissue may affect the smoothness of the 
wave front which results in complex activation 
sequences at microscopic size scale. The 
investigation of these mechanisms by analysis of the 
local activation in microscopic dimensions is 
expected to gain deeper insight into structure-related 
arrhythmias. For this purpose electrophysiological 
in-vitro experiments have been carried out using 
autorhythmic or electrically stimulated heart tissue 
preparations from Rabbits or Guinea Pigs. 

The gradient of electric potential at the cardiac 
surface, the Cardiac Near-Field (CNF), can be 
computed from four extra-cellular potentials Φ1..Φ4 
recorded with ultra-densely placed electrodes 
(electrode spacing 50µm). Such a sensor with an 
appropriate data acquisition system (sampling rates 
of 100 kHz per channel) has been developed 
recently (Hofer et al. 2006). It has been shown that 
the multivariate signal Φ= [Φ1, Φ2, Φ3, Φ4]T can be 
used to determine local parameters of the 
propagating electrical activation, namely velocity 
and direction (Plank et al. 2000). Currently, research 
is aimed on developing robust procedures for the 
calculation of these parameters and the evaluation of 
their accuracy (Wiener et al. 2007). In practice, the 
two major problems are: First, the acquired signals 
are affected by inherent electrode noise and by 
stimulus artifacts. Second, in case of structural 
discontinuities in the underlying tissue, Φ may be a 
composition of multiple local and distal electrical 
activation sequences. Therefore, the formation of the 
CNF in case of normal and complex activation 
sequences in the tissue has been extensively 
investigated in computer simulations (Plank et al. 
2003). 

The BioSig toolbox for Matlab is being used for 
off-line analysis of waveforms of Φ obtained from 
experiments and computer simulations because it 
provides comprehensive procedures for time-
frequency analysis of the multivariate stochastic 
process Φ. Moreover the implemented tools can deal 
with missing values due to the removal of stimulus 
artifacts. Developed signal processing procedures 
are being validated by applying them to noise-free 
waveforms Φ obtained from computer simulations. 

 

2.9 Miscellaneous 

Many smaller algorithms are also included. 
Examples are the so-called “Paynter filter” (Bruce et 
al. 1977, Platt et al. 1998) to estimate the envelope 
of EMG power. There are also many EEG 
parameters like Hjorth parameters (Hjorth, 1975), 
Barlow parameters (Goncharova and Barlow, 1990), 
a global linear descriptor (Wackerman, 1999) and 
the brainrate parameter (Pop-Jordanova and Pop-
Jordanov, 2005) supported. Furthermore, methods 
for multiple statistical tests for avoiding the problem 
of alpha inflation are supported (Hemmelmann et al. 
2005), and many different plotting functions for 
EEG analysis, like the visualization of Coherence 
according to Nolte et al. (2004).   

3 RESULTS  

BioSig addresses all aspects of biomedical signal 
processing, starting with the support for over 40 
different data formats, quality control and artifact 
processing, methods for signal processing and 
feature extraction classification of single trial EEG, 
and statistical tests including the multiple 
comparison problem. Currently, the main application 
areas are research on EEG-based Brain-Computer 
Interfaces, coupling analysis of EEG/ECoG/MEG, 
processing of EEG artifacts, conversion of different 
data formats.  

BioSig provides reference implementations of 
many biomedical signal processing algorithms and 
for many application areas including, EEG, ECoG, 
MEG, ECG and HRV analysis, Brain Computer 
Interface research, analysing brain connectivity. The 
software algorithms can be copied, used, modified 
and distributed  under the terms of the GNU GPL 
(http://www.gnu.org/copyleft/gpl.html). The open 
source software library for biomedical signal 
processing BioSig is available from 
http://biosig.sf.net.  

An open source converter between ECG 
standardized ECG data formats SCP-ECG (EN1064) 
and HL7aECG and several other data formats is 
available. Future plans include the development of a 
common data format for all biomedical signals.  
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Table 1: Ranking of the Biosig project at SoureForge 
among various application areas. The 2nd column shows 
the ranking of BioSig and the total the number of projects 
for each application area.  

Topic Ranking 2007-10-22 
/ number of projects

SourceForge 456 /  160 049

Biosignals (keyword 
search: “EEG, ECG”) 

1 / 27

Medical Science 
applications 

8 / 543

Human Machine 
Interfaces 

 2 / 612

Dataformats 20 / 2139
 
The BioSig software library is widely adopted. 

Currently, the download rate is far beyond 600 per 
month and increasing. As of Oct 2007, BioSig is the 
highest ranked project for biomedical signal 
processing (search term “EEG ECG”) at 
SourceForge http://sourceforge.net, a platform that 
hosts over 160 000 open source projects. Within the 
last two years (Sep 2005 – Sep 2007), the monthly 
ranking fluctuated between 2906 (Jan 2007) and 380 
(Aug 2007), the overall rank is within the top 2% of 
all hosted projects. Besides SourceForge, parts of 
BioSig have been incorporated in other projects (e.g. 
EEGLab http://www.sccn.ucsd.edu/eeglab/), which 
is not considered in the above statistics.  

4 DISCUSSION 

Although BioSig is routinely used in several 
application areas like BCI research, data conversion, 
coupling analysis, etc. there are several topics which 
are not or only suboptimally supported. Examples 
for the current limitations are the following. 

(i) Two components (rtsBCI and SViewer) 
require proprietary software (Simulink and Matlab). 
It would be desirable to have a fully open source 
solution without this requirement. SViewer is going 
to be replaced by SigViewer, but it is still useful 
because SViewer supports more data formats. 
Nevertheless, many users do have Matlab anyway, 
therefore it is reasonable to distribute these tools. 

(ii) The situation on the viewing and scoring 
software is not perfect. The SViewer requires the 
proprietary Matlab software and is relatively slow, 
SigViewer supports only very few data formats.  

(iii) The conversion between different data 
formats is not always perfect, and can lose some 
information (demographic data, annotations, see also 
Schlögl et al. 2007b). For this reason, it is important 
to unify the various data formats for biomedical 
signal processing.  

(iv) Support for many specialized application 
areas (like advanced ECG analysis, ...) depend on 
the contribution and evaluation of expert users. In 
order to maintain the growth of BioSig with the aim 
to become “the” software library for biomedical 
signal processing, participation of users and experts 
of the various areas of biomedical signal processing 
is crucial. We think of advanced ECG analysis (P- 
and T-wave detection, classification of arrhythmias), 
the source localization problem in EEG analysis, or 
analyzing the activity of spiking neurons.  

5 CONCLUSIONS 

The BioSig project contains many software tools for 
biomedical signal processing. Because BioSig 
provides an open source software library, there is no 
need to “re-invent the wheel”, but the existing 
software algorithms can be used and improved. 
These algorithms provide reference 
implementations, and can be validated and improved 
by everyone. This is an efficient mechanism for 
standardization and quality control of software for 
biomedical signal processing.  

The aim of BioSig providing a software library 
for biomedical signal processing has been already 
reached, BioSig is also the #1 project for biomedical 
signal processing on Sourceforge. The open question 
is not whether but how BioSig can help integrating 
biosignal analysis into the health information 
system. 
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Abstract: The lifting scheme wavelet Transform allows efficiency implementation improvement over filter banks 
model. In this paper, we present simulation results and DSP implementation results of Lifting scheme 
algorithm for 1D and 2D discrete wavelet transform (2D-DWT). The lossless and lossy wavelet filters 5/3 
and 9/7, respectively, have been used to transform images. The transforms have been implemented in a 
float-point DSP chip and performances are evaluated. The DSP code was optimized at source code level and 
memory usage. The implemented code is optimized in different ways especially within memory usage. 

1 INTRODUCTION 

Since their introduction by Wim Sweldens in 1994 
(Sweldens, 1996), the discrete lifting scheme (LS) 
wavelet transform has gained widely acceptance due 
to their ability to construct biorthogonal wavelets in 
the spatial domain independently of the Fourier 
transform (Daubechies et al., 1998; Chendonga et al., 
2007;  Delouille et al., 2006). The lifting scheme 
was adopted as the base of the JPEG 2000 standard 
(Rabbani et al., 2002). The image compression in 
the JPEG2000 standard is performed either by the 
9/7 real values wavelet or by the 5/3 integer values 
wavelet.  

The DWT has been implemented conventionally 
using the filter bank scheme (FBS). This solution 
implements filters with convolution technique. It 
requires both a large number of clock cycles and a 
large amount of storage memory. However, the 
lifting scheme requires less computations and less 
storage memory space. Recent studies tempted to 
compare between LS and FBS. In this context, 
Gnavi (Gnavi et al., 2002) implemented both DWT 
methods and compared their performances for image 
coding task. He has found that the LS 
implementation run faster than the filter bank 
scheme. Special-purpose hardware is used to reduce 
the execution time of the DWT, Programmable 
processors, however, are preferable because they are 
more flexible. Furthermore, multimedia SIMD 

extensions (Shahbahrami et al., 2005) can be used to 
reduce the execution time of the DWT. 

In this paper, we present simulation results of 
Lifting scheme algorithm using Matlab tool, and 
implementation results using a TMS320C6713 DSP 
processor. The code is optimized in order to reduce 
the execution time while performing the 
reconstruction quality. The lossless 5/3 and the lossy 
9/7 lifting scheme transform were considered. The 
paper presents our contribution on the 2D-DWT-LS 
implementation into DSP processor. The paper is 
organized as follows: In section 2, a background of 
the lifting scheme is briefly explained, while an 
overview of our experimental results is given in 
section 3. Conclusions and future work are drawn in 
the end. 

2 LIFTING SCHEME 
ALGORITHM 

Lifting scheme decomposition consists on splitting 
the original signal into two subsets defined by the 
even and odd index signal samples, and then 
gradually a new wavelet coefficients set is built 
(Sweldens et al., 1996) (figure 1). The 
decomposition is held in three steps: 
 

• Split: This step is called “Lazy wavelet 
Transform (LWT)”. It consists on decomposing the 
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original image S into two sub-images. The two sub-
images are defined by the even (Sei=S2i) and the odd 
(Soi=S2i+1) pixel image coefficients. The LWT is a 
simple function switching coefficients 
corresponding to their order (odd or even). 

 

 Primal Lifting step: the original signal has 
even and odd index samples interspersed. If the 
signal has a local correlation structure, the even and 
odd samples will be highly correlated. In other 
words given one of the two sets, it should be 
possible to predict the other set with reasonable 
accuracy. The even set is always used to predict theo 
dd one which represents the wavelet coefficients 
(Daubechies et al., 1998). iH  are the wavelet 
coefficients. iSo  are the odd samples. P  is the 
prediction polynom and iSe  are even samples (eq. 1)  

( )i i iH So P Se= −   (1)
 

 Dual Lifting step: The update operator U  is 
applied to the wavelet coefficients computed iH  
and then are addition with iSe  to compute iL (eq. 
2). iL  are the scaling coefficients. 

( )i i iL Se U H= +  (2) 

3 EXPERIMENTATIONS AND 
RESULTS 

In this section, we describe first the implementation 
of the DWT using lifting scheme into a DSP 
processor. 
 

 

Figure 1: Basic structure of one dimensional Discrete 
Wavelet transform (1D-DWT) using lifting scheme (Ben 
Hnia Gazzah et al., 2007).  

3.1 Implementation 

The 5/3 filter allows achieving lossless image 
compression and has short filter taps composed of 
3/2 coefficients respectively to the 5 and 3 filter taps. 
The 9/7 filter is composed of 5/4 taps respectively. 
Figure2 shows the lifting scheme steps of the 5/3 
wavelet filter. The Input samples 2 1kx +  and 2kx  
denote the odd and even samples, respectively, 
resulting from the split step provided by the Lazy 
Wavelet Transform (LWT). The prediction and 
updating steps are given by 2 1kx +′  and 2kx ′ . 
Coefficients 2 1kx +′  and 2kx ′  are the output 
coefficients obtained by the prediction task and the 
updating task respectively. 
 

'
2 1 2 1 2 2 2

1 ( )
2k k k kx x x x+ + += − +  (3)

  
' ' '
2 2 2 1 2 1

1 ( )
4k k k kx x x x− += + +

 
(4)

 

 

 
Figure 2: The lifting scheme set for 5/3 filter (Ben Hnia Gazzah et al., 2007). 

Low-pass output 

High-pass output 

Input sample 

Prediction 

 

Update 
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The 9/7 decomposition is computed within four 
steps (Daubechies et al., 1998) as shown by 
equation 5-8:  

'
2 1 2 1 2 2 2*( )k k k kx x a x x+ + += + +  (5)

' ' '
2 2 2 1 2 1*( )k k k kx x b x x− += + +  (6)

2 1 2 1 2 2 2*( )k k k kx x c x x+ + +′′ ′ ′ ′= + +  (7)

2 2 2 1 2 1*( )k k k kx x d x x− +′′ ′ ′′ ′′= + +  (8)

The lifting coefficients (Jiang et al., 2005) are: a=-
1.5861, b=-0.0529, c=0.8829 and d=0.4435. The 
high-pass coefficients 2 1kx +′′ , are normalized by a 
weight Kh=1.2302, and the low pass coefficients 

2kx ′′  are normalized by Kl=1/ Kh. 
The implementation is held with the Texas 

Instrument TMS320C6713 floating-point processor. 
The TMS320C6713 processor is a fast special-
purpose microprocessor with adequate architecture 
(figure 3) for signal processing (Texas Instrument, 
2002).  

 
Figure 3: Functional bloc of TMS320C6713 and CPU 
diagram (Texas Instrument, 2002). 

The TMS320C6713 is based on the VLIW 
architecture and its performance is rated at 1800 
MIPS. The internal program memory is structured so 

that a total of eight instructions can be fetched every 
cycle. With a clock rate of 255 MHz the processor is 
capable of fetching eight 32-bit instructions every 
4.44ns (Texas Instrument, 2001). 
It is used only one storage memory block, in the 
algorithm description. In both prediction and update 
stages a new computed coefficient replaces the 
original input value without need to additional 
emplacements (in place calculus). The inverse 
transform is easily performed by inversing the steps 
of LS and the operations signs. 

3.2 Experimental Results 

The implementation performances are evaluated in 
term of execution time and cycle’s number per 
computed pixel. Performance was measured using 
the cycle counters (Texas Instrument, 2002). Cycle 
counters provide a very precise tool for measuring 
the time that elapses between two different points in 
the execution of a program. Obviously the execution 
time depends on the image size (table1), the type of 
used memory (internal or external memory) and the 
number of steps of lifting scheme. The running time 
when using processor internal memory is shorter 
than that when using external memory. In our case, 
due to the limited size of the internal memory (256 
KB), we are conducted to use the external memory 
(16 MB SDRAM) as a “buffer memory”. 

Table1 shows the execution time ratio of external 
memory to internal memory. The mean value ratio 
for 5/3 filter is about “21”, however, the mean value 
is about “39” for the 9/7 filter. The mean value for 
9/7 filter is two times higher then that for the 5/3 
filter: this is due to the number of lifting scheme 
steps. The transforms with less lifting steps 5/3 tend 
to perform better than transforms with more lifting 
steps 9/7 in term of speed. In addition, we have 
implemented the 5/3 lifting scheme using only 
addition, subtraction, and shifting operations without 
multiplications. 

The code optimization by using internal memory 
reduces the execution time. Obviously the internal 
memory access time is lower than that of external 
memory.  

 
Figure 4 shows the running time using internal 

memory and figure 5 shows the running time using 
external memory.  
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Table 1: Cycle’s number per pixel. 

Samples number 64 256 512 1024 2048 4096 

Memory  type* ext int Ratio ext int Ratio ext int Ratio ext int Ratio ext int Ratio ext in Ratio 

5/3 filter 135 6 22.5 145 7 20.71 145 7 20.75 135 6 22.5 135 7 19.28 110 6 18.33 

9/7 filter 274 7 39.14 273 7 39 274 7 39.14 275 7 39.28 275 7 39.28 275 7 39.29 
*int = execution time of internal memory in cycles/pixel, ext = execution time of external memory in cycles/pixel 
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Figure 4: Running time using internal memory. 
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Figure 5: Running time using external memory (SDRAM). 

Two sets of experiments of 1D- Discrete 
Wavelet lifting implementation were performed: in 
the first set, we used on-chip memory and external 
memory. In the second set, we used only external 
memory . Two programs have been implemented. 
They differ in the processing part. In the first 
program, the processing took place in the internal 
memory (on-chip memory), however in the second 
program, the processing part of the C-program is 
held in the external memory.     

Execution time results (cycles/pixel) for both 
methods of the 1D- Discrete Wavelet lifting are 
shown in Table 2. The comparison of the execution 
time between both methods shows that the one using 
internal memory is about three times faster than the 
other using external memory SDRAM 16MB for the 
filtering operation.  

We optimize the execution time of the lifting 
scheme by using internal memory for processing in 
three steps: 

First, the image is divided into several blocks 
before storage into the SDRAM memory. Secondly, 
the blocs are transferred in the L2 cache internal 
memory. The filtering operation is performed by the 
lifting scheme algorithm. Finally the transformed 
image is transferred to the external memory 
(SDRAM) for result storage. 

Similarly, the next blocks of image are transferred 
one after another into L2 cache where they are 
processed. The number of blocks depends on the 
image size. In the case of 256x256 image size, the 
size of each block is 64x256 pixels. Four successive 
blocks are to be used. 

Table 2: Execution time of the 1D- Discrete Wavelet 
lifting for image (Baboon 256x256) using 5/3 filter. 

Execution time 
(Cycles/pixel)  

Execution 
time A* 

Execution 
time B** 

Ratio of B 
to A 

image(256*256 
pixels)  

decomposition 
43 135 3.14 

image (256*256 
pixels)  

reconstruction 
43 134 3.16 

*A    :   execution time using internal memory for processing. 
**B : execution time using external memory for processing 
          (SDRAM). 
 

The reconstructed image was compared to the 
original image and the peak signal-to-noise ratio 
(PSNR) in decibels was computed for images to 
evaluate the performance of the wavelet lifting 
scheme transform program. In the case of an image 
whose intensity of the pixels lies between 0 and 255, 
the PSNR is given by the following formula:   
 

[ ]

2

10 2
1 1

25510.log ( )
1/( . ) . ( ( , ) ( , ))

M N

i j

PSNR dB
M N x i j x i j

= =

=
−∑ ∑ %
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where: M×N is image size computed in pixels   

           : (1<i<M) and (1<j<N) denote pixel indices. 
 

We have founded a higher PSNR for wavelet 
lifting scheme transforms. This verifies a perfect 
reconstruction property of Wavelet lifting scheme 
transform. Table3 shows the PSNR and SNR results 
obtained by DSP implementation and MATLAB 
simulation using 2D  wavelet lifting scheme 
transform for both 5, 3 and 9, 7 filters. 

The 2-D discrete wavelet transform (DWT) 
based on a lifting scheme, is carried out as a 
separable transform by cascading two 1-D 
transforms in the horizontal and vertical direction. 
Each level of wavelet decomposition provides four 
sub-bands of decomposition images: LL, LH, HL 
and HH with halved resolution in both horizontal 
and vertical directions. 

In our application we implemented the 2D-DWT 
on DSP using Lifting scheme until level three with 
different image sizes: Barbara (512x512), 
Cameraman (256x256), Lena (256x256), Baboon 
(512x512), goldhill (512x512), lena(512x512). 

  The same algorithm was simulated using 
Matlab language. We compared PSNR results of 2D 
lifting scheme at level three using different image 
sizes (table .3).  Experimental and simulation results 
have almost the same performance.    

 
The following figure represents three levels of the 

2D-DWT with Lifting implemented on DSP using 
Barbara image (512 x 512 pixels).  

 

 
Figure 6: 3-level 2D-DWT using lifting scheme with 
Barbara image 512x512 pixels. 

Table 3: PSNR results of 2D lifting scheme 
implementation and MATLAB simulation (level three). 

Wavelet CDF9/7 Wavelet LeGaull 5/3 

image 
Perfor- 

mance Simulation 
results 

Experiment
al 

results 

Experimental 
results 

Simulation
results 

PSNR (dB) 307.929 ∞ ∞ ∞ 
Barbara 
512*512

SNR 301.522 ∞ ∞ ∞ 

PSNR (dB) 307.016 ∞ ∞ ∞ 
Baboon 
512*512

SNR 301.550 ∞ ∞ ∞ 

PSNR (dB) 307.171 ∞ ∞ ∞ lena  

512*512 SNR 301.514 ∞ ∞ ∞ 

PSNR (dB) 307.452 ∞ ∞ ∞ 
lena  

256*256
SNR 301.647 ∞ ∞ ∞ 

PSNR (dB) 307.114 ∞ ∞ ∞ Camera-
man 

256*256 SNR 301.532 ∞ ∞ ∞ 

PSNR(dB) 307.979 ∞ ∞ ∞ Goldhill 

512*512 SNR 301.613 ∞ ∞ ∞ 

4 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we reported the implementation of 2D-
DWT using lifting scheme algorithm on the 
TMS320C6713 DSP, floating-point processor. We 
used 5/3 and 9/7 filters. We compared the 
implementation of the algorithm on DSP with the 
simulation using Matlab. 

   For both methods, we obtained high PSNR 
values of different images sizes confirming efficacy 
of the approach. The most important advantages of 
the lifting scheme (Ben Hnia Gazzah et al., 2007) 
for wavelet transform were verified which are: 
perfect reconstruction capability, in place 
computation. 

We optimized speed execution time of DSP 
implementation of lifting scheme algorithm in 
different ways especially within memory usage. 

Execution times of the two algorithms of 5/3 and 
9/7 filters on a DSP have been compared. The 
corresponding C-program for a 1-level 1D DWT  of 
5/3 filter is up to 3x faster than of the 9/7. Integer to-
integer transforms are often faster than real-to-real 
transforms, because the 5/3 wavelet filter requires 
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two lifting scheme steps, however the 9/7 wavelet 
filter requires four ones. 

The future work will be optimizing speed 
execution time of lifting scheme algorithm using 
DMA. 
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Abstract: Complex fractionated atrial electrograms (CFAEs) represent the electrophysiologic substrate for atrial 
fibrillation (AF). Progress in signal processing algorithms to identify CFAEs sites is crucial for the 
development of AF ablation strategies. Individual signal complexes in CFAEs reflect electrical activity of 
electrophysiologic substrate at given time. We developed and tested a novel algorithm based on wavelet 
transform.  This algorithm enables to find individual signal complexes in CFAEs automatically and based 
on that the CFAEs complexity can be described in a novel way. The method was tested using a 
representative set of 1.5s A-EGMs (n = 113) ranked by an expert into 4 categories: 1 - organized atrial 
activity; 2 - mild; 3 - intermediate; 4 - high degree of fractionation. Individual signal complexes were 
marked by an expert in every A-EGM in the dataset. This ranking was used as gold standard for comparison 
with the novel automatic search method. Achieved results indicate that use of appropriate level of wavelet 
signal decomposition could carry high level of predictive information about the state of electrophysiologic 
substrate for AF and is efficient to help to describe the level of complexity of CFAEs in a novel way.  

1 INTRODUCTION 

Atrial fibrillation (AF) is a cardiac arrhythmia 
characterized by very rapid and uncoordinated atrial 
activation with a completely irregular ventricular 
response (Fuster et. al., 2006). Radiofrequency 
ablation of atrial areas that triggers or sustains AF is 
a nonfarmacological treatment available recently 
(Calkins and Brugada, 2007). 

During AF, multiple wavefronts propagate 
continuously through the right and left atria, 
separated by anatomical and functional barriers 
(Houben and Allessie, 2006). This can be 
electrophysiologically manifested as hierarchical 
distribution of dominant frequency (Sanders and 
Berenfeld, 2005) or complex fractionated 
electrograms (CFAEs) (Nademanee and McKenzie, 
2004) during endocardial mapping. Local dominant 
frequency analysis of AF is burdened by many 
methodological problems of spectral analysis 
(Kadish and Goldberger, 2006). Therefore the 
software support for electroanatomical mapping 
system is focused on objective description and space 
representation of CFAEs distribution most recently. 

Algorithms for automatic classification (pattern 
recognition) are generally based on classification 
techniques or description of signal, using features 
extracted from recorded and preprocessed signals. 
Such algorithms, if they are implemented, could also 
suggest level of complexity or degree of 
fractionation of particular AEGM signals recorded 
during AF. 

Till now there is only a single known approach. 
However it is not published in full scope, but only in 
company brochure (user manual) (Ensite NavXTM, 
2006). This algorithm assesses level of fractionation 
of AEGM signal using calculation and signal 
processing in time domain and describes signal by 
only one feature which relates to degree of 
fractionation of the signal. 

We aim to describe AEGM signal in a new 
universal way, which helps us to extract features of 
the signal and to classify its complexity. There are 
signal complexes (figure 2) in every AEGM signal, 
which are related to electrical activation of 
electrophysiologic substrate during AF. These signal 
complexes (SCs) can be found automatically and 
then used for several features extraction (degrees of 
freedom of the signal), which could be used for 
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automatic evaluation of electrogram complexity (or 
level of fractionation) in next stages. 

Therefore in this paper we want to introduce a 
new method of AEGM signal processing which 
enables to localize above mentioned SCs 
automatically with adequate efficacy. We describe a 
novel method for AEGM processing (searching of 
SCs), based on the wavelet transform signal 
analysis, which is a well known technique in the 
signal processing domain. We also introduce the 
design of a wavelet filter of AEGM signal which is 
used before search of SCs itself. 

2 METHODOLOGY 

We used a representative dataset (n = 113) of atrial 
electrograms (A-EGMs), which were pre-selected by 
an expert from a large database of A-EGMs. This 
database was recorded during AF mapping 
procedures. Signals were sampled by frequency 977 
Hz during AF procedure and resampled to 1 kHz 
after that. Each pre-selected A-EGM signal in this 
dataset is 1500 ms long. The expert signal selection 
was driven by the intention to get a good quality 
signals with respect to low noise and high 
information value of signal for later evaluation of 
degree of A-EGMs fractionation by an expert. 
Although the degree of fractionation is supposed to 
be naturally continuous we decided to make a four 
degree set of classes (Figure 1.). 

Three experts used these four categories for 
ranking (1 – organized atrial activity, n = 24; 2 – 
mild, n = 40; 3 – intermediate, n = 36; 4 - high 
degree of fractionation, n = 13.). Individual SCs 
(points of interest) were found manually by an 
expert in every A-EGM in dataset (Figure 2). The 
beginning and the end of every SC was marked by 
an expert for all found SCs thru the whole dataset of 
used CFAEs. This expert ranking of the beginnings 
and the ends of SCs was used as gold standard for 
comparison with outputs of the newly introduced 
automatic search method (ASM) and evaluation of 
ASM effectiveness. 

In many applications the Continuous Wavelet 
Transform (CWT) is used to decompose a signal 
into wavelets, small oscillations that are highly 
localized in time. Whereas the Fourier transform 
decomposes a signal into infinite length sines and 
cosines, effectively losing all time-localization 
information, the CWT's basis functions are scaled 
and shifted versions of the time-localized mother 
wavelet. The CWT is used to construct a time-
frequency representation of a signal that offers very 

good time and frequency localization. The CWT is 
an excellent tool for mapping the changing 
properties of non-stationary signals. When a signal 
is regarded non-stationary, the CWT can be used to 
identify stationary sections of the data stream. 

 
Figure 1: Four complex fractionated electrograms are 
shown. These are representatives of each ranking class of 
degree of fractionation ranked by an expert. From the top 
to bottom: 1 – organized atrial activity; 2 – mild, 3 – 
intermediate; 4 - high degree of fractionation. 

The discrete wavelet transform (DWT) is an 
implementation of the wavelet transform using a 
discrete set of the wavelet scales and translations 
obeying some defined rules. In other words, this 
transform decomposes the signal into mutually 
orthogonal set of wavelets, which is the main 
difference from the CWT. The wavelet packet 
method is a generalization of wavelet decomposition 
that offers a richer range of possibilities for signal 
analysis. 

 
Figure 2: Original CFAE signal recorded during AF 
mapping procedure. Expert ranking of the signal is into 
class I. Depicted amplitude is normalized with respect to 
maximal absolute value of this particular CFAE signal. 
Green circles denote the beginnings of SCs and red circles 
the ends of SCs found automatically by ASM with 
optimized parameters. 
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We used such multilevel decomposition of CFAE 
signal for preprocessing (denoising) of the signal 
and for automatic detection of points of interests 
(SCs) in the signal. Simple and efficient algorithms 
exist for both wavelet packet decomposition and 
optimal decomposition selection. We chose the 
algorithm implemented and described in Matlab 
(function „wavedec“, „waveden“) (Matlab Wavelet 
Toolbox 3.0, 2006). As a mother wavelet we chose a 
Coiflet wavelet of order four. The selection of 
mother wavelet was driven by outcomes of 
optimization experiments performed using a Particle 
Swarm Optimalization algorithm (Lhotska and 
Macas, 2007) where this type of wavelet showed the 
best results for our purposes of signal preprocessing 
(filtering) and searching of SCs.  

Filtering (de-noising) of CFAEs signals was 
performed using wavelet transform filter based on 
multilevel signal decomposition and thresholding of 
detailed coefficients (Mallat, 1999). The mentioned 
mother wavelet was used to decompose signal into 5 
levels (Daubechies, 1992). Detail coefficients were 
thresholded by soft-thresholding (Donoho, 1995) 
with these settings of thresholds (level 1 to level 5): 
0.02, 0.04, 0.008, 0.008 and 0.008. Reconstruction 
of the signal was computed by wavelet 
reconstruction based on the original approximation 
coefficients and the modified detail coefficients of 
levels from 1 to 5. Additional step of CFAEs signals 
preprocessing was done by thresholding of the signal 
with value of threshold 0.003 mV. Sample of CFAE 
signal ranked by an expert into class I, where 
described preprocessing technique was performed, is 
shown in Figure 4.  

ASM itself was the next step. It was based again 
on wavelet multilevel decomposition of filtered 
signal. The signal was decomposed again into 5 
levels using Coiflet wavelet of order four. The level 
3 of detailed coefficients showed the best transform 
to find proper SCs (Figure 3). Therefore the 
reconstruction of the detailed coefficients of a signal 
(L3) of given wavelet decomposition structure was 
performed at level 3 (L3). Figure 3 shows the 
difference between L3 before and after signal 
preprocessing. Normalization of L3 was performed 
with respect to maximal absolute value of given L3 
values to obtain uniform signals across the dataset 
for next stages of SCs detection. Thresholding of 
normalized L3 signal values was performed with 
value of threshold 0.014. Then all parts of the signal, 
where absolute value of amplitude was higher than 
0, were marked as peaks with amplitude 1. These 
peaks were related to time localization of electrical 
activity of AF substrate in individual CFAE signals.  

The last step of the algorithm consists in joining 
all peaks that lie very close to each other into one 
SC. Therefore all peaks whose inter-distance was 
closer than threshold 5 ms were joined together and 
they were marked as one individual SC (Figure 2 
and 3). 

 
Figure 3: Reconstruction of the detailed coefficients of a 
signal from figure 1 of given wavelet decomposition 
structure performed at level 3 (L3). Blue signal shows L3 
before wavelet filtering. Red signal is L3 reconstruction 
after filtering. Green circles denote the beginnings of SCs 
and red circles the ends of SCs found automatically by 
ASM with optimized parameters. 

 
Figure 4: CFAE signal from figure 1 filtered by above 
mentioned wavelet filter. Depicted amplitude is 
normalized with respect to maximal absolute value of this 
particular CFAE signal. 

All mentioned optional parameters of CFAE 
signal preprocessing algorithm and ASM itself (level 
used for searching of SCs and filtering, thresholds, 
and inter-segment distance threshold) were 
optimized by Particle Swarm Optimization 
algorithm (PSO), to get optimal parameters settings 
with respect to hit rate of ASM in comparison to 
expert marking of SC. The details and utilization of 
PSO is out of scope of this paper. 

3  RESULTS 

We evaluated the presented algorithm by calculating 
its hit rate, which was defined by using standard 
criteria of specificity. The overall results of ASM 
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sensitivity through all classes of CFAEs are shown 
in Table 1.  

The best results were achieved in class I and II, 
where the signification of SCs can be performed 
very precisely by an expert. There is low sensitivity 
of ASM to approach the signals of class IV to find 
and confirm the SCs signified by an expert. 

4 CONCLUSIONS 

The newly introduced ASM is able to find SCs with 
high sensitivity in class I and II and is worse to 
approach the expert SC classification in classes III 
and IV in the used dataset. The expert can hardly see 
and relate the electropathologic AF substrate 
activation in signal of classes III and IV to 
individual SCs and he/she can hardly properly mark 
corresponding beginnings and ends of the SCs. That 
means there could be incorrective error of 
classifying SCs in the used gold standard. It could be 
pandering that ASM could disclose hidden 
characteristics of the CFAE signal related to 
electropathologic AF substrate. These could be 
hardly seen in time domain only, especially at 
signals of class III and IV.  

We could therefore use the features extracted 
from found SCs for CFAE signal description and 
evaluation of CFAE signal complexity. Therefore it 
might be suitable to use description of CFAE signal 
based on such time domain characteristics. Good 
descriptor for separation of classes of CFAE signals 
could be an intersegment distance of SCs or SCs 
fractionation itself.  

Table 1: Hit rate of ASM with optimal parameters setting 
for each class of AEGM signals separately. SCs of given 
dataset, marked by an expert were used as gold standard. 

 Sensitivity 

  Class I 100% 

  Class II 98.2% 

  Class III 92.6% 

  Class IV 63.89% 

 
But as the results suggest we could use also 

CFAEs signals descriptors based on characteristics 
of mentioned wavelet level decomposition. The 
decomposition can serve to find more hidden 
features of CFAE signals, which could help us to 
distinguish between CFAE classes. Especially class 
III and IV could be difficult to distinguish with 
features extracted in time domain only. Future work 

will show if this new approach of automatic 
description of level of complexity of CFAE signal 
will have good results comparable to expert ranking. 
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Abstract: Portable X-ray radiographs are heavily used in the ICU for detecting significant or unexpected conditions 
requiring immediate changes in patient management. One concern for effective patient management relates 
to the ability to detect the proper positioning of tubes that have been inserted into the patient. These include, 
for example, endo-tracheal tubes (ET), feeding tubes (FT), naso-gastric tubes (NT), and other tubes. Proper 
tube positioning can help to ensure delivery or disposal of liquids and air/gases to and from the patient 
during a treatment procedure. Improper tube positioning can cause patient discomfort, render a treatment 
ineffective, or can even be life-threatening. However, because the poor image quality in portable AP X-ray 
images due to the variability in patients, apparatus positioning, and X-ray exposure, it is often difficult for 
clinicians to visually detect the position of tube tips. Thus, there is a need for detecting and identifying tube 
position and type to assist clinicians. The purpose of this paper is to present a computer-aided method for 
automated detection of tubes and identification of tube types. Use of this method may allow clinicians to 
detect the tube tips more easily and accurately, thus improving the quality of patient management in the 
ICU. 

1 INTRODUCTION 

Computer-aided diagnosis is designed to help 
physicians improve the diagnostic accuracy of 
radiological images and for detection of the disease, 
and to explain the consistency, reduce the rate of 
misdiagnosis, and cause less opportunity for eye 
fatigue. The chest CAD system (Brem and Baum, 
2003) and the Mammography CAD system (Bram 
and Bart, 2001) are both used in clinics. Clinical 
results show two aspects: Medical diagnostic 
radiology consults the CAD output and it is thus 
easier to find more features, such as micro-
calcifications and the changes that have taken place 
in the tiny structures, greatly improving the 
efficiency and accuracy of diagnosis. We research 
the method of tube automatic detection for 
improving the quality of patient management in the 
Intensive Care Unit (ICU) (Doi and MacMahon, 
1999). 

ICU patients, particularly those with heart and 
lung diseases, rely on the existence of tubes to live 
and be treated. In the intensive care setting, catheters, 
tubes, and monitoring devices play an important role. 
Proper placement of these devices is crucial to their 

function Personnel are well aware of the need for 
timely medical ICU care for patients, correct 
placement of tubes, and the changes that need to be 
made around these tubes’ positions. If the computer 
can automatically identify the location of tubes and 
their tips, and enhance medical images around tubes 
to provide diagnosis, it is a clear and very important 
improvement to their procedures. 

ICU patients’ chest X-ray images can be fuzzy, 
exhibit low contrast and noise, and contain many 
different types of tube connections on the image, 
such as the endo-tracheal tube, feeding tube, naso-
gastric tube, pulmonary artery, central venous 
catheter, and other catheters required for the 
treatment of a variety of medical conditions. These 
bring a significant challenge to accurately detect 
tubes and their tips. Figure 1 shows a general 
original ICU chest image. 

2 METHODS AND MATERIALS 

We collected a database consisting of 107 portable 
X-ray images from 20 patients using Kodak’s 
computed radiography (CR) system. An experienced 
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Figure 1: Original ICU chest X-ray image. 

chest radiologist reviewed all the images from the 20 
patients and provided a diagnosis for each image 
including the types of tubes and locations of their 
tips. The technique we developed here was 
evaluated for the detection of the three commonly 
used tubes in the ICU, the endo-tracheal tube, the 
feeding tube, and the naso-gastric tube. In this 
database, 33 images were identified to have endo-
tracheal tubes, 54 with feeding tubes, and 22 with 
naso-gastric tubes. This technique will be used and 
evaluated for the detection of other tubes/lines in the 
future. 

Figure 2 lists the steps used in the automated 
detection method. In the image-processing step, the 
contrast-limited adaptive histogram equalization 
(CLAHE) (Pizer and Amburn, 1987) (Zuiderveld) is 
used to enhance the contrast, and the anisotropic 
filtering is used to remove the noise prior to the 
generation of a gradient image. CLAHE can enhance 
the contrast details of the regions and avoid noise 
amplification as a result of histogram equalization in 
a similar region. As with the general histogram 
equalization, which can change the grey scale of the 
image to enhance the contrast, its distinction is that 
the operation region is a small region from which the 
whole image is divided, and then merged together 
again as the whole image and using bilinear 
interpolation between two neighbourhood 
intercropping to eliminate false results of the border 
reduced by histogram equalization. The combination 
of a canny filter (Parker, 1997 and Canny, 1986) and 
Hough transform (Kamat and Ganesan, 1998) is then 
applied to detect edges and lines on the tiles of an 
enhanced gradient image. A whole gradient image is 
divided into many tiles for performing Hough 
transform. The tube in a small tile can be considered 
a straight tube. The double-line/edge criteria are 
applied to identify potential tube candidates by 
paring a detected “left” edge with a “right” edge 
(See Fig.3). Theoretically, the paired left and right 

edges should have a fixed distance between them 
and each should have a gradient with an opposite 
direction (i.e., G, -G). Therefore, tubes’ edges 
should be basically parallel so it can be determined 
which tube is the valid one (See Fig. 4). Further, we 
apply bilateral Hough transform to detect the 
missing lines between potential tube candidates. 

 
Figure 2: Tubes’ automatic detection flowchart. 

 
Figure 3: Tube matching. 

 
Figure 4: Determine the valid tube. 

Note: SB is the abbreviation of Space Between. 
SBSD is the abbreviation of Space Between 
Standard Deviation. ABS is the average of SB. 
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Figure 5: Bilateral Hough transform. 

Figure 5 shows the detected missing/lost lines 
between the two potential tubes identified in the 
previous step. Bilateral HT: Using the tube’s grey 
gradient (left is Gx and right is –Gx) to do bilateral 
Hough Transform. The paired left and right edges 
should have a fixed distance between the two edges 
and each should have a gradient with an opposite 
direction. The detected tube’s size is assumed as the 
distance. Basing the detected tube’s position, we do 
the bilateral Hough Transform to gradient image 
from top to bottom, then from bottom to top. After 
doing the bilateral Hough transform, we can locate 
the missing tubes. 

In a small tile each to be linked with at least the 
boundary line is another small tile. In other words, 
the starting point of the boundary line and the end 
point of another boundary line must be in one pair of 
neighbouring tiles. The connective tubes’ directive 
angle difference should be in pi/24. The tubes on the 
images are consistent. When detecting ET, only the 
isolated tube in the region of interest (ROI) upper 
part is valid. If a tube can connect with more than 
two tubes, we will choose the tube that bears a closer 
directive angle. See Fig. 6. 

Tip detection is an important element of our 
work. Combining the region’s information and 
anatomic structure, we use our algorithm (See Fig. 
7). The tubes’ edges should be crossing or the tube 
size should be less than the defined size (i.e., ET, 
NT: 3-10 pixels， FT: 15-25 pixels). (See Fig. 7: 
Case 1-2). We use the proper bilateral Hough 
Transform to stretch or shrink the tube for getting an 
accurate tip (See Fig. 7: Case 3). 

 

 
Figure 6: Tubes’ connection. 

 
Figure 7: Tip detection. 

After determining the tip, a classification step is 
executed to provide a decision on apparent tube type 
for the matched pairs of left and right edges. 
Information such as the length of the line, the 
location of the tube, and/or the tip relative to 
anatomic structures is used for classifying the tube 
types. The ROIs containing relevant anatomic 
structures, such as lung, mediastinum, and stomach, 
are identified and used to determine the relative 
position of tubes in the image. These ROIs serve as 
landmarks for tube detection and classification. 
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3 RESULTS 

The detection result can be illuminated. See Fig.8-
12. We evaluated the performance of the technique 
for ET, FT, and NT. Our preliminary results showed 
that use of the presented technique correctly detected 
the location for 94% of the 33 ET tubes, 82% of the 
54 FT tubes, and 82% of the 22 NT tubes with no 
false positive detection (See Table 1). The 
performance is expected to improve when detection 
results from the same patient are used. 

 
Figure 8: The original X-ray chest image. 

 
Figure 9: Image pre-processing (CLAHE)  

 
Figure 10: ET detection 

 
Figure 11: FT detection. 

 
Figure 12: NT detection 

Table 1: The result table. 

107 images of 20 ICU patients, and the images were captured 
by portable CR system of Kodak 

 ET FT NT 

Tube amount 33 54 22 

Detection 
rate 94% 82% 82% 

4 CONCLUSIONS 

Our novel detection technique can accurately detect 
the tubes in ICU images at a high sensitivity level. A 
function of automated detection of tube placement 
can potentially improve the overall workflow and 
patient management in the ICU. 
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Abstract: The appearances of pathological changes of bone can be various. Determination of apparent bone mineral
density is commonly used for diagnosing bone pathological conditions. However, in the last years the struc-
tural changes of trabecular bone have received more attention because bone densitometry alone cannot explain
all variation in bone strength. The rapid progress in high resolution 3D micro Computed Tomography (µCT)
imaging facilitates the development of new 3D measures of complexity for assessing the spatial architecture
of trabecular bone. We have developed a novel approach which is based on 3D complexity measures in order
to quantify spatial geometrical properties of bone architecture. These measures evaluate different aspects of
organization and complexity of trabecular bone, such as complexity of its surface, node complexity, or local
surface curvature. In order to quantify the differences in the trabecular bone architecture at different stages
of osteoporotic bone loss, the developed complexity measures were applied to 3D data sets acquired by µCT
from human proximal tibiae and lumbar vertebrae. The results obtained by the complexity measures were
compared with results provided by static histomorphometry. We have found clear relationships between the
proposed measures and different aspects of bone architecture assessed by the histomorphometry.

1 INTRODUCTION

Bone is a dynamic tissue that adapts its architecture to
the loading conditions it is subjected to. In addition,
from the third decade of life the amount of bone tis-
sue is gradually decreasing. However, in patients with
osteopenia or osteoporosis or in astronauts staying in
micro-gravity conditions for a long period of time, the
bones may change so dramatic that they will lose a
significant amount of their stability and the fracture
risk increases. These changes may emerge on the one
hand as the loss of bone, a decrease of the mineral-
ization of bone, and on the other hand as a change in
the micro-architecture of the interior spongy part of
the bone called trabecular bone. Structural changes
of trabecular bone have received more attention in the
last years because the bone loss alone cannot explain
all variation in bone strength. Moreover, the rapid
progress in high resolution 3D Micro-Computed To-
mography (µCT) imaging facilitates the investigation
of the micro-architecture of bone.

The standard method for assessing the bone sta-
tus and its micro-architecture is bone histomorphom-
etry, which was developed for 2D (Parfitt et al.,
1983) and recently extended for 3D analysis (Ito
et al., 1998; Hildebrand et al., 1999). More re-
cently developed methods for quantifying the com-
plexity of trabecular structures includes methods us-
ing measures of complexity based on symbolic dy-
namics (Saparin et al., 1998; Saparin et al., 2005),
fractal properties (Marwan et al., 2007b) and on re-
currence (Marwan et al., 2007a), or using volumetric
spatial decompositions (Stauber and Müller, 2006).
By applying these approaches to 3D images of tra-
becular bone, it was shown that the bone micro-
architecture changes substantially during the devel-
opment of osteopenia/osteoporosis. The main con-
clusions in (Saparin et al., 2005; Marwan et al.,
2007a) were that the complexity of the bone micro-
architecture decreases with increasing bone loss and
that the volume and surface of the trabecular struc-
ture changes in a different amount. This latter conclu-
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sion confirms former findings that the shapes of the
trabeculae change during bone loss, e. g., from plate-
like structure to rod-like structure (Hildebrand et al.,
1999).

In this study we develop new measures of com-
plexity for quantifying the shape and the complexity
of 3D structures. We use 3D geometrical properties
like local ratio of bone volume to bone surface and
the local configuration of the neighbourhood of the
bone voxels. We apply these measures to 3D µCT
images of human proximal tibial and vertebral bodies
in order to investigate differences in trabecular bone
structure at different stages of bone loss and compare
the results with the outcome of the histomorphomet-
rical evaluation of the same bone material.

2 MEASURES OF COMPLEXITY

The idea behind the quantification of a geometrical
shape is based on the fact that different 3D objects of
the same volume have different surfaces, depending
on their geometrical shape. For example, a long cylin-
der (length is much larger than radius) has a larger
surface than a cube of the same volume, and a sphere
of the same volume has a smallest possible surface for
the same given volume (Fig. 1).

Figure 1: Long cylinder, cube and sphere of same volume
(V = 1000) have different surface (Scylinder = 694 (for this
arbitrary proportion), Scube = 600, Ssphere = 484).

Based on the relationship between surface and
shape, we introduce measures using the local bone
surface and local bone volume. Surface and volume
of the trabecular bone are locally estimated in a small
cubic box of size s, which moves through the entire
3D image.

Surface and volume could be estimated by a sim-
ple Lego brick approach. The number of voxels form-
ing the bone structure is used as the volume, and the
number of such bone voxels which are connected to
the bone marrow (surface voxels) as the bone sur-
face (Fig. 2A). However, this approach is rather prob-
lematic, because the amount of surface voxels is ac-
tually not a two-dimensional surface measure as it
should be, but a three-dimensional volumetric mea-
sure. Moreover, the bone volume will be overesti-
mated when such a simple voxel counting algorithm
is used. Subsequent calculations based on this sur-
face and volume estimation will lead to even more

erroneous estimations. In order to get more precise
results, we apply an iso-surface algorithm (Fig. 2B).

BA

Figure 2: A fragment of data consisting of eight voxels in-
cluding four bone voxels (black nodes) and four marrow
voxels (white nodes). In the Lego brick. approach (A), the
surface of bone is estimated by counting the number of bone
voxels which are connected with marrow voxels (the top,
front and right black nodes), and the volume is the number
of all bone voxels. In the iso-surface approach (B), the sur-
face is estimated by the sum of triangles which form an iso-
surface between bone and marrow voxels; the volume is the
sum of the tetrahedrons which can be filled between such
iso-surface and the grid lines. The volume (gray shaded)
will be overestimated by using the Lego brick approach (A),
but will be calculated more precise by using the iso-surface
approach (B).

An appropriate approach to construct iso-surface
is the marching cubes algorithm (Lorensen and Cline,
1987) which is widely used for constructing iso-
surfaces in 3D data visualisation. A marching cube
(MC) consists of eight neighbouring voxels. If two
neighbouring voxels of this MC have voxel val-
ues above and below a predefined threshold value
(i. e. one is bone and another is non-bone voxel), the
iso-surface will lie between these two voxels. In such
MC the iso-surface is formed by a set of triangles,
and the surface estimation is the sum of the areas of
these triangles (Fig. 2B). Now we introduce the same
approach for the estimation of the bone volume. The
bone volume within the MC is filled with tetrahedrons
in such a way, that the resulting surface equals the iso-
surface, which is formed by triangles (Fig. 3). The
sum of the volumes of these tetrahedrons is the esti-
mated bone volume contained in the MC.

For the quantification of the 3D shape, we intro-
duce at first the ratio between the local bone surface
Sbone and the minimal possible surface of the given
local bone volume Vbone, which is the surface of a
sphere Ssphere containing this volume Vbone. We call
this ratio local shape index σloc. Because the local
bone volume Vbone depends on the size of the mov-
ing box s, the normalized local bone volume V̂bone =
Vbone/s3 is used (V̂ corresponds to the local bone vol-
ume fraction or density BV/TVloc). The local shape
index

σloc =
Sbone

Ssphere
with Ssphere = 3

√
36πV̂ 2

bone (1)
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Figure 3: Same fragment as shown in Fig. 2, which is also
called marching cube. For volume estimation, the marching
cube is filled with tetrahedrons constructed between the iso-
surface and the grid lines.

distinguishes between different shapes with the same
volume but whose surface differ, like plates and rods.
In principle, the value of this index should be equal or
larger than one, because the surface of a sphere is the
smallest possible surface. However, the object could
be cut by the faces of the moving box; these interfaces
are not counted for the surface of the structure, result-
ing in a smaller surface. This can even result in a sur-
face that is smaller than such of a sphere. However,
this would mainly be the case if the structure is con-
cave. Therefore, values of σloc smaller than one rep-
resent concave structures, whereas values larger than
one represent convex structures.

Because σloc is computed within a small box while
moving through the studied object, we get a frequency
distribution of the shape index over the entire ob-
ject p(σloc). Based on this distribution, the averaged
shape index

Aσ = 〈σloc〉VOI, (2)

which is the average of all σloc in the volume of inter-
est (VOI); it measures the mean shape of the trabecu-
lar structures.

Next we define the shape complexity as the condi-
tional entropy of the joint distribution p(σloc,Vloc) in
a given bone volume Vloc

Cσ =− ∑
σloc,Vloc

p(σloc,Vloc) log
p(σloc,Vloc)

p(Vloc)
(3)

This measure quantifies the variety of different shapes
for various bone volumes. If the bone surface changes
in the same manner as the bone volume changes,
i. e. the shape of the structure is roughly remaining,
this measure will be low. If, however, the shape is
changing more dramatically and perhaps irregularly
due to changing bone volume, as it is the case for bone
loss, Cσ will be high.

As already mentioned, an MC is formed from
eight neighbouring voxels, arranged in the shape of
a cube. The entire VOI is actually a composition of

many such MCs. In each MC, depending on the posi-
tions of the bone voxels, there are 256 configurations
possible; neglecting rotational and inversion symme-
try, there are 15 unique and fundamental MC config-
urations (Lorensen and Cline, 1987). However, we
will only consider rotational symmetry and ignore in-
version, hence, we will deal with 21 pseudo-unique
MC configurations (Fig. 4). A specific marching cube
configuration corresponds to a specific bone surface
configuration and, hence, it is related with the com-
plexity of the surface. For all MCs composing the
VOI we identify and count each MC configuration
and can derive the probability p(MC) with which a
certain MC configuration occurs in the 3D architec-
ture.

MC 0

MC 7

MC 14

MC 11

MC 18

MC 1

MC 15

MC 8

MC 2

MC 9

MC 16

MC 3

MC 10

MC 17

MC 12

MC 19

MC 4

MC 20

MC 5 MC 6

MC 13

Figure 4: The 21 pseudo-unique marching cube configura-
tions used for defining the marching cubes entropy index.

Since these pseudo-unique marching cube config-
urations (MC cases) are related with the surface com-
plexity, we define an additional measure, the march-
ing cubes entropy index

IMC =−∑
MC

p(MC) log p(MC) (4)

which is the Shannon entropy of the probability den-
sity p(MC) of the marching cubes cases; it measures
the complexity of the surface of the trabecular struc-
tures. Simple complex surfaces will result in low val-
ues of IMC, whereas complex surfaces will result in
high values of IMC.

Note that shape complexity Cσ and marching
cubes entropy index IMC characterises different kinds
of order in a structure. Whereas IMC assesses a global
order (or disorder) of bone surfaces, Cσ quantifies the
order of certain structural shapes depending on the
structure volume. Therefore, these two measures are
not necessarily correlated with each other.

3 MATERIALS

These newly introduced measures, Eqs. (2), (3) and
(4), are used for the assessment of structural changes
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in trabecular bone due to bone loss in osteoporosis.
29 trabecular bone biopsies from proximal tibia

bone specimens and 18 entire lumbar vertebral bod-
ies L4 were obtained from the same set of donors.
The proximal tibial bone biopsies were scanned at
Scanco Medical AG (Bassersdorf, Switzerland) by
using a Scanco µCT 40 µCT scanner with a voxel size
of 20 µm (Thomsen et al., 2005). The vertebral bod-
ies were scanned at Scanco Medical AG by using a
Scanco µCT 80 with a voxel size of 37 µm. In or-
der to get comparable images for both skeletal sites,
proximal tibia images were downsampled to a voxel
size of 40 µm. The analysed set of specimens includes
normal, osteopenic (initial stage of osteoporosis) and
osteoporotic bones.

Standardized volumes of interest (VOI) were ap-
plied to the µCT images for quantification of the 3D
architecture: The VOI for the proximal tibial biop-
sies was located 5 mm below the cortical shell and
were 10 mm long, whereas the VOI for the verte-
bra was a 25 × 15 × 10 mm3 cuboid with the cen-
ter shifted 4.5 mm backwards from the center of the
vertebra along its symmetry line (Fig. 5). The struc-
tural measures of complexity are then computed using
these VOIs. In order to validate the developed mea-
sures, the results of the purposed 3D data evaluation
were compared against conventional bone histomor-
phometry (Thomsen et al., 2000). Histomorphometric
measures are discussed below.

Figure 5: Volume of interest applied to a human lumbar
vertebra. Analysed part of the trabecular structure is shown
in brown, grey-scale image is the axial CT slice through the
middle of the vertebral body.

4 RESULTS

Applying the introduced measures of complexity to
the VOIs within the 3D µCT images, we perform an
evaluation of the micro-architecture of the trabecular
bone of 29 proximal tibial biopsies and 18 lumbar ver-
tebrae representing different stages of bone loss in os-

teoporosis. The size of the moving box was chosen as
20×20×20 voxels.

At first we study the differences of the trabecu-
lar structure due to bone loss and compare the tra-
becular bone architecture in proximal tibia and lum-
bar vertebra (Fig. 6). Bone volume to total volume
ratio BV/TV (derived from histomorphometry) char-
acterises the amount of bone material and is used as
an indicator of bone loss. We find some remarkable
differences between the proximal tibia and the lumbar
vertebra.
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Figure 6: Measures of complexity vs. bone loss (repre-
sented by bone volume fraction BV/TV) for proximal tibiae
(blue line) and lumbar vertebrae (red line). The lines are
square-polynomial fits to guide the eye.

During bone loss, Aσ decreases in the vertebra,
but increases in the proximal tibia. Moreover, for
high density proximal tibiae (BV/TV > 20%) its val-
ues are below one. This suggests that the normal
trabecular bone in proximal tibial contains a large
number of concave structures. Bone loss causes a
shift from concave structures towards convex ones.
Aσ for vertebra is higher than one. The Spearman’s
rank correlation coefficient between BV/TV and Aσ is
R = −0.75 (proximal tibia) and R = 0.57 (vertebra).
On a p = 0.01 significance level, the correlation for
the proximal tibia is significant, but for the vertebrae
it is not.
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Cσ reveals the same trend for both proximal tibia
and vertebra. IMC reveals also the same trend for both
skeletal sites. However, the direction of the correla-
tions between Cσ and IMC are opposite. The correla-
tions are only significant for the proximal tibia. From
the correlation between IMC and BV/TV we infer that
the complexity of the bone surface decreases during
bone loss. The anti-correlation with Cσ suggests that
the variety of shapes increases during bone loss, as it
is the case when plate-like structures deteriorate to-
wards rod-like structures, or rod-like structures be-
come disconnected.

Next, we compare the introduced structural mea-
sures of complexity with some of the classical histo-
morphometrical measures (Tab. 1, Fig. 7). The ma-
jority of these measures are significantly correlated
to the measures of complexity at the proximal tibia
only. This is probably due to a higher variability of
the shapes in proximal tibia.

The trabecular separation Tb.Sp measures the
mean trabecular plate separation under the assump-
tion that the bone tissue is distributed as parallel plates
(Parfitt et al., 1983). At the vertebral body only Aσ

is significantly correlated with Tb.Sp. At the proxi-
mal tibia both Cσ and IMC are weakly correlated with
Tb.Sp.

The nodes-termini ratio Nd/Tm represents the
connectivity of the network as it appears on a 2D sec-
tion (Garrahan et al., 1986). A change in the connec-
tivity of the network causes a change in the complex-
ity of bone surface. Therefore, at the proximal tibia
we find that Nd/Tm is strongly correlated with IMC.
At the vertebral body Nd/Tm and IMC are also corre-
lated, but this correlation does not reach the level of
significance.

A further common way to characterise the tra-
becular network is the trabecular bone pattern factor
TBPf (Hahn et al., 1992). It is, like Nd/Tm, strongly
related with the suggested measures of complexity, in
particular with IMC. Again, for vertebrae these corre-
lations are not significant.

These results confirm that the averaged shape in-
dex Aσ, shape complexity Cσ and marching cubes en-
tropy index IMC express the shape and complexity of
the trabecular micro-architecture. The different as-
pects of the introduced measures of complexity are
clearly illustrated at the proximal tibia and by compar-
ing tibia and vertebral trabecular bone architectures.
We proved quantitatively that the architecture of the
trabecular bone of lumbar vertebra is very different
from that of the proximal tibia. This difference is also
clearly emphasised by the new structural measures.
Therefore, we infer that these measures reveal addi-
tional information about the bone structure, which are

Table 1: Spearman’s rank correlation coefficients between
structural measures of complexity and bone volume fraction
as well as histomorphometrical measures. Statistically sig-
nificant values (p = 0.01) are black, non-significant values
are gray.

Aσ Cσ IMC
Proximal Tibiae
BV/TV −0.75 −0.72 0.88
Tb.Sp 0.45 0.58 −0.64
Nd/Tm −0.72 −0.65 0.88
TBPf 0.72 0.66 −0.90
Lumbar Vertebrae
BV/TV 0.57 −0.27 0.25
Tb.Sp −0.71 0.26 −0.19
Nd/Tm 0.38 −0.07 0.34
TBPf −0.35 0.14 −0.41
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Figure 7: Measures of complexity vs. Nd/Tm and TBPf for
proximal tibiae (blue line) and lumbar vertebrae (red line).
The lines are squared fits to guide the eye.

not included in BV/TV or any of the histomorphome-
tric measures.

The relationships we found between the devel-
oped measures and the bone architecture as well as
the relation between the structural complexity mea-
sures and the histomorphometric parameters suggest
that the proposed new measures of complexity are
able to quantify 3D bone architecture. In addition,
they contain important information about the trabec-
ular geometry and can be used to describe changes in
the spatial structure of trabecular bone.
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5 CONCLUSIONS

Using the newly introduced measures, we were able
to find significant differences in 3D bone architecture
at different levels of bone loss including osteopenia
and osteoporosis. We found that the trabecular bone
of the proximal tibia contains more concave structures
than of lumbar vertrebra. The amount of concave
structures decreases during bone loss, while the pro-
portion of convex structures increase. Similarly, the
complexity of the bone surface is decreasing during
bone loss. Although the complexity of the trabecu-
lar bone structure is higher in healthy bone, the order
of the shapes of local structures depending on its vol-
ume is higher in healthy bone. This means that osteo-
porotic structural elements of a given volume have a
higher variability in the shape than healthy bone.

The proposed new structural measures of com-
plexity can be directly computed from 3D images and,
thus, are non-invasive and non-destructive. They con-
tain important information about the 3D structure of
trabecular bone and can be used to describe the de-
terioration of the trabecular bone network that takes
place during the development of osteopenia and os-
teoporosis.
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Abstract: Neurodegenerative diseases like Alzheimer’s disease (AD), prion diseases and others are progressive and 
lethal. High-molecular weight aggregates of the Amyloid-β-peptides (Aβ) or of the misfolded prion protein 
(PrP) are found in patients afflicted by AD or prion diseases, respectively. Despite of many attempts, neither 
a therapy for recovery, nor an early diagnosis at preclinical stages are available. Psychological tests and 
imaging approaches not directly related with a secure disease marker are in use only for late stages of the 
disease. The Creutzfeldt-Jakob-disease (CJD), a human prion disease, is caused by accumulation of 
aggregates consisting of an abnormally shaped version of PrP. CJD is diagnosed with certainty only by 
neuropathology post mortem. In this study a multidisciplinary development of a novel mode of single 
particle counting of immobilized Aβ and PrP aggregates as the most direct biomarkers for Alzheimer’s 
disease and Prion diseases, respectively, is introduced. For ultrasensitive detection of aggregates, the 
suitable instrumentation as well as data acquisition and data analysis are developed using single molecule 
detection and advanced laser scanning fluorescence techniques. In the novel assay development effort 
biochemistry, detection and analysis were improved to detect single aggregates immobilised on a surface. 
First results show the improvement of single particle detection of PrP-aggregates of TSE-afflicted cattle and 
hamsters as well as synthetic Aβ-aggregates. 

1 INTRODUCTION 

In many neurodegenerative diseases e.g. prion 
diseases, Alzheimer’s disease, Parkinson’s disease, 
Huntington’s Disease, protein aggregates are formed 
in the very beginning or in the progress of disease 
(Lee et al., 2005). Up to now it is not known, if these 
aggregates are causative agents or symptoms of the 
respective disease, but many studies show, that the 
aggregates or even oligomers of the according 
proteins are neurotoxic and therewith a reason of 
neurodegeneration. (Selkoe, 2003) 

To understand the progression of these diseases, 
as well as disease associated or causative 
mechanisms and to monitor potential therapeutically 
approaches an ultrasensitive tool to quantify these 
disease related aggregates is required. A challenge 
for the analytic system is to reliably count only those 
aggregates or oligomers that consist of the specified 

protein or peptide. Monomeric molecules need to be 
clearly distinguished because they are present in 
healthy organism as well. 

We developed a new method, which is able to 
count single protein aggregates bound by a capture-
antibody to a surface (surface-FIDA) (Birkmann et 
al., 2007). Our new test system is based on 
fluorescence correlation spectroscopy (Eigen and 
Rigler, 1994). It is quantifying the number and size 
of aggregates simultaneously labelled by two 
different antibodies for dual colour fluorescence 
intensity distribution analysis (2D-FIDA) (Birkmann 
et al., 2006). Only aggregates and oligomers but not 
monomeric proteins are counted. To increase the 
sensitivity, particles were concentrated in the two-
dimensional space by immobilizing it to capture 
antibodies on the surface of the slide. Laser beams 
are scanning the surface systematically, so even 
single particles are detected (Birkmann et al., 2007). 
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We report on the successful use of surface-FIDA 
as diagnostic tool for prion diseases. The infectious 
agents of prion diseases are composed primarily of 
the pathogenic isoform of the prion protein 
designated PrPSc, which is generated by a 
conformational change of the cellular isoform PrPC. 
In contrast to its cellular isoform, the pathogenic 
isoform PrPSc forms insoluble aggregates. Hitherto 
accredited prion tests use the PK-resistance of PrPSc 
as a marker for the disease. Because of varying 
portions of disease related aggregated PrP, which is 
not PK-resistant, these prion tests offer only a 
limited sensitivity. Therefore prion protein aggregate 
detection, which does not rely on PK-digestion, is 
favourable for sensitive diagnosis. It allows 
detection of both, PK-resistant and PK-sensitive 
PrPSc aggregates. 

Up to now, we could successfully verify the 
novel test system for correct diagnosis of Scrapie-
infected hamsters as well as BSE-infected cattle in 
the clinical stages of diseases (Birkmann et al., 
2007). Furthermore, we were able to detect PrP 
aggregates in the cerebrospinal fluid of cattle of 
BSE-infected cattle for the first time (Birkmann et 
al., 2007). During the next steps we will adopt the 
highly sensitive test system for diagnosis of human 
prion diseases like Creutzfeldt-Jakob disease and 
other aggregate related diseases, especially 
Alzheimer’s disease. 

In this study we apply surface-FIDA to different 
disease associated aggregates. First we show the 
single aggregate detection of prion protein 
aggregates purified from brain homogenates of 
Scrapie-infected hamsters and BSE-infected cattle to 
demonstrate the principal of surface-FIDA to detect 
single particles. In the second part of the work we 
show the transfer of surface-FIDA to the detection 
of single Aβ aggregates as diagnostic approach for 
Alzheimer’s disease. Therefore we compared the 
detection of Aβ aggregates in solution with the 
application of surface-FIDA.  

2 MATERIALS AND METHODS 

2.1 Fluorescence Labelling of 
Antibodies 

Antibodies R1 were kindly provided by S.B. 
Prusiner, UCSF, USA (Williamson et al., 1998). 
Antibodies 12F10 and Saf32 were obtained from 
SpiBio (Massy Cedex, France); antibody D18 was 
obtained from InPro (San Francisco, USA). For the 
detection of Aβ aggregates, antibodies 6E10 (Sigma 

Aldrich, Hamburg, Germany), 8G7, 19H11 and 4G8 
(Calbiochem) were purchased. 

Antibodies were labelled in free amino groups 
via reactive succinimidyl ester groups of Alexa-633 
and Alexa-488 (Molecular Probes, Oregon, USA). 
For labelling, approximately 50 µg antibodies were 
incubated with 5 µg dye in carbonate buffer, pH 8.4 
in a total volume of 100 µl for 1 hour. Conjugates 
were separated from free dye by gel filtration via 
NAP5-column (Pharmacia) with 10 mM TBS, pH 
7.2 and 0.2 M NaCl as elution buffer. Labelled 
antibodies were stored in the dark at 4°C. 

2.2 Fluorescence Correlation 
Spectroscopy 

In fluorescence correlation spectroscopy (FCS) the 
fluorescence intensity is recorded in a very small 
volume, i.e. in the femtoliter range. Measurements 
were performed with the instrument FCS Olympus 
IX 50 (Evotec OAI, Hamburg, Germany) with a 
beam scanner unit in dual-colour mode with an 
Argon ion laser (excitation wavelength 488/514 nm) 
and a helium-neon laser (excitation wavelength 633 
nm). The beam scanner unit allows the scanning of 
the sample for aggregates. In practice the detection 
volume is moved through the sample in horizontal 
and vertical dimensions. The beam scanner was used 
by moving 1 mm in one direction a rectangular 
deviation of 100 µm with a frequency of 50 Hz and 
an integration time of 50 µs. A piezo element was 
integrated in the optic of the FCS Olympus IX 50, 
which allowed a precise z-positioning of the focus in 
the 100 nm range. 

2.3 Surface-FIDA 

The surface-FIDA assay was carried out as 
described by earlier (Birkmann et al., 2007).  

Briefly, 0.25 – 1 μg capture antibody was 
adhesively bound to poly-D-lysine activated glass 
surfaces. After blocking the unspecific binding sites 
with 10 % fetal calf serum, potentially present 
aggregates were bound to the capture by incubating 
20 μl of a sample for at least two hours at 4 °C. 
After washing twice with PBS buffer (140 mM 
NaCl; 2.7 mM KCl; 10 mM Na2HPO4, pH 7.4), the 
fluorescence labelled detection antibodies were 
applied (0.1 μg/μl) and incubated for 1 h at 20 °C. 
After five washing steps with PBST (PBS with 0.1 
% (w/w) Tween 20) and two washing steps with 
PBS, the measurements were carried out. 

 
 
 
 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

432



 

2.4 Preparation of Synthetic  
Aß-aggregates 

Aβ(1-42) was purchased from JPT Peptide 
Technologies (Berlin, Germany). For aggregate 
preparation Aβ was dissolved in DMSO to 400 µM, 
diluted to 66 µM in PBS (140 mM NaCl; 2.7 mM 
KCl; 10 mM Na2HPO4) and incubated for five days 
at 37 °C. Aggregate formation was monitored using 
Thioflavin T (ThT) assay. For that, 10 mM ThT 
(Sigma, Hamburg, Germany) was added to the 
samples. Fluorescence was monitored with a 
microplate reader at excitation and emission 
wavelengths of 440 nm and 490 nm, respectively 
(Polarstar Optima, BMG, Offenburg, Germany). 

For surface-FIDA, the aggregates were diluted 
1:10 in pooled CSF of healthy people. CSF was 
obtained by Biochemed Services, Winchester, 
USA). 

3 RESULTS 

3.1 Methodical Setup 

The new optical method for detection of protein 
aggregates is based on fluorescence intensity 
distribution analysis (FIDA). For detection of 
pathologic protein aggregates single molecule 
detection (SMD) combined with quantification of 
single aggregates immobilised on a relatively large 
surface was employed to achieve high sensitivity 
and specificity.  

The new method, therefore, is called surface-
FIDA. It is able to count single protein particles 
bound to a capture-antibody on the surface (fig. 1a) 
(Birkmann et al., 2007). Specific protein-particles 
are labelled simultaneously by two different 
antibodies for dual colour fluorescence intensity 
distribution analysis (2D-FIDA). Among the capture 
and both detection antibodies, at least two antibodies 
bind the same epitope. Thus, only aggregates but not 
monomers are counted. A laser beam scans the two-
dimensional surface systematically in a double-
meander mode. Thus, even single protein-particles 
are detected (fig. 1B). By utilising two lasers 
simultaneously two different fluorescence labels can 
be crosscorrelated. Only if the different labels are 
bound to the same aggregate both labels occur to the 
same time in small detection focus. A typical 
distribution of a coincident signal of double labelled 
aggregates is shown in fig. 1C.  

3.2 Detection of Pathological Protein 
Particles with Surface-FIDA 

To observe, if the surface-FIDA setup is able to 
detect single aggregates different types of protein 
aggregates were tested.  

3.2.1 PrP-particles Purified from Brain of 
Scrapie Infected Hamsters 

Prion Protein aggregates were purified from brain 
homogenates of Scrapie infected hamsters in the 
clinical state of disease by NaPTA precipitation 
(Safar et al., 1998). The antibody R1 (Williamson et 
al., 1998) served as capture. The antibodies D13 and 
R1 were fluorescence labelled and utilized as 
detection probes. Same treated brain homogenates of 
healthy hamsters were used as control samples. The 
results of 2D-surface-FIDA in different distances to 
the surface are shown in fig. 2. In the samples of 
Scrapie infected hamsters at all distances between  
10 µm and 20µm fluorescence peaks with high 
fluorescence intensity in both channels could be 
detected. At distances below 10 µm background 
signal in the control sample rise and in distances 
above 20 µm the signals of the Scrapie samples 
descended (data not shown). 

Figure 1: A) Scheme of surface-FIDA; B) fluorescence 
peak caused by the labelled aggregate: principal of particle 
counting; C) 2D-FIDA:Two probes with different 
fluorescence labels were used; Only simultaneous binding 
of both probes to the aggregates results in the specific 
diagonal signal distribution as shown in the plot 
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Figure 2: 2D-surface-FIDA of PrP-aggregates purified 
from brain homogenate of Scrapie infected hamsters and 
same treated brain homogenate of a healthy control in 
different distances to the surface 10-20 µm. 

3.2.2 PrP-particles Purified from Brain of 
BSE Infected Cattle 

Prion Protein aggregates were purified from brain 
homogenates of BSE infected cattle in the clinical 
state of disease by NaPTA precipitation (Safar et al., 
2002). The antibody Saf32 (Krasemann et al., 1999) 
served as capture. The antibodies 12F10 and Saf32 
were fluorescence labelled and utilized as detection 
probes. Same treated brain homogenates of healthy 
cattle were used as control samples. The results of 
2D-surface-FIDA at different distances to the 
surface are shown in fig. 3.  

3.2.3 Synthetic Aβ-Aggregates 

As a first proof of principle, synthetical Aβ 
aggregates were used in the assay described above. 
First measurements were done in solution without 
immobilizing the aggregates. The antibodies 6E10 
(N-terminal epitope) and 8G7 (C-terminal epitope) 
were fluorescence labelled and used as detection 
probes. Experiments were done in PBS. In the 
negative control, 0.2 % SDS was used to prevent Aβ 
aggregation, as monitored by ThT assay (data not 
shown). As expected, only aggregated Aβ resulted in 
fluorescence peaks as can be seen in fig. 4a. 

 

 
Figure 3: 2D-surface-FIDA of PrP-aggregates purified 
from brain homogenate of BSE infected cattle and same 
treated brain homogenate of a healthy control. 

In a next step, Aβ aggregates diluted 1:10 in CSF to 
meet realistic conditions were immobilized on the 
surface of the slide. Antibody 4G8 (binding to amino 
acids 1-17 of Aβ) served as capture. The antibodies 
6E10 and 19H11 were fluorescence labelled and 
served as detection probes. As both antibodies bind 
to the N-terminal part of Aβ, a simultaneous 
labelling of Aβ monomers was excluded. As 
controls, only CSF without additional Aβ aggregates 
was used in the immobilization procedure. The 
results of 2D-surface-FIDA are shown in fig. 4b. 
The measurements were done at 5 µm distance to 
the surface. 

4 CONCLUSIONS 

The proof of principle for the use of surface-FIDA to 
detect aggregates was shown for natural PrP-
aggregates purified from brain of Scrapie infected 
hamsters, BSE infected cattle and for synthetic Aβ 
aggregates diluted in CSF.  

Single particle counting as diagnostic tool is 
more sensitive as compared to measuring the 
integrated signal of all or many particles. “Single 
particle counting” allows measuring of multiple  
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Figure 4: A) 2D-FIDA of synthetically prepared Aβ 
aggregates in solution (concentration 3,3 µM). Aβ, kept 
from aggregation by 0.2 % SDS, was used as control. 
B) 2D-surface-FIDA of synthetically prepared and in CSF 
diluted Aβ aggregates (concentration 6µM). CSF without 
additional Aβ aggregates was used as control. 
Measurements were done at 5 µm distance to the slide 
surface. 

parameters of the individual particles are recorded 
like size, number of epitopes, different epitopes on 
the same particle etc. and those parameters can be 
used for improvement of specificity. 

When the detection of single particles was 
carried out in suspension using the dual colour 
fluorescence intensity distribution analysis (2D-
FIDA) (Birkmann et al., 2006), it was done in a 
small volume taken from a much larger sample 
volume by moving the laser detection focus through 
a cuvette. Diffusion of the particles and scanning of 
the volume were superimposed so that it was 
difficult to account quantitatively for all particles in 
the sample. Therefore the immobilisation of the 
particles on a surface had a major impact of the 
sensitivity of the whole assay, because it allows 
searching for the particles in a systematical way. 

In the near future, we will develop surface-FIDA 
into an ultrasensitive diagnostic assay for particle 
associated disease, especially CJD and Alzheimer’s 
disease. Such an assay will allow early diagnosis of 
AD and CJD using a minimally invasive approach in 
the living patient. In addition, such a diagnostic tool 
will be crucial for on line monitoring of disease 
progression and progress of a therapeutic approach. 

Table 1: Sensitivity and Specificity Characteristics of 
surface-FIDA. 

sensitivity specificity  
Concentration of 
particles on two 

dimensional surface 

Simultaneous binding of 
three probes (one capture, 

two detection probes) 
Single particle detection  Adjustable washing steps 

Reproducible and 
complete counting of all 

aggregates by surface 
scanning  

Detection of protein 
aggregates only, no 

monomers 
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Abstract: We hereby present novel index to quantify ventricular mechanical dyssynchrony by using 
spectral and cross-spectral analysis of conductance catheter volume signals. Conductance 
catheter is a volume measurement technique based on conductance measurement: the 
intraventricular volume, i.e. the time-varying volume of blood contained within the heart cavity, is 
estimated by measuring the electrical conductance of the blood employing a multi-pole catheter. Five 
segmental volume signals (SVi, i=1,…5) can be acquired; total volume (TV) is estimated as the 
instantaneous sum of the segmental volumes. We implemented classical time-domain dyssynchrony indexes 
already utilized in conductance catheter signals analysis, and new frequency-domain indexes. Study 
population consisted of 15 heart failure (HF) patients with left bundle branch block and 12 patients with 
preserved left ventricular (LV) function. We found that spectral measures seem to out-perform classical 
time-domain parameters in differentiating atrial HF patients from no-HF group. These findings  encourage 
the use of spectral analysis to obtain crucial quantitative information from conductance catheter 
signals. 

1 INTRODUCTION 

In a normal heart, mechanical activation of the 
ventricles occurs in a coordinated manner and 
depends on the rapid spread of electric signals via 
specialized fibers (His-Purkinje system) which 
branch out throughout the right ventricular (RV) and 

left ventricle (LV) endocardium (Uhley, 1960). 
When the activation is slowed-down or blocked, 
ventricle activation and contraction become 
dyssynchronous. Ventricular mechanical 
dyssynchrony is most commonly identified clinically 
by a prolonged QRS duration with left bundle-
branch block (LBBB) morphology on surface 
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electrocardiogram but can also be detected by 
echocardiographic imaging of contraction timing. 

Ventricular mechanical dyssynchrony plays a 
regulating role already in normal physiology 
(Brutsaert, 1987) but is especially important in 
pathological conditions, such as hypertrophy (Villari 
et al., 1996), ischemia (Heyndrickx and Paulus, 
1990), infarction (Gepstein  et al., 1998), or heart 
failure (HF) (Nelson, 2000). Dyssynchrony 
exacerbates heart failure (HF) in a variety of ways, 
generating cardiac inefficiency as well as pathologic 
changes at the biologic tissue, cellular, and 
molecular levels. Currently, the conductance 
catheter method has been extensively used to assess 
global systolic and diastolic ventricular function. 
More recently the ability of this instrument to pick-
up multiple segmental volume signals has been used 
to quantify mechanical ventricular dyssynchrony. 

 
Figure 1: The conductance catheter positioning inside the 
left ventricle.  

Conductance catheter was first introduced in 
1981, by Baan and co-workers as a new volume 
measurement technique based on conductance 
measurement (Ban et al., 1981, Ban et al., 1984). 
Intraventricular volume, i.e. the time-varying 
volume of blood contained within the heart cavity, is 
estimated by measuring the electrical conductance of 
the blood employing a multi-pole catheter 
(conductance catether, Figure 1). The conductance 
catheter has 12 electrodes and should be positioned 

along the long axis of the LV in such a way that the 
electrode at the tip is situated within the apex and 
the proximal one just above the aortic valve. A weak 
alternating current (0.4 mA peak-to-peak, 20 kHz) is 
induced between the two most distal and two most 
proximal electrodes, in order to set up an electrical 
field within the ventricular cavity. Other 6 electrodes 
are used pair wise to measure segmental 
conductance signals. Two electrodes are used to 
record the intracardial ECG. A micromanometer 
measures real-time LV pressure. The induced 
voltage is then measured with six electrodes in 
between, yielding 5 segmental voltages. Since the 
conductance of the blood itself is constant 
(neglecting long term changes in haematocrite) the 
measured voltage will be proportional to blood 
resistivity, and thus inversely proportional to the 
conductance or amount of blood between the 
measuring (voltage) electrodes. This method has 
several advantages over other methods which 
determine intra-ventricular volumes. The results are 
obtained immediately, i.e. on-line, and precise 
geometric assumptions regarding the ventricle or 
labor-intensive analyses are not required. Recently, 
Steendijk et al., first introduced time-domain 
quantitative indexes of dyssynchrony based on 
volume signals acquired with the conductance 
catheter (Steendijk et al., 2004). Spectral analysis of 
conductance catheter signals has not been tempted 
yet. Frequency domain analysis has been extensively 
used to characterize a number of physiological 
signals, with promising results in terms of both 
classification schemes (Schumann et al., 2002, 1 
Zywietz et al., 2004, Severi et al., 1997) and 
understanding of physiological mechanisms (Asyali  
et al., 2007, Cerutti et al., 1988, Montano et al., 
2001). During ventricular dysfunction, segmental 
ventricular volumes experience abnormal changes 
which could result in unexpected spectral 
components. Also, the asynchrony and 
incoordination between ventricular segments, that 
seem to be quintessential to ventricular dysfunction, 
could be promisingly explored by cross-spectral 
analysis. The coherence spectrum is a frequency 
domain measure that may be used to make a 
quantitative comparison between activity of two 
heart regions. In the present study, coherence spectra 
have been used to quantify the relation between 
spectral components of ventricular volumes from 
different regions.  The coherence spectrum would 
provide a measure of the synchrony and 
coordination between ventricular sites, and thus be 
indicative of the organization of electrical activity. 
Such a measure would be a useful tool in the 
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characterization and detection of synchronous 
contraction. Coherence measurements may provide a 
means to quantify the terms "synchronous" and 
"dissynchronous" as applied to ventricular 
contraction.  

Aim of this paper is to characterize the 
conductance catheter signals in the frequency 
domain and to propose new indexes for ventricular 
mechanical dyssynchrony quantification.       

2 METHODS AND MATERIALS 

2.1 Study Population 

The study population consisted of 27 consecutive 
patients with indications for electrophysiologic study 
or device implantation: 15 HF patients with left 
bundle branch block and 12 patients with preserved 
LV function. Table 1 shows the clinical 
characteristics of the study population. Age, sex and 
QRS duration were similar between groups. Subjects 
with a previously implanted device, valvular 
insufficiency or stenosis were excluded from 
analysis.  

Table 1: Clinical characteristics of the study population. 

 non-HF group 
(n=12) 

HF group 
(n=15) 

Male gender, n 7 11 
Age, years 67±14 68±6 
Ischemic 
Cardiomyopathy, n - 7 

NYHA Class - 3.1±0.5 
Ejection Fraction, % 57±9 26±6* 
QRS duration, ms 88±21 167±24* 
p-values: * < 0.05 

2.2 Experimental Protocols 

A conductance catheter was placed in the LV via the 
femoral artery, and a temporary pacing lead was 
positioned in the right atrium. The conductance 
catheter enables online measurement of 5 segmental 
volume (SVi, i=1,…,5) slices perpendicular to the 
LV long axis. We used 7-Fr combined pressure-
conductance catheters with 1-cm interelectrode 
spacing (CD Leycom; Zoetermeer, The 
Netherlands). The catheter was connected to a 
Cardiac Function Lab (CD Leycom) for online 
display and acquisition (sample frequency 250 Hz) 
of segmental and LV total volumes (TV), LV 
pressure, and ECG. TV was obtained as the 
instantaneous sum of the segmental volumes.  

Two stimulation protocols have been used, i.e. 
during  spontaneous ventricular activation and atrial 
pacing. For this protocol, hemodynamic status was 
evaluated using multiple parameters. Indices of LV 
pressure, volume, and function were calculated and 
averaged over 8 to 10 beats at end expiration from 
the raw LV pressure and conductance volume data. 
Sequences of 30 s, i.e. 40-50 consecutive non-
arrhythmic cardiac cycles at fixed heart rate induced 
by atrial pacing (at 10 bpm above the sinus rate) and 
steady-state conditions, were selected for off-line 
analysis using custom-designed software. 

2.3 Classical Dyssynchrony Parameters 
Estimation  

From the conductance catheter signals, we estimated 
the following classical time-domain parameters: 
mechanical segmental dyssynchrony (DYS), Internal 
flow fraction (IFF), Mechanical Dispersion (DISP), 
Cycle Efficiency (CE) and Time exceeding aortic 
closure (TExAC). See appendix for more details.  

2.4 Spectral and Cross-Spectral 
Analysis 

First we analysed the segmental and total volume 
signals in the frequency domain. For the spectral 
analysis, the periodogram of the signals was 
estimated. To reduce spectral leakage a Hamming 
window was applied after removal of the mean 
value. The length of segments was 1000 samples and 
a segment-overlap of 30% was used. Then we 
divided the signal bandwidth in 4 frequency bands 
(0-1 Hz, 1-5 Hz, 5-20 Hz and >20 Hz), and we 
estimated the percentage powers (PP) and the peak 
frequencies (PF) in each bands (PP0-1Hz, PP1-5Hz, PP5-

20Hz , PP>20Hz and PF0-1Hz, PF1-5Hz, PF5-20Hz , PF>20Hz, 
respectively). 
The continually changing temporal or phase 
relationship between two volume signals has been 
quantified in the frequency domain by magnitude-
squared coherence (Ropella et al., 1989). 
Magnitude-squared coherence (C(f)) between two 
recordings is defined as 
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Where x(t) and y(t) are two simultaneous recordings, 
Sxy is the cross power spectrum between signals x 
and y, and Sxx and Syy are the individual power 
spectra for signals x and y, respectively. C(f) is a 
measure of the linear relation between signals as a 
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function of frequency, f, and is a real quantity with 
value between zero and one. In other terms, C(f) 
measures the constancy of the time delay (phase) at 
a specific frequency between signals x and y. Two 
linearly related signals (in the absence of noise) will 
have a C(f) function equal to one at all frequencies 
present in both signals, while two random, 
uncorrelated signals will have a C(f) equal to zero at 
all frequencies. Any linear operation (multiplication 
by a constant or addition of a constant) on one or 
both of the signals will not alter the C(f) between x 
and y. However, additive, uncorrelated noise and 
system nonlinearities will reduce C(f) for two 
similar signals. C(f) may be estimated for sampled 
data using a method of overlapped and averaged 
FFT spectral estimates (Carter et al., 1973). 
Basically, estimates of Sxx, Syy and Sxy are 
determined using a periodogram technique (2048-
samples long window, overlap 512 samples), and 
their estimates are then used in the definition of C(f).  

The C(f) functions between each segmental volume 
SVi and the TV have been estimated. A Total 
Coherence function has been defined over the band 
0-125 Hz  by averaging the 5 C(f) functions. From 
the Total Coherence function, 5 new frequency 
domain indexes have been extracted:  
- mean value of the Total Coherence over the band 
0-125 Hz (CohTot) 
- mean value of the Total Coherence from 0 to 1 Hz 
(Coh0-1Hz), 

- mean value of the Total Coherence from 1 to 5 Hz 
(Coh1-5Hz), 

- mean value of the Total Coherence from 5 to 20 Hz 
(Coh5-20Hz), 

- mean value of the Total Coherence from 20 to 125 
Hz (Coh>20Hz). 

2.5 Statistical Analysis  

All data are presented as means±SD. Differences 
between distributions were compared by a t-test for  

 
Figure 2: Examples of SV and TV time series and power spectra, for a no-HF patinet and a HF one. Coherence function 
between SV1 and TV are showed, as well as the total coherence function. 
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Gaussian variables, and by Mann-Whitney 
nonparametric test for nongaussian variables. 
Statistical correlations between variables were tested 
by least-squares linear regression. A P value < 0.01 
was considered significant. We performed receiver-
operating characteristic (ROC) curve analysis to test 
the diagnostic performance of the indexes to 
discriminate the patient groups. Sensitivities and 
specificities at the optimal cut-off point were 
determined. 

3 RESULTS 

Example of the power spectrum of a TV signal are 
showed in figure 2, for a HF patient and a no-HF 
one. The coherence function between one SV and 
the TV and the Total coherence are also showed. 
The characteristics of the power spectrum of TV 
signals are reported in Table 2 (similar results were 
obtained for SVi signals, but were not reported). The 
majority of the signal power is in the band from 1 to 
5 Hz (programmed heart rate during acquisition 
from 70 to 100 bpm). The components above 20Hz 
are associated to less than 1% of the total signal 
power. The frequency peak in the 0 – 1 Hz band 
matches with the respiratory rate and the power in 
this band seems higher in HF group. Table 3 
summarizes the results of the comparison between 
groups for all indexes considered in the analysis, 
represented as mean ± standard deviation. Overall, 3 
parameters permitted to discriminate the two groups 
(p<0.01): Coh1-5, Coh5-20 and  CE. Table 4 shows 
the results of the ROC curve analysis. Sensitivity 
and specificity for Coh1-5 are 0.67 and 0.92, those 
obtained for Coh5-20 are 1.00 and 0.92 and those 
relatve to CE are 0.80 and 0.83, respectively. In 
Figure 3 the ROC curves are shown.  

Table 2: Characteristics of the power spectrum of TV 
signal. 

 no-HF HF p-values 
PP0-1Hz 4.34±6.26 9.12±12.00 0.071 
PF0-1Hz 0.41±0.17 0.45±0.12 0.488 
PP1-5Hz 93.24±6.45 88.44±11.85 0.194 
PF1-5Hz 1.52±0.20 1.44±0.13 0.301 
PP5-20Hz 2.16±1.84 2.21±1.34 0.946 
PF5-20Hz 8.37±0.88 7.63±0.80 0.036 
PP>20Hz 0.25±0.25 0.23±0.15 0.814 
PF>20Hz 37.59±5.12 44.14±7.59 0.013 

4 DISCUSSION 

Quantification of nonuniform mechanical function 
and dyssynchrony may lead to a more complete 
diagnosis of ventricular dysfunction (Schreuder wet 
al., 1997, Schreuder et al., 2000). Moreover, it may 
guide therapy, because patients with extensive 
dyssynchrony are likely to benefit from 
resynchronization therapy (Leclercq et al., 2002). 
The visualization of mechanical dyssynchrony 
provided by methods based on magnetic resonance 
imaging and echocardiography, although further 
emphasize the important role of mechanical 
dyssynchrony in cardiac dysfunction, requires 
laborious procedures and require substantial operator 
interaction and expertise. 

Table 3: Indexes of mechanical dyssynchrony in no-HF 
and HF groups. 

 no-HF HF p-values 
    
DYS, % 26.0±7.2 32.6±3.9 0.012 
IFF, % 25.8±18.8 40.8±13.6 0.033 
DISP, ms 23.4±16.4 35.6±13.2 0.068 
CohTot 0.44±0.07 0.37±0.10 0.016 
Coh0-1 0.63±0.19 0.51±0.18 0.099 
Coh1-5 0.69±0.10 0.57±0.10 0.004* 
Coh5-20 0.47±0.07 0.32±0.04 0.000* 
Coh>20 0.43±0.08 0.37±0.12 0.041 
CE 0.78±0.12 0.58±0.16 0.000* 
TExAC, ms 6.9±8.8 15.7±10.5 0.016 

*p<0.01 

 
Figure 3: ROC curve analysis. 
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Table 4: ROC curve analysis of the tested variables. 

 
Area Under Curve 

(95% CI) 
p-value Cut-off 

Coh1-5 
0.81 

(0.65-0.98) 
0.006 0.57 

Coh5-20 
0.98 

(0.94-1.02) 
0.000 0.40 

CE 
0.88 

(0.75-1.00) 
0.001 0.70 

Recently, novel indexes were introduce to quantify 
dyssynchrony based on volume signals acquired by 
the conductance catheter during cardiac 
catheterization (9). Such indexes were based on a 
time-domain approach and provided additional, new, 
and quantitative information on temporal and spatial 
aspects of mechanical dyssynchrony. 

To our knowledge, conductance catheter volume 
signals have never been studied in the frequency 
domain. Since dyssynchrony refers to the 
organization of the mechanical contraction of the 
ventricle, it is natural to investigate such a 
phenomenon by spectral and cross-spectral analysis 
of ventricular segmental movements. The frequency-
domain analysis can indeed discover particular 
aspects of interaction between volume signals 
beyond the temporal relationships.  

Present analysis permitted to describe some 
characteristics of the conductance-volume signals. 
The frequency analysis evidenced the absence of 
relevant components above 20 Hz: this result 
corroborates the validation of segmental signals 
acquisition obtained by comparison with cine-
computerized tomography (16), whose sampling rate 
has approximately the same value. The amplitude of 
the components in the range 0-1 Hz, attributable to 
the respiratory artefact, resulted markedly higher in 
HF patients, this may be due to the higher 
(mechanical) cardio-pulmonary interaction or to an 
altered vasovagal activity. 

More interesting results have been obtained by 
cross-spectral analysis. The spectral coherence 
function provides a quantitative measure of that 
temporal synchrony and coordination between 
activities of ventricular regions. During synchronous 
mechanical contraction, multiple sites are activated 
in an coordinated manner, and the phase relation 
between activity from two sites is relatively 
unchanging, resulting in a high (close to 1) 
coherence. When ventricular contraction is 
dyssynchronous, the activity observed at one region 
is likely to be unrelated to the activity observed at 
other distant regions. Thus the coherence between 

two such sites would be very low at all frequencies 
due to a continually changing phase relation. 

In the present study, the spectral coherence was 
confirmed to be significantly greater for ventricular 
contraction of no-HF patients than for HF ones. We 
found that the most significant parameters in the 
discrimination between HF and no-HF group were 
Coh1-5 and Coh5-20, with the latter reaching a 
sensitivity of 1 and a specificity of 0.92. Spectral 
measures seem to out-perform classical time-domain 
parameters (9) in differentiating atrial HF patients 
from no-HF group.  

Since no previous studies have been performed 
on a similar topic, the frequency bands have been 
chosen on empirical basis. The choice of the optimal 
frequency bands in term of discriminating power 
would require larger population and/or modelling of 
ventricular contraction.   

In conclusion, this paper encourages the use of 
spectral analysis to obtain crucial quantitative 
information from conductance catheter signals.   
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APPENDIX 

Mechanical dyssynchrony. At each time point, a 
segmental signal is defined as dyssynchronous if its 
change (i.e., dSV/dt) is opposite to the simultaneous 
change in the total LV volume (dTV/dt). Segmental 
dyssynchrony is quantified by calculating the 
percentage of time within the cardiac cycle that a 
segment is dyssynchronous. Overall LV 
dyssynchrony (DYS) is calculated as the mean of the 
segmental dyssynchronies. DYS may be calculated 

within each specified time interval, i.e. during 
systole and diastole, with systole defined as the 
period between the moments of dP/dtmax and 
dP/dtmin. 

Internal flow. Nonuniform contraction and filling 
is associated with ineffective shifting of blood 
volume within the LV. This internal flow (IF) is 
quantified by calculating the sum of the absolute 
volume changes of all segments and subtracting the 
absolute total volume change: 

[ ] 2//)(/)()( ∑ −= dttdTVdttdSVitIF  

Note that dTV(t)/dt represents the effective flow into 
or out of the LV. Thus IF measures the segment-to-
segment blood volume shifts, which do not result in 
effective filling or ejection. Division by two takes 
into account that any non-effective segmental 
volume change is balanced by an equal but opposite 
volume change in the remaining segments. IF 
fraction (IFF) is calculated by integrating IF(t) over 
the full cardiac cycle and dividing by the integrated 
absolute effective flow. 
Mechanical dispersion. In the HF patients, a 
substantial dispersion is present in the onset of 
contraction between the segments. This dispersion is 
assessed by segmental lag times which are 
determined by calculating the cross correlations 
between TV(t) and SV(t) for all systolic time points 
(i.e., between dP/dtmax and dP/dtmin). For each 
segment the lag which produces the highest linear 
correlation is determined. Mechanical dispersion 
(DISP) is defined as 2 standard deviation of the 
segmental lag times. Recently, new parameters have 
been introduced to quantify LV dyssynchrony with 
echocardiographic techniques. These indices can be 
directly applied to conductance method. 
Cycle Efficiency. Calculated as previously described  
by the formula: CE=SW/[ LVP* LV volume], with 
SW = stroke work, LVP = end-systolic – end-
diastolic LV pressure. This index quantifies 
distortions in the shape of the pressure-volume 
diagram. The calculation assumes that the optimal 
contraction would have CE value near 1.0, 
corresponding to a rectangular pressure volume 
diagram. Decreases in cycle efficiency may be 
caused by multiple factors including isovolumic 
volume shifts as well as changes in afterload and 
ventricular stiffness. Similarly, regional cycle 
efficiency can be calculated from the most basal to 
the most apical segmental volume signal plotted 
against LV pressure. Differences in regional cycle 
efficiency during isovolumic filling or emptying 
may indicate inefficient patterns contraction or 
relaxation due to dyssynchrony. 
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Time exceeding aortic closure. In order to measure 
diastolic dyssynchrony and specifically to quantify 
LV contraction in diastolic phase, a new index was 
proposed, quantitatively reflecting the whole 
temporal amount spent by 12 LV segments in 
contracting after aortic valve closure. Using strain 
imaging that reflects myocardial deformation, the 
time of strain tracing exceeding aortic valve closure 
(ExcT) was measured in each segment as the 
interval between the marker of aortic closure and the 
nadir of the strain tracing. ExcT was considered 0 
when the nadir of strain curve did not exceed aortic 
valve closure. The overall time of strain exceeding 
aortic valve closure (oExcT) was computed as the 
sum of the 12 segmental ExcTs. The index may be 
implemented in conductance method by considering 
each segment presenting a systolic phase (negative 
dSVi/dt) persisting during the phase of global 
diastole (positive dTV/dt). oExcT is estimated as the 
sum of these delays for all segments. 
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Abstract: Hypertrophic Cardiomyopathy (HCM) is defined clinically by the growing/thickening of especially the left 
heart muscle. In up to 70 % of cases, there is a family history of this condition. The individual risk for 
affected patients strongly varies and depends on the individual manifestation of the disease. Therefore, an 
early detection of the disease and identification of high-risk subforms is desirable. In this study we 
investigated the capability of cardiac magnetic field mapping (CMFM) to detect patients suffering from 
HCM (n=33, 43.8 ± 13 years, 13 women, 20 men; vs. a control group of healthy subjects, n=57, 39.6 ± 8.9 
years; 22 women, 35 men; vs. patients with confirmed cardiac hypertrophy due to arterial hypertension, 
n=42, 49.7 ± 7.9 years, 15 women, 27 men). We introduce for the first time a combined diagnostic approach 
based on map topology quantification using Kullback-Leibler (KL) entropy and regional magnetic field 
strength parameters. The cardiac magnetic field was recorded over the anterior chest wall using a 
multichannel-LT-SQUID system. We show that our diagnostic approach allows not only detecting HCM 
affected individuals, but also discriminates different forms of the disease. Thus, CMFM including KL 
entropy based topology quantifications is a suitable tool for HCM screening. 

1 INTRODUCTION 

Hypertrophic cardiomyopathy (HCM) is a primary 
inherited cardiac muscle disorder characterized by 
hypertrophy, usually in the absence of other loading 
conditions, such as hypertension. In the general 
population, familial hypertrophic cardiomyopathy 
(FHCM) is the most common cardiovascular genetic 
disorder with a prevalence of about 1 in 500 adults. 
HCM is caused by mutations in several cardiac 
sarcomeric contractile protein genes. So far 
mutations in 11 different genes, including the 
cardiac ß-myosin heavy chain (ß-MHC), myosin-
binding protein C (MyBP-C), cardiac troponins T 
and I, α-tropomyosin, myosin light chains and, more 
recently, titin and actin genes, have been identified 
(Seidman 1998, Thierfelder 1994). Histo-
pathological hallmarks of HCM are myocyte 

hypertrophy with disarray and increased cardiac 
fibrosis, leading to electrical remodeling processes 
in the myocardium (Maron, 2004). The clinical 
course of the disease is heterogeneous. Clinical 
presentation of HCM ranges from minimal or no 
symptoms to the development of the most serious 
complications, including atrial fibrillation, heart 
failure, and sudden death, often at a young age and 
in the absence of previous symptoms (Spirito, 1989). 
One of the strongest predictors of disease 
progression to heart failure and finally death is the 
existence of a hemodynamic obstruction of the left 
ventricular outflow tract during systole, which per 
convention is defined by a pressure gradient ≥30 
mmHg measured by continuous wave doppler 
echocardiography. Therefore, it is of clinical 
importance to distinguish between the obstructive 
(HOCM) and non obstructive (HNCM) form of the 
disease.  Familial hypertrophic cardiomyopathy is 
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the most common structural cause of sudden cardiac 
death in individuals aged less than 35 years, 
especially in competitive athletes. Thus, an early 
recognition of the disease is useful for risk 
assessment and starting drug therapy and non-
pharmacological treatment options to prevent 
prognostic fatal heart failure and mortality. The 
detection of affected patients remains still 
challenging. Genetic testing allows accurate 
diagnosis of HCM and its causing mutations, but has 
some limitations. First, DNA screening is not part of 
routine clinical evaluation, and identifies the 
mutation actually only in 50-60 % of patients. 
Secondly, as shown by DNA genotype-phenotype 
correlation studies, the disease expression varies not 
only between unrelated individuals but also within 
the same family. At present, clinical screening and 
risk stratification includes medical history, clinical 
examination, 12-lead ECG at rest and under physical 
exercise, Holter-ECG, echocardiography and cardiac 
magnetic resonance imaging. Follow-up 
examinations should be encouraged in affected 
patients on a 12-18 month basis. For their first 
degree relatives annual evaluations are 
recommended in the adolescence period and every 5 
years beyond the age of 18.  

Noninvasive electrophysiological diagnosis in 
patients suffering from HCM is usually done by 
electrocardiography, rarely by body surface potential 
mapping studies. However, information content 
from ECG signals seems to be limited and not 
disease specific (Maron, 1990). As an alternative to 
electrocardiography, magnetocardiography can be 
used for a study of cardiac electrophysiological 
phenomena, especially myocardial electrical 
remodeling processes. Changes in myocardial 
electrical properties were shown to be associated 
with the development of hypertrophic 
cardiomyopathy (Fananapazir, 1989). Multi channel 
cardiac magnetic field mapping (CMFM) reflects the 
magnetic fields generated by the myocardial 
electrical currents occurring during the cardiac 
cycle. CMFM signals have several advantages: (1) 
they are little influenced by the tissues between skin 
and heart; (2) they are sensitive to tangential 
currents that arise in the border zones of cardiac 
tissue with different electrophysiological properties; 
(3) they consider the track of electrical vortex 
currents; and (4) their properties make it possible to 
accurately localize intracardiac sources (Fenici, 
2003).  

We therefore investigated the capability of 
CMFM to detect patients suffering from HCM, 
including those who have a very mild phenotype or 

are asymptomatic. The purpose of the study was to 
develop a CMFM based diagnostic approach to 
improve screening/diagnosis of HCM. We 
introduced the calculation of Kullback-Leibler 
entropy as a parameter to quantify the topology of 
cardiac magnetic field distribution. We use the term 
map topology as a synonym for the two-dimensional 
distribution of cardiac magnetic field strength. Note 
that this term is therefore independent from field 
strength amplitudes. The mathematical method, first 
described by Kullback and Leibler in 1951, provides 
a value of the similarity between two probability 
distributions (Kullback).  

We further analyzed, whether a combination of 
KL based topology quantification with regional field 
strength parameters improves the discrimination 
power of the automatic diagnostic algorithm.  
Our study was done to address three questions: 
1. Can CMFM distinguish between HCM 
individuals and healthy control subjects or patients 
with cardiac hypertrophy of other causes?  
2. Is it possible to discriminate between the two 
main phenotype subgroups of HCM; patients with 
(HOCM) and without (HNCM) obstruction of the 
left ventricular outflow tract? 
3. How do CMFM based classification algorithms 
perform, when prospectively applied for screening in 
HCM families with known genetic status? 

2 METHODS 

2.1 Patients 

Thirty three patients (HCM, n=33, 43.8 ± 13 years, 
13 women, 20 men) affected by hypertrophic 
cardiomyopathy were recruited from our hospital 
based cardiomyopathy-outpatient center. The 
diagnosis was confirmed by complex diagnostic 
tests including echocardiography and magnetic 
resonance imaging established on evidence-based 
guidelines. HCM was diagnosed by the presence of a 
non-dilated and hypertrophied left ventricle in the 
absence of another cardiac or systemic disease (e.g. 
hypertension or aortic stenosis) capable of producing 
the magnitude of hypertrophy observed. Nineteen 
patients suffered from the obstructive form and 14 
patients from hypertrophic non obstructive 
cardiomyopathy.  

The total number of subjects in the control group 
(NoHCM) was n=99. We recruited a healthy 
volunteers group from an occupational health center. 
The 57 healthy volunteers (age 39.6 ± 8.9 years; 35 
men and 22 women) had normal findings in 
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echocardiography, bicycle ergometry, ECG and 
Holter-ECG for many years. No control subject had 
a history of cardiac diseases or symptoms. Forty two 
patients with essential arterial hypertension (HYP, 
n=42, 49.7 ± 7.9 years, 15 women and 27 men) were 
also included in this study, fulfilling the following 
criteria: known hypertension on pharmacological 
therapy; echocardiographicly estimated left 
ventricular hypertrophy (Framingham heart study 
classification FHC 1-2); no prior clinical 
manifestation or angiographic documentation of 
coronary artery disease; no evidence of prior 
myocardial infarction. The NoHCM group consists 
of both healthy volunteers and hypertensives 
(together n=99) to get a more realistic control group 
for familiar HCM screening.  

Two families with genetically proofed HCM (ß-
MHC, α-Tropomyosin; 4 HNCM, 1 HOCM, 22 
family members in total) were investigated 
prospectively to check the accuracy of the MFM 
screening tool.  

Our internal review board approved the study 
and written informed consent was obtained.  

2.2 Magnetocardiographic 
Measurements 

The cardiac magnetic field was recorded over the 
anterior chest wall using a seven channel magnetic 
measurement system (Cryoton Ltd, Moscow) based 
on low temperature Superconducting Quantum 
Interference Device (LT-SQUID), coupled with an 
axial second order gradiometer (baseline 5.5 cm, 
pickup coil diameter 2 cm). The component of the 
magnetic field perpendicular to the chest wall was 
registered in a 38 point grid (Fig. 1a). To improve 
the signal to noise ratio all measurements were done 
in a magnetically shielded room (VAC Akb3b) with 
a shielded factor better than 10000 at 10 Hz. Typical 
system performance in this environment was 7 fT in 
unit band. The measurements were done sequentially 
at six measurement positions (Fig. 1a) to cover a 
mapping area of 20x20 cm. Recording time was 30 
seconds per point with an acquisition rate of 1000 
Hz and a bandwidth of 0.01 – 130 Hz. The ECG lead 
II was recorded simultaneously as a time reference 
signal for further processing. Thereafter, signal 
averaging techniques and offset corrections were 
applied. Averaged data were then transformed from 
irregular measurement grid to the regular 6x6 point 
grid (20 cm width and height) using thin-plate-spline 
surface. Fig.1b shows averaged cardiac magnetic 

 
Figure 1: The layout of cardiac magnetic field map 
(CMFM) measurement: (a) CMFM measurement grid 
based on a seven channel system. The dashed lines denote 
six sequential measurement positions. (b) Cardiac 
magnetic field waveforms transformed into a regular grid 
(6x6) corresponding to the light grey square in panel (a).  

signals for the regular grid. The strength of the 
cardiac magnetic field was in the range of 10 – 100 
pT (picotesla, 10-12 Tesla). The MFM amplitude 
depends on the distance between measurement plane 
and patient heart. To compensate this effect we 
normalized magnetic field strength by the mean 
absolute value during QRS averaged over 36 points 
of rectangular grid. 

2.3 Cardiac Magnetic Field Map 
Quantification 

After averaging we obtained 1000 samples for each 
of the 36 measurement positions (Fig 1b), leading to 
1000 different CMFM. Thus, the dimensionality of 
measured data is very high and therefore, we have to 
reduce it. One solution we present here is based on 
the concept of Kullback-Leibler entropy to quantify 
the topology of each map. Suppose that Q={Qi} 
(i=1,..,36 – the number of measurement positions; 1: 
A1, …, 6: A6, 7: B1, …, 12: B6, …36: F6 in Fig 1b) 
is a given reference well-behaved probability 
distribution (all Qi>0) and that P={Pi} (i=1,..,36) is 
some trial probability distribution. The difference of 
information content of P compared to the reference 
distribution Q is quantified by the Kullback-Leibler 
entropy  

i

i

i
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PPP,QKL ln )(
36

1

∗=∑
=
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The Kullback-Leibler (KL) entropy can be 
considered as a kind of distance between the two 
probability distributions, though it is not a real 
distance measure because it is not symmetric. In our 
study, KL entropy was used to quantify differences 
in topology between magnetic field maps of a single 
subject compared with a reference maps. For each 
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time point, the group mean CMFMs of subjects 
without HCM was used as a reference map. To 
quantify topology independent from amplitudes, 
each CMFM was normalized to get a probability 
distribution. For maps very similar to the reference 
we obtain a KL entropy value near zero, differences 
in topology lead to higher KL entropy values. 

For each time point between the onset of QRS 
and the offset of T-wave, KL values describing 
differences in topology were calculated. In order to 
avoid inadequate comparisons due to interindividual 
differences in QRS and STT duration, we limited the 
considered time intervals to the shortest QRS and 
STT lengths in the study population. To identify sub 
segments with the highest differences in KL values 
between compared groups, we calculated the 
discriminant index (DI) for every time point as 
follows: the absolute differences of mean KL values 
in both groups were divided by the standard 
deviation of all cases. Mean KL values during QRS 
and STT subintervals with a DI value greater than 
0.8 were considered as classification parameters 
KLQRS(DI>0.8) and KLSTT(DI>0.8).  

 
Figure 2: Mean group Kullback-Leibler (KL) entropy 
values over time during QRS (a) and STT (b). NoHCM 
group values are denoted with solid (blue) lines and HCM 
group values with dashed (red) lines (reference maps: 
NoHCM group). Lower panels give discriminant index 
(DI) values during QRS (a) and STT (b) intervals 
respectively: KL values for time intervals where DI was 
higher than 0.8 (dashed lines) are considered for 
KLQRS(DI>0.8) and KLSTT(DI>0.8) calculation. 

To assess regional differences in magnetic field 
strength, which cannot be captured by topology, we 
calculated 36 regional parameters (QRSA1-F6, for 
positions see Fig. 1b) as mean values of magnetic 
field strength during QRS complex. Data processing 

was performed in two steps: classification rules were 
determined, firstly to discriminate between groups 
with and without HCM, and secondly to 
discriminate patients with different forms of HCM. 
For each step classification performance was tested 
for KL parameters, regional features and then for 
their combinations. Finally, the best set of predictors 
was prospectively applied to identify members of 
HCM families affected by the disease.  

3 RESULTS 

Discrimination of HCM Individuals from Healthy 
Control Subjects and Patients with Cardiac 
Hypertrophy of other Causes (NoHCM). The 
mean KL values of the HCM and NoHCM groups 
during QRS and STT interval are given in Fig. 2 
(upper panels), with the corresponding DI values in 
the lower panels. Only the beginning and parts of the 
second half of the QRS are discriminating (DI>0.8) 
for these groups, whereas for STT almost the whole 
segment is distinctive. These subintervals were used 
to calculate KLQRS(DI>0.8)  and KLSTT(DI>0.8). 
Mean values of these parameters differed 
significantly between the two groups (Tab. 1). LDA 
based on these two features yielded a sensitivity of 
78.8 % and specificity of 86.9 % (Tab. 1) with an 
overall correct classification rate of 84.8 %. Next, 
we estimated discrimination power of regional 
parameters based on mean values of magnetic field 
strength in each grid position. Forward stepwise 
discriminant analysis was performed to select the 
best two feature set: QRSB3 and QRSF3. QRSB3 
was positive in the NoHCM and negative in the 
HCM group (Tab. 1, p < 10-8). For QRSF3 mean 
values of both groups were comparable and not 
significantly different. However, this parameter was 
automatically selected by LDA because it provides 
orthogonal information to QRSB3 to separate both 
groups. The overall classification rate based on these 
two regional parameters was lower than with KL 
based: The specificity of 85.9 % was comparable 
with KL features but the sensitivity of 66.7 % 
(cross-validated only 63.6 %) was substantially 
lower (Tab. 1). 
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Table 1: Descriptive statistics of patient groups without 
HCM (NoHCM) and with HCM as well as their 
separability. Data are given as mean values ± SE and 
percentage of correctly classified (CC) cases. If ‘leave one 
out’ crossvalidated results of discriminant function 
analysis differ from the original results, they are shown in 
parentheses. P-values were obtained with the Mann-
Whitney-U-test (univariate cases) and the Wilks-Lambda 
test (linear discriminant function). Three classification 
approaches were used: (a) KL: based on Kullback-Leibler 
entropy mean values for QRS and STT time intervals 
where discriminant index (DI) was higher than 0.8, (b) 
Regional: based on selected regional parameters, (c) 
KL+Regional: based on selected KL and regional 
parameters. 
  NoHCM HCM P - value 

KLQRS(DI>0.8) 0.14 ± 0.007 0.27 ± 0.019 4.8*10-10 

KLSTT(DI>0.8) 0.11 ± 0.015 0.33 ± 0.03 1.1*10-10 

 

KL 

 CC 86.9 % 78.8 % 3.9*10-17 

QRSB3 0.45 ± 0.07 -0.59 ± 0.14 7.8*10-9 

QRSF3 0.7 ± 0.05 0.68 ± 0.12 0.34 

Regional 

CC 85.9 % 66.7 % (63.6 %) 6.2*10-12 

QRSA6* -0.46 ± 0.02 -0.37 ± 0.06 0.44 KL+Regional 

CC 88.9 % 84.8 % 6.9*10-19 

  
As a last step, we combined KL and regional 

features and applied forward stepwise LDA to find 
the best set of three parameters. This set included the 
KL parameters KLQRS(DI>0.8), KLSTT(DI>0.8) 
and the regional parameter QRSA6. The mean 
values of the latter parameter again did not 
significantly differ between both groups, but the 
combination of these three parameters improved the 
overall classification rate from 84.8 % to 87.9 % 
(sensitivity: 84.8 %, specificity: 88.9 %, area under 
ROC curve: 0.94). The correct classification rates 
for the subgroups included were 98.2 % in normal 
subjects, 76.2 % in hypertensive patients, 85.7 % in 
patients with HNCM and 84.2 % in patients with 
HOCM. 
Discrimination of Obstructive from non 
Obstructive Forms of HCM. For this analysis, KL 
entropy was calculated using the averaged maps of 
the HOCM group as the reference. The mean KL 
values of HOCM and HNCM groups during QRS 
and STT interval are given in Fig. 3 (upper panels), 
with the corresponding DI values in the lower 
panels. Obviously, the only informative part to 
separate HOCM from HNCM is the time interval 
between 57 and 77 ms of the QRS (DI>0.8). Mean 
values of KLQRS(DI>0.8) differed significantly 
(p<10-4) between both groups (Tab. 2). Using only 

this parameter, 78.8 % of patients were correctly 
classified (78.9 % from HOCM group and 78.6 % 
from HNCM group). 

 
Figure 3: Mean group Kullback-Leibler (KL) entropy 
values over time during QRS (a) and STT (b). HOCM 
group values are denoted with solid (blue) lines and 
HNCM group values with dashed (red) lines (reference 
maps: HOCM group). Lower panels give discriminant 
index (DI) values during QRS (a) and STT (b) intervals 
respectively: KL values for time intervals where DI was 
higher than 0.8 (dashed lines) are considered for 
KLQRS(DI>0.8) calculation. 

Table 2: Descriptive statistics of patients with HNCM and 
HOCM as well as their separability. Data are given as 
mean values ± SE and percentage of correctly classified 
(CC) cases. If ‘leave one out’ cross-validated results of 
discriminant function analysis differ from the original 
results, they are shown in parentheses. P-values were 
obtained with the Mann-Whitney-U-test (univariate cases) 
and the Wilks-Lambda test (linear discriminant function). 
Three classification approaches were used: (a) KL: based 
on Kullback-Leibler entropy mean values for QRS where 
discriminant index (DI) was higher than 0.8, (b) Regional: 
based on selected regional parameters, (c) KL+Regional: 
based on selected KL and regional parameters. 
  HNCM HOCM P - value 

KLQRS(DI>0.8) 0. 4 ± 0.04 0.16 ± 0.03 5.1*10-5  

KL CC 78.6 % 78.9 % 3.8*10-5 

QRSF5 0.67 ± 0.28 2.26 ± 0.34 2*10-3 Regional 

CC 71.4 % 63.2 % 1*10-3 

QRSA3* -0.73 ± 0.3 -1.31 ± 0.3 0.08 KL+Regional 

CC 100 % (92.9 %) 94.7 % (89.5 %) 1.5*10-7 

  
Next, we estimated discrimination power of regional 
parameters, which were calculated for the same time 
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interval (57-77 ms of QRS). Forward stepwise 
discriminant analysis found QRSF5 to be the best 
discriminating parameter (Tab. 2). Overall 
classification rate using QRSF5 was 66.7 % (63.2 % 
patients from the HOCM group and 71.4 % from the 
HNCM group were correctly classified). Again, 
regional parameters demonstrated a lower 
classification power. 

As the last step, we combined KL and regional 
parameters and performed a forward stepwise LDA. 
KLQRS(DI>0.8) and QRSA3 were selected. Overall 
classification rate for this parameter set was 97 % 
(94.7 % of HOCM and 100 % of HNCM patients 
were correctly classified, area under ROC curve: 
0.97). 

Prospective Screening of Two HCM Families. 
Application of the two classification algorithms 
based on the selected sets of combined KL and 
regional features yielded a correct classification of 
all 22 family members. This was true not only for 
detection of HCM affected individuals (5 out of 22 
family members), but also for discrimination 
between different forms of the disease (1 HOCM vs. 
4 HNCM). 

4 CONCLUSIONS 

This study investigated the capability of CMFM to 
detect patients affected by HCM. The most 
important findings are, that a KL based topology 
quantification of cardiac magnetic field distribution 
discriminates HCM from non HCM and 
distinguishes between different forms of HCM 
(HOCM and HNCM), and that a combination with 
regional field strength parameters improves the 
discrimination results to a level relevant for clinical 
application.  

Discrimination of HCM Individuals from Healthy 
Control Subjects and Patients with Cardiac 
Hypertrophy of other Causes (NoHCM). Both the 
large variability of the disease expression and the 
resulting complexity of the CMFM raise difficulties 
for the magnetophysiologic diagnostic evaluation of 
HCM. The present paper proposes a new 
diagnostical approach based on CMFM. Different 
analysis techniques are currently used for evaluation 
of cardiac magnetic field maps. This includes for 
example the estimation of changes in magnetic field 
orientation through the cardiac cycle and the 
calculation of QRS-ST-T wave integrals (Van 
Leeuwen, 2006). We applied for the first time the 

methodology of Kullback-Leibler entropy for 
analysis of CMFM to investigate the diagnostic 
information content in topology related to the status 
“HCM affected or not”. As we could show, KL 
values increase with the deviation of map topology 
compared to the reference field distribution. The 
idea to use relative entropy measures to classify 
medical data had already successfully been applied 
to EEG, HRV and MRI-analyses. Using the KL 
approach, we found significant differences in map 
topology during QRS and STT interval between 
HCM patients and the mixed control group of 
healthy volunteers and hypertensives. For the 
process of depolarization the most significant 
differences were found during the early part (5-20 
ms) and within the second half (62-75 ms) of this 
time period. In contrast, the same was true for nearly 
the whole repolarization period (STT interval) with 
marked map topology deviations of the HCM group, 
revealed by the discriminant index. The analysis of 
the CMFM using two parameters based on the 
Kullback-Leibler entropy measures correctly 
classified 84.8 % of the tested groups. As the control 
group contained also patients with cardiac 
hypertrophy due to arterial hypertension, our results 
strongly suggest that Kullback-Leibler based map 
quantification revealed specific topological features 
in HCM patients. They may originate from the 
pathognomonic ventricular remodeling process, 
which includes myocardial disarray, left ventricular 
hypertrophy (LV) and fibrosis. Typically, the LV 
hypertrophy shows asymmetric distribution with 
diffuse or segmental pattern of left ventricular wall 
thickening, most involving the septal region 
(Saumarez, 1992). This is accompanied by changes 
in the electrical properties especially at the initial 
and the last part of QRS, both due to a loss of 
electrical forces because of transmural myocardial 
fibrosis and abnormal electrical activation of 
hypertrophied ventricular septum (Dumont, 2006). 
Echocardiographic and MRI studies showed that the 
balance of these electrical forces is primarily a 
function of the relation of upper anterior septal 
thickness to right ventricular wall thickness and to 
upper left ventricular posterior wall thickness. In a 
non-invasive electrocardiographic imaging study of 
ventricular activation, Ramanathan et al. (2006) 
demonstrated an epicardial right ventricular 
breakthrough in the anterior paraseptal region during 
the earliest ventricular activation under 
physiological conditions in healthy volunteers. At 
the end of the ventricular activation sequence, an 
apex-to-base activation of the posterior left ventricle 
was displayed. Based on this description of the 
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ventricular activation sequence, our findings suggest 
that within the first 20 ms of the ventricular 
activation paraseptal parts of the right ventricle 
could contribute to the observed differences in 
CMFM topology. In contrast, the map topology 
differences at the end of the QRS could reflect the 
influence of regional LV wall hypertrophy and 
myocardial fibrosis on the electrophysiological 
myocardial properties, especially if the propagation 
wave front turns from apical to posterior basal LV. 
These findings are consistent with those from 
invasive electrophysiological and morphological LV 
studies (Schumacher, 2005). Myocardial scarring 
and its electrophysiological consequences like 
slowed and fragmented intraventricular conduction 
also contributed to the specific magneto-
physiological HCM phenotype.  

Changes in repolarization in HCM patients were 
also found in ECG studies (Barletta, 2005). The 
most common abnormalities are related to the ST-
segment and the T-wave. This is in consistence with 
our findings of differences in KL entropy values at 
the STT interval. They probably emanate from 
myocardial disarray, fibrosis and small vessel 
disease leading to scarred myocardium due to 
regional ischemia (Basso, 2000). HCM does not 
affect the ventricles uniformly; it is likely that there 
are areas of diseased myocardium with 
abnormalities in conduction and refractoriness and 
heterogeneity of refractoriness, especially related to 
distal hypertrophy with craniocaudal asymmetry.  

Compared with KL measurements, we also 
found significant regional deviations of magnetic 
field strengths during depolarization period (QRS), 
especially in the superior (sensor position B3) and 
inferior (sensor position F3) part of the mapped area. 
However, the overall classification rate using only 
these parameters was lower compared to the KL 
based set. Specificity was comparable with KL 
method but sensitivity was substantially lower. A 
possible explanation for the lower classification rate 
could be that regional parameters are more sensitive 
to measurement conditions, especially to the position 
of the patient’s heart relative to the measurement 
system. Even with a presumed constant distance 
between sensors and thorax surface, the variations in 
patients’ anatomy result in different heart-sensor 
distances. Automatic adjustments to solve this 
problem are under investigation (Burghoff, 2000).  

In contrast to the lower efficacy of the mean 
values of magnetic field strength approach, the 
classification rate improved adding a regional 
parameter to the KL features. Since the 
crossvalidation did not differ from the original 

results the improvement in classification is due to a 
higher information content of the combined 
parameter set.  

Discrimination of Obstructive from non 
Obstructive Forms of HCM. In order to find a 
discriminant function for separation of HCM 
subforms (HOCM vs. HNCM), we applied the same 
approach but now using the HOCM group maps as 
the reference for KL entropy calculation. As shown 
by high DI values, KL based topology differed only 
in a short time interval within the second part of 
depolarization process (57-77ms). The analysis of 
regional magnetic field differences revealed that 
most significant differences between these two 
HCM subforms exist in the inferior part of the 
mapped area (sensor position F5). HOCM is 
characterized by a predominantly septal 
hypertrophy, which leads to chronic obstruction of 
the left ventricular outflow tract and consecutively to 
an increase in wall stress, myocardial ischemia, 
increased cell death and fibrosis.  

Using gadolinium contrast-enhanced MRI, 
Choudhury et al. found in asymptomatic or mildly 
symptomatic patients with HCM that the extent of 
scar increased significantly in relation to wall 
thickness on a regional basis. The 
electrophysiological consequences are regional 
prolongation of the bipolar endocardial potentials 
and the occurrence of fractionated and split 
potentials, which directly point to an underlying 
inhomogeneity of the myocardial excitation with a 
shift to earlier activation of the lateral LV wall due 
to septal conduction delay. This probably led to the 
observed deviation in CMFM map topology between 
HOCM and HNCM patients in the second part of the 
QRS interval, which could be quantified by using 
the KL entropy method. The alterations of regional 
electrophysiological properties at hypertrophic 
septal areas are responsible for the observed changes 
in the inferior mapped area.  

Intended to detect HCM subforms, KL entropy 
measures were superior to the analysis of regional 
map differences. But, adding a regional parameter 
QRSA3 to KL entropy parameters, the classification 
result improved to 97 % with a sensitivity of 100 % 
for HNCM and a specificity of 94.7 % for HOCM.  

Feasibility of the Approach and Conclusions. The 
correct classification of 5 HOCM and HNCM 
patients out of 22 family members, in which the 
diagnosis was confirmed by genetic testing, showed 
in a prospective part of the study the feasibility of 
the presented diagnostic algorithm. Our results give 
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evidence, that KL entropy as a natural distance 
measure between two probability distributions is an 
effective tool to obtain discrimination information 
from CMFM measurements. It is important to point 
out that the KL tool is applicable to CMFM analysis 
in a population characterized by a broad spectrum of 
magnetophysiological and clinical phenotype 
expression. Prospective screening of HCM family 
members is strongly recommended, including serial 
echocardiographic and electrocardiographic 
examinations (Maron, 2004).  

In conclusion, a combined diagnostic algorithm 
based on KL entropy topology quantification and 
regional parameters of cardiac magnetic field maps 
is a suitable tool for HCM screening and 
discrimination between different forms of the 
disease.  
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Abstract: In the present work, we have developed and improved a tool for the automatic arrhythmias detection, based 
on neural network with the “more-voted” algorithm. Arrhythmia Database MIT has been used in the work in 
order to detect eight different states, seven are pathologies and one is normal. The unions of different blocks 
and its optimization have found an improvement of success rates. In particular, we have used wavelet 
transform in order to characterize the patron wave of electrocardiogram (ECG), and principal components 
analysis in order to improve the discrimination of the coefficients. Finally, a neural network with more-
voted method has been applied. 

1 INTRODUCTION 

In Europe, cardiovascular diseases are one of most 
important causes of death, with a great repercussion 
in health assistance budget. For instance, to obtain 
an early exact cardiovascular diagnosis is one of the 
most important missions for the physicians. The 
electrocardiogram is the graphic description of the 
heart electric activity registered from the body 
surface and is a basic element in the diagnosis of 
different heart diseases. 

The objective of this study is to make deeper in 
the extraction of characteristics and the later 
automatic classification of heart pathologies, 
analyzing every aspect that takes parting.  

To carry on with this objective, we have 
developed Matlab software (Matlab, 2006), clear 
and easy, where users have three options to practise 
with all tools at their hands: making a pre-processing 
with wavelet transform and in order to play with the 
developed filing.  

Wavelet transform (Romero-Legarreta, 2005) is 
a mathematics technique that has gained importance 
in the last years in all kind of applications related 
with non-stationary signal process. 

Although the decomposition in well defined 
blocks in time and frequency, wavelet transform can 
characterise the local sign regularities. This skill 

allows distinguishing electrocardiogram waves 
(ECG) from noise and other artefacts. 

In this paper, we establish the use of 
approximated wavelet coefficients taken out from 
the ECG signal in order to classify eight types of 
beat: normal pulse (N), extra-systole (L), premature 
ventricular contraction (R), premature auricular 
contraction (/), blockade left branch (A), blockade 
right branch paced beat (V), fusion of normal and 
paced beat (f) and fusion of normal and premature 
ventricular contraction (F). 

The use of principal component analysis (PCA) 
(Bianchi, 2006) on the wavelet coefficients has 
improved their discrimination. Finally, we have used 
an automatic classification based on artificial neural 
networks (NN) (Bishop, 1995), (Juang, 1992). An 
improvement have been applied to NN, we have 
implemented the “more voted” method, obtaining 
better success rates. 

2 WAVELET TRANSFORM: 
FEATURE EXTRACTION 

The ECG features are extracted through a pre-
processing stage in which the Wavelet transform is 
applied to original ECG signal.  
 The Discrete Wavelet Transform (DWT) is 
defined as follows: 
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where kj ,ψ  is the transform function: 

The application of different mother families on 
pre-processing (artefacts elimination) and on the 
feature extraction has got a set of good and 
discriminate parameters.   

3 PRINCIPAL COMPONENT 
ANALYSIS 

Principal components analysis (PCA) is a technique 
used to reduce multidimensional data sets to lower 
dimensions for analysis. The applications include 
exploratory data analysis data and for generating 
predictive models. PCA involves the computation of 
the eigenvalue decomposition or Singular value 
decomposition of a data set, usually after mean 
centering the data for each attribute. The results of a 
PCA are usually discussed in terms of scores and 
loadings. This process applied to ECG arrhythmias 
is named blind source separation, where there are 
fewer sources than input channels.  

The blind source separation consists in several 
sources that are mixed in a system, these mixtures 
are recorded and then they have to be separated to 
obtain the estimations of the original sources. The 
following figure shows the mixing system: 

 
Figure 1: 2 Sources – 2 Mixtures system. 

Generally, there are n source signals statistically 
independent )](),...,([)( 1 tststs n= , and m 
observed mixtures that are linear and instantaneous 
combinations of the previous 
signals )](),...,([)( 1 txtxtx n= . Beginning with the 
linear case, the simplest case, we have that the 
mixtures are: 

   (3) 

Now, we need to recover s(t) from x(t). It is 
necessary to estimate the inverse matrix of H, where 
hij are contained. Once we have this matrix: 

 
(4) 

 
Where y(t) contains the estimations of the original 

source signals, and    is the inverse mixing matrix. 
Now we have defined the simplest case, it is time to 
explain the general case that involves convolutive 
mixtures. The process is defined as follows: 

 
Figure 2: BSS General problem. 

Where       is the mixing system: 
 
 
 

(5) 
 
 
 

The hij are FIR filters, each one represents an 
acoustic transference multipath function from 
source, i, to sensor, j. i and j represent the number of 
sources and sensors. 

4 NEURAL NETWORK 

For this present work, we have implemented a 
supervised classification system for the discrete 
wavelet coefficients. Firstly, a neural network 
classification system using time intervals obtained 
from the previous extraction process is implemented. 

This classifier has used a Feed-Forward Neural 
Network (NN) with a Back-propagation algorithm 
for training (Bishop, 1995), (Juang, 1992), where the 
number of input units is given by the dimension of 
the vector of features. And the number of output 
units is given by the number of pathologies to 
identify. Too, we have researched with different 
number of neurons in the hidden layer, in order to 
get the optimum recogniser. 

Besides, the found success has been improved 
using the method of the ‘more voted’, where we 
have built a schedule with different neural networks 
(see figure 1). 
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Figure 3: Classification System with ‘more voted’ 
algorithm, based on NN. 

5 EXPERIMENTS  

We have taken 24 signals from the MIT-BIH 
ARRHYTHMIA database (MITDB)( MIT-BIH, 
2007), choosing 750 samples from each class, 6000 
beats to classify; some of them are recognized by the 
MIT as difficult classifying signals. To remove noise 
from signals, the net interferences and the base line 
variations, we have use techniques proposed in (1). 
It consists in obtaining detail coefficients for 
different wavelet levels, to apply them a non-lineal 
form threshold, using a soft-thresholding calculated 
by the inverse transform to obtain the result signal. 
The threshold follows this 
expression:∂ = 2log(N) ˆ σ  ; where N is the 
number of decomposition  levels and coefficients 
represent the details coefficients for the level to 
filter. In function of the wavelet family and the 
decomposition level, the result will change. In this 
work, we take Daubechies 3 of level 3 following our 
studies. Also we take different types of parameters 
as temporal as Fourier and Wavelet coefficients. 

With temporal parameters took out from our 
previous works and algorithms (the time of Pwave, 
PR segment, QRS complex, QT segment and T 
wave, and the area of P wave, QRS complex and the 
T wave) we did not get to characterize any kind of 
beats, the same result were taken with Cosen Fourier 
Transform (DCT). 

Hence we only select the approximation wavelet 
parameters like “in-parameters”. The classification 
is realised with a neural networks using back-
propagation. Once took out the wavelet coefficients 
with sym4 family and the third decomposition level, 
the neural networks has three layers. To obtain the 
number of neurons of the hidden layer, we tried with 
different numbers and with 45 we got the best result 
with an error of 26%. How the error is too much, we 

make principal components analysis, since with it, 
the network size and the computational cost are 
reduced. With this study the characteristic vector is 
ortogonalised to avoid the correlations of his 
components, is arranged and the components with 
less information are deleted. The algorithm is 
applied to the characteristic vector, the mean is 
established in cero and the standard deviation in one, 
after, the PCA is applied, in this case with 0,02%. 
The variations are showed in the next figures: 

 

 
Figure 4: Signal and its coefficients. 

 
Figure 5: Modification of the coefficients. 

With this technique, the network in trained again 
with the same conditions and the result with 55 
neurons in the least error: 2,27%. This shows us a 
satisfactory study. Many trainings are realises where 
characteristics are: 3.000 beats (375 per class) for 
the training stage and the same quantity for the test 
stage, different PCA values (0,02%, 0,2 % and 2 %) 
the second, the third and the fourth decomposition 
level and ten wavelet families (Bior2.4, Bior5.5, 
Bior 6.8, Harr, Sym2, Sym4, Sym5, Sym8, rBio3.1, 
rBio5.5). With the result obtained we noticed is 

Neural Network1  
 

 
 

‘More Voted’ 
Algorithm 

 

Neural Network2 

Neural NetworkN 

... 
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better have a lot of approximation coefficients and 
alter make a PCA, instead of hace less quantity of 
approximation coefficients, then in better a low level 
and apply PCA. The best result were obtained with 
the wavelet rBio 3.1 at level 2 and PCA= 0,02% 
with 1,97% of error. “The most voted” technique is 
applied to boot the result. This model consist of 
select some networks an apply to all the same test in 
parallel. Finally, the results are compared and the 
result most voted is selected. In the figure 4 a double 
network is represented with only two parallel 
networks. 

 

 
Figure 6: Parallel neural network. 

With this new structure, the filing reduces error 
to 1.8% in the simulation and 1.4 in the train 
process. For the entire database, it has an error of 
1.6%. 

Table 1: Matrix confusion. 

  OUTPUT CLASSES 

    N L R / A V f F 

N 375 0 0 0 0 0 0 0 

L 0 372 0 0 0 0 3 0 

R 1 0 372 0 2 0 0 0 

/ 0 0 0 375 0 0 0 0 

A 16 0 3 2 351 1 1 1 

V 0 0 0 0 2 369 3 1 

f 0 0 0 4 0 0 371 0 

IN
PU

T 
C

LA
SS

ES
 

 

F 0 1 0 2 4 0 7 361 

 

In the confusion matrix we can see, that the class 
that has more errors is the premature ventricular 
contraction, classifying this as normal beat, this is 
because the morphology of the auricular premature 
contraction is similar to the normal. Respect to the 
classification between normal and pathologic signals 
the filing detect the healthy signals whit a 100% and 
the pathologic signal with a 99,35 % being the total 
classification between this two classes a 99.7%. 
Respect to the computational time, we remember 
that the filing has three parts: the extractions of 
wavelet characteristics, the principal components 
analysis and the test process. This time are detailed 
in the table 2: 

Table 2: Load times in seconds. 

Process Computational Time 

Wavelet 0,010623 s 

PCA 0,002571 s 

Test 0. 111877 s 

TOTAL 0,1251 s 
 
Having in mind that a full beat has an 

approximated duration of 800 ms, the filing will 
classify the beat only 125 ms later, without the time 
of pre-processing and segmentation. These times are 
Matlab time. The part of classification depends on a 
well segmentation process, this is we propose to 
make a robust segmentation for noise and cardiac 
pathologies. 

Finally, we have compared our results with other 
authors (Song, 2005), (Zimmerman, 2004), 
(Jankowski, 2003). The new blocks used for this 
application and with the optimization of the 
remainder of the blocks, we can observe as our 
results are better than the previous references. 

6 CONCLUSIONS 

It has been implemented and improved an automatic 
arrhythmias recogniser using a neural network with 
more voted algorithm. We have found error rate of 
1.8% with independent samples, only using for the 
test (8 different classes); and an error rate of 0.3% 
for pathology or normal class. 
The ECG signal used is from MIT arrhythmias 
database, and it has been parameterized with DWT 
coefficients and selected with PCA. 

Evaluation set 

Neural 
Network 

Neural 
Network 

More  
voted 

Decision

Random weights 

Random weights 
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Abstract: The possibility to access the fetal ECG non-invasively during the early stages of the pregnancy is a paramount
requirement for cardiologists aiming to treat fetuses withcongenital hearth diseases. Several research works
have been presented during the past years to address this issue. In this paper we present a block-on-line blind
source separation technique that combines the powerfulness of the batch JADE algorithm to the requirements
of a separation able to adapt to a time-varying mixing process. To avoid estimated sources permutation, a
simple preconditioning technique in conjunction with a proper parameters tuning has been developed and
tested. The whole algorithm has been implemented on a powerful floating-point Digital Signal Processor, and
it is ready to be embedded in an acquisition device for a deeper experimentation.

1 INTRODUCTION

Fetal electrocardiography would allow the early di-
agnosis of some fetal heart congenital diseases, ef-
fectively treatable by transplacental drugs adminis-
tration, that cannot be discovered by means of other
more expensive diagnostic instrumentation such as
ultrasound-based devices. Fetal electrocardiogram
(FECG) extraction from multichannel transabdominal
maternal potential recordings can be accomplished re-
sorting to Blind Source Separation (BSS) techniques.
Off-line BSS methods exploiting fourth-order statis-
tics have been proven to be more effective than other
methods but they are very computationally intensive
and unable to deal with long-lasting recordings with
possibly time-varying mixing processes.

In this paper we present a possible solution to such
problems introducing a block-on-line version of the
famous JADE algorithm (Cardoso and Souloumiac,
1993), with the aim to take from it the high separa-
tion quality, at the same time allowing the process-
ing in presence of a potentially time-varying mixing
process. Estimated sources permutation was avoided
by means of a preconditioning technique used in con-
junction with a proper parameter tuning. To assess
the actual real-time capabilities of the algorithm, we
present its porting and simulation on a floating point
Digital Signal Processor (DSP) by Texas Instruments
(TI). Due to such implementation, which still pre-
serves a great portability, the system is ready to be
embedded in an acquisition device for a deeper ex-

perimentation. Separation quality results have been
assessed on a publicly available database.

In Section 2 a short review of some related works
is presented, whereas the proposed algorithm is de-
scribed in Section 3. Section 4 deals with the DSP
implementation of the system. Experimental results
are presented in Section 5. Section 6 concludes this
work.

2 STATE OF THE ART

Non-invasive fetal electrocardiography is not yet used
in clinical practice because of the difficulty in extract-
ing the signal of interest, particularly in real-time.
Cutaneous recordings from a pregnant woman com-
prise fetal and maternal heart signals, electromyo-
graphic and breathing noises, and external interfer-
ences. Since FECG and maternal ECG (MECG)
have overlapping spectra, they cannot be separated
through conventional frequency selective filtering.
Many methods yield an estimate of the maternal
signal from her chest, then removing this contribu-
tion from the composite abdominal one to obtain
the FECG. Widrow (Widrow and Stearns, 1985) pro-
posed a method of adaptive filtering and noise can-
celling but its performance is very dependent on the
electrodes placement. Camps (Camps et al., 2001)
provided an extension of Widrow’s scheme by includ-
ing in it a finite impulse response neural network. The
drawback is the complexity of the choice of free pa-
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rameters, whose number increases geometrically with
the number of inputs, though without eliminating the
problem of high sensitivity to electrodes placement.
Kanjilal (Kanjilal et al., 1997) used Singular Value
Decomposition (SVD) to recover fetal and maternal
components from a single channel. Since this method
is based on nearly periodicity of ECG signals, it is
unsuitable to detect unexpected patterns. Mochimaru
(Mochimaru et al., 2002) suggested a wavelet-based
method, but this approach suffers in presence of over-
lapping maternal and fetal QRS complexes.

BSS aims to recover the source signals from a
set of mixtures without a priori knowledge of the
mixing process (blindly). Under the hypothesis that
the mixing process is linear, if we denote withs
the n-dimensional vector of sources, withx the m-
dimensional vector of observed mixtures and with
A ∈ Rm×n the mixing matrix, the problem can be
mathematically formulated as in (1):

x(k) = As(k) (1)

wherek represents a discrete time index. The solu-
tion consists in finding an unmixing matrixB ∈ Rn×m

such that̂s(k) = Bx(k) is a good estimation ofsup to
a permutation and a multiplicative constant (the two
BSS ambiguities).

Source separation can be accomplished by Prin-
cipal Component Analysis (PCA) and Independent
Component Analysis (ICA). PCA looks for compo-
nents which are uncorrelated, whereas ICA looks for
components which are statistically independent, i.e.
whose higher order cumulants are all diagonal ten-
sors. Since uncorrelated sources are not necessarily
independent, unless they have a Gaussian distribution,
and ECG signals are known to be super-Gaussian,
ICA is more appropriate than PCA, producing bet-
ter results (Bacharakis et al., 1996). Sources involved
in this application descend from different bioelectric
phenomena and can be fairly considered statistically
independent. It is also well-accepted that MECG
gives rise to 3 source signals and FECG can be rep-
resented by means of 2 source signals (Nandi and
Zarzoso, 1997). Hence it suffices to have a number
of observed mixtures not lower than the number of
sources to ensure the identifiability of ICA model. In
the following, we assumem = n, then all vectors will
ben-dimensional and all matrices will ben×n.

Since De Lathauwer (De Lathauwer, 1995) has
first used ICA to separate FECG successfully, many
researchers resorted to the same approach, proved to
perform better than the Widrow’s method (Zarzoso
and Nandi, 2001), and rather robust with respect to
electrodes placement. De Lathauwer (De Lathauwer
et al., 2000) showed ICA capability to reveal ectopic

beats in a regular ECG, differently from other ap-
proaches making assumptions on the signal charac-
teristics. This property makes BSS by means of ICA
suitable for medical applications.

3 THE PROPOSED ALGORITHM

All the algorithms cited in Section 2 process data in
batch mode, so they can be used only if the mixing
process does not change over time. Since both mother
and fetus can move, the separation algorithm must be
able to track such changes. Some on-line solutions
have been conceived but, unlike batch ones, the qual-
ity of the estimated sources is quite poor. We identi-
fied a good on-line algorithm in terms of separation
quality in Mermaid (Marossero et al., 2003) but the
main drawback is the parameter tuning, since several
parameters have to be chosen empirically to achieve
a good-quality signal. Balancing pros and cons of
both batch and on-line techniques, we chose to de-
rive a block-on-line method from a batch one: JADE
(Cardoso and Souloumiac, 1993).

3.1 Background: The Jade Algorithm

In the JADE algorithm the ICA problem is solved by
means of a two-stage procedure consisting of a pre-
liminary processing performed by employing Second-
Order Statistics (SOS) and a second one performed by
resorting to Higher-Order Statistics (HOS). The first
stage, multiplying by a whitening matrixW the ob-
served mixtures, decorrelates and normalizes them;
the second stage aims to obtain higher-order indepen-
dence by multiplying decorrelated mixtures by an or-
thogonal rotation matrixG which minimizes the sum
of squared fourth order cross cumulants of whitened
observations:

Ψ = ∑
i jkl 6=iikl

Ki jkl
2 (2)

The G matrix is found by joint diagonalization
of the cumulant matrices, efficiently performed by
Jacobi method. This technique works by repeated
sweeps of plane rotations, each one applied to a pair
of rows of the cumulant matrices. During a sweep,
for each pair(i, j) with 1 ≤ i ≤ n, the Givens angle
θi j which minimizes the contrast is calculated and if
θi j > θth (θth is a threshold angle whose value deter-
mines the optimization accuracy) the pair is rotated.
The convergence is obtained when no pairs have been
rotated over a sweep. This optimization procedure
does not suffer from problems of convergence, as op-
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posed to the gradient descent algorithm, and does not
show the difficulty of parameters tuning.

The blind identifiability requires the diagonaliza-
tion of the whole fourth-order cumulant set (n2 cu-
mulant matrices). The original JADE algorithm deals
with complex signals and finds theG matrix by ap-
proximate joint diagonalization of then most signif-
icant cumulant matrices, to reduce the computational
load. Since we are dealing with real signals, we can
exploit the symmetries of the cumulants to reduce to
n(n+1)/2 the number of matrices to be diagonalized,
without statistical loss (Cardoso, 1999).

3.2 On-Line Jade Implementation

For a batch algorithm, the permutation ambiguity is
simply the obvious outcome of the mathematical for-
mulation of the problem: the order of the sources is
unpredictable and usually insignificant. It comes to be
a critical problem in block-on-line algorithms, where
the estimated sources can be differently ordered in
different blocks, so that channels can swap produc-
ing meaningless signals. We solved this problem by
combining a sliding window strategy (window length:
L samples, overlap:(L−T ) samples) with a two-step
HOS stage. First of all, the algorithm performs the
preprocessing stage (SOS, i.e. centering and whiten-
ing) on a sample-by-sample basis. The data stream
is subdivided into data blocksX of length T , with
X = {x(k),0≤ k < T}. Recorded data of a block are
centered subtracting their mean value by means of a
running average given by:

x(k) = (1− γ)x(k−1)+ γx(k), (3)

whereγ is a forgetting factor. We choseγ = 1/L so
that the memory depth is equal to the sliding window
length. Centered data are whitened as follows:

z(k) = W(k)(x(k)−x(k)) (4)

and whitening matrix is updated using an approach
adapted from (Cardoso and Laheld, 1996):

W(k +1) =

= W(k)− λ0
1+λ0z(k)T z(k) (z(k)z(k)

T − I)W(k) (5)

whereλ0 is a constant. The smallerλ0 the slower
the convergence, but with high values it is easier to
incur in instability. The newestT preprocessed data
are inserted in aL-wide windowZ = {z(k),0 ≤ k <
L} with the lastL−T preprocessed samples.

After that, in the HOS stage, we precondition the
rotation process by a coarse separation of the actual
block of whitened mixtures with the rotation matrix of

the previous block. This procedure considers that fe-
tal movements can change the physical configuration
and consequently the mixing matrix but, ifT is cho-
sen so that two consecutive blocks are close enough
from a temporal point of view with respect to the dy-
namics of the mixing process, the coarse separation
rotates whitened observations so that the basis vec-
tors (the columns of the mixing matrix) of the current
block are close to the basis vectors of the previous
block. Coarse-separated mixtures are then used for
the computation of the cumulant matrices and their
joint diagonalization. At last, the fine separation ma-
trix G is provided in output, the optimization pro-
cess being carried out in the direction started from the
coarse separation. The algorithm can be described by
the following steps:

1. Acquire a blockX of T new samplesX =
{x(k),0≤ k < T};

2. For allk so that 0≤ k < T :

(a) Centerx(k) by subtractingx(k) calculated as in
(3), and keepx(T −1) as thex(−1) for the next
block;

(b) Whiten(x(k)−x(k)) according to (4) to obtain
z(k);

(c) Update the whitening matrix following (5) and
keep W(T − 1) as theW(−1) for the next
block;

(d) Insertz(k) in Z(L−T + k);

3. Perform the coarse separation ofZ: Y′ = QprevZ;

4. Apply JADE algorithm toY′ to obtain the matrix
G;

5. Perform the fine separationY = GY′;

6. Update the rotation matrixQcur = GQprev,
Qprev = Qcur;

7. Go to 1 for another block.

3.3 Parameters Setting

The proposed algorithm has been applied to a real
dataset consisting ofn = 8 potential recordings, the
first 5 abdominal and the last 3 thoracic. The dataset
(BIOMED, 2005) is recorded at a sampling rate of
250 Hz, and it is composed of 2500 samples (Fig-
ure 1). It represents the benchmark used in most of
research works about fetal ECG extraction. We setλ0
to 0.001. The choice ofL andT aims at achieving a
good trade-off among permutation rejection, separa-
tion quality and computational efficiency.L andT are
set to be 1024 and 256 respectively. A higherT gives
rise to ECG channels swapping, a higherL increases
the needed floating point operations (FLOPS) without
improving the separation quality.
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Figure 1: The real signal mixtures (BIOMED, 2005).
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Figure 2: A block diagram of the simulated system.

4 THE DSP SYSTEM DESIGN

Modern electrocardiographs are based on DSPs,
sometimes joined to a microcontroller for the user in-
terface. The main problems of such implementations
are the limited amount of memory available both on
chip and on board and the low operating frequency,
compared to PC processors. Conversely, DSPs are
significantly less power hungry and highly optimized
for signal processing operations. Almost all the de-
vices on the market can be programmed in C or C++,
so enhancing code portability. However, some per-
formance improvements can be achieved only by ex-
ploiting at the most the architectural characteristics of
the processor and then also assembly-written routines.
All these aspects have been carefully taken into ac-
count in the proposed real-time system design.

The algorithm has been coded in C to work by
file I/O on a PC, and then ported on a TMS320C6713
DSP, a TI 1800MFLOPS floating point VLIW proces-
sor up to 300MHz. Having to rely only on recorded
signals, we avoided any hardware board implemen-
tation. To evaluate the real-time capabilities of the
proposed DSP solution, it has been simulated under
Code Composer Studio (CCS) 3.1, the Integrated De-
velopment Environment for the TI processors, with
the Device Cycle Accurate Simulator as target. It is

able to give an indication of the cycle count of the
application with cycle accuracy even at peripherals
level. The target DSP provides a rich set of on-chip
advanced peripherals. Among them, we used one of
the two Multi-channel Buffered Serial Ports (McBSP)
available on chip, and the Enhanced Direct Memory
Access Controller (EDMA).

Data enter the system through the McBSP1 in
frames composed of 8 channels of the ECG, 16
bit/sample, with the proper sampling rate. The
EDMA manages the acquisition performing a data or-
dering in an array placed in the internal L2 memory,
so that at the end of a block acquisition such array is
composed of 8 contiguous blocks ofT samples, each
one consisting only of the input samples for one chan-
nel. At the same time, the output samples are out-
putted through the same serial port with the inverse re-
ordering procedure. The CCS Port Connect and Pin
Connect features were used to provide the McBSP1
with the external clocks and frame syncs needed to
correctly perform both the sample acquisition and the
outputs collection, thus emulating a real hardware
system. A simplified representation of the simulated
system is depicted in Figure 2, where the externally
driven pins (CLKX, CLKR, FSX, FSR) and ports
(DXR and DRR) are shadowed. To guarantee stable
input signals during the acquisition of a next block,
EDMA performs automatic ping-pong buffering. The
newestT samplesXi are acquired during the process-
ing of the previous blockZ i−1, so that the overall pro-
cessing time must be less thanTX = T/ fs. This way
the interrupt signal period is also equal toTX . Af-
ter sample-by-sample pre-processing, a Quick DMA
(QDMA) call performs the sliding window mecha-
nism needed for the HOS stage. We used fastRTS
and DSPlib for highly optimized math functions and
DSP array operations respectively. The access to the
external memory dramatically increases the latency,
whilst the wide data arrays substantially reduce the
code space. With the chosen target, which comes with
256KB L2 internal RAM, and several optimizations,
no external memory is required.

5 EXPERIMENTAL RESULTS

The sources estimated by means of the on-line algo-
rithm are depicted in Figure 3. ECG channels do not
suffer from the permutation problem, whereas there is
a suspect permutation in they2 andy4 noise channels.
Such different robustness to permutations can be ex-
plained in the light of fact that cumulant based meth-
ods need a large number of samples to reach good
separation results. TheL value has been chosen so
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Figure 3: The sources estimated with the proposed on-line
solution. The blanked parts of the signals at the beginning
are due to the initialization of the on-line whitening proce-
dure. Tracesy3 andy5 clearly show the FECG, the hearth
rate being almost twice the maternal one.

that a window contains some periods of ECG signals.
Such noises can be interpreted as maternal respiration
and electromyogram. Since respiration baseline wan-
der is characterized by a pseudo-period higher than
the one of ECG, we should work with a wider win-
dow to make up to a window containing some peri-
ods of fluctuation due to the maternal respiration, but
this would increment the computational load. Fur-
thermore some more unstructured noises could take
no advantage of such resizing. Since our target are the
ECG signals, we can disregard noise channels, main-
tainingL = 1024. With this choice, ECG waveforms
are reconstructed with the same quality of the origi-
nal JADE algorithm (Figure 4). To compare the per-
formance of the two methods, we used the parameter
proposed in (Bacharakis et al., 1996):

PK =
|K40|+ |K04|

∑m+n=4 |Kmn|
(6)

PK represents the ratio between the sum of the mod-
ulus of the fourth-order auto-cumulants of two esti-
mated sources and the sum of the modulus of all the
fourth-order cumulants related to the same sources.
If two components are really independent their cross-
cumulants are close to 0, then the ratio tends to 1. In
Table 1 are reported the cumulative results for all the
signal couples, in terms of average value and stan-
dard deviation. It proves that the two methods allow
to reach very similar source independence.
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Figure 4: The sources estimated with the batch JADE algo-
rithm. TracesY7 andY8 clearly show the FECG.

Table 1: Original batch JADE vs. block-on-line JADE. Av-
erage and standard deviation of the parameterPK .

avg STD
Batch Algorithm 0.918 0.066

On-line Algorithm 0.912 0.109

5.1 Profiling Results

Performance have been also evaluated by means of
cycle profiling to assess the real-time constraints sat-
isfaction. From Table 2 we can see that the system
largely respects the real-time requirements, sinceTX
is almost equal to 1 second and the DSP is running
at 300 MHz. Hence, it will be possible either to add
further pre/post processing to the actual implementa-
tion (such as signal enhancement, fetal QRS detec-
tion, fetal ECG delineation and measurement) and to
safely reduce the clock rate. From Table 2 it is pos-
sible to notice that the time spent for the execution of
the algorithm with the number of sweeps required (on
the same blockZi), Ttot , represents about 8.3% ofTX ,
pre-processing requires less than 7% ofTtot , and the
coarse separation plusQprev update less than 0.9% of
Ttot . On the available records, we counted a maximum
of 6 sweeps. In the HOS stage cycle count, there is a
considerable offset due to the cumulant matrices com-
putation that can be quantified in 21,399,260 clock
cycles, 83.8% of Ttot . It can be estimated that every
pairwise Givens rotation requires 13,534 clock cycles,
0.05% ofTtot . Hence, considering that 1 sweep, in the
worst case, consists of maximum 28 Givens rotations,
and that the coarse-separation dramatically reduces
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Table 2: Profiling results for the DSP implementation:(a).
for the whole algorithm on a single block allowing all the
required sweeps, and(b) for only the 2nd step of the HOS
stage allowing a different (imposed) number of sweeps.

Algorithm section # ck ticks
Pre-processing 1,714,300

(a) Coarse-sep. +Qprev update 220,258
step of the HOS stage 23,599,929
1 sweep 21,557,940

(b) 2 sweep 21,936,878
6 sweeps (threshold control)23,599,929

the need for many sweeps, the number of sweeps is
not a performance limiter.

6 CONCLUSIONS

In this paper a block on-line version of the JADE al-
gorithm and its real time implementation on a floating
point DSP has been presented and evaluated in terms
of both separation quality and profiling. Separation
quality results are in line with those achievable with
the batch JADE algorithm. This can be interpreted in
the light of the considerations presented in Section 5
since the signal is extremely clear and stable so that
it is possible to assume that mixing process does not
changes a lot over time. At the same time, longer sig-
nals will benefit from the block-on-line implementa-
tion with preconditioning since the probability to have
a stable mixing process over the whole recording is
very low. The DSP implementation proved the possi-
bility to use this algorithm in real-time on a portable
device. The system is powerful enough to use only
less than 10% of the overall available processing time
to execute the algorithm, then leaving space for fur-
ther processing actually required in a real implemen-
tation. The realization of a front-end analog circuitry
for signals acquisition will enable the trial with cus-
tom databases.
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Abstract: Locating signals for the initiation of gene expression in DNA sequences is an important unsolved problem in
genetics. Over more than two decades researchers have applied a large variety of sophisticated computational
techniques in order to address it, but only with moderate success. In this paper we investigate the reasons for
the relatively poor performance of the current models, and outline some possible directions for future work in
this field.

1 INTRODUCTION

Eukaryotic gene expression is regulated by a complex
network of protein–DNA and protein–protein interac-
tions. The prevailing opinion, corroborated by many
studies, is that most of these interactions take place
within a few hundred bases upstream from the tran-
scription start site, although this is still somewhat con-
troversial (Nelson et al., 2004). In addition, sites im-
portant for the regulation of genes have been found
in introns and in downstream sequences, as well as
at distant loci, such as theβ–globin LCR (Hardison
et al., 1997b). Promoter regions in yeast are charac-
terized by multiple occurrences of the same binding
motif (van Helden et al., 1998), and this is also the
case with many genes from other species. At present,
relatively little is known about genetic pathways and
the mechanisms of gene co-expression, but this situa-
tion is rapidly changing, especially with the advances
in microarray technology and protein–protein interac-
tion studies. However, while these advances provide
an insight into expression patterns and associations,
they do not tell anything about the mechanisms driv-
ing them, nor about the sites inDNA responsible for
their regulation.

Despite of significant efforts over the last twenty
years to computationally predict transcription factor
binding signals in promoter and other regions of the
genome, this remains an elusive goal. While early
approaches relied on a rather naive assumption that
the target sites for protein binding must feature in-
formation content sufficient for them to be uniquely

recognized among all non–sites (Schneider et al.,
1986), disillusionment soon followed, as any attempt
to isolate functional elements inDNA resulted in an
enormous number of false positives. Learning from
that experience, and further experimental evidence,
the bioinformatics community has widely adopted a
view that the motifs for transcription factor bind-
ing in functional regions are grouped in regulatory
modules, sometimes featuring multiple copies of in-
dividual sites. This idea is not new (Ackers et al.,
1982; Mehldau and Myers, 1993; Kel et al., 1995),
however in the recent years there has been an ex-
plosion of computational algorithms designed in an
attempt to identify such modules (Hu et al., 2000;
GuhaThakurta and Stormo, 2001; Rebeiz et al., 2002;
Eskin and Pevzner, 2002; Jegga et al., 2002; Johans-
son et al., 2003; Sharan et al., 2003; Sinha et al., 2003;
Aerts et al., 2004; Donaldson et al., 2005; Kundaje
et al., 2005; Pierstorff et al., 2006; Papatsenko, 2007;
Schones et al., 2007), to list just a few. Some of the
methods also relied on the assumption that multiple
copies of the same motif should be a component of
these modules (Qin et al., 2003; van Helden, 2004). If
a particular motif is over-represented, i.e. if it occurs
in a genomic segment or a group of segments more of-
ten than expected by chance, it was anticipated that it
should indicate a functional signal. Moreover, if mul-
tiple motifs in close proximity satisfy this condition,
it was presumed to be a strong indication of function.
Software developed for the location of such modules
generally relied on previous information about the in-
dividual binding sites forming the modules. The ap-
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proaches were based on the phylogenetic conserva-
tion (Jegga et al., 2002; Sharan et al., 2003; Sinha
et al., 2004; Dieterich et al., 2004; Donaldson et al.,
2005; Pierstorff et al., 2006) of homologous regions
or promoters, approximate matching to known motif
sequences acquired from databases such asTRANS-
FAC (Matys et al., 2006) or some combination of
both. The search was performed for the statistically
significant clusters of motifs (Johansson et al., 2003;
Alkema et al., 2004; Kundaje et al., 2005; Schones
et al., 2007), and it was often combined with match-
ing them to conserved regions in alignments. This
was necessary in order to reduce the search space, but
it proved inaccurate. A regulatory module can con-
tain elements that have not been included in the origi-
nal set, but the elements which did get included were
sometimes spurious, at least when bindingin vivo is
concerned. Indeed, over years evaluation studies have
been consistently demonstrating that these tools have
not been very effective (Fickett and Hatzigeorgiou,
1997; Tompa et al., 2005), despite of the progress in
our understanding of the genome, advances in tech-
nology and sophistication of the models.

Many approaches were based on gene expres-
sion study results, and the postulated co-regulation.
Promoter regions of such genes were considered si-
multaneously, and the programs used Gibbs sam-
pling (Lawrence et al., 1993; Thijs et al., 2002),
Bayesian clustering (Qin et al., 2003), Markov Mod-
els (Liu et al., 2001), Expectation Maximization (Bai-
ley and Elkan, 1994), Shannon’s entropy (Kundaje
et al., 2005), simultaneous dyad motif discovery (Es-
kin and Pevzner, 2002), genetic algorithms (Aerts
et al., 2004) and other techniques in order to isolate
regulatory modules. Despite of the use of very sophis-
ticated algorithms these methods have not achieved
desired accuracy. Why?

2 TARGETING THE
OVER–REPRESENTED MOTIFS

The use of motif over-representation for the predic-
tion of transcription factor binding signals can be
roughly divided into three categories:

1. Over-representation of single motifs in groups of
related functional sequences.

2. Over-representation of motifs from a limited set,
such as these recorded in the databases ofDNA
regulatory elements, in a single region under con-
sideration.

3. Over-representation of phylogenetically con-
served blocks in a genomic segment of interest.

Combinations of the above approaches are widely
applied. We shall look at each one individually.

2.1 Single Motifs in Groups of
Sequences

If the motifs recognized by transcription factor pro-
teins were specific (such as these recognized by re-
striction enzymes, for instance), the search for sys-
tematically present short signals would show promise.
It is commonly accepted that a transcription factor
binding site consists of 5 to 25 nucleotides, and most
experimentally confirmed cores tend to be on the
shorter side of that range. Considering just 5 char-
acters, and assuming that most transcriptional regula-
tory activity indeed happens within about 500 bases
upstream of the gene start, under the simplistic model
of eachDNA base being equally likely, the proba-
bility of a chance occurrence of such motif at any
single position would be 1/45 ≈ 0.00098. Within
a window of 500 bases the expected number would
thus be around 0.49. Using the Poisson distribution
we can estimate the probability of seeing it at least
once in any given window to be 1− e

−0.49 ≈ 0.39.
In consequence, if one would consider a set of just
4 cis–regulatory segments of co-expressed genes (de-
termined by microarray experiments, for instance) in
order to achieve statistical significance (i.e. ap–value
of less than 0.05) and 5 to be highly significant (p–
value< 0.01). This is encouraging, having in mind
that the considered motifs are just 5 characters long,
and that with 6 and more characters one can achieve
statistical significance with regulatory sequences of
just 2 co-expressed genes. If several motifs exhibit
co-occurrence within a single set of regulatory se-
quences, that would almost certainly indicate a real
signal, or at least a part of it (discarding for the mo-
ment the fact that such co-occurrences would also
show up at many random places in the genome).

Even genes which are co-expressed under certain
conditions may not be regulated in the same way.
Their transcription initiation complexes may not be
same, or even similar, or they may exhibit a weak
similarity sufficient to yield co-expression only un-
der certain circumstances. In addition, in any set of
regulatory sequences any given motif may be absent
from some, so the requirement that it should be found
in all should be relaxed. Regardless of this, one can
argue that when a set of regulatory sequences of co-
expressed genes is available, one can determine the
motifs unlikely to be shared by chance, and reliably
identify at least these most common. Further studies
can then be performed to identify proteins bound to
these motifs, and their co-factors.
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Unfortunately, nature does not follow simplistic
models. Even as the core promoters lie upstream of
the genes, most of their activity depends on the en-
hancer and other elements, which may be very far
from the genes and regulating several of them si-
multaneously. In some cases, the co-expression pat-
tern may stem from a group of genes affected by the
same enhancer, rather than several enhancers featur-
ing same motifs. Even when there are separate control
elements targeted by same transcription factor pro-
teins, and even if we assume that they would not func-
tion across domains, this expands the 500-base win-
dow to tens of thousands of bases, where only very
long motifs would have a chance of achieving statis-
tical significance.

Another problem is in that we may not even be
able to detect a true binding signal present in all con-
sidered sequences. Transcription factors often feature
a notorious lack of specificity, and within any given
motif only certain positions, which need not be adja-
cent, may be important. The true transcription fac-
tor binding is determined by a very small number of
bases, sometimes as small as 3. The use of position
weight matrices (further referred to asPWMs) may
be helpful in detecting these, but this method is far
from perfect. Their biggest problem is in that they do
not take into account the spatial structure of the mo-
tifs (such as positioning of the bases critical for bind-
ing within the major or minor grove of theDNA he-
lix), which may be crucial in determining whether the
specific nucleotide will interact with a protein or not.
Alas, even the most recently published work, while al-
lowing for non–contiguous critical residues, still fails
to take into account anything but raw sequence infor-
mation (Chakravarty et al., 2007).

2.2 Modules of Elements Retrieved
from Databases

Researchers have spent many years meticulously col-
lecting the experimental data concerning the bind-
ing of transcriptional proteins, and compiling the in-
formation about the bound motifs in databases such
as TRANSFAC (Matys et al., 2006), Jaspar (Vlieghe
et al., 2006) or Mapper (Marinescu et al., 2005). The
consistency with which certain sequences are bound
in vitro gives a strong support to the view that the
exact nucleotide sequence is important, and that spa-
tial and epigenetic factors may be more instrumental
in blocking the sequences which are compositionally
similar to the true binding targets, but which should
not be used under the particular circumstances. Al-
though it is still somewhat unclear how much of the
binding effectsin vitro would also happenin vivo (Jin

et al., 2007), one can expect a reasonable correlation.

Concentrating on a motif recorded in a database
rather than on any general one that may be repeated
dramatically decreases the complexity of the search.
In the extreme cases of long motifs with a strong con-
sensus one can perform simple pattern matching and
identify the targets uniquely in the genome. However,
such motifs are not common, so the promise of this
approach lies in the search for database motif clus-
ters, i.e. regulatory modules. This still makes sense:
TRANSFAC, the richest of the above mentioned re-
sources, presently contains 7915 transcriptional bind-
ing sites, with consensus motifs organized into 398
position weight matrices. They come from different
species, however one can use this number in rough
calculations. Assuming the average length of a mo-
tif represented in a PWM to be around 9 (and for
the moment discarding the fact that multiple motifs
can match a single consensus) and the same random
model as above, the number of possible motifs of
this length would be 49 = 262144. Consequently,
one could estimate the probability that a motif from
a set of 400 would start at any given position in the
genome as 400/49≈ 0.0015. Within a window of 500
bases, putative regulatory region, the expected num-
ber of chance occurrences of a motif recorded in the
database would roughly be around 0.76. Taking this
number as the Poissonλ, one would need as few as
3 motifs recored in a database within a window of
500 bases (presumably serving as the anchoring for a
regulatory module) in order to achieve statistical sig-
nificance (p–value< 0.05). Such considerations have
given rise to the creation of many software tools.

The first problem with this approach is that in a
large genome such as human, even if we concentrate
only on windows upstream of the known or predicted
genes that would give us around 30 thousand regions,
so with thep–value of 0.05 we would still get around
1500 false positive hits. Of course, for larger mod-
ules thep–values would be much lower, but one can
hardly expect to locate very large clusters of sites,
at least according to the current views on transcrip-
tional regulation. If a module is shared among a few
dozen regulatory sequences, and we would want to
keep the specificity of the search at 0.5 or better, we
would need to have the expected chance groupings at
around, say, 50, which would dictate thep–value of
0.0017. Even under the above outlined simplified cir-
cumstances this would dictate literally dozens of mo-
tifs to participate in the module, forming a common
core. Consequently, the poor performance of module
searching software comes as no surprise.

The real–world situation is actually much worse:
genomic sequences are not random assemblies of 4
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letters, the regulatory module locations (moreover, lo-
cations that can be taken by individual participating
motifs) are not limited to windows of length 500 im-
mediately upstream of the genes, and many variants
of a motif may match its consensus (as represented by
thePWM). The currently available databases are nei-
ther complete nor accurate, and thresholds for matrix
matching are set in a veryad hoc, heuristic fashion.
In consequence,PWMs tend to match large groups
of motifs, producing hits literally everywhere. Epi-
genetics phenomena may act in such fashion as to
dramatically reduce the numbers of elements partic-
ipating in a regulatory module, by making many in-
stances of chance groupings resembling it inaccessi-
ble to transcriptional proteins, and many interactions
within modules are taking place at the protein, not
DNA level, further reducing the number of motifs in
the genome that would need to be recognized in order
to initiate transcription (and thus the size of the motif
cluster corresponding to the module).

2.3 Phylogenetic Approaches

Another popular approach to identifying functional
signals relies on phylogenetic conservation. Its ba-
sis is a very reasonable assumption that a functional
constraint prevents mutations inDNA from becoming
fixed in population, while sites which are not impor-
tant are free to independently mutate and fix along
separate branches of the evolutionary tree. This hy-
pothesis has been amply confirmed by the study of
coding sequences, and within them of the synony-
mous and non-synonymous substitutions. The en-
couraging results in the study of genes have led to the
assumption that phylogenetic conservation can be ex-
ploited in the search for regulatory signals.

For this purpose, many investigators have turned
attention to the identification of phylogenetic foot-
prints, both in pair-wise sequence comparisons and
multiple alignments. Studies have been performed in
order to establish the most informative genetic dis-
tance between compared species, which have to be
far apart so to minimize the noise coming from ran-
dom conservation, but close enough to share simi-
lar regulatory signals (Hardison et al., 1997a; Miller,
2001), as well as the most informative additional
species to place in a multiple alignment (Thomas et
al., 2003). Pairwise, within the mammalian scope, se-
quences which have diverged about 70 million years
ago (such as human and mouse) have shown greatest
promise, although optimal phylogenetic distance for
analysis tends to vary with the genomic locus (Hardi-
son, 2000).

Even under the most favorable circumstances,

when the effects of non-specific binding and permissi-
ble divergence in regulatory signal consensus, as well
as these of inter–species differences, would be mini-
mal, any short signal would not be sufficient to war-
rant significance, or it would require a multiple align-
ment of dozens of very close genomic sequences (Sto-
janovic, 2004). This is becoming feasible with bac-
terial, but not yet with eukaryotic genomes. Re-
searchers have thus concentrated on the identification
of clusters of conserved sites, guided by essentially
the same reasoning as outlined in the previous sec-
tions. In relatively short segments ofDNA it is un-
likely that rearrangements would be taking place on
a substantial scale, and the positional conservation of
regulatory signals would lead to good alignments with
short phylogenetic footprints clearly visible.

The probabilistic reasoning applied in this case re-
lied on the strength of the signals (i.e. sequence con-
servation), the likelihood of seeing such conserved
motif by chance, given the phylogenetic distance be-
tween the sequences, and, because the later is often
difficult to establish, on the empirical determination
of the background conservation within the alignment,
as its sections which appear to stand out.

The first problem with this approach lies in the
quality of the alignment itself: genetic regulatory sig-
nals are short and non-specific, and thus not very
likely to be precisely positioned, although their rel-
ative offsets would probably be small. This, on one
hand, may lead to an imprecise definition of motif
boundaries, which often shows as only a partial over-
lap between the footprint and the experimentally con-
firmed binding site. On the other, the footprint itself
may be difficult to identify, as its improperly aligned
bases would both lower the signal and increase the
neighboring region noise. In protein sequences one
can at least partially exploit structural characteristics
(such asα–helix signatures) in order to improve the
alignment quality, but inDNA the only relatively re-
liable markers are the exons of genes. If one looks
for their immediate upstream promoter regions this
may be helpful, but unfortunately the 5’ untranslated
regions of variable lengths and weaker conservation
(with some notable exceptions discussed below) tend
to reduce the anchoring strength of the first exon.

Even when the alignment is reliable, the probabil-
ity of random conservation in even distantly related
sequences is too high to lend credibility to any but
extremely large groupings of footprints, too large to
be plausible anchor sites for the transcriptional com-
plexes. Somewhat surprisingly, such large concen-
trations of footprints are not uncommon in higher
eukaryotic genomes. In fact, many of these are so
large that they can hardly be considered as groupings
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of individual, discrete elements (Jones and Pevzner,
2006). The most dramatic example are the non-
coding ultra-conserved segments, defined as blocks
of 200 or more bases with absolute identity among all
compared species. Within the human genome there
are about 500 such blocks conserved among all se-
quenced mammals, but sometimes even among all
vertebrates. The role of these elements is currently
unknown, as many knock-out experiments have re-
peatedly failed to produce visible effects in model an-
imals. Consequently, some researchers have postu-
lated that the ultra-conservation (as well as conserva-
tion of other long non-coding blocks) may be a con-
sequence of a regional repair mechanism of excep-
tional strength, but so far nobody was able to charac-
terize what that mechanism might be, as well as why
it would have been put in place at its target loci.

In order to quantify this phenomenon, we have
looked at the patterns of conservation in mammalian
Hox gene clusters (Stojanovic and Dewar, 2005),
which are well preserved, and home to some of the
mentioned ultra-conserved blocks. Interestingly, in
Hox the highest overall conservation has been ob-
served within the 5’UTR regions of genes, as illus-
trated in Table 1. While good conservation of untrans-
lated regions is not common genome–wide, it has
been observed in several other cases, such as mam-
malian casein genes (Rijnkels et al., 2003). In sum-
mary, this indicates that there is much more to phy-
logenetic conservation than a simple functional con-
straint. Before that mechanism is understood, some
skepticism concerning the use of sequence conserva-
tion as a hallmark of a functional signal is warranted.

3 OVER-REPRESENTATION OF
MOTIFS IN GENOMIC
ENVIRONMENTS

The over-representation concept itself is problematic.
It has been well known, and for a long time now,
that genomic sequences, even in large “junk” areas,
are not random assemblies of four letters. In or-
der to quantify the genome-wide over-representation
of short motifs, we have recently undertaken a sys-
tematic study (Singh et al., 2007) in which we have
noted a remarkable over-representation of many short
motifs throughout the presumably unique human ge-
nomic sequences, as well as (to a lesser extent),
Markov model generated sequences trained on human
chromosomes. As an example, the results counting
the average number of repeated occurrences of mo-
tifs of lengths 4 through 9 measured in 6 datasets of

100 sequences of length 500 each are shown in Ta-
ble 2. Our findings clearly indicated that, first, all
genomic sequences feature dramatically higher num-
bers of repeated short motifs than one would expect
by chance, and, second, that the differences in num-
bers of such motifs do not appear to be significant be-
tween random intergenic and presumably regulatory
sequences upstream of the known genes, despite of
the trend that one can notice in the last two columns
of Table 2. Repeatedly, chi-square tests performed on
these columns and other data could show only mild,
but inconclusive, bias. This indicates that something
else in addition to the functional signal is at play, but
it is somewhat unclear what that might be.

In a series of studies started more than forty years
ago (Waring and Britten, 1966) Britten, Davidson and
others demonstrated that the nuclear genome of di-
verse eukaryotes contained a large fraction of repeti-
tive DNA, and recent large–scale genome sequencing
has established the ubiquitous existence of repeats.
Many of them are of tandem nature, relatively eas-
ily recognizable, however the majority are the result
of the repeated interspersed insertion of transposable
elements, often not capable of further activity (Smit,
1999; Feschotte et al., 2002) — once integrated, these
sequences will never transpose again and can be con-
sidered molecular fossils. Regardless of their ori-
gin and of the mechanisms responsible for their in-
activation, it is widely accepted that fossilized trans-
posons, as a whole, do not assume function to the
host. Consequently, these inactive copies are progres-
sively eroded by mutations accumulating at a neutral
rate until they become unrecognizable. While more
recent insertional events can be readily identified due
to the high similarity of the copies, characterization
of more ancient activity remains a challenge. In the
human genome, almost half of the sequence is con-
sidered unique, but only a small fraction (about 5% of
the total) is thought to be significant, whether coding
or not. This leaves an open question about the ori-
gin and role of the presumably unique non-functional
sequence, which is very likely to originate from an-
cient transpositions and duplications. Due to its de-
gree of degeneracy, it would remain in the genomic
segments under consideration after repeat masking,
but it would also introduce a large number of seem-
ingly over-represented motifs.

Therefore, many of the apparent clusters of con-
served elements are likely just remnants of transpo-
son insertions. While phylogeny–based approaches
are less vulnerable to this effect, it can still be an
issue when comparing sequences from species for
which good repeat libraries have not yet been com-
piled. Regardless of the source, the micro-repetitive
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Table 1: Fractions of the total number ofHox (A, B, C andD clusters) alignment columns in 7 distinct genomic environments
contained in the regions of minimal length of 25 bp, of average conservation withp–value< 0.1 measured against the
background conservation of the entire alignment. The intergenic data forHoxD have been parenthesized because of the
Ensembl gene prediction at the location where many of these regions have been found. Overall,HoxD data are not as reliable
because only a relatively small amount of high–quality sequence of this cluster was available in all considered species(human,
baboon, mouse, rat, cow and pig) at the time of the study.

500–1000bp 5’ 200–500bp 5’ 0–200bp 5’ Coding Introns 0–1000bp 3’ Intergenic
HoxA 0.067 0.315 0.616 0.223 0.066 0.077 0.057
HoxB 0.115 0.342 0.788 0.639 0.071 0.145 0.024
HoxC 0.104 0.202 0.609 0.521 0.089 0.105 0.035
HoxD 0 0 0 0.061 0.026 0.066 (0.027)

Table 2: The mean numbers of repeated patterns of different lengths in different types of nucleotide sequences. Pattern
counting has been done over 100 sequences of length 500 in each category.

Pattern Expected Random 2nd Order 3rd Order 5th Order Random Upstream
Length Number Synthetic Markov M. Markov M. Markov M. Genomic Regulatory
4 429.06 425.74 437.99 432.84 432.23 438.97 433.92
5 193.16 189.18 237.83 222.98 222.27 261.64 260.11
6 57.46 55.16 84.33 74.58 75.88 106.62 115.31
7 15.03 14.0 24.5 21.82 23.3 38.66 47.54
8 3.8 3.12 7.05 5.75 6.87 15.72 21.3
9 0.95 0.56 1.94 1.47 1.97 8.57 11.33

structure of genomic sequences of higher eukaryotes
makes it very difficult to locate any feature through
over-representation, simply because the background
is highly non-random.

4 DISCUSSION

So far much of the computational search for genomic
regulatory signals have been done using sequence in-
formation only, just because it was the most readily
available. In the context of sequence analysis look-
ing for statistical over–representation was indeed the
most sensible approach. However, while the resulting
combinatorial and probabilistic problems are chal-
lenging and mathematically interesting, biologically
they are questionable. That does not mean that they
are of no value whatsoever, only that they are cur-
rently not being used in the right way.

Much of the genome study is still in the data col-
lecting phase. We are not yet in a position to build an-
alytical models, and without them the quantification
of their effects makes little sense. Over the last few
years the scientific community has been increasingly
turning attention to epigenetics, and there has recently
been a significant increase in the accumulated knowl-
edge about these phenomena. However, the compu-

tational community have so far mostly ignored these
developments. At this time the study of binding sig-
nals inDNA should probably rely more on data min-
ing approaches than on analytical models, although
statistical analysis of the data will remain important.

When studying a potential regulatory role of a ge-
nomic sequence (or a group of sequences, in cases
when co–regulation pattern of a group of genes is sus-
pected), one should take into account, first of all, the
specific experimentally confirmed knowledge about
the region which can be mined from the literature us-
ing currently available technologies. Next, the spe-
cific biochemical information about methylation pat-
terns and domain structure should be applied, be-
fore raw nucleotide information is considered. At
the later stage the prediction and statistical evalua-
tion should be incorporated, but structural data should
still be taken into account, when available. Recent
studies (Segal et al., 2006; Ioshikhes et al., 2006)
have indicated that there may be specific histone pro-
teins positioning codes inDNA, and if further evi-
dence confirms this it would greatly help in the char-
acterization of binding signals for other types of pro-
teins, transcription factors in particular (through eas-
ier identification of potentially open chromatin do-
mains). Only at this point one can concentrate on
the motif–related considerations, looking for these
recorded in databases and these that might be phy-
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logenetically conserved. The over–representationper
se may not be sufficient to provide useful informa-
tion, but the appearance of similar motifs in areas
otherwise postulated to share functionality (based on
stronger evidence than just a correlation of expression
in microarray experiments) may be indicative enough
to warrant confidence.

The true discovery has always been through
a well–coordinated combination of computational
and experimental approaches. This takes time, al-
though modern technologies are dramatically facili-
tating such efforts (Jin et al., 2007), so purely compu-
tational methods for genome–wide prediction of tran-
scriptional regulatory signals will remain to be of in-
terest. It is only that the methods will have to change
in order to be really useful, and not just interesting.
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Abstract: Molecular biology models such as DNA evolution can provide a basis for proprietary architectures that 
achieve high degrees of diffusion and confusion and resistance to cryptanalysis.  Proprietary encryption 
products can serve both large and small applications and can exist at both application and network level. 
This paper briefly outlines the basis of the proprietary encryption mechanism which uses the principles of 
DNA replication and steganography (hidden word cryptography) to produce confidential data.  The 
foundation of the approach includes: organization of coded words and messages using base pairs organized 
into genes, an expandable genome consisting of DNA-based chromosome keys, and a DNA-based message 
encoding, replication, and evolution process. Such an encryption model provides “Security by Obscurity”. 

1 INTRODUCTION 

Mobile Ad-hoc Networks (MANET) require the 
ability to distinguish trusted peers, and transmit and 
receive information confidentially, yet tolerate the 
ingress and egress of nodes on an unscheduled, 
unpredictable basis.  Because the networks by their 
very nature are mobile, self-organizing and self 
assembling, use of a Public Key Infrastructure 
(PKI), X.509 certificates, RSA and nonce exchanges 
becomes problematic if the ideal of MANET is to be 
achieved. The use of evolutionary computing and a 
DNA (Deoxyribonucleic acid) inspired approach are 
key in developing true MANET architectures. Future 
network organizations could include corporations, 
retail outlets, financial institutions organized into 
self-assembling MANETs of convenience, entering 
and leaving the network as necessary. Such 
networks might be better served by encryption 
approaches not widely available to the public.  

This paper presents a new encryption technique 
which utilizes DNA-inspired coding, a dynamic 
fitness algorithm and trust metric vision for ad-hoc 
routing, and a rapidly evolving basis of encryption.  
Because of the dynamic, evolutionary nature of this 
approach, potential intruders must continually 
intercept decoding instructions between source and 
destination. Missing one generation of genome 

decryption information seriously corrupts the 
decryption process. Missing multiple generations 
eventually renders previous decryption analyses 
useless.  

2 BACKGROUND OF DNA 
CRYPTOGRAPHY 

The use of DNA as a cryptographic medium is not 
new. DNA encryption systems are one of the paths 
taken in the field of molecular computing. Systems 
using DNA as a one-time code pad (Gehani, 1999) 
in a steganographic approach have been described.  
An image compression –encryption system using a 
DNA-based alphabet (Bourbakis, 1997) was 
demonstrated including a genetic algorithm based 
compression scheme. Schemes utilizing DNA 
encryption utilizing dummy sequences of DNA have 
been published (Leier, 2000). The steganographic 
approach is highly desirable because DNA provides 
a natural template for the hidden message approach 
(Clelland, 1999). Clelland is a pioneer in this field. It 
also appears in recent applications such as DNA 
watermarks (Heider, 2007). 
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3 PROBLEM STATEMENT 

Figure 1 displays a MANET routed message from 
Jack to Jill routed at two different times, through 
secure and potentially malicious nodes. A truly ad 
hoc network permits routing in the presence of un-
trusted peers. In this case, message traffic is between 
Jack and Jill. Nodes A, B and C are trustworthy 
nodes at time t1 and nodes α and β are potentially 
malicious nodes. At time t2, the situation is reversed.  

The problem of successful routing of messages 
over potentially un-trusted nodes requires: 
 Routed messages arrive at the destination intact 
 Routed messages remain confidential in 

transmission 
 Cryptanalysis of message traffic passing through 

nodes other Jack or Jill is unlikely to be successful. 
 Nodes enter and leave the network at will. 

 
Figure 1: MANET routed over secure nodes at t1 (___) and 
secure nodes at t2 (---). 

4 ENCRYPTION PROCESS 

• Two or more users define a plaintext dictionary, 
and a DNA based dictionary. The users define 
the method by which plaintext is represented by 
the four DNA bases. The DNA dictionary is the 
is the source of messages and encryption keys 
(chromosomes) 

• Messages are pre-coded from plaintext into 
DNA using a system of linear equations relating 
word position in the message and the ordinal 
position in the dictionary 

• Chromosomes encrypt multiple permutations of 
the message 

• The permutations are tested for fitness and the 
most fit permutation is selected for transmission 
by the source. 

• The recipient decrypts the message with the 
same chromosomes 

• The genome is expanded by mutating the 
chromosomes with each other or with message 
sequences.  

The system is based upon operations upon words 
and not individual characters. The only individual 
characters that are encrypted are one character 
words.  

Users of the DNA encryption tool are endowed 
with a starter genome which provides the equivalent 
of a small dictionary for initiating messages, an 
intended recipient capable of possessing a secret, 
shared key, and a secret encryption/decryption 
sequence to initiate communication. Chromosomes 
are “long” compared to message sequences.  

Let D represent a dictionary (lexicographically 
ordered set) of all words such that D0 represents the 
first word in the dictionary and that sender and 
receiver compose messages of Wi words (genes). A 
function U converts words to sequences of DNA 
bases Bq as shown below: 

Di -1 < Di < Di + 1 ∀ i < n (1) 
Wi, ⊆ Dn (2) 

Di = U(Wi,Bq) (3) 
There exists a one-to-one mapping between the 

plaintext dictionary and DNA dictionary built from  
Bq={A,T,C,G} and. The binary coding for the bases 
is shown in table 1. Note that A and T, and C and G 
are inverses. 

Table 1: DNA base coding. 

Base Binary 
value 

Base Binary  
value 

Adenine 0011 Thymine 1100 
Cytosine 1001 Guanine 0110 

Given an alphabet of n characters, words of 
character length m, each plaintext word codes into a 
DNA word (gene) of x basepairs in length creating ci 
possible combinations of DNA words for each 
plaintext word and Y total combinations DNA words 
for the dictionary as shown below. 

log2 (n) = x  (4)
ci = 2(x*m) (5)

   Y = Σ ci , i=1,…,imax (6)
 

For n=8 with a character set consisting of 
{a,e,i,o,u,n,s,t}, and m= 3, there would be 584 total 
entries.  Selected entries from such a dictionary are 
shown in table 2. Sequences of nonsense words can 
be inserted between plaintext words.  As the 
character set and character length increases, the 
number of possible words (mostly nonsense words) 
increases exponentially. Actual words can be padded 
with interspersed nonsense words to increase 
security. Figure 2 shows displays the maximum size 
of the DNA dictionary for 8, 32 and 256 character 
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alphabets, word lengths ranging from 1 to 10 
characters. 

Maximum DNA Dictionary Size

1.E+00

1.E+05

1.E+10

1.E+15

1.E+20

1.E+25

1 5 10

word length

w
or

ds

Y(8) Y(32) Y(256)  
Figure 2: DNA Dictionary Size. 

Table 2: Sample DNA dictionary entries. 

ordinal  word DNA code 
146 i TTT 
147 ia TTACAT 
148 ie TTATAT 
452 san ACACACGCC 
453 sas ACACAGAAG 
454 sat ACACATAAT 
455 sea ACCACACCC 

The plaintext coding process yields message M 
consisting of a sense string Msense of bases and Manti-

sense string of bases. Chromosome (C1,..j) sense and 
anti-sense strands generated from the DNA 
dictionary encrypt Msense and Manti-sense to produce 
encrypted mutants. Given j chromosomes in the 
genome, m message basepairs, k chromosome 
basepairs, 2*j*(k-m) rounds of encryption on the 
sense and anti-sense message strands are possible. 
The message slides down the chromosome between 
rounds. One encrypted mutant is produced per 
round. 

Table 3: Encryption Process. 

Encrypt  E(C,M) →Cipher 
Anneal  A(Cipher, B(q′)) → ACipher 
Trust for p routes Tp(FREQp,RREQp)→Tmax 
Fitness(Diffusion 
& Confusion) 

D(M,ACipher),C(M,ACipher)→ F 

Select mutant S(g(F,Tmax)) → Output 

Encryption is a 5 step process as shown in table 
3. The encryption step processes the message against 
the chromosome key to create a generation of two 
new mutants: A DNA fragment consisting of a sense 
strand from the message paired with a fragment of 

equivalent length from the sense strand of each 
chromosome moving from 5′to 3′ end, and a DNA 
fragment consisting of an anti-sense strand from the 
message paired with a fragment of equivalent length 
from the sense strand of each chromosome key 
moving from 3′to 5′ end. The process is summarized 
in figure 4. The chromosome is depicted as a series 
of segments. The functional output of the step is 
referred to as ‘Cipher’ 

The process of aligning two dissimilar DNA 
strands results in numerous mismatches. Figure 5 
demonstrates the annealing process via 
recombination and mutation by use of virtual bases 
B′q = {a,t,c,g} Use of the transformation: A→g→T, 
C→a→G, T→c→A, G→t→C simplifies the 
evolution of the code and anneals mismatches. 
Mutations are induced by the chromosome 
(encryption key) onto the message (plaintext). The 
rule is simple: if mismatch between the chromosome 
base and a message base appears, the message is 
mutated to match the chromosome. For example, if a 
chromosome base ‘A’ is mismatched with either 
‘A’, ‘C’ or ‘G’ on the corresponding message base, 
the message base is changed to a ‘g’ which mutates 
to a ‘T’. The unused bit patterns in the 4-bit binary 
representations of the DNA hold special codes for 
this transformation. The advantage of this technique 
is that it allows for rapid merging of chromosome 
and message strands and provides a path for 
substituting new bases into the chromosome strand 
and mimics the activity of creating molecules which 
rely on the DNA structure but have substituted new 
monomer units into the structure. This technique 
could also be combined with crossover between 
chromosome and message strand.  The functional 
output of this step is referred to as ‘ACipher’ for 
annealed ciphertext. 

The sender of the message would like to know 
how much trust should be placed in each potential 
route to the destination. Determining the level of 
trust to be placed is a factor in determining the 
fitness of the encryption. The source of trust 
information in the methodology is querying the 
network and tabulating successful forward and 
return route request messages (FREQ, RREQ). The 
value of this information decays between successive 
queries.  Given the assumption that any route is only 
as secure as the weakest link, a trust metric for p 
routes at a given point in time can be defined as: 

 
Tp(FREQp,RREQp,Δt)=  (e-Δt/r)*ZFp*ZRp  (7) 

where ZFp and ZRp are the number of successful 
forward and return route requests over p routes and 
Δt is the delay from the baseline query. The rate of 
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decay in trust can be adjusted by the factor r to 
depending upon sender preference with the effects as 
shown in figure 3. The maximum value from all Tp 
represents the most desired route and is referred to 
as ‘Tmax’. 
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Figure 3: Temporal route trust. 

A fitness algorithm defining the desired level of 
diffusion and confusion (Shannon, 1949)  produces  
a means for evaluating each potential encryption. 
Diffusion ensure that redundancy or patterns in the 
plaintext message are dissipated into the long range 
statistics of the ciphertext message. Confusion 
ensures a complex relationship exists between the 
plaintext and ciphertext. Each encrypted mutant is 
compared to the plaintext message on this basis. The 
output of these functions produces a fitness value, 
‘F’, for each mutant. 

The source can define a fitness goal, g(F,Tmax) 
such that only an encrypted mutant that exceeds the 
goal is selected by function S to become the 
transmitted message, referred to as the ’ Output’.  

Conceivably, if no mutant exceeded the fitness 
goal, the sender could select one of  the following 
options: 

a. Reduce the magnitude of the fitness 
parameters diffusion and confusion 

b. Query the network again, re-compute 
Tmax and determine if there is an 
encryption fit for transmission. 

c. Conduct a second round of encryption 
by mating the most fit encrypted 
mutants, and re-compute their fitness 
parameters 

d. Delay transmission of the encrypted 
message until a suitable Tmax is 
achieved. 

Figure 6 displays the transition from plaintext to 
a pair of DNA strands 54 base pairs long (Msense and 
Manti-sense) to a pair of encrypted and annealed 
mutants with a sense strand from message and 

chromosome for one mutant, and a anti-sense strand 
from message and chromosme for a second mutant. 
The 8 letter dictionary {a,e,i,o,u,n,s,t} and a 
chromosome designated as C4 having 1793 base 
pairs are used in this example. 

5 MUTATION EFFECTS AND 
FITNESS 

Life is intolerant of a high mutation rate in its 
genetic code. Ribonucleic acid (RNA) viruses have 
the highest mutation rate of any living species, 10-3 
to 10-5 errors/nucleotide and replication cycle 
(Elena, 2006). The human DNA mutation rate has 
been approximated to be on the order of 10-8 
errors/nucleotide and generation (Nachman, 2000). 
Injection of mutations into DNA encrypted 
messages is central to the encryption process. 
In evolutionary biology, fitness is a characteristic 
that relates to the number of offspring produced 
from a given genome. From a population genetics 
point of a view the relative fitness of the mutant 
depends upon the number of descendants per wild-
type descendant. In evolutionary computing, a 
fitness algorithm determines whether candidate 
solutions, in this case encrypted messages, are 
sufficiently encrypted to be transmitted. 

 

Figure 4: Mating of chromosome to message and 
subsequent selection. 
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Figure 5: Anneal/mutation process. 

By organizing the DNA dictionary into a codon 
based system and  applying tools of evolutionary 
computing the encryption methodology can be 
adapted as a tool of computational biology for 
applications such as: 

• Simulation of DNA mutations via 
crossover and translation 

• Creation of DNA samples and 
mutagenic PCR (Polymerase Chain 
Reaction) primers for simulation  

• Optimization of alignment of two DNA 
sequences 

• Simulation of mutagenic agents on 
DNA 

• Rate-based synthesis and mutation 
studies 

Utilization of software based tools provides a 
fast, cost-effective means of testing strategies prior 
to performing laboratory analyses or cell-based 
techniques. DNA coding for biological applications 
require certain characteristics that are the opposite of 
those required for encryption.  Diffusion and 
confusion must be minimized. Fitness would be 
defined in application specific parameters such as 
rate kinetics and reactant stoichiometry. Messages 
could be replaced by oligonucleotides of interest. 

6 CONCLUSIONS 

A DNA-inspired encryption technique that is highly 
resistant cryptographic analyses has been presented. 
It is a new variation on an ancient cryptography 
technique for use in mobile, ad-hoc networks and 
does not require the use of a public key 
infrastructure. To the best of the our knowledge, this 
approach to providing confidentiality in a MANET 
has not been previously published.  The utility of a 
rapid evolving encryption genome using transitional 
annealing bases also represents a previously 
unpublished concept.  

Encryption users define the plain text dictionary, 
the conversion into DNA sequences, the level of 
trust to be conferred on the MANET and the fitness 
characteristics of the message. The technique can be 
used within MANETs without decryption to 
establish cryptographic checksums for message 
integrity, authentication, and secure electronic 
transactions. It can be used within MANETs with 
decryption for message confidentiality. 

The methodology is extensible to the realm of 
computational biology to perform computer aided 
diagnostics of DNA mutations. It is also extensible 
to other polymer based encryptions: peptide nucleic 
acids, silicones, polysilanes, block co-polymers, etc. 
It provides a path to simulating processes which 
could be used for encoding messages into physical 
molecules for a variety of applications. 

ACKNOWLEDGEMENTS 

This work was supported by NASA Goddard Space 
Flight Center and the Space Communications and 
Navigation Constellation Integration Project. Thanks 
to Deborah M. Preston of DuPont Analytical 
Solutions, Wilmington DE for reviewing this paper. 
 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

476



 
Figure 6: Sample plaintext, encrypted mutation, annealed mutation. 
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Abstract: Transcranial sonography is to date the only method able to detect structural damage of the brain tissue in the
Parkinson’s disease patients. The problem is that the images provided by this method often suffer from a
very poor quality, which makes the final diagnosis strongly dependent on experience of examinating medical
doctor. Our objective is to create a method that should help to minimize the physician’s subjectivity in the final
diagnosis and should provide more exact information about the processed ultrasound images. The method
itself is divided into two phases. In the first one, we try to locate the position of a minimal window containing
the brain stem in the analyzed image. In the second phase, we locate and measure the echogenic substantia
nigra area.

1 PARKINSON’S DISEASE

Parkinson’s disease (PD) belongs to the neurodegen-
erative diseases affecting mostly older people. It is a
chronic progressive disease that occurs if the nerve
cells in a part of the midbrain, called the substan-
tia nigra, die or are impaired. These nerve cells
produce dopamine, an important chemical messen-
ger that transmits signals from the substantia nigra to
other parts of the brain. These signals allow coordi-
nated movement. If the dopamine-secreting cells in
the substantia nigra die, the other movement control
centers in the brain become unregulated. Neuroimag-
ing methods are increasingly used as diagnostic tools
in patients presenting with parkinsonism. However,
brain computed tomography (CT) and magnetic res-
onance imaging (MRI) examinations are only able to
detect other aetiology than PD (Ressner, 2007). This
is why these traditional displaying methods like CT
and MRI are not considered to be conclusive (Bog-
dahn, 1998).

In 1995 Becker et al. published a study dealing
with the diagnostics of PD using transcranial sonog-
raphy (Becker, 1995). They showed that increased

echogenicity of substantia nigra is closely associated
with PD. Later, their research was followed by other
authors (Berg, 1999), (Berg, 2001). They proved that
hyperechogenic substantia nigra can be found in more
than 91% patients with PD. Nowadays the transcra-
nial sonography is considered to be the best possible
diagnostic tool for a detection of structural damage
of brain tissue in Parkinson’s disease patients. Ul-
trasonic imaging is based on detecting reflected and
scattered waves arising as a response to the emitted
wave with various frequencies. In general, the higher
the frequency is, the better and more detailed out-
put images can be obtained. Unfortunately, in the
case of transcranial sonography, we need to deal with
the scull that behaves as a barrier stopping all high-
frequency waves. This means that only the low fre-
quency probes (1-4 MHz) may be used. As a conse-
quence of this, transcranial sonography provides im-
ages of significantly lower quality (see Figure 1).

The interpretation of ultrasound images is gener-
ally a difficult task and the opinion of different med-
ical doctors is generally equivocal. The problem is
even more serious in transcranial sonography. Even if
the image is carefully evaluated by a physician, there
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Figure 1: An example of processed sono image.

is a significant influence of subjectivity. By two dif-
ferent medical doctors, a different diagnosis may be
determined from one image. Another problem is a
long time treatment when the progress of the disease
must be determined from old images and repeating of
examination is no longer possible (Školoudı́k, 2007).
That is why there appeared the demand to create a tool
that would help physicians to objectivize the diagno-
sis process. The processing of ultrasound images is
widely discussed in literature. Various methods were
presented for an image segmentation (Noble, 2006),
(Boukerroui, 2003), (Bosch, 2002), noise and speckle
reduction (Magnin, 1982), (Rakotomamonjy, 2000),
(Kerr, 1986) or image enhancement (Lee, 1980), (Sat-
tar, 1997). However, according to our knowledge,
there are no studies dealing with processing the brain-
stem transcranial images or with computerized recog-
nition of objects in the substantia nigra area.

Since the image segmentation is strongly depen-
dent on the character of the processed image we need
to realize that the usage of classic ultrasound image
segmentation methods will be limited. Still, some in-
teresting studies dealing with ultrasound images were
published. Ballard et al. (Ballard, 1982) presented
region-based segmentation methods such as the re-
gion growing where they used the homogeneity of
inner regions in the images. Such approach is ob-
viously impropriate for transcranial images process-
ing since the images contain too much ultrasound
speckle. Mishra et al. (Mishra, 2006) presented
the active contour method in combine with the ge-
netic algorithms for the endocardial border detection.
A slightly different approach was used by Mignotte
(Mignotte, 2001). They used a statistical external en-
ergy in a discrete active contour for the segmentation
of parasternal images. Their work was followed by
many optimization efforts, e.g., Heitz (Heitz, 1994).
The method provided relatively good results and is
recommended for the noisy ultrasound images. Still,

Figure 2: An endocardial (left) and transcranial (right )ul-
trasound image. The different level of noise is evident.

if we compare the level of noise in the images the
method was tested on with transcranial ultrasound im-
ages, we see that our analysed images have signifi-
cantly worse quality.

Another possible method for an ultrasound image
segmentation are the level sets, using an adaption of
the fast marching method. In 2003, Yan et al. (Yan,
2003) presented the purely edge-based version of this
method for the endocardial boundary detection. It was
later improved by Lin et al.(Lin, 2003). Their method
combined an edge and a region information in a level
set approach across spatial scales and it assumes that
a boundary is a closed curve. The method is supposed
to work well with the images of reasonably good qual-
ity. Klinger et al. (Klinger, 1988) presented a study
dealing with the echocardiographic images, based on
mathematical morphology. As well as the previous
method, this one also assumes to work with good
quality images. In 1999, Rekeczsky et al. (Rekeczky,
1999) and Binder et al. (Binder, 1999) came with the
artificial neural network method. Binder used a 2-
layer backpropagation network to identify a 7x7 pix-
els region with good results. Unfortunatly, we try to
locate a region 120x120 pixels large which means a
significant growth of input information for the neural
network. Even if we decide to use only some impor-
tant parts of the image to reduce the input, we still
have to deal with the possiblity that the selected re-
gion is strongly covered by ultrasound speckle. Our
proposed method is designed to use as much infor-
mation from analysed image as possible to avoid be-
ing misled by the high level of ultrasound noise and
speckle.

2 BRAIN STEM LOCALIZATION

The method we have developed for processing the
brain-stem transcranial sono images is divided into
two phases. In the first phase, we try to locate the
position of a minimal window in the processed im-
age containing the brain stem. To do so, we use a
modified template matching algorithm. Since every
human being is unique, the brain stems may slightly
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Figure 3: Examples of the images used for the template con-
struction. For need of this paper, the images are displayed
with the same size.

differ in shape and size. Moreover, the objects be-
ing sought inside the stem may have different posi-
tion, size, and echogenicity, depending on the disease
progress. Therefore, for creating the template of the
stem, we choose several images that best represent,
according to our opinion, various possible shapes and
sizes of the stem. We also consider the seriousness
of the disease by choosing images depicting the situa-
tion in various stages of the disease progress (from
healthy persons to persons with an advanced stage
of the disease). The selection of images that are
used for the template construction is important in
our method. Therefore, the selection of images was
widely discussed with medical doctors to best fulfill
previously mentioned parameters. Overall, there were
20 selected images used for the template construction.
Four examples of these images can be seen in Figure
3.

We construct the template that is used for match-
ing by simple averaging the particular selected images
of the brain stem. Firstly, the images are normalized
to the same size. In our experimental implementation,
we use the size of 120 × 120 pixels. After normaliz-
ing the size, we normalize the images of stem also
with respect to the mean value and the variance of
brightness. We do so by using the following formula

bn(x) = abo(x)+ c, (1)

where bn(x), bo(x) stand for the normalized and orig-
inal brightness, respectively, at a pixel whose position
is described by a two-dimensional vector x, and a and
c are constants that must be determined for each par-
ticular image. For determining them, the mean value

of brightness, denoted by µbo, and the variance of
brightness, denoted by σ2

bo, in the original images are
needed. Let Ω stand for the set of all pixels in the
brain-stem image and let N be the size of this set. We
have

µbo =
1
N ∑

x∈Ω

bo(x), (2)

σ
2
bo =

1
N ∑

x∈Ω

(bo(x)−µbo)2. (3)

In each normalized image, the normalization of
brightness aims at achieving a certain required mean
value, denoted by µbn and a required variance of
brightness, denoted by σ2

bn. Simple mathematics
yields the following formulas for a and c

a =
σbn

σbo
, c = µbn−aµbo. (4)

The effect of normalization can be seen in Figures
4, 5. In Figure 6, the set of example images from Fig-
ure 3 can be seen in normalized form. An example of
the template that was obtained by averaging the brain-
stem images using Equation 5 is depicted in Figure 7.

Figure 4: The histogram of original image.

Figure 5: The histogram of normalized image.

In the pattern matching algorithm, we will also use
the variance of brightness in particular pixels that can
be expressed as follows

µb(x) =
1
M

M

∑
j=1

bn j(x), (5)

σ
2
b(x) =

1
M

M

∑
j=1

(bn j(x)−µb(x))2. (6)
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Figure 6: The brain-stem images from Figure 3 after the
normalization process.

Figure 7: The constructed template.

In the above formulas, M is the number of partic-
ular normalized brain-stem images that are used for
creating the template; bn j stands for the j-th such im-
age.

In the first step of our method, we try to locate the
position of the brain stem. We introduce a possibil-
ity, denoted by π(uk,x), of the event that the template
point with the coordinates x corresponds to the image
point with the coordinates x+uk (Sojka, 2006). This
possibility may be determined from the difference of
brightness

∆b = b(x+uk)− t(x), (7)

where b(x+uk) is the brightness of the pixel with co-
ordinates x + uk in processed image, and t(x) is the
brightness in the corresponding template pixel. Let it
be pointed out that uk characterizes the template po-
sition that is just being processed.

We suppose that the possibility distribution may
be described by a certain chosen function ϕ. Figure
8 shows an example of such a function. For the con-

Figure 8: The distribution of possibility ϕ (we use the Gaus-
sian function).

struction of ϕ, we use the deviation σb(x) that was
determined in Equation 6.

To obtain the possibility of the event that the im-
age pixel just being processed corresponds to the pixel
from the template, we use the following equation

π(uk,x) = ϕ(b(x+uk)− t(x),σb(x)). (8)

To characterize the quality of matching at the po-
sition uk, we introduce the quantity S(uk) character-
izing the number of pixels, i.e., the ”net area” that can
successfully be matched to the template. We have

S(uk) = ∑
x∈Ω

π(uk,x), (9)

where Ω stands for the set of template pixels.
The final goal is to find the value of u that maxi-

mizes the value of S(uk). The value of u then deter-
mines the position of the window that should contain
the brain stem (Figure 9).

Figure 9: An image with the recognized brain-stem object.

It is obvious that during the brain-stem detec-
tion, each processed window from the analyzed image
must be normalized in the same way as the images
used for the template construction.

3 ANALYSIS OF BRAIN STEM

To obtain the information about the disease progress,
we now need to locate and measure the objects in-
side the brain stem, which is the second step of our
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Figure 10: An image with the recognized brain stem and the
highlighted objects.

method. In the image, these objects appear as the
areas with a higher level of echogenicity inside the
substantia nigra area. It is a difficult task to correctly
identify these objects because the areas may have in-
sufficient contrast.

We locate the objects in the brain stem as the ar-
eas with a higher level of brightness that are found
using the region growing method. Homogenity of
brightness is a criterion that is used for growing. Af-
ter growing, the regions of interest are usually parti-
tioned into several smaller areas (Figure 10). There-
fore, morphological closing is carried out after grow-
ing to connect the sub-areas together. If it is required
by a doctor, the convex hull of the found area may
be computed too. The regions that have been found
are then checked for the shape and size, which sepa-
rates the objects of interest in the stem. The numerical
characteristics are then computed. For all recognized
objects, we determine the number of pixels the ob-
jects are composed of, their average brightness, and
the location of their gravity centers. Besides comput-
ing the characteristics of the objects, they can also be
highlighted in the images (Figure 10).

Naturally, there is also a possibility to correct the
obtained results manually, if necessary, and remove
possible unwanted objects that are considered to be
only a noise, ultrasound speckle or possibly even a
part that does not belong to the brain stem area.

4 ACHIEVED RESULTS

To test the succesfulness of our method in brain stem
localization, we used a sample of 170 images in which
we tried to locate the correct brain-stem position. The
result (the quality of recognition) was classified with
the marks between 1 and 3. The mark 1 means that the
position was recognized correctly and accurately. The
mark 2 means that the position was determined inac-
curately but not completely incorrectly. In this case,
the position was usually determined with an error up

to 10-15 pixels. The mark 3 means that the method
determined an incorrect position. For our set of test
images, we obtained the results that are summarized
in Table 1.

Table 1: The results of the brain-stem localization achieved
by the presented method. The first column determines the
quality of recognition. The second one shows the number of
images recognized with corresponding quality and the last
column displays the overall percentage.

Quality of
recognition

Number of images Results in %

1 129 75,9
2 4 2,3
3 37 21.8

The mark 1 was achieved in nearly 76% of
images. This can be considered as a good result since
we have to realize that the method must deal with
images of various quality. The difference between
the good and and bad image is shown in Figure 11.
In the left image, we can clearly see the shape of the
brain stem. For our method, the right image is very
difficult to determine the correct brain-stem location.

Figure 11: These images illustrate the difference between
the good quality and the bad quality images. While in the
left image, the shape and position of brain stem is obvious,
in the right image, two places with similar shape to the brain
stem may be found.

5 CONCLUSIONS

The computer processing of transcranial ultrasound
images is a complicated task. Images often suffer
from a very poor quality and they often have a high
level of noise and speckle. The objects that were rec-
ognized are often discontinuous, in worse cases even
incomplete. The objects inside the brain stem often
have insufficient contrast and they are usually frag-
mented by ultrasound speckle. Still, the objective
evaluation of these images can be very helpful in the
Parkinson disease diagnostics and treatment. It can
help the medical doctors to determine the correct di-
agnosis as well as the level of the disease progress.

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

482



The exact and objective information about the ex-
amination from particular date can especially help in
longer time diagnostics when repeating of the exami-
nation is no longer possible.

Our method may be divided into two phases. At
first, it attempts to correctly identify the position of
brain stem in processed image. This phase is crucial
in overall diagnostics and this paper focuses mostly
on this part. In the second phase, we detect the ob-
jects of interest in the brain stem. The detection of
existence, shape, size, and echogenicity of these ob-
jects is a valuable contribution to the diagnostics of
Parkinson’s disease.

Achieved results obtained during testing make us
believe that the method we have developed for the de-
tection and analysis of the brain stem in transcranial
ultrasound images is successful. From the tested im-
ages, we obtained good results. In 76% of cases, the
position of the brain stem was correctly determined.
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Školoudı́k, D., F. T. B. P. L. K. R. P. Z. O. H. P. H. R. K. P.
(2007). Reproducibility of sonographic measurement
of the substantia nigra. Ultrasound in Medicine & Bi-
ology, 33(9):1347–1352.

Yan, J.Y., Z. T. (2003). Applying improved fast marching
method to endocardial boundary detection in echocar-
diographic images. 24(15):2777–2784.

A NEW METHOD FOR DETECTION OF BRAIN STEM IN TRANSCRANIAL ULTRASOUND IMAGES

483



AUTOMATIC DETECTION OF IN VITRO CAPILLARY TUBE 
NETWORK IN A MATRIGEL ANALYSIS 

Eric Brassart 1, Cyril Drocourt 1, Jacques Rochette 2, Michel Slama 3 and Carole Amant 2

1 LTI, Univerty of Picardie Jules Verne and IUT Amiens, France 
{eric.brassart, cyril.drocourt}@iut-amiens.fr 

2 DMAG, EA 3901, Amiens, France;Univerty of Picardie Jules Verne, Amiens, France and CHU 
 {carole.amant, jacques.rochette}@u-picardie.fr 

3 INSERM, ERI-12, Amiens, France;Univerty of Picardie Jules Verne, Amiens, France and CHU 
 slama.michel@chu-amiens.fr

Keywords: Angiogenesis, Image analysis, Capillary tube network. 

Abstract: Angiogenesis, the formation of new capillary blood vessels from pre-existing vessel, has become an 
important area of scientific research. Numerous in vivo and in vitro angiogenesis assays have been 
developed in order to test molecules designed to cure deregulated angiogenesis. But unlike most animal 
models, most in vitro angiogenesis models are not yet automatically analysed and conclusion and data 
quantification depend on the observer’s analysis. In our study, we will develop a new automatic in vitro 
matrigel angiogenesis analysis allowing tube length and the number of tubes per cell islets as well as cell 
islet and tubule mapping to be determined, percentage of vascularisation area, the determination of ratio of 
tubule length per number of cells in cell islet and, ratio length/width per tubule determination. This new 
method will also take image noise into account. Our method uses classical imaging quantification. For the 
first image processing we used image segmentation (Sobel type edge detection) and artefact erasing 
(morphologic operator). Subsequent image processing used Snakes: Active contour models in order to 
precisely detect cells or cell islets. We suggest that this new automated image analysis method for 
quantification of in vitro angiogenesis will give the researcher vascular specific quantified data that will 
help in the comparison of samples. 

 
1 INTRODUCTION 

Angiogenesis, a complex process whereby new 
blood vessels form from pre-existing vasculature in 
response to proangiogenic factors, is an essential 
physiological process required for growth and 
development (Folkman J. 1971 and 1992). 
Angiogenesis represents the unique process by 
which evolution tissue may be supplied in essential 
elements provided by blood. Angiogenesis is 
therefore involved in major physiological processes 
including embryonic development, female 
reproduction, wound healing and collateral 
generation in the myocardium. Dysregulated 
angiogenesis plays a critical role in various 
pathological mechanisms such as solid tumour 
formation, metastasis, childhood haemangioma, 
diabetic retinopathy, macular degeneration, psoriasis 
and in inflammation-related diseases such as 

rheumatoid arthritis, osteoarthritis and ulcerative 
colitis. 

2 PRIOR AND RELATED WORK 

In this way, drug design in order to cure 
dysregulated angiogenesis is evident. Many in vivo 
and in vitro angiogenesis model have been 
described. But unlike most animal models in which 
blood flow doppler analysis allows vascularisation 
quantification (Couffinhal T, 1999), most in vitro 
angiogenesis models are not yet automatically 
analysed and conclusion and quantification depend 
on observer analysis (Vincent L., 2003). most in 
vitro angiogenesis cannot be automatically 
quantified and require observer participation. The 
determination of the effect of drugs on vasculature 
development requires the comparison of samples 
and the use of data analysis standardization. In this 
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study, we focused on an in vitro endothelial cell 
differentiation matrigel assay automated image 
analysis methods for the quantification of 
angiogenesis. Most of the time, tube length and the 
number of tubes per cell islet are the only data in 
publication that can be found, and are quantified by 
the observer himself. Few publications have 
described an automatic image analysis approach. 
One of these publications, (Niemisto A., 2005) 
describes an automatic image analysis method for 
quantification of in vitro matrigel angiogenesis. But 
in our study we will develop a new automatic in 
vitro matrigel angiogenesis analysis allowing in 
addition cell islet and tubule mapping, percentage of 
vascularisation area determination, ratio of tubule 
length per number of cell in cell islet determination, 
and ratio length/width per tubule determination. In 
this study we will develop a new method in order to 
take image noise into account (particles, air bubbles 
included in the matrigel). 

3 IMAGE ANALYSIS 

3.1 Introduction 

According to Nicolas Ayache, the problems 
encountered in the analysis of medical imagery can 
be separated into several categories: 
− Restoration: this step consists of recreating an 

improved image, in which several faults 
connected with the physical acquisition process 
have been eliminated (noise reduction, ...). 

− Segmentation: separation consists of extracting 
points, lines or regions which are then used as 
data in complimentary work such as 
realignment, measurement, analysis of 
movement, visualisation etc. 

− Realignment: this a problem common to many 
tasks concerning the analysis of medical 
imagery, and is necessary to compare the 
images acquires from one single patient, or with 
varying modalities. 

− Morphometry: this consists of studying the 
geometry of the forms, in particular the 
calculation of average forms and the variations 
around theses forms. 

 
These treatments occur at different time and in 

different order. The reference image we were using 
in this article is in figure 1. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: The reference image, to which all the developed 
processing will be applied in this article. 

3.2 Segmentation 

After having tested several methods of binarisation 
(Fisher, Otsu,) (Antti Niemistö 2005) we determined 
that this type of simple processing was not suitable, 
principally because of its sensitivity to the variation 
in luminosity within the image. Indeed, projections 
of light on to tissues are not homogenous, and often 
darker zones appear at the edges of the images 
acquired, leading to poor separation of classes in 
OTSU's formulation. We therefore chose to pre-
process our images in several successive stages, 
allowing us to isolate only the cells and the 
background. These steps, undertaken one 
independently of the other correspond to traditional 
processing in digital imagery, but bring about an 
efficient solution: 
− a detection of the contours by means of the use 

of a gradient operator(
 
∇ ), and more 

specifically the norm of this operator. 
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discreet estimation coming down to the calculation 
of two convolutions in the x and y directions. The 
operator we preferred is that of Sobel (Sobel, I 
1973); see Figure 2. 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 : Detection of the contours with Sobel's operator. 

AUTOMATIC DETECTION OF IN VITRO CAPILLARY TUBE NETWORK IN A MATRIGEL ANALYSIS

485



 

− Closure of the objects in the image which 
allows the joining of neighbouring pixels to 
close the contours and the unconnected 
surfaces. This allows us to make the "textured" 
surfaces homogenised and to create a complete, 
uniform object. (Figure 3), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 : Convolution and closure of the image 

− Elimination of objects which are too small 
(Restoration phase). The aim here is to eradicate 
objects whose size does not satisfy the criterion 
of the average size of all the images composing 
the image. In the majority of the images 
contained in our library, this step permits us to  
attribute a sufficiently precise localisation of the 
network, without necessarily being able to 
identify the cells (or mass of cells) of the 
connecting tubes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 : Isolated network  after noises elimination and 
the isolated elements. 

The second phase of this study consists of extracting 
the different elements characteristic of what we will 
call the cells (or the mass of cells) from the image, 
and the tubes joining the cells, when they exist. The 
idea developed in this paper is firstly to isolate 
everyone which resembles cells, and then to try, 
from these latter, to establish the connections (tubes) 
which, after all, characterise the mesh of our 

network. The different stages put into place are the 
elimination of the various noises in the image, 
(reflection from bubbles of air in the network, 
particles, non-consideration of isolated cells; the 
elimination of tubes. From the resulting image, with 
the remaining lines, we are specifically looking for 
the exact contour of the cells or mass of cells. To do 
this, we used an algorithm based on the active 
contours, for which the initialisation of the starting 
points is done automatically. 
 

Erosion of the picture descended of the previous 
stage permits to suppress the information of type 
tubes and to only keep information of type cells. 
This stage remains the most appreciable part of our 
algorithm because it is from this one that the set of 
cells will be initialized. (Figure 5), 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 : Erosion of the image and initialisation of the 
starting point characterising the cellular mass. 

− Use of snakes 
A snake (Kass M 93, Xu C 97) is an elasticised curve 
which can be modelled by a parametric shape 
normalised as follows: 

s → v ( s ) = {x (s), y(s)} 

Where s is the curvilinear abscissa or the parameter 
on the curve ∈ in the spatial domain Ω, 

It ensues from the previous definition that a model 
of snake is a problem of optimisation of a functional. 

−  Several resolution approaches exist, let us quote 
a variation method which consists of resolving 
Euler's 

 
Ω = [0, 1] → R2

v(s) is the vector of position of the point of contour 
of coordinates x (s) and y(s), 

v(1) and v(0) are the vectors of position of the 
extremities of the contour. 
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The total energy of the contour which we try to 
minimize is represented by the following function 
(Kass M 93): 

E ake = 0∫
 1

 Esnake(v(s)) ds  = sn

0∫
 1

Eint(v(s)) + Eimage(v(s)) + Econt(v(s)) ds 

 
Where Eint represents the internal energy of the 
snake, Eimage is the energy derived of the image 
(contours, gradients) and Econt represents the energy 
of constraints. 
 
Initialisation of the detection process. 
 
One of the major concerns which exist within the 
framework of the use of the active contours is the 
initialization. Indeed, in the majority of the 
applications using this technique, the initialization of 
snakes is done manually by asking the user to select 
points around the shape to detect what will 
constitute the initial contour. In our application each 
image zone corresponding to a cell is automatically 
framed by the max coordinates resulting from a 
labelling procedure The initial points correspond to 
the totality of points characterising the perimeter of 
each rectangle concerned (figure 6). The number of 
iteration points on the snakes is limited to 200, not to 
have a too long treatment on images. Of course, if 
the snake converges toward a solution before this 
maximum number the process stops on the usual 
criteria. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 : Initialisation of the snake son the zones marked 
in white. 

The use of the snakes permits to isolate precisely the 
surfaces associated with the cells (Figure 6). Finally 
the subtraction of the image obtained with that of the 
previous step to isolate the tubes (Figure 7).  
 
 
 
 

Figure 7: Initialisation of the snakes on the zones marked 
in white. 

 
Figure 8: Detection of the tubes. 

By carrying out a subtraction between the binarised 
images of the cells and those of the tubes we are 
now able to establish the network of cells, i.e. the 
cells and the tubes that connect them. To represent 
this network, we positioned the centre of theses cells 
by calculating the barycentre of each one of them. 
The result of this method is detailed in the following 
part of this article. 

4 RESULTS 

We have developed a new software for the 
processing of images, able to automatically analyse 
angiogenesis images. For this article a collection of 
10 images of this type was used to validate the 
results obtained. This software was written under 
Matlab with the image processing toolbox. All the 
images were obtained using a light microscopy. The 
concern in these images acquirement is to obtain 
images having sufficient contrast to be able to 
clearly show the cells and the tubes, and the noise 
inherent to these images as at the lowest level as 
possible : 

• homogenous light to avoid the effects of 
poor binarisations, 

AUTOMATIC DETECTION OF IN VITRO CAPILLARY TUBE NETWORK IN A MATRIGEL ANALYSIS

487



 

• particles and bubbles of air leading to 
the detection of objects capable of being 
assimilated with cells. 

 
We will show in this part the results obtained with 
various processing on a reference image, but the 
reader will find the complete results obtained from 
all the samples used at the following address: 
www.iut-amiens.fr/Angio-results.  
The first result given is to familiarize the practitioner 
with the vascularisation surface of the sample that 
has been imaged. On the image in figure 8, the 
percentage of vascularisation (%Sv) obtained is 
10,247%. The values given are determined by the 
following ratio of surfaces : 

The surface of the pixels within the contours (Sc) 
divided by the total pixel surface of the image (St). 
 

 
Figure 10: percentage of the vascularisation surface: %Sv 
= Sc/St. 

The results obtained are given in the form of a ratio 
that the user of our program may consult following 
the processing. On one hand it is visual with the 
illustration in figure 9, on the other hand it is 
numerical by means of consultation of the statistics 
shown in the following table. 
 

 
Figure 11: Aspect of the network corresponding to the 
cellular development. 

Report of the detection: 
Connection  
1 connected with 3 
2 connected with 6 
3 connected with 6 
6 connected with 10 
8 connected with 11 
11 connected with 12 
 
Number of Cells: 14 : 
Number of Tubes: 48 
Number of Connections : 6 
Mean tube length: 96,923 (in arbitrary units) 
Surface of the cells: 4088 (in arbitrary units) 

5 CONCLUSIONS 

We have developed a new technique of automatic 
detection of a vascular network in a matrigel gel. 
This technique is based on basic image processing 
techniques such as the detection of contours, 
morphologic operators combined with more 
sophisticated processing such as the use of active 
contours. On this latter point we have developed the 
original idea of automatic placement of the initial 
points on the cells. In literature dealing with this 
aspect, there are very few methods avoiding the 
placement of these points manually. Our technique 
can be used to measure the length and size of tubular 
complexes automatically, to localize cell islet and 
tubule, to measure the percentage of the 
vascularisation area, the ratio of tubule length per 
number of cells in a cell islet and the ratio 
length/width per tubule. Our software also propose 
the structure of the capillary network. 

Concerning the software, a certain number of 
developments still have to be completed. Indeed, 
during the detection of the cells in the image, a 
certain number of them are considered as noise or 
are ignored since the contrasts are not significant to 
allow automatic detection (the light is not adapted). 
In order to consider them as an integral part of the 
mesh, the practitioner must be able to make them 
active by manual intervention, and reintroduce them 
in the detection of the capillary network. 

6 PERSPECTIVES 

This software will help the researcher to quantify 
samples and to determine the effect of new anti-
angiogenic or pro-angiogenic agents in deregulated 
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angiogenesis processing. An other application of 
these new in vitro angiogenesis quantification 
techniques in ischemic hind limb or ischemic 
myocardial cell therapy will be to test the ability of 
bone marrow stem cells or endothelial progenitor 
cells to differentiate in endothelial cells and to 
establish a vasculature shortly before the injection in 
the ischemic tissue. 
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Abstract: Otoliths are small stone located in fish inner ears and characterised by an accretionnary growth. They act
as a biological archive and are of much use in marine biology and ecology. In this article a computer vision
framework is presented which recover the successive shapesof the otolith and the significant ridges and valleys
from a 2D grayscale image. Seeing vision processes as complex systems, an iterated process is presented using
two perceptual information, contrast and good continuity.The successive concentric shapes of the otoliths are
recovered as the level-sets of a dome shaped potential function, computed in a variational framework. Potential
applications includes in particular fish age estimation, otoliths morphogenesis modelling, otolith proxy fusion.

1 INTRODUCTION

Otolith are small stones located in fish inner ears used
for their spatial localisation. They grow continuously
according to an accretionnary process. As the accre-
tionary deposit is influenced both by physiological pa-
rameters and environmental conditions, fish otoliths
can be viewed as biological archives from which a lot
can be learned on fish biology and ecology. For in-
stance, individual age data, which are among the key
data for fish stock assessment, are estimated from the
interpretation of fish otoliths.

The decoding of this biological archive is a diffi-
cult task, as the conditions influencing the accretion
are numerous, and their effects not well known (Pan-
fili et al., 2002). Various means of analysis of the
physical and chemical properties of the stone can be
used: microchemical analysis, mass or raman spec-
troscopy etc... Visual analysis of images of magni-
fied otolith sections are also used but, being done by
human operator, they would benefit a lot from com-
puter vision techniques to improve automatising, ro-
bustness and quantitative evaluation. Such techniques
would allow to fully consider the image as yet an-
other mean of quantitative measurements similar for
instance to chemical signatures (Panfili et al., 2002).

An otolith image can be seen in Figure 1. Con-

centric structures akin to the one found in tree trunk
section can clearly be seen. Several works have tried
to extract those curves, using multi-agent methods
(Guillau et al., 2002) or active contours (Troadec
et al., 2000). While yielding good results on the
species considered as easy by expert (like plaice),
they failed on more complicated images (like pollock
or hake), because the hypothesis made were too re-
strictive.

The vision of concentric structures in otolith im-
ages are the result of complex global interactions be-
tween heterogeneous visual cues interpreted by the
human vision system : what we see are continuous
and smooth parallel concentric curves forming quasi-
convex shapes. The analysis of low-level vision pro-
cesses will lead to the definition of an original ap-
proach for the extraction of the relevant curves, and
the recovery of the successive shapes of the otolith
during its growth. Thus a novel framework for ge-
ometric images understanding applied to otoliths is
proposed, the results of which can be seen in Fig. 1.

This paper is organized as follow. The next sec-
tion presents a psychovisual analysis of otoliths and
an overview of the framework with which we imple-
ment its conclusion. In section 3 the different steps
are detailed. The last section details the implementa-
tion and shows results on several species.
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Figure 1: Overview of the process.

2 PSYCHOVISION AND CURVE
EXTRACTION IN OTOLITHS

Psychovision is the study of vision from a subjective
point of view: how do we manage to organize the
wealth of information that reaches the retina into co-
herent structures? It is based on experiments where
subjects are asked to describe how they perceive given
stimuli. This section will be devoted to what psycho-
vision can teach us about otolith images and how we
can apply it in practice.

2.1 Perceptual Emergence from
Interaction

Low-level vision is the part of vision (either biologi-
cal or computer) that builds global structures (or per-
cepts) i.e. curves, regions, depth perception, etc...
from atomistic information, the pixels in one case and
the cones and rods of the retina in the other. This
process has been much studied, in particular by the
Gestalt school of visual perception (Kanizsa, 1979).

They described the transition from local informa-
tion to global percepts as the action of a number of

grouping laws stating that individual cues having sim-
ilar or compatible characteristics are seen as being
part of the same group (Kanizsa, 1979). Those char-
acteristics include color, direction, spatial proximity,
global shape priors or specific structuring patterns like
T-junction and X-junction.

But those laws interact one with the others, either
reinforcing one another if they correspond to the same
object, or inhibiting or masking one another if several
interpretations of a scene are possible. Thus low-level
vision can be seen as the process in which global per-
ceptsemergefrom the complex interactions between
perceptual cues and group of perceptual cues.

This description is based on the notion of emer-
gence, which is characterised by the existence, in a
hierarchy of organizational levels, of properties at a
given level which are not explainable by/ reducible
to the individual properties of elements of the lower
levels. It is characteristic ofcomplex systems(Benki-
rane, 2002). Such systems are notoriously difficult to
understand and model because, every element being
tied in non-linear ways with a great number of oth-
ers, it is hard and/or unhelpful to try and study them
separately.
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2.2 Psychovisual Analysis of Otoliths

Otoliths are in some sense closer to artificial im-
ages used in psychovisual experiments than to natu-
ral ones. They are strongly organized geometrically
in concentric curves alternatively darker and lighter
which, despite a low contrast and various noises, are
clearly seen event by an untrained eye. A num-
ber of grouping laws are involved in that perception:
good continuation, concentricity and parallelism of
the curves, quasi-convexity of the shapes, constant
width of the rings. As all those informations describe
the same structures, they reinforce one another, in
positive feedback loops.

But most of those grouping laws work on a global
scale. The problem might seem easy because otolith
images are easily described subjectively as concentric
curves, but saying so would be being triked by the
ability of human vision to disregard all the cues that
do not match its global view of an object. A care-
ful analysis (or indeed any computer program which
would lack that particular ability of the human eye)
shows that there is locally a number of details that go
against that interpretation, like flat zones, bubbles or
isolated orthoradial structures. In the case of otoliths,
two cues are mainly used: orientation, via the good
continuation gestalt, and maxima of contrast. The
proposed framework will alternatively use those two
information and the coherence between them to find
the global structure of the image.

2.3 Proposed Framework

The growth rings on otolith images correspond to
ridges and valleys (together known as creases) in
computer vision. Those are intuitively the relief
curves of the landscape obtained when the image in-
tensity is seen as a height map. As pointed out above,
their perception is mainly the result of two grouping
laws, one concerned about contrast, locating creases
on local maxima or minima of intensity, the other be-
ing the good continuation, grouping together those
loci forming curves long and smooth enough. In a
first part of the algorithm the good continuation is
exploited to compute a continuous orientation based
family of curves, which in a second part is compared
with contrast information to extract only the relevant
creases. We should point out that both of those results
are of interest for biological applications. While the
computed family of curves correspond to the tempo-
ral history of the shapes of the otoliths, the extracted
crease curves supply the actual growth rings. The dif-
ferent steps are outlined bellow, in relation with Fig-
ure 1, and will be detailed in the next section.

The first component of the proposed frame-
work implements the good continuation principle for
otoliths images. Good continuation is the grouping
law that account for our viewing of continuous and
smooth curves (Kanizsa, 1979). If perceptual cues
have compatible directions, the curve to which they
are all tangent will be seen as a unique curve. Orien-
tation information has a key role and an interpolation
based scheme is considered to estimate a dense orien-
tation field. An example is shown Figure 1, top left.
Details are in section 3.1. Then, given a prior model
on accretionary growth, formalised as a dome-shaped
potential function, the successive shapes of the otolith
are reconstructed as being as tangent as possible to the
orientation field. This model permits an embedding of
time information in a third dimension satisfying both
biological and psychovisual constraints. The result
can be seen Figure 1, top right. The algorithm used
will be detailed in section 3.2.

The implementation of the good continuation pro-
vides as an output a series of curves which are po-
tential growth rings. A contrario detection is then ex-
ploited to combine this geometric information with a
contrast based measure to detect crease curves. This
step is illustrated figure 1, bottom right. Detail on a
contrario detection and the measure used are found
section 3.3. Intrinsically a contrario detection will de-
tect several curves for a given growth rings, and an
additional grouping law is required to fuse together
the curves corresponding to a same structure. The re-
sult is seen Figure 1, bottom left. Section 3.4 will
outline the algorithm used, full detail can be found in
(Chessel, 2007).

As stressed previously, low level vision is about
emergence by interaction. In the proposed implemen-
tation, those interactions comes from feedback loops,
both positives and negatives. Section 3.5 describes
how iteration can be used in place of those feedback
loops to mimic the emergence process and allow for
the progressive apparition of the structures we seek.

3 FROM GOOD CONTINUATION
TO ITERATED MULTIMODAL
A CONTRARIO DETECTION

3.1 Good Continuation via Orientation
Interpolation

Good continuation has attracted much work in the
computer vision community. Often an image of
edgels -”edge elements”, point supposed to be part
of an curve along with the orientation of said curve
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at that point- is taken as input, and continuous and
smooth curves that link them are looked after (Parent
and Zucker, 1989; Zweck and Williams, 2004).

Good continuation can be interpreted as an inter-
polation process. Either directly the interpolation of
curves , Euler’s elastica (Mumford, 1994) being then
seen as a suitable and elegant solution, or through ori-
entation interpolation. The idea is then to build, from
a sparse edgel image, a dense orientation field where
to each point is associated the tangent to an eventual
structure going through that point. Curves in accor-
dance with the good continuation principle are then
the one the most tangent to that orientation field

In the case of otoliths, as outlined in the preceding
section, such a field is particularly meaningful. The
whole image can be described by concentric struc-
tures, and as such an orientation can be associated to
each point. Furthermore, a biological interpretation
can be associated: under the widely accepted hypoth-
esis that variation of optical properties are linked to
the biological growth, recovering the tangents to the
structures means recovering the local direction of ac-
cretionary growth.

In (Chessel et al., 2006) two interpolation opera-
tors are presented. Orientation data belong to the unit
circle S1 = {x ∈ R 2 | |x| = 1}. But extending data
in S1 poses additional challenges to extending scalar
data. To the innate ambiguity of interpolation, one has
to manage an ambiguity due to the periodic nature of
S1 and the need to use two maps to parametrize it.
We then can distinguish two cases. Either the exten-
sion can be achieved by a laminar field, meaning one
parametrisation is enough and the extension inS1 is
similar to the scalar case, or a turbulent field is needed
and singularities are unavoidable. The hypothesis that
can be made in the general case is that the field to
be estimated is locally laminar: near each curvilinear
structures a smooth field can be reconstructed, and far
from them such an orientation field is meaningless. In
the particular case of otoliths, a unique singularity is
expected in the growth center.

The AMLE (Absolutely Minimizing Lipschitz
Extension) is the extension operator used, it veri-
fies an axiomatic approach (Chessel et al., 2006).
It has been well studied mathematically. Existence
and uniqueness has been proved in the scalar case
((Caselles et al., 1998) and its references). In particu-
lar, it verifies a maximality principle which guarantee
that the solution is oscillation-free.

Let Ω be a subset ofR 2. Let S1 be parametrise
with the angle with the horizontal axis in[0, pi[. Let
D ⊂ Ω be a set of points and/or curves andθ0 : D→

S1. Thenθ : Ω→ S1 is the AMLE ofθ0 in Ω if:
{

D2θ(Dθ,Dθ) = 0 in Ω,

θ|D = θ0 onD,
(1)

i.e. if the second derivative in the direction of the gra-
dient is equal to zero.

Numerically the equation was solved using the as-
sociated evolution problem. Because of the aforemen-
tioned ambiguity associated with the use ofS1, and
the iterative nature of that scheme, a multi-resolution
initialisation algorithm was used.

The setD of initial points can be obtained in var-
ious ways, as we will see later. An example of com-
puted field can be seen Figure 1, the inital point be-
ing in black. The field is visualised via it’s field lines
using line integral convolition (Cabral and Leedom,
1993).

3.2 Recovering Shape Evolution

In this section is presented the representation of the
otolith growth via its successive shapes and a way of
computing such a representation from an image using
the computed orientation field (Fablet et al., 2006).
Such a representation stem from both biological mod-
elling and computer vision constraint and algorithms.
It is of interest both for itself, as the history of the
shapes taken by the otolith, and as a mean of comput-
ing curves candidates to be growth rings, as used in
the next section.

y

Now

t=t0

t

t=0

Otolith image

x

Figure 2: The successive shapes of the otoliths are repre-
sented as the level-lines of a dome shaped potential.

As suggested in the seminal work of D’arcy
Thompson (D’arcy Thompson, 1917), we adopt a
level-set setting to represent the accretionary growth
process. It comes to introduce a potential function
U defined overR 2 such that the shapeΓt(U) of the
considered biological structure within a given obser-
vation plane at time t is given by the level set of U,

Γt(U) = {p∈ R 2 such thatU(p) = f (t)}, (2)

OTOLITH IMAGE ANALYSIS BY COMPUTER VISION

493



where f is a strictly monotonic continuous function
(see Figure 2). GivenU , the sequence of level sets
{Γt(U)}[0;T] represents the evolution of the shape
from time 0 to time T. This representation conforms
to the classical assumption that accretionary growth
is locally normal to the shape and thus that the shapes
are included one in another (there is no reabsorbtion
of the growth). But that representation also complies
naturally to many of the low-level vision constraints
defined earlier: thanks to it, we are bound to find
smooth quasi-convex and concentric parallel curves.

The potentialU is computed using a variational
algorithm as the smooth potential following the previ-
ous definition that is the most tangent toθ, the orien-
tation field computed section 3.1. LetI be the otolith
image. Letθ be the computed orientation field with
value in[0,π[. Then the hill-shaped potential function
U , with minimum value 0 on the outline and maxi-
mum 1 in the center is computed as the minimum of
an data driven regularized energy

U = argmin
U

∫

x∈R 2
|∇U(x)|(1+ γ ·

〈

∇U(x)
|∇U(x)|

,θ(x)

〉2

)dx

(3)
It tends to align the tangents to the level-line ofU to
the computed fieldθ. The successive shapes of the
otolith during its growth are then estimated via the
successive and concentric level-sets ofU .

3.3 A Contrario Detection

3.3.1 Principles

The a contrario detection relies on the Helmoltz prin-
ciple, which states that a given geometrical structure
in an image is perceptually meaningful if its proba-
bility of occurrence in a random image is low enough
(Desolneux et al., 2003). Thus, given a collection of
objects the assumption is made that they were ran-
domly generated: a false random probability law is
defined and meaningful objects are the ones that are
unlikely enough with respect to this false model. It
can be seen as an implementation of a perceptual
grouping law, with the objects being the prospec-
tive perceptual groups and the random probability law
defining the considered gestalt law.

Formally the a contrario detection is stated as fol-
low. Let I be a grayscale image. LetC be a set of
curves extracted from I andC p the set of all pieces
of curves fromC . Let M be a measure of creaseness
(grayscale image) onI . Let H(m) = 1

N#{x|M(x) >
m}, with N = #{x∈ I}, be the probability for a point
of I to have a creaseness measure greater thanm.

Definition 1 Let c∈ C p be a curve of lenght l and
m= minx∈c M(x). The number of false alarms of that

event is defined as

NFA(c) = |C p|×H(m)l (4)

Let ε ∈ R . A given piece of curve c is said to beε-
meaningful if NFA(c) < ε.

Ultimately the detection is based on the length of
the curves and the minimum of the creasness mea-
sure along them: between two curves with the same
minimal contrast the more meaningful one will be the
longer one.

The influence ofε has been shown to be small
(Desolneux et al., 2003), such that a contrario detec-
tion can be considered to be parameterless.

The clear separation between the geometric struc-
tures being worked on and the random model telling
us a contrario the relevant ones allows us to see the
process as mutimodal (i.e. different cues brings in
several distinct types of information). Indeed the geo-
metric structures, which here are not generic but pre-
computed, are completely independent from the noise
model, and are based on different geometric cues.
Hence, if none the less a correlation between the two
is detected, it stresses the existence of an underlying
geometrical structure in the original image: what we
are interested in is how much the two distinct infor-
mations ultimately describe the same object.

3.3.2 A Set of Candidate Curves

In the previous section was computed a continuous
potential functionU , implementing the good contin-
uation principle. It will be used to give us a set of
curves that are likely candidates for the growth rings
we want to extract. LetΓλ = {x|U(x) = λ} be the
level-set of valueλ of U , then ifN is the wanted num-
ber of curves, we set

C = {Γλ|λ =
k
N

,k = 1...N} (5)

3.3.3 A Contrast based Measure

A lot of works have studied the local differential prop-
erties of images to define their ridges and valleys (Ser-
rat et al., 2000; Sole et al., 2001). The two main cri-
terion are maxima of intensity in the direction of the
maximal curvature and maxima of level-line curva-
ture.

Given the Hessian (the matrix of the second order
derivatives), the chosen measure is the greatest hes-
sian eigenvalue, or equivalently the greatest principal
curvature. It is clear that it is maximal on the crease,
it is not too localised contrary to the maxima of the
level-line curvature and its sign allows us to differen-
tiate ridges and valleys. The fact that it also responds
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well on edges may be a drawback. But this is not
problematic in our case as otoliths are rather flat im-
ages and the only edge in otolith image is the rim,
which is treated separately anyway. So ifλ1 andλ2
are the two eigenvalues of the hessian ofI , associ-
ated with eigenvectorsv1 andv2, λ1 > λ2, we define
a ridge measure to be

M(x) = λ+
1 (x) =

{

λ1(x) if λ1(x) > 0
0 else,

(6)

and converselyλ−1 for a valley measure.

3.4 Curve Fusion via Alpha Shapes

A contrario detection is about detection and not op-
timisation, thus a number of pieces of curves are de-
tected as meaningful for a given crease. A step of
grouping is necessary, which compute a unique curve
from a given group. The detected curves are first
regrouped into shapes, two curves being considered
as in the same shape if their traces on the pixel grid
are connex using 8-connexity. A regularized version
of the shape is then computed by taking theα-shape
of that boundary (Bernardini and Bajaj, 1997). That
shape is then represented using triangulated polygon
(Felzenszwalb, 2005) and the unique crease associ-
ated with a given group of detected curves is then de-
fined as the medial axis of the triangulation. It will not
be detailed further here, more details can be found in
see (Chessel, 2007)),

3.5 Emergence via Iteration

It can be argued that both positive and negative feed-
back loops are a sine qua non condition of complex
systems (Thomas and Thieffry, 1995). It is the fact
that two or more perceptual cues can both reinforce
and attenuate one another in non-linear and global
ways that give rise to mid-level constructions, which
in turn both give rise to global structures and get fed
back to drive the individual cues interaction.

That process can be modelled using iterations, i.e.
using the detected mid-level elements to drive the pro-
cess of computing the global structure out of individ-
ual information. Contrarily to iterative schemes, used
to solve partial differential equations for example, for
which convergence and uniqueness results exist, com-
plex systems are characterised by solutions that are
difficult to predict analytically, but are rather simu-
lated from given initial conditions.

Two perceptual information are used, orientation
and contrast. The a contrario detection imposes to
consider independent features, thus the feedback re-
lies on orientation estimation only. The orientation

interpolation step uses as input a set of points with
known orientation. While initialisation is given by a
simple filter, after an iteration of the proposed frame-
work the extracted curves along with the tangent to
these curves provides updated inputs to update the ori-
entation field. Being the result of the combination of
both perceptual informations, those tangents will al-
low us to compute orientation fields more closely fol-
lowing the structures, and thus to improve the results.

4 RESULTS

The presented algorithm were implemented in
C/C++, using the Megawave2 (Froment, 1998) and
the CGAL computational geometry library (CGAL
Editorial Board, 2006) libraries. A simple filter se-
lects interesting points to initialise the process. There
are few parameters which are not crucial and can es-
sentially be kept constant for a wide range of images.

Previous methods of 2D otoliths image analy-
sis where limited to otolihs considered simple (like
plaice, not shown here) and would fail on more com-
plicated species like hake (Fig. 3 top). It is, as far as
we known, the first time that reconstructing the his-
tory of the shapes as done here is attempted. Quanti-
tative results with respect to synthetic data can found
in (Chessel, 2007).

Results on otoliths from different fish species can
be seen in Figures 3(a) and 3(b). For each are shown
the dome shaped potential motolith, represented by its
level lines, and the pieces of growth rings computed,
both on top of the original image. Both are shown for
the first iteration and after a few iterations.

The improvement over the iterations of the recov-
ered shapes is clear. While at first cluttered by de-
tails not relevant with respect to the global structure
sought after (on the left side of the hake otolith for
exemple), a few iteration of comparing information
from orientation and from contrast managed to disre-
gard that local data and smooth the details out. On the
growth rings however, that improvement is less visi-
ble. There may be two reasons. First those structure
are less global than the whole shape evolution, and
thus not as dependant over long range multimodal in-
teraction. Second the probability law used in the a
contrario detection is very conservative, being based
on the minimum, and fail to recover long curves if
they pass through a less contrasted part of the image.
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5 CONCLUSIONS

Image analysis is one of the means of systematic anal-
ysis for the concentric structures found in otoliths.
But automatic analysis is a challenge because of the
noise and of the low contrast. Those structures are
clear to human vision however, so a psychovisual
analysis of low-level vision as a complex system was
presented to understand how we manage to organise
the atomistic information into a coherent whole.

It led us to an iterative algorithm which exploits
the coherence between two distinct perceptual cues,
orientation and contrast, to go back and forth between
individual pixels and a global dome shaped potential.
The results are good and biological applications that
use them, including morphogenesis modelling and
data fusion can be envisaged.

As far as computer vision is concerned, future
work will in particular be focused a contrario laws
that would allow for curve completion. Besides,
the proposed level-sets representation of the otolith
growth recover the geometry of the otolith, which
provides a common framework for comparing and
combining various otoliths features (opacity, growth,
chemical signatures...) for the characterisation of in-
dividual life traits. To that end, statistical methods for
comparing different features with respect to a given
geometry will be needed.

To conclude, this work showed how specific com-
puter vision development can be applied to a biolog-
ical problem so that both computer vision and bi-
ology benefit from the cross-fertilisation such trans-
disciplinary studies induce.
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(a) A hake otolith, the recovered successive shapes (bottom), the extracted growth rings (top), first iteration (left),third
iteration (right).

(b) A pollock otolith, the recovered successive shapes (bottom), the extracted growth rings (top), first iteration (left),
third iteration (right).

Figure 3
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Abstract: In this study, a nonlinear system was developed for the modelling of the heart rate response to treadmill
walking exercise. The model is a feedback interconnected system which can represent the neural response
and peripheral local response to exercise. The parameters of the model were identified from an experimental
study which involved 6 healthy adult male subjects, each completed 3 sets of walking exercise at different
speeds. The proposed model will be useful in explaining the cardiovascular response to exercise. Based on
the model, a 2-degree-of-freedom controller was developedfor the regulation of the heart rate response during
exercise. The controller consists of a piecewise LQ and anH∞ controllers. Simulation results showed that the
proposed controller had the ability to regulate heart rate at a given target, indicating that the controller can play
an important role in the design of exercise protocols for individuals.

1 INTRODUCTION

During dynamic exercise, the cardiovascular system
increases the delivery of blood and oxygen to working
muscles as the metabolic demand increases, resulting
in an increase in heart rate (HR) and stroke volume.
Obtaining a model that describes the HR response to
exercise will improve our understanding of exercise
physiology. Understanding the aetiology of HR re-
sponse during, and recovery after an exercise, may
also be beneficial to predicting cardiovascular disease
mortality (Savonen et al., 2006) (Cole et al., 1999).
This may also lead to an improvement in develop-
ing training protocols for athletics and more efficient
weight loss protocols for the obese, and in facilitating
assessment of physical fitness and health of individ-
uals (Achten and Jeukendrup, 2003). Furthermore,
knowing the cardiovascular system responses to the
stress induced by physical exercise provides us an-
other perspective on how this system functions. For
instance, this may give us some measures for the pre-
vention of cardiac failure from dialysis.

Studying and modelling of HR response during

exercise have been carried out by a number of re-
searchers (e.g. (Brodan et al., 1971; Hajek et al.,
1980; Rowell, 1993; Coyle and Alonso, 2001; Su
et al., 2007)). Broden et al. (Brodan et al., 1971) and
Hajek et al. (Hajek et al., 1980) modelled the HR re-
sponse from a regulation point of view. Their models
are reliable for short duration exercises, but are not
sufficient for explaining long duration exercises. As
shown in, e.g. (Coyle and Alonso, 2001), HR will
continue to increase during prolonged exercise. In
reference (Su et al., 2007), exercising HR response
was modelled by a Hammerstein system1. Besides
modelling, they also studied the control of the HR re-
sponse during exercise.

The ability to control the HR during exercise is
of importance in the design of exercise protocols for
patients with cardiovascular diseases and in develop-
ing rehabilitation exercises to aid patients recovering
from cardiothoracic surgery. The control of heart rate
response during exercise has been reported in the ref-
erences (Kawada et al., 1999; Cooper et al., 1998; Su

1A system consists of a static nonlinearly cascaded at
the input of a linear system.
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et al., 2007). Among them, a number of different con-
trol strategies or algorithms have been successfully
applied, e.g. classical PID control,H∞ control, and
model reference control. Each has its merits or disad-
vantages and therefore, it is interesting to investigate
the usefulness of other control algorithms and tech-
niques which have been developed by the control so-
ciety.

The objective of this paper is twofold. First,
a nonlinear model is proposed to describe the HR
response to treadmill walking exercise during both
the exercising and the recovery phases. We model
the HR response from the neural and the local re-
sponses perspective. The advantage of this approach
is that the model may describe the HR response over
a longer exercise duration. Secondly, using the pro-
posed model, we develop a controller-using the tread-
mill’s speed as a control variable-that regulates the
HR during exercise. The controller consists of feed-
forward and feedback components which provide bet-
ter performance without trading off robustness.

2 THE MODEL

In this paper, we propose the following nonlinear
state-space control systems to model the HR response
to treadmill walking exercise:

ẋ1(t) =−a1x1(t)+ a2x2(t)+ a2u2(t)

ẋ2(t) =−a3x2(t)+ φ(x1(t))

y(t) = x1(t)

(1)

where φ(x1(t)) := a4x1(t)

1+exp
(

−15(x1(t)−a5)
) and x(0) =

[x1(0) x2(0)]T = 0, y(t) describes the change in HR
from rest, anda1, ...,a5 are positive scalars. The con-
trol inputu(t) represents the speed of the treadmill.

System (1) can be viewed as a feedback intercon-
nected system, i.e.x1 in the forward path andx2 in the
feedback path. The componentx1(t) can be viewed as
the change of HR due to the neural response to exer-
cise, including both the parasympathetic and the sym-
pathetic neural inputs (see e.g. (Rowell, 1993)). The
componentx2 is utilised in describing the complex
slow-acting peripheral effects from, e.g. the hormonal
systems, the peripheral local metabolism, and/or the
increase in body temperature, etc.. Generally, these
effects cause vasodilatation and hence HR needs to
be increased in order to maintain the arterial pressure
(see (McArdle et al., 2007))). So, the feedback signal
x2, which can be thought of as a dynamic disturbance
input to thex1 subsystem, is a reaction to the periph-
eral local effects. By observing system (1), the input

Table 1: Physical characteristics of the subjects: age,
height, weight, and BMI (Body Mass Index).

Age (yr) Height (cm) Weight (kg) BMI (kg/m−2)

mean 29.3 174 68.5 22.5

std 5.8 3.4 12.6 3.4

range 23–38 169–178 53–85 18–27

s drives the system nonlinearly, describing the non-
linear increase of the HR in response to the increase
in walking speed. It has been observed that there is a
curvilinear relationship between aerobic demand and
walking speed (see, e.g. (McArdle et al., 2007)).

2.1 Experimental Setup

The parameters in system (1) were identified from ex-
perimental data. The setup of the experiment is de-
scribed in this section.

Subject. Six healthy male subjects were studied.
The physical characteristics of the subjects are given
in Table 1.

Procedure. Each subject completed three exercise
sessions in separate occasions. In each session, a sub-
ject was requested to walk on a treadmill at a given
speed (5km/h, 6km/h, and 7km/h) for 15 minutes with
a recovery period of 15 minutes. After three sessions,
each subject completed the treadmill walking exercise
at the three different speeds.

Data Acquisition. In this study, the Powerjog fully
motorised medical grade treadmill was used. The HR
of the subjects was monitored by the wireless Polar
system and recorded by LabVIEW. The Polar sys-
tem generated pulses which were used to determine
the HR. To remove noises, the HR measurements
were then filtered using the moving average with a
5-second window.

Parameter Estimation. Using the measured HR
data and the Levenberg-Marquardt method, the pa-
rameters in system (1) were estimated for each sub-
ject and for the average response of all subjects .
Since there were three sets of input-output measure-
ments for each subject (where the input is the speed
of the treadmill and the output is the HR), we esti-
mated the parameters as if the following multi-input
multi-output system:

ẋ(t) = f(x(t),a,u(t)), y(t) = Cx(t), x(0) = 0
(2)
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where C =





1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0



, x =

[x1 x2 x3]
T ∈ R

6, a = [a1 a2 . . .a5]
T ∈ R

5,
u = [u1 u2 u3]

T ∈R
3 andy = [y1 y2 y3]

T ∈R
3.

For i = 1,2,3, the vectorxi := [xi,1 xi,2]
T andyi are

the state vector and the output from the inputui. The
unit of time t is in minute. To make the estimation
process more robust, the speeds of the treadmill
were normalised by 8 km/h, assuming the maximum
walking speed was 8 km/h. In other words, the
input vectoru in (2) is in factu = [5/8 6/8 7/8]T .
Similarly, the outputyi(t) from the inputui(t) was
defined asyi(t) = (HRi(t)−73.4)/60, whereHRi(t)
is the absolute HR at timet, 73.4 bpm is the average
resting HR for all the subjects2, and 60 bpm is a
normalising factor.

The objective function was chosen as

S(a) =
N

∑
i=1

(y(ti)− ŷ(ti,a))T Q(y(ti)− ŷ(ti,a)) (3)

where, for i = 1,2, . . . ,N, y(ti) is the measurement
of the output vector at timeti, ŷ(ti,a) is the output
of system (2) with the parameter vectora, and Q
is a given diagonal weighting matrix. In this study,
Q := diag([2.5 1.5 1]) was used. With the objec-
tive function (3), the Levenberg-Marquardt method
was used to determine an estimate ofa which was
denoted as ˆa := [â1 â2 . . . â5]

T (see, e.g. (Stortelder,
1996)). Based on a linear approximate method (see
e.g. (Stortelder, 1996)), an approximate 100(1−α)%
independent confidence interval for each estimate was
given by(âi− δai, âi + δai), for i = 1,2, . . . ,5. An α
level of 0.05 was used for obtaining the confidence
intervals of parameter estimates. Table 2 summaries
the estimated parameters for each subject and it also
shows the estimated parameters for the average re-
sponse from all the subjects. The simulated HR re-
sponses with the proposed model based on the aver-
age response are shown in Figure 1.

3 CONTROLLER DESIGN

In the second part of this paper, a controller design
is proposed for the regulation of HR. The controller
essentially controls the speed of the treadmill and in
turns controls the HR. It is desirable to design a con-
troller that is suitable for all the subjects, rather than
designing a controller for each individual subject. To
design such a controller, the model for the average

2Resting HR was estimated from the 3-minute resting
period before exercise.

Table 2: Estimated parameter values for 6 different subjects
and the average response of all subjects.

Parameter estimates

(Confidence intervals,δa)

Subject â1 â2 â3 â4 â5

1 2.374 2.319 0.024 0.018 0.000

(0.180) (0.161) (0.014) (0.003) (0.308)

2 3.351 3.591 0.126 0.071 0.683

(0.334) (0.340) (0.008) (0.004) (0.009)

3 1.940 1.597 0.038 0.054 0.507

(0.180) (0.138) (0.007) (0.004) (0.010)

4 1.041 0.787 0.072 0.069 0.491

(0.078) (0.052) (0.011) (0.007) (0.015)

5 3.665 2.394 0.169 0.107 0.476

(0.489) (0.304) (0.023) (0.013) (0.029)

6 1.782 1.442 0.110 0.105 0.562

(0.166) (0.123) (0.009) (0.007) (0.013)

average 1.858 1.655 0.057 0.046 0.550

response (0.119) (0.099) (0.007) (0.003) (0.009)
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Figure 1: HR responses: actual responses from all subjects
(dots), average response (circles) and simulated response
(solid line).

response was utilised (see Table 2). Substituting the
parameters estimated from the average response, sys-
tem (1) is written in the state-space form as follows:

ẋ = Ax + B1φ(x1)+ B2g(u), y = Cx (4)

where

A =

[

−1.858 1.655
0 −0.057

]

, B1 =

[

0
1

]

, B2 =

[

1.655
0

]

,

x =
[

x1 x2
]T , C =

[

1 0
]

, g(u) := u2, φ(x1) :=
0.046x1

1+exp
(

−15(x1−0.55)
) .

System (4) is a nonlinear system with nonlinear-
ity φ(x1) and nonlinear control inputg(u). To over-
come the control input nonlinearity, a transformed in-
put v = g(u) is defined. The functionφ(x1) can be
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approximated by a piecewise linear function

γ(x1) =

{

0 if x1≤ 0.418
0.090x1−0.038 if x1 > 0.418.

In fact, γ(x1) is obtained by linearising the function
φ(x1) at x1 = 0 and 0.5. As a result, system (4) can
be approximated by a piecewise affine system (see
e.g. (Rantzer and Johansson, 2000)).

In this paper, we propose a two-degree-of-
freedom (2-DOF) controller consisting of a piecewise
linear quadratic (LQ) feedforward and aH∞ feedback
controllers, as shown in Figure 2, for the control and
regulation of HR response.

Controller Subject

Piecewise

LQ + ++

-

feedforward

feedback

Figure 2: Control configuration.

3.1 LQ Feedforward Controller Design

First, we design the piecewise LQ feedforward con-
troller using the piecewise LQ optimal control tech-
nique (Rantzer and Johansson, 2000). We also incor-
porate an integral action in the controller.

Define two partitions of the state space:

X1 := {[x1 x2]
T ∈ R

2
∣

∣ x1 < 0.418}

X2 := {[x1 x2]
T ∈ R

2
∣

∣ x1≥ 0.418}

Next, define

Āi =





Ai 0 ai
−C 0 0
0n×1 0 0



 , B̄ =





B2
0
0



 , x̄ =





x
e
1





for x ∈ Xi andi = 1,2, where

A1 =

[

−1.858 1.655
0 −0.057

]

, A2 =

[

−1.858 1.655
0.090 −0.057

]

,

a1 =
[

0 0
]T

, a2 =
[

0 −0.038
]T

, e(t) =
∫ t

0(r−
Cx(t))dt andr is the constant reference input. There-
fore, we have

˙̄x = Āix̄+ B̄v, y = C̄x̄, for x ∈ Xi. (5)

where C̄ = [C 0 0]. Then, the control problem is
to find a control lawv that minimises the follow-
ing cost function:J =

∫ ∞
0 (x̄T Q̄x̄ + vT Rv)dt, for any

given Q̄ ≥ 0 andR > 0. In the control design, the
matrix Q̄ and the value ofR were chosen as fol-
lows: Q̄ = diag([0 0 10 0]), R = 0.5. By us-
ing the technique in (Rantzer and Johansson, 2000),

the minimising control law wasv(t) = Lix̄,x ∈ Xi,
i = 1,2, whereL1 =

[

−1.457 −0.989 4.471 0
]

,
L2 =

[

−1.48 −1.001 4.471 0.009
]

. In turn, the
LQ feedforward controller is in the form:

˙̄x = Āix̄+ B̄v + Brr, yr = C̄x̄, v(t) = Lix̄, (6)

for x ∈ Xi where ¯x(0) = [0 0 0 1]T , Br = [0 0 1 0]T and
r is the reference input. In other words, the input to
this feedforward controller is the referencer and the
output are the feedforward controlv and the “filtered”
referenceyr.

3.2 H∞ Controller Design

To cope with the uncertainty in the model, we design a
feedback controller based on theH∞ control technique
(see e.g. (Petersen et al., 2000)). We first linearise the
system (4) and then formulate the control problem as
a mixed sensitivity problem (see e.g. (Skogestad and
Postlethwaite, 1996) for details). In a mixed sensi-
tivity problem, the idea is to choose some weighing
functions, namelyW1(s), W2(s) andW3(s) to reflect
the control objectives. Generally,W1(s) is chosen to
meet a performance specification andW3(s) is cho-
sen to characterise the modelling errors. Whereas the
weighing functionW2(s) may be used to reflect some
restrictions on the actuator signal.

In order to apply the mixed sensitivity technique,
the system (4) was linearised atx0 = [0.5 0.13]T , v0 =
0.43, and the transfer function of the linearised model
is given by

G(s) =
1.655s+0.094

s2 +1.915s−0.043
(7)

The weighting functions were then chosen as:
W1(s) = 0.02(s+5)

(s+0.0001) , W2(s) = 700(s+0.3)
(s+2100) , W3(s) =

100(s+7.13)
(s+800) . By using MATLAB Robust Control Tool-

box, we obtained a controllerK(s) that is fifth order,
resulting in a complicated control strategy. In fact, by
observing the Hankel singular values of the controller
K(s), a second order controllerKreducedwas in fact
adequate to approximateK(s) and it is in the form

Kreduced(s) =
0.927s+0.009

s2 +0.060s+6.008×10−6 (8)

4 SIMULATION RESULTS

As shown in Figure 2, a 2-DOF controller were
constructed by combining the LQ feedforward con-
trollers (6) and theH∞ feedback controller (8). Since
both the feedforward and feedback controllers were
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Figure 3: Subject 1–Simulation of HR regulation at 100
bpm and 120 bpm withH∞ controller (dashed) and Piece-
wise LQ +H∞ controller (solid).

obtained by considering the model of the average re-
sponse from the six subjects, it would be realistic to
validate the 2-DOF controller by applying it to each
of the subject without re-tuning the control parame-
ters for each subject. From the previous section, we
have a model for each of the subject and the estimated
parameters of the model are shown in Table 2.

We also assumed the treadmill speed was only al-
lowed to be operated between 0 and 8 km/h, since
speeds greater than 8 km/h may exceed the maximum
walking speed of some subjects. For each subject, we
tested the proposed controller by regulating the HRs
at 2 levels, namely 100 and 120 bpm. In the simu-
lations, the resting HR of each subject was assumed
to be the average of the three resting HRs, since each
subject performed 3 sets of walking exercise.

Figures 3–8 show the simulation results. Each fig-
ure shows the controlled HR responses and the speeds
of the treadmill. It also shows the responses from
the proposed 2-DOF controller and 1-DOF controller
which consists ofH∞ feedback controller only. For
each of the subject, the controlled HR was able to
track the reference HR signals. By comparing the re-
sponses from the 2-DOF controller and theH∞ con-
troller, the proposed 2-DOF controller provides faster
responses. It indicates that the proposed 2-DOF con-
troller should give better performance than that of
only H∞ controller.

5 CONCLUSIONS

In this study, a nonlinear model describing the HR re-
sponse to the treadmill walking exercise is proposed.
The proposed model is a feedback interconnected sys-
tem, consisting of a subsystem in the forward path
that can be used to describe the neural response, and a
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Figure 4: Subject 2–Simulation of HR regulation at 100
bpm and 120 bpm withH∞ controller (dashed) and Piece-
wise LQ +H∞ controller (solid).
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Figure 5: Subject 3–Simulation of HR regulation at 100
bpm and 120 bpm withH∞ controller (dashed) and Piece-
wise LQ +H∞ controller (solid).

feedback subsystem can be utilised to describe the pe-
ripheral local response. Utilising this model, a 2-DOF
controller was developed for the regulation of HR
for treadmill walking exercise. The controller con-
sists of a piecewise LQ feedforward and aH∞ feed-
back controller. One of the benefits of introducing the
feedforward control is to improve the performance,
since robust control such asH∞ controller is some-
times overly conservative that impedes performance.
The controller was derived from the model of average
response of the six participated subjects. Simulation
results showed that the proposed controller had the
ability to regulate HR for all the six subjects, without
the need to re-tune the controller’s parameters.
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Figure 6: Subject 4–Simulation of HR regulation at 100
bpm and 120 bpm withH∞ controller (dashed) and Piece-
wise LQ +H∞ controller (solid).
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Figure 7: Subject 5–Simulation of HR regulation at 100
bpm and 120 bpm withH∞ controller (dashed) and Piece-
wise LQ +H∞ controller (solid).
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Figure 8: Subject 6–Simulation of HR regulation at 100
bpm and 120 bpm withH∞ controller (dashed) and Piece-
wise LQ +H∞ controller (solid).
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DELAYED RECOVERY OF CARDIOVASCULAR AUTONOMIC 
FUNCTION AFTER MITRAL VALVE SURGERY 

Evidence for Direct Trauma? 
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Keywords: Biosignal processing, Baroreflex response, surgery. 

Abstract:   Baroreflex Sensivity (BRS) and heart rate variability (HRV) have significant influence on the patients’ 
prognosis after cardiovascular events. The following study was performed to assess the differences in the 
postoperative recovery of the autonomic regulation after mitral valve (MV) surgery and aortic valve (AV) 
surgery with heart-lung machine.  43 consecutive male patients were enrolled in a prospective study; 26 
underwent isolated aortic valve surgery and 17 isolated mitral valve surgery. Blood pressure, ECG and 
respiratory rate were recorded the day before, 24h after surgery and one week after surgery. BRS was 
calculated according to the Dual Sequence Method, time and frequency parameters of HRV were calculated 
using standard methods. There were no major differences between the two groups in the preoperative 
values. At 24 h a comparable depression of HRV and BRS in both groups was observed, while at 7 days 
there was partial recovery in AV-patients, which was absent in MV-patients: p (AV vs. MV)<0,001. While 
the response of the autonomic system to surgery is similar in AV- and MV-patients, there obviously is a 
decreased ability to recover in MV-patients, probably attributing to traumatic lesions of the autonomic 
nervous system by opening the atria. Ongoing research is required for further clarification of the 
pathophysiology of this phenomenon and to establish strategies to restore autonomic function. 

1 INTRODUCTION 

The well-known depression of cardiovascular 
autonomic function following cardiac surgery is 
related to a variety of reasons like anaesthesia and 
the use of the heart-lung-machine (Brown et al., 
2003), (Bauernschmitt et al., 2004). The role of 
direct surgical trauma to the autonomic nerves (AN) 
is still unclear. The following study was performed 
comparing patients with isolated aortic valve 
replacement (AV, the surgical trauma to AN is 
considered to be low) or isolated mitral valve 
surgery (MV, high surgical trauma to AN is 
expected). With regard to the hypothesis that there is 
a traumatic lesion of the cardiovascular autonomic 
nervous system by opening the atria we observe the 
postoperative recovery of AV- and MV-patients. 

2 METHODS 

43 consecutive male patients were analysed. 26 of 
them underwent aortic valve surgery and 17 of them 

mitral valve surgery. The mean age of AV-patients 
was 63 +/- 13 years and the mean age of MV-
patients 59 +/- 12 years. Patients with concomitant 
coronary heart disease were excluded for the known 
effects of atherosclerosis. Perioperative medication 
was standardized. 

Anaesthesia was standardized; induction was 
performed with sufentanil and midazolam. For 
maintaining narcosis, a continuous infusion of 
propofol was given; muscle relaxation was achieved 
by pancuronium. Central venous pressure and 
pulmonary artery pressure were monitored by a 
Swan-Ganz catheter, arterial pressure by cannulation 
of the radial artery. All operations were carried out 
with cardiopulmonary bypass (CPB) in mild 
hypothermia (32-34°C) and pulsatile perfusion 
mode, cold crystalloid cardioplegia or blood 
cardioplegia (isolated bypass surgery) was used for 
cardiac arrest. After declamping, most of the patients 
needed one countershock to terminate ventricular 
fibrillation. 

After 10-min equilibrations to the environment, 
non-invasive blood pressure signals were collected 
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from the radial artery by a tonometer (Colin Medical 
Instruments) at 1000 Hz. Data were channelled into 
a bed-side laptop after A/D-conversion and stored 
for analysis. Simultaneously, breathing excursions 
and a standard ECG were monitored. Data were 
sampled for a 30-min period the day before surgery, 
24h and seven days after surgery on the ICU. Care 
was taken to perform the measurements during the 
same time of the day in each patient. From the 
recorded data the beat-to-beat intervals as well as the 
beat-to-beat systolic and diastolic values were 
extracted; premature beats, artifacts and noise were 
excluded using an adaptive filter considering the 
instantaneous variability.  

Baroreflex Sensitivity (BRS): Dual Sequence 
Method (DSM). Using the DSM, the most relevant 
parameters for estimating the spontaneous baroreflex 
(BR) are the slopes as a measure of sensitivity. The 
DSM is based on standard sequence methods with 
several modifications: Two kinds of BBI responses 
were analyzed: bradycardic (an increase in systolic 
blood pressure (SBP)) that causes an increase in the 
following beat-to-beat-intervals (BBI) and 
tachycardic fluctuations (a decrease in SBP causes a 
decrease in BBI). Both types of fluctuations were 
analyzed both in a synchronous and in a 3-interbeat-
shifted mode. The bradycardic fluctuations primarily 
represent the vagal spontaneous BR analysis of the 
tachycardic fluctuations represent the delayed 
responses of heart rate (shift 3) assigned to the 
beginning slower sympathetic regulation. The 
following parameter groups are calculated by DSM: 
(1) the total numbers of slopes in different sectors 
within 30 min; (2) the percentage of the slopes in 
relation to the total number of slopes in the different 
sectors; (3) the numbers of bradycardic and 
tachycardic slopes; (4) the shift operation from the 
first (sync mode) to the third (shift 3 mode) 
heartbeat triple; and (5) the average slopes of all 
fluctuations. DSM parameters are defined as 
described by Malberg et al (European Heart Journal, 
1996). 

Heart rate Variability (HRV). Respecting the 
suggestions by the Task Force HRV (Malberg et al., 
2003), the following standard parameters are 
calculated from the time series: MeanNN (mean 
value of normal beat-to-beat intervals): Is inversely 
related to mean heart rate. sdNN (standard deviation 
of intervals between two normal R-peaks): Gives an 
impression of the overall circulatory variability. 
Rmssd (root mean square of successive RR-
intervals): 
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Figure 1: Schematic representation of the two main 
baroreflex parameters estimated by the Dual Sequence 
Method: the average slope (dotted line) of all baroreflex 
sequences as well as the total number of baroreflex slopes 
above 20 ms/mmHg (thick lines). The thin lines symbolize 
all baroreflex slopes below 20 ms/mmHg.  

Higher values indicate higher vagal activity. 
Shannon (the Shannon entropy of the histogram): 
Quantification of RR-interval distribution. Apart 
from the time-domain parameters mentioned above, 
the HRV analysis focused on high-frequency 
components (HF, 0.15-0.4 Hz, high values indicate 
vagal activity) and low-frequency components (LF, 
0.04-0.15 Hz, high values indicate sympathetic 
activity). The following ratios were considered: LFn 
– the normalized low frequency (LFn=LF/(LF+HF)), 
HP/P - the to the total power P normalized high 
frequency as well as LP/P - the P-normalized low 
frequency.  

Nonlinear Dynamics. New parameters can be 
derived from methods of nonlinear dynamics, which 
describe complex processes and their interrelations. 
These methods provide additional information about 
the state and temporal changes in the autonomic 
tonus. Several new measures of non-linear dynamics 
in order to distinguish different types of heart rate 
dynamics as proposed by Kurths were used. The 
concept of symbolic dynamics is based on a coarse-
graining of dynamics. The difference between the 
current value (BBI or systolic blood pressure) and 
the mean value of the whole series is transformed 
into an alphabet of four symbols (0; 1; 2; 3). 
Symbols '0' and '2' reflect low deviation (decrease or 
increase) from mean value, whereas '1' and '3' reflect 
a stronger deviation (decrease or increase over a 
predefined limit, for details see Voss et al. 
Subsequently, the symbol string is transformed to 
'words' of three successive symbols explaining the 
nonlinear properties and thus the complexity of the 
system. 
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The Renyi entropy calculated from the distributions 
of words ('fwrenyi025' - a = 0.25) is a suitable 
measure for the complexity in the time series ('a' 
represents a threshold parameter). Higher values of 
entropy refers to higher complexity in the 
corresponding time series and lower values to lower 
ones. A high percentage of words consisting only of 
the symbols '0' and '2' ('wpsum02') reflects 
decreased HRV. The parameter 'Forbidden words 
(FW)' reflects the number of words which never or 
very rarely occur. A high number of forbidden 
words are typical for regular behaviour, while in 
highly complex time series, only very few forbidden 
words are found.  

3 RESULTS 

There were no major differences among the two 
groups preoperatively. At 24h after surgery, both 
groups showed a comparable depression of HRV 
and BRS. One week after surgery, however, marked 
differences were present: SDNN 15+/-6 (MV) vs. 
42+/-33 (AV); p<0.001 (Fig. 1).  
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Figure 2: HRV-sdNN, heart rate variability - standard 
deviation of beat to beat intervals. 
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Figure 3: HRV-HF: heart rate variability – high frequency 
(indicator for parasympathetic  regulation). 

Similar kinetics were found for the High- and 
Low-Frequency components of HRV (HF 0.01+/-
0.02 (MV) vs. 0.38+/- 0.64 (AV); p<0.02 (Fig. 2, 3). 
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Figure 4: HRV, low-frequency. 

Regarding the nonlinear parameters, there was a 
significant depression present already 24h after 
surgery with mitral patients more suppressed than 
aortic patients, these alterations being even more 
distinct after one week (Fig. 4). 
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Figure 5: HRV, Shannon-entropy. 

The baroreflex was impacted in a similar way for 
both the number and strength of regulations (BRS 
bradycardic 4.5+/-1.2 (MV) vs. 7.3+/-2.7 (AV); 
p<0.001 (Fig. 5, 6).  
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Figure 6: BRS, strength of bradycardic regulations. 
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Figure 7: BRS, number of bradycardic regulations. 

For the tachcardic part of the baroreflex, however, 
the differences among aortic and mitral patients 
failed significance after one week (p<0.08, data not 
shown). 

4 DISCUSSION AND 
CONCLUSIONS 

The last decade witnessed a strong increase in basic 
knowledge of the cardiovascular autonomic system. 
However, as far as alterations in the cardiac patient 
and in patients undergoing open heart surgery are 
concerned, we are still at the very start. 

Meanwhile it is well known, that cardiac surgery 
leads to an early depression of autonomic function, 
and that there is potential for recovery after a certain 
time frame. The mechanisms for both phenomena 
are quite unclear, so the aim of the present study was 
to shed light on the precise role of direct surgical 
trauma. In contrast to earlier studies, where different 
preoperative conditions and different surgical 
procedures were mixed up, we focussed on patients 
with isolated aortic valve disease and isolated mitral 
valve disease, thus excluding the well known 
influences of atherosclerosis on cardiovascular 
autonomic function. On the other hand, the operative 
procedures done in these patients offer two entirely 
distinct entities of surgical trauma: while for aortic 
valve replacement the heart is left more or less 
untouched and the valve is approached by an 
incision in the anterior aspect of the ascending aorta 
only, in mitral valve operations, both the caval veins 
are extensively dissected, and the heart is opened by 
an incision right posterior to the interatrial groove, 
where an abundance of autonomic nerve endings are 
supposed to be. 

The similar depression in both groups observed 
at 24h may reflect the effects of standardized 

anesthesia and perioperative treatment being 
comparable in all patients. While AV-patients 
showed a clear tendency to recover after one week, 
no recovery was recorded in MV-patients. In our 
opinion, this is a strong indicator of higher surgical 
trauma to AN, if the atria are dissected. Recovery of 
autonomic fibres is possible, even in heart transplant 
patients, as described earlier, so the next step will be 
investigating time and frequency parameters and 
baroreflex sensivity after six months to give 
evidence of the hypothesis of direct surgical trauma.  

Summarizing, we were able to demonstrate for 
the first time, that direct surgical trauma can be one 
of the major mechanisms leading to depression of 
cardiovascular autonomic function. The diversity of 
results in earlier studies may be caused by the case-
mix of patients, comprising different initial 
conditions as well as different extents of trauma. 
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Abstract: Cardiac activation and consequently performance of the heart can be severely affected by certain electrophysi-
ological anomalies such as irregular patterns in the activation of the heart. Since the wavefront propagation oc-
curs through the diffusion of ions (Na+,K+, etc.) the reduced mobility of ions can be equivalently represented
as a reduction of ionic diffusivity causing irregularitiesin heartbeats. In this paper we propose models for the
cardiac activation using inhomogeneous reaction-diffusion equations in the presence of diffusivity disorders.
We also derive corresponding statistical signal processing algorithms for estimating (localizing) parameters
describing these anomalies. We illustrate applicability of our techniques and demonstrate the identifiability of
the parameters through numerical examples using a realistic geometry.

1 INTRODUCTION

The phases of myocardial action potentials and pro-
cesses of myocardial depolarization and repolariza-
tion are well studied and described in most handbooks
of electrophysiology and electrocardiography (Gulra-
jani, Malmivuo). The underlying processes control-
ling the (re)polarization in the cardiac activation can
be described, on a molecular level, as diffusion of
ions through various channels (Na, K, etc.) giving
a rise to ionic current which in turn creates electro-
magnetic field on the torso surface which can be ex-
ternally measured.
Modeling the cardiac activation on a cellular level
(Gulrajani) has been a subject of considerable re-
search interest resulting in numerous models related
to membrane potential (e.g. Hodgkin-Huxley model).
However, these models are mainly suitable for for-
ward modeling in which the cardiac activation is sim-
ulated usinga priori knowledge of various param-
eters. Complimentary to this approach is inverse
modeling in which information on cardiac activation
(and some physiological parameters) is deduced from
ECG/MCG measurements.
One of the most important parameters controlling
the activation wavefront propagation is the diffusiv-
ity (i.e., mobility of ions). Namely, significant loss of
ionic mobility can cause occurrence of irregular acti-
vation patterns and lead to various pathological con-
ditions such as arrhythmia, early after-depolarization,
etc. From a physiological point of view, these changes

usually occur due to ion depletion from a particular
region of the heart. As a result, the diffusivity in this
region becomes very small preventing the propagation
of the activation wavefront and causing the aforemen-
tioned irregular patterns. Therefore, any algorithm
capable of detecting these anomalies can potentially
be useful to predict the onset of these cardiac phys-
iopathologies.
In this paper we propose a new activation model based
on the diffusion equation. Although the FitzHugh-
Nagumo model is based on the diffusion equation
its applicability to inverse approach and real data is
limited because of its isotropic and homogeneous na-
ture. In Section 2 we develop cardiac activation model
based on the reaction-diffusion equation with non-
homogeneous and anisotropic diffusion tensor. Such
a model can be used for detecting different physiolog-
ical conditions such as conductivity anomalies, which
can predate onset of various pathological conditions
such as cardiac arrhythmia, early after-depolarization,
etc. In Section 3 we derive the statistical and measure-
ments model using Geselowitz equations correspond-
ing to our diffusion based source. Using these models
we derive the generalized least squares (GLS) estima-
tor for localizing conductivity anomalies/disorders. In
Section 5 we demonstrate the applicability of our re-
sults using numerical simulations and in Section 6 we
present conclusions.
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2 PHYSICAL MODEL

During the spread of activation in the heart, the most
significant bioelectric source is the large potential dif-
ference that exists across the moving wavefront that
divides active (depolarized) from resting tissue. It
has been proposed that the cardiac excitation can be
modeled using reaction diffusion systems i.e., a set of
nonlinear partial differential equations (Panfilov and
Holden, 1997)

∂ui

∂t
= fi(u)+ ∇ · (Di∇ui) i = 1, . . .n (1)

whereu = [u1, . . .un]
T is the state variable vector,fi

are excitations, andDi diffusion tensors. Although
the above models can be used to model the propa-
gation even down to a cellular level, in order to de-
velop an inverse model a simplified approach similar
to (FitzHugh, 1961),(Rogers and McCulloch, 1994)
is needed. Therefore, we propose a reaction diffusion
model consisting of two state variables but with spa-
tially dependent diffusivity tensor

∂u1(r,t)
∂t

= ∇ · (D(r)∇u1(r ,t))+

+gT(u(r,t))A1g(u(r ,t))

∂u2(r,t)
∂t

= uT(r ,t)A2u(r ,t)

g(u(r,t)) = [u2
1(r ,t),u1(r ,t),u2(r ,t),1]

T

whereu1 is the activation potential andu2 is the rest-
ing potential.

The above model is the generalization of the ex-
isting models from at least two standpoints: a) by
allowing the diffusivity matrix to be spatially depen-
dent we can test for the presence of arbitrarily shaped
anomalies, and b) by adding higher-order polynomial
components we allow for wider range of dynamic be-
havior in the cardiac excitation. Note that in order to
apply the above model to the realistic geometry we
need to define boundary conditions. In our case we
impose∂u1/∂n on the epicardial surface of the heart.
As for initial conditions, we define the active poten-
tial at timet = 0 asu1(r ,0) = u0δ(r − r0) whereδ()
is a Dirac delta function andr0 is the activation point
in the myocardium. The initial condition for the inhi-
bition (u2) is set to zero.

To compute the electro-magnetic field on the torso
surface we utilize the Geselowitz (Geselowtiz, 1970)
equations that compute the potentialφ(r ,t) and mag-
netic field B(r,t) at a locationr on the torso sur-
face at a timet from a given primary current distri-
bution J(r ′,t) = ∇u1(r ,t) within the heart.We use a
piecewise homogeneous torso model consisting of the

following surfaces: the outer torso, the inner torso,
and the heart. Therefore, we model the heart as a
volume G of M = 3 homogeneous layers separated
by closed surfacesSi , i = 1, . . . ,M. Let σ−

i and σ+
i

be the conductivities of the layers inside and outside
Si respectively. We will denote byGi the regions
of different conductivities, and byGM+1 the region
outside the torso, which behaves as an insulator i.e,
σ−

M+1 = σ+
M = 0.

It has been shown that in the case of a piecewise
homogeneous torso model and using quasi-static as-
sumption the magnetic field at a locationr and time
t is given by (Gulrajani, 1998) and (Malmivuo and
Plonsey, 1995)

B(r,t) = B0(r,t)+
µ0

4π

M

∑
i=1

(σ−
i −σ+

i ) ·

·

∫

Si

φ(r ′,t)
(r − r ′)

‖r − r ′‖3 ×dS(r′)

B0(r,t) =
µ0

4π

∫

G

J(r ′,t)× (r − r ′)

‖r − r ′‖3 d3r ′, (2)

whereµ0 is the magnetic permeability of the vacuum.
Similarly, the potential φ(r ,t) is given by
(Geselowitz)

σ−
k + σ+

k

2
φ(r ,t) = φ0(r)(σ−

i −σ+
i )+

+
1
4π

M

∑
i=1

(σ−
i −σ+

i )
∫

Si

φ(r ′,t)
(r − r ′)

‖r − r ′‖3 ·dS(r ′),

φ0(r ,t) =
1
4π

∫

G

J(r ′,t) · (r − r ′)

‖r − r ′‖3 d3r ′,(3)

where wek is chosen so thatr ∈ Gk.

3 MEASUREMENT MODEL AND
STATISTICAL MODEL

In this section we introduce our parametric descrip-
tion of the diffusion anomaly and measurement noise
signals. To simplify the approach we assume that the
anomaly region can be modeled with an ellipsoid i.e.,
the regionR of anomaly is given by

R = {r : (r − ra)
TF(a,b,c,ψ,φ)−1(r − ra) ≤ 1}

where

F = T(φ,ψ)





a2 0 0
0 b2 0
0 0 c2



TT(φ,ψ)

wherea,b,c are the axes of anomaly ellipsoid,ra is
the center, andψ and φ are the orientation parame-
ters (in 3D). The matrixT(φ,ψ) is the rotation matrix
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given by

T(φ,ψ) =





cosφ sinφ 0
−sinφ cosφ 0

0 0 1



·





cosψ 0 sinψ
0 1 0

−sinψ 0 cosψ





(4)

The diffusion tensor is then

D(r) =

{

0 r ∈ R
D otherwise. (5)

In the remainder of the myocardium tissue we assume
homogeneous but possibly anisotropic diffusion ten-
sorD.
Next, we assume that a bimodal array ofnB MCG
and nE ECG sensors is used for the measurements.
Let n = nB + nE. We assume that the sensors are lo-
cated atρ j , j = 1, . . . ,n, and that time samples are
taken at uniformly spaced time pointstk,k= 1, . . . ,ns.
In addition, we assume that data acquisition is re-
peatednc times during several heart cycles in order
to improve the signal-to-noise (SNR) ratio. Then, the
ns-dimensional measurement vector of this array ob-
tained at timetk in the l th cycle is

ylk = f (θ,tk)+el (tk), (6)

whereylk = [yT
B(tk),yT

E(tk)]
T
, θ is the collection of all

the parameters (a,b,c, r0,ψ,φ,u0,D,A1,A2) , f (θ,tk)
is the vector solution computed using finite elements,
andel (tk) = [eT

B(tk),eT
E(tk)]

T
is additive noise. In the

remainder of the paper we omit the subscriptl when-
ever it is obvious that the samples belong to the same
heart cycle. The subscriptsB andE correspond to mag-
netic and electric components of the measurement
vector (noise), respectively. We further assume that
both magnetic and electric components of the noise
are zero-mean Gaussian, uncorrelated in space and
time with variances,σ2

B andσ2
E, respectively.

4 PARAMETER ESTIMATION

We first start by splitting the unknown parametersθ
into three groups: a) the unknown activation parame-
tersθ0 = [u0, ra]

T , and b) the unknown anomaly pa-
rametersθa = [a,b,c, r0,φ,ψ]T . For simplicity in the
remainder of the paper we assume that the heart pa-
rameters

θh = [vec(D),vec(A11),vec(A2)]
T (7)

where vec is the vector operator, are known. Note that
somein vitro studies (Sachse, 2004) suggest that these
parameters do not vary significantly between different
subjects and thus can be easily estimated using data

gathered from human subjects without any anoma-
lies. Complicating the matter is the fact that the diffu-
sion tensor in general is inhomogeneous. Namely, the
ionic diffusion process is much larger along the my-
ocardium fiber than across different fibers. Since the
fiber orientations change in space the diffusion ten-
sor should be spatially dependent. However, these
changes are smooth in nature and can be easily mod-
eled using a set ofa priori known basis functions.
Furthermore, information about fiber orientation can
be easily obtained using cardiac diffusion MRI (et al.,
2003).
To compute estimateŝθ0 and θ̂a we use the general-
ized least squares (GLS) estimator which minimizes
the following cost function (Vonesh and Chinchilli,
1997)

c(θ0,θa, σ̂2
E , σ̂2

B) =
ns

∑
k=1

q

∑
l=1

1
σ̂2

E

‖yE
kl − f E(θ0,θa, tk)‖

2
+

+
1

σ̂2
B

‖yB
kl − f B(θ0,θa, tk)‖

2

σ̂2
E =

1
nEnsq

ns

∑
k=1

q

∑
l=1

‖yE
kl − f E(θ0,θa, tk)‖

2

σ̂2
B =

1
nBnsq

ns

∑
k=1

q

∑
l=1

‖yB
kl − f B(θ0,θa, tk)‖

2

where we use superscriptsE andB to denote electri-
cal and magnetic, components of the measured field
and solution vector.

The above GLS estimator is more efficient than
the ordinary least squares estimator due to each con-
tribution to the objective function is being normalized
to the same unit variance (i.e., those measurements
with less variation are given greater weight). The ac-
tual optimization can be done using any of the well
known algorithms such as Davidson-Fletcher-Powell
or Broyden-Fletcher-Goldfarb-Shanno. To further
simplify the computational complexity, we propose to
estimateθ0 assuming thata= b= c= 0 i.e. the diffu-
sivity of the heart is homogeneous and using ordinary
least squares. Then we can use this estimate as the
initial guess for GLS estimation alghorithm.

5 NUMERICAL EXAMPLES

We now describe numerical study that demonstrates
the applicability of the proposed algorithms. We used
an anatomically correct mesh of the human torso that
was kindly provided to us by Prof. McLeod, Utah
University. In our model the Purkinje network was
approximated by a set of nodes near the apex. To
achieve higher precision we remeshed the original
data into a new mesh (see Fig. 1). The volumetric
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mesh was created using 15902 elements with 20830
degrees of freedom for the torso (electromagnetic)
model and 1856 elements and 6190 degrees of free-
dom for the heart (diffusion) model. The computa-
tional model was developed using a general partial
differential (PDE) toolbox in COMSOL software.
The torso conductivity was set to 5µS respectively
as in (Malmivuo). To simplify the complexity of
the numerical study we simulated the anomaly us-
ing a = b = 2cm , c = 0.5cm, andψ = φ = 0. The
diffusion tensor was set to be isotropic with diago-
nal elements equal to 40cm3/s. The diffusivity was
chosen according to (Gulrajani) so that the activa-
tion wavefront propagates the whole heart in 0.2s.
The control matricesA1 andA2 were chosen follow-
ing the approach of (Rogers and Culloch). The heart
rate was set to 72 beats per minute. We assume
that the measurements are obtained using 64-channel
ECG/MCG sensor array with sensors locations uni-
formly distributed on the chest. To evaluate the local-
ization accuracy we use MSEr0 = ‖r0− r̂0‖

2
/‖r0‖

2,
MSEa = ‖a− â‖2/‖a‖2, and MSEc = ‖c− ĉ‖2/‖c‖2.

Figure 2 illustrates the activation wavefront in my-
ocardium at approximatelyt = 2T/3 after the acti-
vation whereT is the time length of the heart cy-
cle. In Figure 3 we illustrate the body surface map of
the electric field (voltage) on the torso surface. Sim-
ilarly, Figure 4 illustrates the magnetic field map at
the same time. In Figure 5 we illustrate the mean
square error of the axis parameters withc = a/10
and b = a. The location of an anomaly was arbi-
trarily set to r0 = (0,0.5,0.75). As expected, due
to the wavefront orientation as well as difference in
size, the estimation accuracy of the cross-sectional
axis parameters is much smaller. In Figure 6 we il-
lustrate the localization accuracy i.e., MSE ofr0 as a
function of noise. The SNR was defined asSNR=
10log(∑‖ylk‖

2/σ2
E + σ2

B).

6 CONCLUSIONS

We addressed the problem of localizing the diffusivity
disorder in the myocardium using ECG/MCG sensor
arrays. To model the cardiac activation we considered
an inhomogeneous reaction-diffusion model in a real
human torso. To model a the loss we used a paramet-
ric model for an oblate spheroid and set its conduc-
tivity to zero. We assumed that the remainder of the
myocardium tissue was homogeneous. The proposed
algorithm can be easily extended to account for an ar-
bitrary spatial variation in the diffusivity tensor using
a set ofa priori known basis functions. In addition the
parametric shape of the anomaly can be extended to

model an arbitrary region using a three-dimensional
spatial Fourier transform. An effort should be made
to examine the sensitivity of the proposed algorithms
to the size of diffusivity difference between “regular”
tissue and anomaly as well as the number of the un-
known parameters needed to model arbitrary shapes.

Figure 1: Mesh geometry used for numerical study.

Figure 2: Activation wavefront, att = 2T/3.

Figure 3: Body surface map of electric field att = 2T/3.

Figure 4: Body surface map of magnetic field att = 2T/3.
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Figure 5: Mean square error for estimating the size of the
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Abstract: Even in significant light intensity fluctuations human beings still can sharply perceive the surrounding 
world under various light conditions: from starlight to sunlight.  This process starts in the retina, a tiny 
tissue of a quarter of a millimeter thick. Based on retinal processing principles, a bio-inspired computational 
model for online contrast adaptation is presented. The proposed method is developed with the help of the 
fuzzy theory and corresponds to the models of the retinal layers, their interconnections and 
intercommunications, which have been described by neurobiologists.  The retinal model has been coupled in 
the successive stage with the Hough transformation in order to create a robust lane marks detection system. 
The performance of the system has been evaluated with the number of test sets and showed good results.  

1 INTRODUCTION 

Human beings get a significant part of information 
through the visual perception system which consists 
of the retina, the visual nerve and the visual cortex in 
the midbrain. The retina in this sequence plays the 
role of a pre-processor and reduces the information 
delivered to the visual cortex. In this paper we like 
to point out how the retina adapts the intensity 
fluctuations that appear in the real-life situations and 
describe a method for the contrast adaptation with 
the help of the fuzzy–like sets.  

According to the work that is presented in 
(Hubel, 1995) and (Masland, 2001), the retina is a 
part of the brain, which has been separated from it 
during the early stages of development, but having 
kept the connections to the brain through the optic 
nerve. Five different types of cells form the retina: 
photoreceptors, horizontal cells, bipolar cells, 
amacrine cells and ganglion cells. They all are 
organized in a layered structure and the visual data 
flows from the upper layer (photoreceptors) to the 
lower layer (ganglion cells) in a parallel manner. 
Their interconnections are well described in (Hubel, 
1995). Among the other important functions of the 
retina, like edge extraction and motion detection 
(Olveczky et al., 2003), the real-time 
implementation of the contrast adaptation seems to 
be important for almost all image processing and 
robotic projects.  

As described in (Smirnakis et al., 1997), the 
contrast adaptation process begins in the lower 
layers of the retina (amacrine and ganglion cells) 
and allows the retinal neurons to use their dynamic 
range more efficiently. The recovery time of the 
visual system after changing the ambient intensity is 
several seconds (Baccus and Meister, 2002) and in 
the (Solomon et al., 2004) were reported that when 
the mean intensity increase, the retina becomes less 
sensitive. These biological principles for the contrast 
adaptation were taken as a basis for the 
development. 

As it pointed out in (Wilson, 1993), the contrast 
adaptation process which takes place in the retina 
can be described with help of differential equations. 
As an alternative, we found a method to describe 
this non-linear process with fuzzy-like sets and 
coupled the system with the Hough transform for 
lane marks detection. 

2 RETINA MODEL FOR 
CONTRAST ADAPTATION 

Five different layers (three vertical and two 
horizontal) build up the retina. Vertical layers are 
presented by photoreceptors (rods and cones), 
bipolar and ganglion cells and form the direct 
pathway of the visual data flow. Horizontal layers of 
the retina are presented by the horizontal and 
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amacrine cells and, together with the vertical layers 
form the indirect pathway. Both paths are needed for 
the sufficient visual information pre-processing and 
for forming the signals to the inner brain. 

2.1 Two Layers, Three Processing 
Tasks 

The cells in the inner retina are organized in a 
parallel manner and build together a highly 
distributed structure. In fig. 1 the digital 
representation of all five retinal cells and their 
interconnections is shown. 

 
Figure 1: Digital representation of the retinal layers. 

All retinal cells can be divided into two 
processing layers by their functionality. The first 
layer is presented by the photoreceptors, horizontal 
and bipolar cells, and performs the edge extraction 
(Hubel, 1995), (Olveczky et al., 2003), while the 
second layer, which is formed by the amacrine and 
ganglion cells, performs among other tasks the local 
motion detection and the direction of movement 
estimation (Masland, 2001), (Berry II et al., 1999). 
Since the contrast adaptation also begins in the 
lower retinal layers (amacrine and ganglion cells), it 
is important to understand the responses from the 
higher processing layers (photoreceptors – bipolars). 

2.2 Modelling of the Bipolar Cells 
Response 

The processing on the first layers starts from 
photoreceptors that sense the incoming light. Some 
of the photoreceptors are activated by the presence 
of light while others are activated when they do not 
detect light. All of them are arranged in a circular 
way so that one type is surrounded by other types 
(center–surround organization). In this paper we use 
the ‘on–center’ surrounding organization scheme 
(Hubel, 1995).  

On the next level, the horizontal cells get their 
input from the photoreceptors. They play a very 
important role in reducing the amount of information 
that is given to the inner brain and represent an 
additional mechanism which helps to adjust the 
retina response to the overall level of illumination. 
Their task is to measure the illumination across a 
broad region of photoreceptors and pass the average 
value further to the next level. Such calculation can 
be represented by Equation 1, where Pk is the output 
of each photoreceptor that is connected to a 
horizontal cell Hi ; n is the number of inputs of a 
certain horizontal cell. 

 

n
H

n

k
k

i

p∑
== 1  

(1) 

 
On the third level, the bipolar cells get their 

inputs from the center photoreceptors directly and 
from the surrounding photoreceptors indirectly 
through the horizontal cells. These two inputs build 
the receptive field of each bipolar cell.  

The function of the bipolar cell involves a 
subtraction mechanism: it subtracts the value of the 
horizontal cell H from the value which is received 
from the center photoreceptors. Thus, the output of 
each bipolar cell Bi can be represented by the 
Equation 2, where Bi1 is the input from the 
photoreceptors and the Bi2 – is the input from the 
horizontal cell Hi. 

 
Bi = Bi1 – Bi2 (2) 

 
The output of each bipolar cell forms the 

response from the whole receptive field and in this 
stage retina performs the edge extraction function 
(Olveczky et al., 2003). As it is known from the 
classical theory for image processing (Shapiro, 
2001), the edge detection operators highlight the 
boundaries between regions of different intensities. 
This is, naturally, how human beings perceive the 
perimeter of an object, when it differs by its 
intensity from the background. In fig. 2 the stimuli 
with a step-change border and a simplified model of 
the first stages of the retina are presented. Here we 
assume that each photoreceptor corresponds to a 
single pixel in the image and each bipolar cell B is 
driven by the receptive field which is constructed by 
three photoreceptors – one for the center response 
and two for the surrounding. The receptive fields of 
the different bipolar cells overlap each other (Hubel, 
1995) and, thus, each photoreceptor is fed not only 
to the single bipolar cell, but to a number of bipolar 
cells. 
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Figure 2: The model and its edge response. 

In this example the stimuli change their 
intensities between the receptors 5 and 6 from 20 to 
80. The model’s response on the step-change border 
can be presented by the activities of the two peaks 
(negative and positive) exactly at the border between 
the two regions. The absolute values of the peaks are 
equal, but differ by the sign. Such bio-inspired edge 
extraction technique called zero-crossing has been 
confirmed by Marr (Marr, 1982) while investigating 
the neurobiological background of vision. Fig. 3 
shows the response of the bipolar cells at vertical 
edges. 

 

 
Figure 3: The stimuli and the bipolar cell’s response at 
vertical edges. 

The bipolar cells are fed to the amacrine and 
ganglion cells, but first the signal from the bipolar 
cell reaches the Contrast Adaptive Neuron. 

2.3 Contrast Adaptive Neuron and its 
Function 

According to (Smirnakis et al., 1997), when the 
mean intensity of ambient light increases, the retina 
becomes less sensitive. This process is organized 
with the help of the contrast adaptive neuron (CAN), 
which is located just after the bipolar cells and 
serves to adjust the input activity of the ganglion 
cells in order to use their dynamic range more 
efficiently. In fig. 4 the simplified model of the 

receptive field for a single ‘on–center’ ganglion cell 
with a CAN is presented. 

 
Figure 4: The model of the ganglion cells receptive field 
with CAN. 

For fig. 4 we assume that the response generated 
by the bipolar cell lies above the ganglion cells 
dynamic range and the CAN brings the bipolar cell 
response back to the dynamic range of the ganglion 
cell by changing its amplitude value. However, the 
retina adapts the high and low intensities differently.  

When the contrast changes from low to high 
(positive contrast change, e.g., going from normal 
light room conditions to the strong sun light at 
midday), in the first tens of a second the retina 
decreases the sensitivity of CAN dramatically, that 
results in a quick decrease of the ganglion cell’s 
activity. Such first step of the adaptation process is 
called “Fast adaptation” and helps to bring the 
ganglion cell input nearly to its normal input range. 
After that the second “Slow adaptation” phase 
occurs and lasts for about ten-fifteen seconds. Its 
main task is to fine tune the input of the ganglion 
cell and bring it completely to the middle point of 
the ganglion cell’s dynamic range.  

In case, when the contrast changes from high to 
low (negative contrast change, e.g., going from sun 
light to the room with normal light conditions), the 
retina reacts differently. There is no fast adaptation 
process, but the retina increases step-by-step the 
sensitivity of the ganglion cells by scaling up their 
inputs (with help of CAN). It takes up to twenty-
twenty five seconds till the inputs of the ganglion 
cells are in their dynamic range.  

These two statements were confirmed by 
Solomon et al (Solomon et al., 2004) while 
observing the reaction of the isolated retina of a tiger 
salamander during contrast changes. Fig. 5 shows 
the adaptation process for negative and positive 
contrast changes. 
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Figure 5: Contrast adaptation in salamander’s retina from 
(Solomon et al., 2004). 

In fig. 5 C depicts the contrast change values 
while the graphical representation shows the 
adaptation in the Salamanders retina on different 
contrast changes.  

We investigated which functions might 
approximate the curves for “negative” and 
”positive” adaptation and found out that for the 
approximation of the “positive” contrast adaptation 
process (fig. 6a, upper image) a simple rational 
function (fig. 6b, upper image) can be used. 
“Negative” contrast adaptation curve (fig. 6a, lower 
image) can be approximated by the square root 
function, which is shown in fig. 6b (lower image). 

 

 
                     a)                                       b)  

Figure 6: a) Natural adaptation curves (from (Solomon et 
al., 2004)) and b) their approximation functions. 

Here, in both functions the coefficient k is a 
scaling factor, which is responsible for the CAN’s 
selectivity. It controls how strong the adaptation 
should be in order to make the ganglion cells more 
or less sensitive, depending on the current light 
intensity situation. For instance, when the light 
intensity is high (e.g., in sunny midday) than the 
CAN should scale the intensity down by setting a 
rather large k; however, when the light intensity is 
just a bit above the dynamic range, the CAN should 
fine tune the contrast by setting a quite small value 
for the scaling coefficient. In this work we use the 
fuzzy-like sets for the definition of CAN’s selectivity 
coefficient k. 

3 USING FUZZY-LIKE SETS FOR 
CONTRAST ADAPTATION 

In recent decades a number of applications were 
found for fuzzy logic in economics, mathematics 
and engineering. Firstly introduced in (Zadeh, 1965), 
it is very helpful for modelling highly nonlinear 
processes like natural contrast adaptation  

3.1 Definition of a Fuzzy – like Set for 
Normal Contrast 

For the graphical representation of the model’s 
response we should declare, what the Normal 
contrast means and create a corresponding fuzzy – 
like set for its definition.  

Since we are working with bio-inspired edge 
extraction based on zero-crossings, we assume here 
that the absolute zero, as it shown on the 
characteristic curve in fig. 2 will be equal to the 
intensity 128, which represents the middle point of 
the intensity spectrum. When model analyzes the 
border between object and background, on the 
graphical representation the response will drop down 
and then raise up by a certain value (e.g., dark and 
light vertical lines in fig. 3, image 2).  

Then we analyzed which intensity differences 
can represent the Normal Contrast value (see fig.7).  

 

   
 

   
Figure 7: Biological edges with 16, 32, 64 and 128 
intensity difference levels. 

Fig. 7 shows four biological edges with 
intensities 16, 32, 64 and 128. The edges with the 
intensity differences of 16 and 32 do not have 
enough contrast and should be adapted. The edges 
with intensity difference of 64 and 128 do have 
enough contrast and thus there is no need for 
adaptation. However, in the real world situation the 
biological intensity difference of 128 is hardly 
possible, because it causes an intensity change of 
255 levels at the object-background border (e.g., 
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changing from black to white). Normally the 
contrast numbers, which can be detected in real 
images, lie in the range from 120 to 200, which 
caused the biological edge of [± 60 – ±100] to 
appear. That is why we do not have to adapt the high 
intensity values (e.g., from 180 to 255), we should 
only define such a process, which will adapt the 
edge values from the lower part of the intensity 
difference spectrum and bring them in to the middle 
region. Thus, only the “negative” contrast adaptation 
process should be used (fig. 6, lower images). 

Following this, we introduce a Normal Contrast 
fuzzy variable which should adapt all the values that 
lie under the intensity 60. It is presented in fig. 8. 

 

 
Figure 8: Fuzzy variable for Normal Contrast. 

On this image, the X-axis represents the intensity 
change I on the biological edge and Y-axis shows 
the membership μ of a certain intensity value in the 
Normal Contrast variable.  

There are three characteristic adaptation regions 
presented on this graphic. Since the fuzzy logic 
operates with linguistic variables, table 1 shows such 
a linguistic description and action which is needed 
for a certain region. 

Table 1: Linguistic definition of the model. 

Region Intensity  Action needed 
I Low Intensity  Strong adaptation 
II Low–to–Normal 

Intensity 
Adaptation based on the 
μ membership 
coefficient in order to 
control adaptation 
strength  

III Normal Intensity No adaptation needed 
 
When the bipolar cells deliver low intensities 

(values from 1 to 10), strong adaptation is needed; in 
the mid-range (values from 11 and 60), adaptation is 
also needed, but the system should control the 
strength of the adaptation by using the membership 

coefficient μ; and when the intensity is normal 
(values above 61), then no adaptation is needed.  

In order to create the system we should define 
the set of rules for each of the regions 
mathematically. Since we are using the “negative” 
adaptation process, a curve that will represent this 
process should have the shape of the square root 
function. Table 2 shows the mathematical 
representation for each action regions. 

Table 2: Mathematical representation of the model. 

Region Intensity values Representation 
I 1 – 10 K = 2 ·√x 

Inew = Ii · K 
II 11 – 60 μ = (2 · Ii + 20)  / 100 

K = (2 - μ) · √x 
Inew = Ii · K 

III 61 – 127 Inew = Ii 
 
The adaptation process in nature lasted for 

several seconds. Here this process is modelled with 
iteration mechanism and x represents current 
iteration; K is an adaptation coefficient and should 
be calculated differently for regions I, II and III. It 
represents the CAN selectivity and controls the input 
gain to the ganglion cells. Ii represents the input 
intensity of CAN and Inew is a new calculated value 
of the adapted intensity; μ is a membership 
coefficient, which influences the amplification factor 
and is calculated according to the equation of the 
characteristic line in region II (see fig. 8).  

3.2 Adaptation Algorithm 

The algorithm for the contrast adaptation involves 
all the definition for the variables that have been set 
early, like Ii,  Ilow, Inormal,  Inew, μ, K and x which is 
initially set to 0. Firstly, based on the current 
intensity Ii, μ is calculated. 

 
if (Ii>1&&Ii<=Ilow){μ = 0} 
if (Ii>Ilow&&Ii<=Inormal){ 

μ = (2·Ii+20)/100} 
if (Ii>Inormal){μ = 1} 
 
Then the adaptation coefficient K and the 

adapted intensity Inew based on the equations in table 
2 is calculated. 

 
if (μ<1){  
    while (Inew<=Inormal){ 
         K = (2 - μ) · √x 
         Inew = Ii · K 
         x = x + 1; 
     } 
 } 
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 else {Inew=Ii} 
 
The process stops, when the calculated intensity 

Inew reaches the normal intensity Inormal that has been 
set to 60 empirically. 

3.3 Adaptation Results 

During the investigation and development the model 
has been tested on different types of images.  
Experiments were divided into three categories by 
the specific adaptation process:  

 
• adaptation of the low contrast; 
• adaptation of the low-to-normal contrast; 
• adaptation of the real world images; 
 
The first two categories were tested with 

synthetic images. Synthetic images were chosen 
because the results of the processing can be 
predicted in order to make the model’s proof of 
concept under different conditions. To demonstrate 
it a number of images with different intensity 
changes were chosen. Fig. 9 represents two of them. 

 

        
                     a)                                    b) 

Figure 9: Experimental data. 

Fig. 9a shows the intensity change of 10 levels 
(from 255 to 245) and figure 9b corresponds to a 
change of 50 levels (from 255 to 205) of the 
intensity spectrum. The digits on the images 
represent just the absolute intensities and will not 
appear in the modelling results.  

Fig. 10 shows the calculated bipolar cells 
activity for fig. 9a and 9b correspondently. 

 

        
                     a)                                   b)                  

Figure 10: Calculated bipolar cell’s responses to the 
experimental data in fig. 9. 

For the first experiment we took fig. 10a. The 
initial data (fig. 9a) shows minor intensity change at 
the object-background border, which causes a low 
contrast and hardly distinguished border response 
(fig. 10a). The initial intensity change Ii equals 3 
(see equations 1 and 2), which corresponds to the 

low intensity region in fig. 8. Initial data: Ii = 3; μ = 
0, => K = 2 ·√x. 

For the adaptation of such a low intensity 104 
iterations are needed. Table 3 shows some of them. 

Table 3: First experiment data. 

x K Inew Graphical representation 
 

1 2 6 
2 2.82 8 
3 3.46 10 
4 4 12  

… 
101 20.09 60 
102 20.19 60 
103 20.30 60 
104 20.40 61  
 
The second experiment has been performed with 

fig. 10b. The initial intensity change here Ii is 16, 
which corresponds to the low-to-normal intensity 
region in fig. 8. Adaptation is still needed, but the 
strength of the adaptation should be controlled. 
Initial data: Ii = 16; μ = 0.12, => K = (2 - μ) · √x. 

According to the algorithm, the adaptation of 
such intensity will be done in 5 iteration steps. Table 
4 represents this process. 

Table 4: Third experiment data. 

x K Inew Graphical representation 
 

1 1.88 30 
2 2.65 42 
3 3.25 52 
4 3.76 60 
5 4.20 67 

x = 5, Inew = 67: 

  
 
As it can be seen on the results presented above, 

the contrast adaptation model shows the expected 
responses on the different stimuli with different 
adaptation time. The intensity change adaptation 
correlates with its natural representation (fig. 6, 
lower image). To confirm this, fig. 11 shows the 
adaptation curves for each experiment. 

 

       
                    a)                                  b)  

Figure 11: Adaptation curves for all experiments. 
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3.4 Adaptation of the Real World 
Images 

The model has been already tested on the synthetic 
images; the next step is to see how it will respond on 
the real world images. For this purpose we choose a 
number of images with the real road scenes that have 
been taken on a german highway. Some of these test 
images are shown in Fig. 12. 

 

   
 

Figure 12:  Real road scenes. 

Then we processed the images first with the 
classical biological edge operator without the 
contrast adaptation mechanism. On the 2nd phase the 
same images have been processed with the bio-
inspired edge operator and with the contrast 
adaptation module. Fig. 13 shows the results. 
 

   
 

   

   

Figure 13: Calculated biological edge without (left) and 
with (right) contrast adaptation for fig. 12. 

The difference between the adapted and the not 
adapted images can be clearly seen. The edges, that 
are even not fully visible on the left images, are well 
seen on the right ones. Besides, the initial images 
(fig. 12) were taken under slightly different 
illumination conditions: the first image was taken 
under bright sun light while the second one at early 
evening. Nevertheless, the adapted images show 
good results especially in underlining the lane road 
marks. This gives the possibility to use this contrast 
adaptation model for robust lane detection. 

4 LANE DETECTION 
APPLICATION 

Lane keeping assistant systems have been described 
in a number of recent publications, e.g. (Risack et 
al., 2000), (Chang et al., 2003). For such  systems 
detection of the lane marks is a key feature for 
further processing. The lane marks form lines with 
certain slopes and thus, for its detection a good 
shape extraction method is needed.  

The Hough transformation (Leavers, 1992) is a 
pattern recognition technique which is known for its 
performance in locating given shapes in images. 
Some researches have reported that the Hough 
transform correlates with the processes that happen 
in the striate cortex and in fact, reproduces the 
natural mechanism of objects contour extraction 
(Hubel, 1995), (Blasdel, 1992), (Ballard et al., 
1983), (Brueckmann et al., 2004).  

Very interesting state-of-the-art research work is 
presented in (Serre, 2007). The authors describe the 
usage of the midbrain biological mechanisms for the 
real world scene segmentation and objects 
recognition. Furthermore, they also use the Hough 
transformation as a shape localization method. 

That is why we propose to use the Hough 
transform as a lane marks detection method together 
with the retina model with contrast adaptation as a 
preprocessing method. This gives the possibility to 
create a fully bio-inspired system for the lane mark 
detection. The architecture of such a system is 
shown in fig. 14. 

 

Image 
Acquisition
& Biological 

Edge Detection

Hough 
Processing

Contrast 
Adaptation

Results 
Interpretation

Road Image Sequences

 

Figure 14: Architecture of the bio-inspired lane detection 
system. 

The biological edge detection and contrast 
adaptation stages were well described above. In fig. 
14, after contrast adaptation the Hough 
transformation takes place. Hough transformation 
involves a voting scheme for the shape detection. In 
particular, here we extract the lines of the different 
slopes.  Fig. 15 represents the Hough spaces built 
from road edge picture (fig. 13, two right images) 
and then the maximas are marked. 
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Figure 15: Hough spaces with local maximas. 

After the maxima were detected, the 
interpretation of the results should be performed. 
Each maximum on the Hough space corresponds to 
the line with a certain slope in a Cartesian space and 
after processing the detected lane marks will be 
highlighted. Fig. 16 shows the final results. 

 

   
 

Figure 16: Detected lane marks in the adapted images. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper a bio-inspired model for contrast 
adaptation has been presented. The model has been 
tested with different test sets and showed good 
results. Furthermore, the proposed contrast 
adaptation algorithm has been coupled with the 
Hough-based lane marks detector. This coupling 
showed good performance and full correspondence 
to the predicted behaviour.  

Future work will concentrate on development of 
the lane keeping assistant system using the bio-
inspired techniques further. In particular, for the 
preprocessing stage the colour perception model will 
be investigated, implemented and will be used for 
the road scenes segmentation and traffic signs 
detection. 

Besides, for the post-processing and trajectory 
prediction stages time-to-lane crossing approach will 
be taken in to the account. It is likely possible that it 
might be modelled with the natural timing delay-
computational maps. This problem will be also 
investigated and the results will be reported.  
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Abstract: The fovea is a spot located in the center of the macula, and responsible for sharp central vision. In this paper
a method to detect the macula location and size is presented,as a first step towards the fovea location.In the
first stage of the process, the retinal vessel tree is extracted through a crest line detector. Then, the main vessel
arc is fitted to a parabolic curve using a polynomial fitting process, which will allow for the computation of
the area where the optic disc is located. The last stage consists in the segmentation of the optic disc, by means
of the combination of morphological operations and a deformable model. Then, following the morphological
properties of the eye, the macula location and size is determined by means of a new correlation filter. Search
with this filter is performed in a reduced area of interest, whose size and position is determined by means,
again, of the morphological properties of the eye. The algorithm has proven to be fast and accurate in the set
of test images, composed of 135 digital retinal images.

1 INTRODUCTION

The retinal fundus photographs are widely used in the
diagnosis of eye diseases. Processing automatically a
large number of retinal images can help ophthalmol-
ogists to increase the efficiency in medical environ-
ments were big numbers of patients must be treated.
The optic disk is the brightest area in images that do
not have large areas of exudates and it is a slightly
oval disk. It is the entrance region of vessels and its
detection is very important since it works as a land-
mark for the other features in the retinal image. The
macula is a commonly visible as a hazy dark area.
This is the area with the highest number of cones and
rods per unit area.

There are many previous works on optic disk lo-
calization. Goldbaum et al. (Goldbaum et al., 1996)
extract the main features of the eye fundus (optic disk,
vessels, blobs and fovea), through the combination of
several templates, which work separately on the im-
age color channels. Pinz et al. (Pinz et al., 1998)
also obtain a map of the human retina using retinal
angiographies, obtaining very good results. Lalonde
et al. (Lalonde et al., 2001) extract the optic disk

using Hausdorff based template matching and pyra-
midal decomposition. It is neither sufficiently sensi-
tive nor specific enough for clinical application. On
the other hand, strategies based on active contours
(Mendels et al., 1999; Lowell et al., 2004; Chanwim-
luang and Fan, 2004) are used to detect the optic disk
boundary in retinal images. These techniques are very
robust against noise but their main disadvantage is
their high computational cost.

A method for detecting the macular center was
presented by Sinthanayothin (Sinthanayothin et al.,
1999). In this approach a template based algorithm
was used, combined with the morphological proper-
ties of the eye. The system showed an accuracy of
80.4% on 100 images. Li et al. (Li and Chutatape,
2004) presented a model based approach in which an
snake was used to extract the vascular tree based on
the location of the optic disk. Then, the information
from the snake was used to find the macula center.
The authors reported a 100% accuracy for optic disk
localization and 100% for macula localization in 89
digital retinal images.

This paper presents an algorithm for the automatic
localization and segmentation of the optic nerve head,
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macula and fovea working on digital retinal fundus
images. The optic nerve head is located and its shape
is extracted without user intervention. Localization is
achieved by means of a two stage process. In the first
stage, creases are extracted and filtered, so that only
the crest lines corresponding to the main vessel arc are
not removed. Then a polynomial curve is fitted to the
points in the crest lines, which will determine an area
of interest where the optic disk will be located. In the
second stage the shape of the optic disk is determined
through the combination of two techniques: morpho-
logical operators and a deformable model. The fi-
nal result is the optic disk shape and position. Once
the optic disk position has been determined, macula
and fovea are located using the morphological prop-
erties of the eye, which allow for the optimization of
the search procedure, performed by means of a multi-
scale correlation filter searching over a small area.

The setup of the paper is as follows. Section 2
provides details on the algorithm for the optic disk lo-
calization and segmentation. Section 3 describes the
macula segmentation process. Experiments and re-
sults are given in section 4 for both the optic disk and
macula localization and segmentation, and finally sec-
tion 5 provides discussion and conclusions.

2 OPTIC DISK SEGMENTATION

The first stage of the process consists of locating the
region where the optic disk is situated. This is per-
formed by tracking the main crest lines, which con-
verge in the optic disk. Then an accurate segmenta-
tion of the optic disk is obtained by means of a de-
formable model. This information, combined with
the morphological properties of the eye, will be very
useful in the process of locating and segmenting the
macula.

2.1 Optic Disk Location

Analyzing the morphology of the retinal vessel tree
(Figure 1), it is clear that the root of this tree is the
optic disk, so by tracking the main vessels it is possi-
ble to arrive to the optic disk position. Following this
approximation, an algorithm has been designed to ob-
tain that position without the need of segmenting the
whole retinal vessel tree.

Since the segmentation of the retinal vessel tree
would be a costly process, only the crest lines of the
main vessel arc are used in the detection of the op-
tic disk position. To compute the crest lines, a geo-
metric approach was used, the Multi-local Level Set

Figure 1: Digital retinal image acquisition. Note the con-
vergence of the main vessels in the optic disk, fact which
will be used in the detection of the optic disk position.

Extrinsic Curvature with the Structure Tensor filter-
ing process (MLSEC-ST) (A. Lpez and Villanueva,
2000; Mariño et al., 2006). Using this method only
the highest creases are preserved, and the main vessel
arc creases are obtained, as shown in Figure 2.

However, in some of the images the crest lines ob-
tained do not reach the optic disk due to the high fil-
ter levels applied, and it is necessary an interpolation
method to compute the position of the optic disk (Fig-
ure 2, bottom). Analyzing the shape of the vessel arc,
a parabolic fitting to the points in the creases seems to
be the best approximation. But, from the results ob-
tained, the two degree polynomial fitting showed to
be inaccurate and a third level polynomial fitting was
tried with satisfactory results. To obtain this curve,
a least square fitting process was performed with the
classic equation 1 and minimizing the expression in
equation 2. In Figure 3 two examples of the result
from the fitting process are depicted, with blue lines
representing the curves interpolated from the crest
lines.

y = ax3 +bx2+cx+d (1)
n

∑
i=1

[yi− f (xi)]
2 =

n

∑
i=1

[yi− (ax3
i +bx2

i +cxi)+d]2 (2)

Once the optic disc is roughly located, an area of
interest containing the optic disk is determined. This
area will be centered in the coordinates where both
branches of the main vessel arc crest lines converge,
and its size will be two times the average optic disk
size of all the images analyzed, so that every optic
disk will be contained within this small area (the red
rectangle in Figure 3). It is within this area where
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Figure 2: Crest lines obtained with the MLSEC-ST method.
Top: crest lines reach the optic disk, so that its position is
easily determined. Bottom: in some images, an interpola-
tion method is necessary to reach the optic disc position.

the segmentation process will be performed, obtain-
ing the shape and size of the optic disk.

2.2 Optic Disk Segmentation

Many works about the optic disk segmentation can be
found in literature. Several methods were tried with
the retinal images we are working with. The best re-
sults have been obtained with a deformable model-
based segmentation process, based on the work by
Hu et al. (Hu et al., 1998; Mariño et al., 2007). In
this method, the deformable model is composed of a
global model and a local model. The global model
approximately fits the boundary of the optic disc. The
local deformable model can get a more accurate fit
to the characteristics of the boundary, keeping at the
same time the shape of the model when the bound-
ary does not exist or it is difficult to get. Optic disc
segmentation is performed in three stages: in the first
two stages the global model is fitted to the optic disc.
In the third stage, starting from the result of the previ-
ous stages, the local model is accurately fitted to the
particularities of the optic disk boundary. In Figure

Figure 3: Results obtained from the third degree polynomial
fitting applied to two different images. Blue lines represent
the third degree polynomic curves fitted to the points of the
creases.

4 two segmentation results are depicted, showing the
accuracy of the method.

Figure 4: Results obtained from the segmentation process
using the deformable model applied to two different retinal
images.

Not that the optic disk has been located, the next
step consists in licating the macula and fovea using
the properties of the eye’s morphology.

3 MACULA AND FOVEA
DETECTION

The fovea is a small depression on the eye fundus. It
is the darkest part in most of the retinal images, while
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it is not obvious in some images due to high illumina-
tion or being covered by lesions. Its geometrical rela-
tion to other structures is employed to locate robustly
the fovea. The method performs in two steps: first,
a candidate area containing the macula is obtained,
then, the macula size and position is located within
this area through a matched filter.

3.1 Macula Candidate Region Selection

The candidate region for the fovea is defined as a cir-
cular area. Its center is located approximately at 2
disk diameters away from the optic disk center and
its radius equals to the optic disk radius. Because the
fovea is located about 2 times optic disk size temporal
to the optic disk in the retinal images (Larsen, 1976),
the candidate region is such defined in order to ensure
that the fovea is within the region.

Since in section 2.2 we have computed the coordi-
nates and diameter of the optic disk center, it is possi-
ble to obtain an accurate estimation of the fovea and
macula position, by fitting a new parabolic curve to
the main vessel arc, and taking the coordinates of the
optic disk center as the parabola vertex. Following
the work from Li et al. (Li and Chutatape, 2004), the
parabolic shape is given by equation 3.

[(x−xc)sinθ+(y−yc)cosθ]2 = (3)

2p[(x−xc)cosθ− (y−yc)sinθ]

wherexc,yc are the vertex coordinates,x andy are the
searched points,p/2 represents the focal length, and
θ is the rotation angle of the directrix. Then a search
by mean square error is performed. In this work the
shape of the curve has been represented by the general
form given by equation 4, much simpler and compu-
tationally more efficient.

y = ax2 +bx+c (4)

Although in equation 4 the rotation and the
parabolic vertex are not represented, the least square
error fitting is a very simple process. Vertex coordi-
nates can be computed using equation 5.

xv =−b/2a
yv = c−b2/4a

(5)

wherexv,yv are the coordinates of the vertex. If we
impose the restriction that the vertex will always be
the center of the optic disk, combining equations 4
and 5 the parabola will be given by equation 6, de-
fined by the parametera and the optic disk center co-
ordinate, already known from the previous segmenta-
tion stage.

b =−2xva (6)

c = ax2
v +yv

Figure 5 represents the parabolic fitting process.

Figure 5: Representation of the parabolic model. Top:
parabolic model with the directrix. Bottom: several itera-
tions of the parabolic model searching for the best fit to the
main arc vessels.

This way, following the parabola bisection two
diameters away from the optic disk center, a search
area can be defined, greatly reducing the search space
where the macula is located. Figure 6 represents the
process of determining this area of interest.

3.2 Fovea Location

Once the candidate area containing the macula has
been located, a correlation filter is applied to the re-
gion in order to locate the macula and the fovea.
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Figure 6: Computation of the candidate foveal region.
Points from the creases (white circles) are fitted to the
parabolic model and then, following the parabola directrix
a fixed distance, the macula candidate search area is deter-
mined.

As previously stated, the fovea is a spot located
in the center of the macula, and is responsible for the
sharp central vision. The macula is commonly visi-
ble as a hazy dark area. To locate this dark area, a
matched filter which consists of a Laplacian of Gaus-
sian is used. The correlation filter is shown in Figure
7. The fovea will be located at the position where the
response of the filter is maximum.

Figure 7: The correlation filter to locate the macula, where
the template consists of a Laplacian of Gaussian.

The template is correlated with the intensity com-
ponent of the retinal image. We use the full Pearson-
R correlation to take variations in mean, intensity and
contrast into account, as defined in Equation 7. The
size of the filter is taken the same as the optic disk
radius, since the diameter of the macula is about the
same as the diameter of the optic disk (Larsen, 1976).

Ci, j =
∑x,y( f (x,y)− f̄ (x,y))(w(x− i,y− j)− w̄)

∑x,y( f (x,y)− f̄ (x,y))2 ∑x,y(w(x− i,y− j)− w̄)2

(7)
The region of interest containing the macula is de-

fined as ann×m rectangle whose center is the point
with the higher response computed by means of the
correlation filter. Figure 8 shows the result obtained
by the macula segmentation process. The macula is
marked as a white circle about the center of the im-
age, while the fovea is marked with a cross in its cen-
ter (optic disk segmentation result is also included,
with its center marked as a red cross).

Figure 8: Result obtained by the macula segmentation pro-
cess using the correlation matched filter in the image in Fig-
ure 6. Optic disk radius and center are marked in red, and
fovea and macula contours are marked in green.

4 RESULTS

In order to test the accuracy of the method, several
experiments have been designed, and the results have
been validated by clinicians from the Complejo Hos-
pitalario Universitario de Santiago (CHUS). The set
of test images was composed of 135 retinal digital
images with a resolution of 565× 584 pixels. Ta-
ble 1 contains the statistics for the test images, with
average horizontal and vertical diameters of the op-
tic disks (first and second column) and horizontal vs.
vertical ratio (third column). This values will be used
in the initialization stages of the deformable model,
and will determine the size of the region of interest
where the macula is located.

The main goal of this work is the macula loca-
tion, and this task has been performed in two stages:
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Table 1: Statistics (average, standard deviation, maximum
and minimum) for the horizontal, vertical and ratio of the
horizontal and vertical diameters (horizontal/vertical) for
the images in the test set.

Horizontal Vertical Ratio
diameter diameter Ratio

Average 78,97 85,03 1,08
Standard deviation 7,34 8,36 0.09
Maximum 103 112 1,23
Minimum 65 70 0,77

the former determined an area of interest where the
fovea will be searched, and in the latter the macula
was segmented by means of a correlation filter. The
results from the first stage are included in table 2.
The location is consideredgoodwhen the macula en-
tirely contained within the area of interest.Accepta-
ble results show the number of maculas from the set
of test images partially contained in the area. A re-
sult is consideredbadwhen the macula is mostly out-
side the area of interest. It is clear how the algorithm
successfully detected the area of interest surrounding
the macula in the 100% of the images in the test set.

Table 2: Results of the determination of the area of interest
containing the macula.

Area of interest
Good Acceptable Bad
100% 0% 0%

100% 0%

In the last stage of the process, the macula was
segmented using a correlation filter. This process is
very fast since the area where the search takes place
is very small. Following the criteria of Goldbaum et
al. (Goldbaum et al., 1996), there are three possible
results in the segmentation:

1. Good localization: estimated center and real cen-
ter (determined by an expert clinician) of the mac-
ula overlap.

2. Acceptable localization: estimated and real cen-
ters are not separated more than a mean radius
(from table 1).

3. Bad localization: otherwise.

Following this categorization, the results obtained
are depicted in table 3.

Figure 9 shows the results obtained in three differ-
ent retinal images. The optic disk, the region con-
taining the macula, the macula and the fovea have

Table 3: Results for the macula location.

Macula location
Good Acceptable Bad
97% 0% 3%

97% 3%

Table 4: Execution times for each one of the algorithm
stages.

Stage Time (seconds)
Creases extraction 0.537s
3rd. degree polynomic fit 0.020s
Optic disk segmentation 2.588s
Parabolic fit 0.033s
Macula location 0.324s
Total 3.502s

been marked in all of these images, showing the re-
sults commented in tables 2 and 3.

Finally, table 4 whows the execution times of each
stage, from the creases computation to the macula lo-
cation. These times were measured in a PIV 2.0GHz.
From these times it is clear that a screening process
involving thousands of people, which usually would
take much time to the clinicians, could be greatly re-
duced with the help of a system like the one proposed
in this paper.

5 CONCLUSIONS AND FURTHER
WORK

In this work a methodology to locate and segment
the optic disk and the macula has been presented.
The algorithm performs in several stages, from
the creases extraction, necessary for the optic disk
location, to the macula location. Besides, high level
domain knowledge is used to reduce the area where
the macula is located once the optic disk has been
detected. Still much work has to be done to improve
the results of the process. A pyramidal search is
being tried to obtain a better segmentation of the
macula, and a higher number of images is necessary
to validate the presented results. Moreover, tests
with standard sets of images (like the DRIVE project
(Staal et al., 2004)) need to be performed to obtain
more reliable result statistics.
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Figure 9: Results of the segmentation of the optic disk and
the macula. These images show the results in three cases
where the macula and optic disk were successfully located
and segmented.
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Abstract: Many models have been proposed to describe the visual processing mechanisms in the retina. The spike
generation mechanism of the models is typically performed by a Poisson process. Alternatively, a more
realistic approach can be used by implementing an integrateand fire mechanism. In this paper we show
that the Stochastic Leaky Integrate and Fire (SLIF) model isequivalent to a non-linear Poisson-based model.
Furthermore, it proposes a dynamic model for the retina visual processing path, achieved through modulations.
For estimating this model a two-step approach is proposed:i) an initial estimation is computed by using a
spike-triggered analysis, andii) the likelihood of the spike train is maximised by gradient ascent.

1 INTRODUCTION

Vision is a fundamental sense in one’s everyday life
that gained even more relevance in the modern soci-
ety; most of the information, art and entertainment re-
lies on it. A continuously growing number of research
groups have been dedicating their efforts to help visu-
ally impaired people by developing visual prostheses
capable of conveying some kind of vision; a endeav-
our which demands the development of accurate and
reliable retina models.

Retinal ganglion cells respond to visual stimuli by
eliciting spikes whenever the inner-membrane voltage
potential surpasses a given threshold. This response,
y(t), is characterised by the time spikes occurred; it
can be mathematically represented as a sum of Dirac
functionsδ(t−tk) centred at the time instantstk, when
the inner-membrane voltage potential surpassed the
threshold:y(t) = ∑δ(t − tk).

Several retina models, based mainly on general
neuron models, have been proposed. Two of the most
typical are the Poisson based model (Chichilnisky,
2001) and the Stochastic Leaky Integrate and Fire
(SLIF) (Paninski, 2006) model. However, in this pa-
per it is shown that, under some constraints, they
are equivalent. Moreover, a dynamic model is pro-
posed based on developed mathematical machinery
used to prove the equivalence between these two mod-
els. This dynamic model modulates its output not
only by the stimulus characteristics but also by the
recent spike firing history. To estimate this model’s
parameters several other issues are addressed, such as

the tuning and initialisation of this model, where it is
used spike-triggered analysis. At the end some exper-
imental results are provided.

This paper is organised as follows. Section 2
shows the equivalence between the SLIF model and
a Poisson based model. Section 3 presents the pro-
posed dynamic model and describes its tuning. Some
experimental results are drawn in Section 4, and sec-
tion 5 concludes the paper.

2 STOCHASTIC INTEGRATE
AND FIRE MODEL

A typical approximation for the Hodgkin and Hux-
ley neuron model assumes a leaky integrate and fire
model. By adding a noise component to the model,
it is possible to simulate the variability of real neu-
rons (Keat et al., 2001). For a linear first order in-
tegrate and fire mechanism, the SLIF model is de-
scribed by the stochastic differential equation (SDE):

dv(t) = −
1
τ

v(t)dt+ i(t)dt+ σξ(t) (1)

whereτ is a constant variable,ξ(t) is standard white-
noise andσ is a multiplicative term which defines the
power of the noise source. The above SDE is valid un-
til the subthreshold potential surpasses a given thresh-
old Vth. Whenever this happens a spike is fired and
the neuron enters a refractory period where no spike
can be fired. Accordingly with the SLIF model, at the
end of this period, which typically lasts a couple of
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Figure 1: Changing the noise source in Integrate and Fire
models.

milliseconds, the neuron is reset to a state where the
subthreshold potential isv0. Considering that the last
spike was fired at timet = t0, the solution to (1) is1:

v(t) =hIF (t − t0)∗
[

i(t)+v0δ(t − t0)+W(t)
]

(2a)

W(t) ∼N(0,σt) , σt ≡ σ(t) (2b)

where∗ is the convolution operator andhIF (t) is the
transfer function of a low pass filter with a pole in1

τ :

hIF (t) =
1
τ

e−
t
τ H(t) (3)

whereH(t) is the Heaviside step function.

2.1 Equivalence between the Slif Model
and the Poisson Based Model

Let us consider a SLIF model as shown in Figure 1(a),
wheres(t) represents the visual stimulus,y(t) is the
spike response, andG(s,y) is an arbitrary function
that transforms the pair{stimulus, spike response se-
quence} into the SLIF inputi(t). The integrator block
in the figure represents the linear filterhIF (t).

Under the SLIF model assumption, the noise
source can be moved to the integrator output by modi-
fying its statistics:v(t) = u(t)+W′(t) ∼ N(u(t),σ2

t ).
Considering that after the refrationary period the sub-
threshold potentialv follows a Gaussian distribution
with standard deviationσ0, and noting that the con-
volution is a linear operator, the output noise source
remains Gaussian, with standard deviation:

σ2
t = H(t − t0)

[

σ2 τ
2

+
(

σ2
0−σ2 τ

2

)

e−2
t−t0

τ
]

(4)

wheret0 represents the time instant of the last spike
andσ is the standard deviation of the noise during the
integration period, i.e. the Interspike Interval (ISI).

1Notice that (1) is similar to the Langevin’s SDE.

Therefore, the probability for eliciting a spike at a
given time instantt is given by the probability for the
potentialv(t) = u(t)+W′(t) to surpassVth:

P
(

y(t) = 1
)

= P
(

u(t)+W′(t) ≥Vth

)

=

= P
(

W′(t) ≥Vth−u(t)
)

=

= 1−Ncdf(Vth−u(t)|0,σ2
t ) =

= Ncdf(u(t)|Vth,σ2
t ) (5)

where Ncdf(x|µ,σ2
t ) is the normal cumulative distribu-

tion function with meanµ and varianceσ2
t , evaluated

at pointx. The function Ncdf defines a sigmoid where
Vth controls the translation (centre of the sigmoid) and
σt controls the expansion of the sigmoid.

Since the spiking probability of the SLIF model
is given by a sigmoid function, the model in Fig-
ure 1(a) is equivalent to the Poisson based model in
Figure 1(b), where the shape of the sigmoid depends
on the noise statistic during the refractionary and in-
tegration periods; three cases can be considered:

(1) if σ2
0 = σ2 τ

2, the noise variance throughout the in-
tegration period is always the same;

(2) if σ2
0 < σ2 τ

2, the noise variance increases expo-
nentially fromσ2

0, just after the refractory period,
converging toσ2 τ

2;

(3) if σ2
0 > σ2 τ

2, the noise variance decreases expo-
nentially fromσ2

0, just after the refractory period,
converging toσ2 τ

2;

Equivalently, for a neuron described by the Pois-
son spike generation process presented in Figure 1(b),
the change in noise variance is translated into a vary-
ing slope of the sigmoid – except in case (1). In case
(2)/(3), the model variability increases/decreases as
time from last spike progresses.

However it is worth to notice that this is not a true
Poisson model, as the firing of a spike at a time in-
stant depends on the recent spiking history. Since the
integrator is reset whenever a new spike is fired, this
is true even without the feedback path.

The above conversion thus shows that integrate-
and-fire (IF) models improve the precision of neu-
ron models by adding three important functions to the
typical Poisson based model:i) a natural refractionary
period given by the time for the integrator to recharge
and fire a second spike;ii) a feedback mechanism;
and iii) a sigmoid-like nonlinearity. While the feed-
back mechanism is not absolutely required to achieve
a reasonable precision – see (Capela et al., 2007) –,
the modelling of the feedback mechanism with a suf-
ficiently variable filter allows for a considerable im-
provement on the precision of the model – see (Tomás
and Sousa, 2007).
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3 DYNAMIC MODEL

The typical modelling of neurons representsG(s,y)
in Figure 1 by a linear system dependent on the input
stimuli s(t) and on spike historyy(t):

G(s(t),y(t)) = (hf ∗ s)(t)
︸ ︷︷ ︸

i f (t)

+(hb∗ y)(t)
︸ ︷︷ ︸

ib(t)

(6)

wherehf (t) andhb(t) represent the feedforward and
feedback linear filters, respectively.

In some cases, driven by the necessity to model
the contrast adaptation mechanisms existent in the
retina, non-linear functions are included in the de-
scription of G(s,y) (Baccus and Meister, 2002).
These non-linearities can be, for instance, approxi-
mated by a Taylor series:

G(s(t),y(t)) = f f (i f (t))+ fb(ib(t)) (7a)

fx(y) = ∑
k

aky
k (7b)

Nevertheless, the inclusion of dynamics in neuron
model is usually avoided, eventhough recent research
suggest that they are required for effectively mod-
elling the precise timing of neurons (Gerstner et al.,
2006). This is particularly verified in IF neuron mod-
els where its natural non-linearities introduce local
minimums, making the training process harder. In or-
der to model the temporal dynamics of the retina cir-
cuitry, a model must be constructed where the trans-
fer function changes with time, for instance by means
of a modulation process. Typically, neural dynamics
are considered only as a function of the stimuli – e.g.
motion detection (Bialek and van Steveninck, 2005).
However, as referred in section 2, if the precision of
neuron models is improved by the inclusion of a feed-
back path, one should also consider the spike history
for modelling neural dynamics.

The proposed model is divided into two parts: a
static part and a dynamic part. Both parts have depen-
dencies on the stimuli and the spike history. The static
part is composed by astatic forwardfilter hs f(t) and
a static backwardfilter hsb(t):

is f(t) = (hs f ∗ s)(t) (8a)

isb(t) = (hsb∗ y)(t) (8b)

The dynamic part is composed by a set ofdynamic

forward linear filtersh(k)
d f (t) and dynamic backward

linear filtersh(k)
db(t), whose amplitude is dynamically

controlled by linear functions dependent of both the
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Figure 2: Dynamic model.

stimulus and the spike history:

i(k)d f (t) = c(k)
d f (t)(h

(k)
d f ∗ s)(t) (9a)

i(k)db(t) = c(k)
db(t)(h(k)

db ∗ y)(t) (9b)

c(k)
d f (t) =

[

(h(k)
f d f ∗ s)(t)+ (h(k)

f db∗ y)(t)
]

(9c)

c(k)
db(t) =

[

(h(k)
bd f ∗ s)(t)+ (h(k)

bdb∗ y)(t)
]

(9d)

whereh(k)
x (t) represents the linear filterx for compo-

nentk andi(k)d f (t) andi(k)db(t) are the outputs of the dy-
namic componentk. The complete model is depicted
in Figure 2.

The outputs of both the static and the dynamic
components are then added in the integrator block:

i(t) =is f(t)+ isb(t)+∑
k

i(k)d f (t)+∑
k

i(k)db(t) (10)

and the subthreshold potential,v(t), follows (2).

3.1 Model Implementation

To implement the model and estimate its parameters,
it was discretised in time steps ofTs = 1 ms, leading
to a discrete representationxn ≡ x[n] of the continuous
signalx(t). Basis functions were used for describing
each of the filters in the model. While one can sim-
ply estimate the value of the filter for each sample
nTs, the use of basis functions allows:i) to reduce
the dimensionality of the problem, thus accelerating
convergence; andii) to decrease overfitting of the pa-
rameters to the data used during the training step.

Each of the filters in the static component
hx(t), x∈ {s f,sb}, or in its discretised form,
hx =

[

hx[1], · · · ,hx[M]
]

, whereM is the filter mem-
ory, is defined by means of the basis functions
B = [BT

1, · · · ,B
T
B]T, Bk = [bk1, · · · ,bkM] as:

hx =
B

∑
m=1

axmBm = AT
xB (11)
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whereAx = [ax1, · · · ,axB]
T . In the case of the fil-

ters in the dynamic components,h(1)
x (t), · · · ,h(C)

x (t),
x∈ {d f,db, f d f, f db,bd f,bdb}, one can organ-

ise them in a matrix Hx =
[

h(1)T
x , · · · ,h(C)T

x
]T

,

h(k)
x =

[

h(k)
x [1], · · · ,h(k)

x [M]
]

, where the filters are or-
ganised in rows and the samples in columns. The fil-
tering matrixHx can be computed as:

Hx = AT
xB (12)

For implementing the integrator linear filter, an in-
finite impulse response (IIR) description is used:

HIF (z) =
1−β

1−βz−1 (13)

whereβ defines a pole inspole = 1
T logβ and log(x) is

the natural logarithm ofx. For the system to remain
stable,β ∈ ℜ]0,1[, such thatspole < 0.

Notice that unlike in the continuous version of the
model, the filter is now normalised with unitary DC
gain. Thus, the variance of the noise,σ2

n, at instantn,
given that the last spike event was fired at instantn0,
becomes:

σ2
n = β2(n−n0)σ2

0 +(1−β)2σ2
n−n0−1

∑
k=0

β2k =

= β2(n−n0)σ2
0 +(1−β)21−β2(n−n0)

1−β2 σ2 (14)

3.2 Model Tuning

The complete set of parameters for the dynamic
model in Figure 2 is:
{

As f ,Asb,Ad f ,Adb,A f d f ,A f db,Abd f,Abdb,

β,σ,σ0,Vth,V0

}

(15)

However, some parameters depend on others.
Namely,Vth andV0 depend on the general gains of the
model,Ax. Changing their values implies changing
the filter gains such that the total integration time for
firing a spike remains the same. Also, modifying the
value ofβ is similar to changing the shape of the other
linear filters. Moreover, from our experience the ini-
tial noise varianceσ2

0 (the variance of the noise after
the refractionary period) does not significatively in-
fluence the model tuning. Thus this parameter was re-
moved from the learnable parameter set as well. The
complete set of trainable parameters is therefore:
{

As f,Asb,Ad f ,Adb,A f d f ,A f db,Abd f,Abdb,σ
}

(16)

which corresponds to the basis functions coefficients
for each filter and the noise standard deviation. The

non-trainable parameters were set to:β = 0.9,σ0 = 0,
Vth = 1 andV0 = 0.

For the optimisation of the model parameters, a
Bayesian approach was applied to compute the proba-
bility of the spike sequence (Tomás and Sousa, 2007).
Afterwards, gradient ascent was applied to maximise
this probability. Following (15) from (Tomás and
Sousa, 2007), the non null gradients in order to the
parameters in (16) are:

dun

dAs f
= sn ∗B∗hIF (17a)

dun

dAsb
= yn−1∗B∗hIF (17b)

dun

dAd f
=
[

(sn ∗B)(cd f)
T
n

]

∗hIF (17c)

dun

dAdb
=
[

(yn−1∗B)(cdb)
T
n

]

∗hIF (17d)

dun

dA f d f
=
[

(sn ∗B)(sn ∗AT
d fB)T

]

∗hIF (17e)

dun

dA f db
=
[

(yn−1∗B)(sn∗AT
d fB)T

]

∗hIF (17f)

dun

dAbd f
=
[

(sn ∗B)(sn ∗AT
d fB)T

]

∗hIF (17g)

dun

dAbdb
=
[

(yn−1∗B)(yn−1∗AT
d fB)T

]

∗hIF (17h)

1
σn

dσn

dσ
= 2(1−β)21−β2(n−n0)

1−β2 σ (17i)

where(cx)n = [c(1)
x [n], · · · ,c(C)

x [n]]T; the convolution,
represented by the symbol∗, operates along the
columns of the operands; and the convolution with
hIF is performed using the IIR filter in (13), resetting
the integration output toV0 whenever a spike is fired.

However, unlike in static models, such as those
described in (Tomás and Sousa, 2007), carefull ini-
tialisation is required in dynamic models. A method
for doing this is to apply spike triggered analy-
sis (Schwartz et al., 2002; Simoncelli et al., 2004).
Eventhough this algorithm is valid under true Pois-
son neuron model, under IF models it becomes bi-
ased (Pillow and Simoncelli, 2003). This is mostly
due to the IF natural non-linearities. However, since
the estimation process of IF models has local mini-
mums, it provides a good starting point.

Since the model includes feedforward and feed-
back dynamic mechanisms, Spike Triggered Average
(STA) and Spike Triggered Covariance (STC) anal-
ysis were performed using both the stimuli and the
spike history. The static filtershs f andhsb in Figure 2
were initially set with the shape of the feedforward
and feedback STA, respectively. To adjust the initial
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Figure 3: Spike response of the dynamic and static model
vs. the response of real data (vertical lines represent the
timing of the elicited spikes).

shape of the dynamic filtersh(k)
d f andh(k)

db , excitatory
and inhibitory directions can be extracted using STC
analysis.

4 EXPERIMENTAL RESULTS

The proposed training algorithm was implemented
and tested to estimate the responses of real rabbit
retina ganglion cells. The data set consists of four
trials of full field white noise stimulus, where each
trial has a duration of≈ 50s with an average count of
6.58 spikes per second. While the stimuli values for
these four trials is the same, small differences exist in
the stimulation time: on average stimulation changed
with a new random value at every 152 ms; the stan-
dard deviation of stimuli change was 238 ms. The
visual stimuli was normalised by subtracting its mean
value and then by dividing it by the standard deviation
of itself. The resulting stimuli, which corresponds to
the inputsn given to the model, is therefore a sequence
of normally distributed random values with zero mean
and unitary standard deviation.

To estimate the dynamic model, many basis func-
tions can be used to describe the linear filters. Typi-
cal examples are the Laguerre bases (Akçay and Nin-
ness, 1999; Tomás and Sousa, 2007) or sinusoidal ba-
sis (Keat et al., 2001). However, they are typically un-
able to describe delayed filters well and, for the used
data, it considerably deteriorated the results. Thus, in
the present work simple Gaussian kernels were used.
While these bases are not orthogonal, they allow to
significatively reduce the number of trainable param-
eters, whilst allowing to achieve good results. A total
of 31 kernels were employed each separated by 10 ms,
and having a standard deviation of 5.6 ms.

As depicted in subsection 3.2, for model tuning

Table 1: Error measures between trained models and real
responses.

Spike Inter
NMSE

Time Spike
Static Model

Training mean 420.54 317.69
0.882

trial std 10.39 7.05
All four mean 444.02 337.49

0.903
trials std 12.03 6.95

Dynamic Model
Training mean 251.63 242.62

0.625
trial std 22.13 21.71

All four mean 325.85 281.32
0.808

trials std 20.55 16.68
mean - mean result std - standard deviation

the static filtershs f andhsb were initially set with the
shape of the STA applyed to the stimuli and spike his-
tory, respectively. The dynamic filtershd f and hdb
were set with the 5 most excitatory directions (ex-
tracted by using STC analysis); the experimental data
showed no strong inhibitory directions. The modulat-
ing filtershf d f , hf db, hbd f andhbdb were initially set
to a small, non-zero value.

To compare the performance of the proposed dy-
namic model, we also performed fitting with a static
model (the number of dynamic blocks in Figure 2 was
set to zero). The training procedure was the same for
both the static and the dynamic model. One of the
ganglion cells’ response trials was used for training.
The other three were used for comparison. Again,
stimulation times are not exactly the same for all tri-
als, which leads to slightly different neuron responses.

For evaluating the performance of the models, 30
spike response trials were produced by using both
the trained static and dynamic models. In Figure 3,
we present the first 10 response trials obtained us-
ing the training data set. The figure also presents the
real retina ganglion cells’ response. Analysing the re-
sponses one can clearly see that the static model is
unable to acquire the structure of the ganglion cells’
response. On the other hand, the dynamic model is
able to accurately reproduce the spike response pat-
tern. However it does tend to fire 15% more spikes
than the ganglion cell (average on the four trials).

For a better assessment of the response of the
models, two error metrics proposed in (Victor and
Purpura, 1997) were used. The first metric accounts
for the cost associated with the absolute time of occur-
rence of neuronal events (Spike Time Metric). The
second metric accounts for the cost of changing the
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intervals between two spikes (Inter Spike Metric).
The movement costq was set to 50s−1 – see (Vic-
tor and Purpura, 1997). A firing rate metric based on
the normalised mean squared error (NMSE) (Berry II
and Meister, 1998) was also applied. For that purpose,
the firing rates where estimated for both the real and
the estimated data, by convolving their PeriStimulus
Time Histogram (PSTH) (Berry II and Meister, 1998)
with a gaussian window of zero mean and 20ms of
standard deviation.

Cross-evaluation between the models’ responses
and the real ganglion cells responses using the de-
scribed error metrics are presented in Table 1. This
table shows the results when comparing the training
trial and the other trials. The presented error met-
rics confirm our analysis: the dynamic model is able
to capture the dynamics of real retina ganglion cells
which cannot be described by a simple set of a feed-
forward filter and a feedback filter. This can be seen
by noticing that the mean values for all error met-
rics are much lower for the dynamic model than for
the static model. The dynamic model also tends to
achieve a higher degree of variability than the static
model. However, this is due to the natural variability
of the real data.

In the presented work, the number of dynamic
components was fixed to five. However, for obtain-
ing a more general model, one could start by using a
larger number of dynamic components and then us-
ing feature selection – such as in (Tomás and Sousa,
2007) – to remove all unnecessary components.

5 CONCLUSIONS

Many researchers tend to classify SLIF models and
Poisson-based models into different groups. How-
ever, as show in this paper, the former can be trans-
lated into the latest. One of the most important fea-
tures of the SLIF model is the presence of feed-
back mechanisms. Given that this property helps to
increase the spiking precision, we present a model
whose coefficients are dynamic in time. Moreover we
present a method to estimate its coefficients: it uses
eigen-analysis to estimate the initial parameters and a
gradient ascent technique for tuning the model. Pre-
sented results show that the proposed model is able to
achieve better results than the simpler static models.
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Abstract: This paper proposes a methodology that analysis and classifies the EMG and MMG signals using neural 
networks to control prosthetic members. Finger motions discrimination is the key problem in this study. 
Thus the emphasis is put on myoelectric signal processing approaches in this paper. The EMG and MMG 
signals classification system was established using the LVQ neural network. The experimental results show 
a promising performance in classification of motions based on both EMG and MMG patterns. 

1 INTRODUCTION 

Biomedical signals means a set of electrical signals 
acquired from any organ that represents a physical 
variable of interest. These signals are normally a 
function of time and can be analysed in its 
amplitudes, frequency and phase. In the proposed 
method it is used two biomedical signals, 
electromyographic (EMG) and mechanomyographic 
(MMG) signals, to control the movement of 
prostheses. 

Prosthesis systems for upper limb are mainly 
based on myoelectric control, recognizing EMG 
signals that occur during muscle contraction on the 
skin surface. Myoelectric control takes advantage of 
the fact that, after a hand amputation, great majority 
of the muscles that generate finger motion is left in 
the stump. The activity of these muscles still 
depends on the patient will, so biosignals that occur 
during it, can be used to control prosthesis motion 
(Asres, A., Dou, H. F., Zhou, Z. Y., Zhang, Y. L., 
and Zhu, S. C., 1996; Wołczowski, A., 2001). 

In order to enhance functionality of such 
prosthesis another biosignal was researched. This 
signal is mechanical wave propagating in a 
contracting muscle (MMG) (Orizio, C., 1993). The 
nature and utility of MMG signals had already been 

studied namely in the control of a free-standing 
prosthetic hand (Goldenberg, M. S., Yack, H. J., 
Cerny F. J., and Burton, H. W., 1991; Ouamer, M., 
Boiteux, M., Petitjean, M., Travens, L., and Sal’es, 
A., 1999). A strategy to combine the MMG data and 
sensor fusion was proposed for the estimation and 
classification of muscle activity (Silva, J., Heim, W., 
and Chau, T., 2004). The fatigue of the biceps and 
brachioradialis muscles during sustained contraction 
was studied by (Tarata, M. T., 2003) using MMG 
signals. A linear classifier with a feature vector 
based on RMS power of the MMG signal was used 
to classify the finger movement in one of three 
possible groups (Grossman, A., Silva, J., and Chau, 
T., 2004). 

In the proposed approach, an identification 
system will try to recognise a certain group of 
movements based on fusion of the mechanical and 
electrical signals (MMG and EMG signals) recorded 
on a patients arm. The features used are based on 
time and frequency histograms. The measurements 
were done on a specialized stand designed for such 
research. 
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2 MEASUREMENT STAND 

Measurement set was created specially for obtaining 
signals from patients arm. The configuration used in 
the measurement contained 6 input channels (Figure 
1). Input channels from 1 to 3 were connected to the 
microphone sensors and input channels from 4 to 6 
were connected to EMG differential electrodes. 
 

 
Figure 1: EMG and MMG acquisition system. 

The microphone sensors are highly sensitive and 
are situated in a heavy brazen housing separating it 
from any external source of vibration. This 
microphone situated on the skin surface, records 
vibrations propagating in the tissue underneath it. 

The microphone conditioning circuit filter out 
frequencies above 150 Hz as the frequency range of 
the mechanomyogram doesn’t shows frequencies 
above this level (Orizio, C., 1993). 

The EMG differential electrodes detect minimal 
potentials occurring on the skin over working 
muscles. It contains two contact poles situated 1 cm 
away from each other and amplifies only the 
difference between the two readings. Frequency of 
the electromyogram goes into range between 20-400 
Hz (Krysztoforski, K. and Wołczowski A., 2005). 

A digital camera can be used as an addition to 
the stand as feedback information. It allows 
extracting data from specific stages of movement. 

3 METHODOLOGY 

In the experiment sensor were attached to the 
patient’s right arm. One set of microphone and 
electrode was positioned at the top of the forearm 
near the elbow. The second and the third pairs of 
microphone and electrode were positioned at the 
bottom of the forearm near the elbow and near the 
wrist, respectively. Table 1 shows the channels used 
in the acquisition of EMG and MMG signals. 

During the measurements patient was repeating 
the same set of movements with various speeds and 
duration of the muscle contraction. Those 
movements were: 

 

I – Hand closing; 
II – Pointing with one finger; 
III –Pointing with two fingers; 
IV – Wrist flexion – down; 
V – Wrist flexion – up; 
VI – Pronation / suplination; 
VII – Whole hand movement left / right; 
 
All measurements were made with 1kHz probing 

density and lasted 5 sec. In each 5 second 
measurement the move was repeated two or three 
times. 

Table 1: Channels used in the acquisition systems. 

Sensor Channel 
MMG microphone 1 

EMG electrode 4 
MMG microphone 2 

EMG electrode 5 
MMG microphone 3 

EMG electrode 6 

3.1 Data Visualisation and Analysis 

In order to create input for a classification system 
the data gathered during the measurements had to be 
analysed in search of the signal features. In figure 2 
is shown typical MMG and EMG signals obtained 
during 5 seconds in channel 4. It can be seen that 
during these interval of time, one type of movement 
was repeated three times during the presented tests. 

 

 
Figure 2: EMG and MMG signals. 
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The signal features were observed on a 3D 
histogram containing information in both time and 
frequency domains using Short Time Fourier 
Transform (STFT). An example of such histogram is 
shown on figures 3 and 4, for MMG and EMG 
signals obtained from one movement, respectively. 

 

 
Figure 3: MMG frequency spectral density histogram. 

 
Figure 4: EMG frequency spectral density histogram. 

It can be deducted from the histograms analysis, 
for every movement, that the MMG histogram has 
two peeks – in the beginning and at the end of the 
movement, whereas in the middle of the muscle 
activation spectral density is relatively low. 

In the EMG histogram the signal is strongest 
while the muscle is kept contracted. 

 

3.2 Feature Extraction 

In the feature selection stage, the same number of 
features for each EMG and MMG channel are used. 

The selection of the elements of the feature input 
vector has to take advantage of the knowledge about 
the signal features in the time and frequency domain.  

Therefore the selection of the input vector 
elements is based on  the time/frequency histograms. 
The proposed algorithm for selecting points is 
divided in five steps: 
 
1- Extracting the movement part from every channel 
of 5s measurement record (Figure 5); 

 

 
Figure 5: EMG signal obtained in channel 4. 

2- Application of the STFT in the beginning (0.3t, 
where t is the movement time span), in the middle 
(0.5 t) and at the end (0.7 t) of the extracted 
movement; 
 

3- In the frequency domain, in three specified 
moments of time, a set of n points is obtained (from 
the frequency range adequate to the channel type) 
(Figure 6). 
 

 
Figure 6: Frequency components in EMG signal. 

4- Step 2 and 3 is repeated for every channel; 
 

5- Normalization of the signals amplitude. 
This procedure allows to create input vectors with an 
adjustable size. The minimum number of elements 
in the feature vector using 6 channels is 18. The 
minimum structure of these feature vector used as an 
input in the classifier based on a neural network is 
given by: 
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in the channel 1 for the instant of time t1 in the 
frequency f. 

The minimum structure of the feature vector 
using only three channels (EMG or MMG) as 9 
elements and is given by: 
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3.3 Classification Method 

The electromyographic and mechanomyographic 
signals are classified using the Learning Vector 
Quantization (LVQ) neural network. The LVQ 
network is a mutation of self-organizing Kohonen’s 
maps. Unlike standard neural networks, it contains 
usually only one layer of neurons. Each neuron is 
subscribed to one class (Figure 7). The [x1, x2, …, 
xn] is the feature vector and [y1, y2, …, yn] represents 
each output movement. This kind of network proved 
to be efficient in biosignal recognition problem in 
previous research conducted by the authors 
(Wolczowski A. 2001, Krysztoforski, K. and 
Wołczowski A., 2005).   

Usually there is more than one neuron for each 
class. Each neuron has its weight vector containing 
as many elements as data input (Kohonen, Teuvo K., 
1995). During the teaching of the network, in every 
iteration, for each data vector a winning neuron is 
being settled based on the closeness (in Euclid’s 
metrics) of the neuron weights to the data vector 
(Kohonen, Teuvo K., 1995). 
 

 
Figure 7: Neural Network architecture. 

If the winning neuron represents the same class 
as the input vector, its weights are being changed to 
be even closer to this input. If the classes are 
different the weights are being pushed away. 

 
The basic update algorithm is: 
→ If x and mc represent the same class then 
 

( ) ( ) ( ) ( ) ( )[ ]ttttt ccc mxmm −+=+ α1  (3) 
 
→ if x and mc represent different classes then 
 

( ) ( ) ( ) ( ) ( )[ ]ttttt ccc mxmm −−=+ α1  (4) 
 
-> from i ≠ c, 
 

( ) ( )tt ii mm =+1  (5) 
 
where c is the index of the winning neuron and 

( )tα  is a teaching factor ( ( ) 10 << tα ). 
There is a different teaching factor for each 

neuron in the system and adapts during the process 
of teaching, starting from the initial value of 0.5 
according with the following expression: 
 

( ) ( )
( ) ( )11

1
−+

−
=

tts
t

t
c

c
c α

α
α  (6) 

Where: 

( )
⎩
⎨
⎧
−

=
.,1

;,1
otherwise

correctistionclassificaif
ts  (7) 

 
An algorithm for handling unused neurons in 

every teaching epoch was applied. 

4 EXPERIMENTAL RESULTS 

Experiments were carried out in laboratory, and 
EMG and MMG signals were captured and recorded 
simultaneously during the motion of the subject’s 
hand (Figure 8). The next step was extracting the 
features according to the proposed algorithm. Two 
sets of vectors (containing 36 or 90 element) were 
created. The vectors were divided into two groups – 
one for teaching and the other for testing, each one 
contained 81 vectors. 

In each test the neural network was trained with 
200 epochs using vectors from the teaching group. 
Training was followed by the classification process 
preformed on the vectors from the test group. The 
same procedure was repeated using vectors based 
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only on EMG signal features and vectors based only 
on MMG signal features in order to determine how 
useful is the combination of both biomedical signals. 

 

 
Figure 8: Patient's arm with attached sensors. 

Figures 9 and 10, show the neural network error 
during the training stage when the input vector size 
is 36 and 90, respectively. The training error, for 
each epoch, is obtained by the mean value of the 
Euclidean distance between the current teaching 
example and the winning neuron. 

 

 
Figure 9: Training error for a vector size of 36. 

 
Figure 10: Training error for a vector size of 90. 

 
Tables 2-3 and Table 4, show the results of the 

test vectors classification with the input vector size 

of 18 and 36, respectively. In the first row of each 
table it is represented the number of class movement 
indicated by the classification process. In the first 
column of each table are represented the class 
movements of the examples introduced in to the 
neural network. The test examples classified 
correctly are in bold. 

Table 2: Classification based on MMG signals. 
 

 1 2 3 4 5 6 7 
1 10 0 2 0 0 0 0 
2 2 13 3 0 0 0 0 
3 0 0 8 0 1 0 0 
4 0 0 0 10 0 0 0 
5 0 0 0 0 11 0 3 
6 0 0 0 0 0 8 1 
7 1 0 0 0 0 2 6 

Table 3: Classification based on EMG signals. 
 

 1 2 3 4 5 6 7 
1 12 0 1 0 0 0 0 
2 0 12 1 0 0 0 0 
3 1 0 11 0 0 0 1 
4 0 0 0 10 0 0 0 
5 0 0 0 0 11 0 0 
6 0 0 0 0 0 10 1 
7 0 1 0 0 1 0 8 

Table 4: Classification based on EMG and MMG signals. 
 

 1 2 3 4 5 6 7 
1 12 0 1 0 0 0 0 
2 0 13 1 0 0 0 0 
3 1 0 11 0 0 0 0 
4 0 0 0 10 0 0 0 
5 0 0 0 0 11 0 0 
6 0 0 0 0 0 10 1 
7 0 0 0 0 1 0 9 

 
The classification error obtained for the testing 

vectors group using only information form MMG 
channels was 18.52%. The error obtained using only 
the EMG signals in the input feature vectors was 
8.64%. Finally, when features from both the EMG 
and MMG signals were used in the input vector, the 
classification error decreased to 6.17%. 

The same tests were done using an input vectors 
with 45 and 90 elements. The results of the 
classification process are shown in Tables 5-6 and 
Table 7, respectively. The classification error 
obtained using only MMG signal features was 
24.7%. The error obtained using only the EMG 
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signals in the input feature vector was 2.46%. When 
it is combined in the input vector, the features from 
both the EMG and MMG signals, the classification 
error decreased to 1.24%. 

Table 5: Classification based on MMG signals. 
 

 1 2 3 4 5 6 7 
1 9 0 2 0 0 0 0 
2 1 9 2 0 1 0 0 
3 3 4 9 0 0 0 0 
4 0 0 0 10 1 0 2 
5 0 0 0 0 10 1 0 
6 0 0 0 0 0 7 1 
7 0 0 0 0 0 2 7 

Table 6: Classification based on EMG signals. 
 

 1 2 3 4 5 6 7 
1 13 0 1 0 0 0 0 
2 0 13 0 0 0 0 0 
3 0 0 12 0 0 0 1 
4 0 0 0 10 0 0 0 
5 0 0 0 0 12 0 0 
6 0 0 0 0 0 10 0 
7 0 0 0 0 0 0 9 

Table 7: Classification based on MMG and EMG signals. 
 

 1 2 3 4 5 6 7 
1 13 0 1 0 0 0 0 
2 0 13 0 0 0 0 0 
3 0 0 12 0 0 0 0 
4 0 0 0 10 0 0 0 
5 0 0 0 0 12 0 0 
6 0 0 0 0 0 10 0 
7 0 0 0 0 0 0 10 

5 CONCLUSIONS 

The results obtained during the experiment imply 
that efficient identifying hand movements based 
only on one MMG sensor is very difficult. 
Especially the first three movements are being 
confused during the identification process. The 
reason for such error is because those movements 
are caused by similar muscles and therefore sounds 
propagating during those movements are much alike. 

The EMG based identification system gives 
much greater accuracy. The neural network taught 
with EMG based data badly recognizes only a small 
percent of test examples. Using the information 
obtained from both mechanomyogram and 

electromyogram improves results of the EMG-based 
recognition. Therefore it can be concluded that the 
mechanomyographic sensors can be used as a 
enhancement to a EMG prosthesis system improving 
the accuracy of identification and count of the 
supported range of movements. LVQ network 
proved produced sufficient and satisfactory 
recognition ratio, therefore proving its usefulness in 
the biosignal-based prosthesis control problem. 
Further improvement could be achieved by applying 
more complex neural network architectures in the 
recognition process and also by modifying the 
feature extraction algorithm.  Those are the key 
areas for future investigation of the problem. 
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Abstract: Falls are one of the biggest concerns of elderly people. This paper addresses a fall detection system which 
uses an accelerometer to collect body accelerations, ZigBee to send relevant data when a fall might have 
happened and a neural network to recognize fall patterns. This method presents improved performance 
compared to traditional basic-threshold systems. Main advantage is that fall detection ratio is higher on 
neural network based systems. Another important issue is the high immunity to events not being falls, but 
with similar patterns (e.g. sitting in a sofa abruptly), usually confused with real falls. Minimization of these 
occurrences has big influence on the confidence the user has on the system. 

1 INTRODUCTION 

Aging of population is a well-known problem in 
developed countries. Nowadays, elderly people (+65 
years old) represents in Spain more than 16% of the 
population (Eurostat, 2007). Falls are one of the 
major fears of the elderly and their relatives. Indeed, 
some authors estimate the amount of falls of people 
aged over 75 to be at least 30 percent per year 
(Sixsmith and Johnson, 2004). In the end, people’s 
concern about falls and whether there will be 
someone there to help them in case of an emergency, 
prevent them to age at home (Rodriguez et al, 2005).  
As a result, people have to move to residences, 
usually causing negative effect in their health and 
happiness and resulting in high costs to the 
individual, their family or the Social Welfare 
System. 

Fortunately, many initiatives are going on in 
order to increase the time people can stay at home. 
We will further see many fall detection systems 
enabling people to receive quickly assistance even 
when they are not able to request the assistance by 
themselves (e.g. immobilized or unconscious). Also, 
combination of these systems with telemedicine 
allows closer monitoring or collaboration of various 
experts in the diagnoses (Tunstall web, 2007). 

Various methods have been described in order to 
detect falls in the elderly. Those based in a sensing 
infrastructure - infrared cameras (Alwan, et al., 
2006), vision systems (Williams et al., 1998) or 
smart floors (Williams et al., 1998) - can be hardly 

used in many cases. We find wearable systems more 
appropriated in real scenarios because people refuse 
to have cameras everywhere in their homes and 
systems are much more expensive.  

Inertial elements are mostly used for mobile 
monitoring, but still the perfect detector does not 
exist. Main reason is the difficulty in modelling a 
fall, it can happen in many different ways; it will not 
always be the typical big impact followed by 
inactivity and horizontality. Williams et al. use a 
shock sensor and a tilt switch to measure the 
inclination after the impact (Williams et al., 1998). 
Doughty et al. also use two sensors to perform the 
same two-stage-analysis (Doughty et al, 2000), 
which moreover is concreted in a commercial gadget 
from Tunstall (Nait-Charif and McKenna, 2004).  
Noury refines the procedure using an accelerometer 
to detect the shock, also a tilt switch, and adding a 
vibration sensor to estimate the physiological 
activity (Noury, 2002). Of course, the more 
variables measured, the more accurate the detection 
can be, but also the more complicated and expensive 
the hardware will be. Many actual works propose 
just using accelerometers to carry out the full 
detection (Noury, 2002; Degen et al, 2005; Chen et 
al., 2005). Main reasons are their low power 
consumption, reduced cost and versatility detecting 
different events -shocks, inclination and activity-. 
The devices presented in these works perform 
satisfactory fall detection: more of 80% of falls are 
correctly detected (Noury, 2002). 
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2 SYSTEM DESCRIPTION 

Users must find fall detection systems trust-worthy 
and efficient in order to use them. Systems which 
detect all falls but generate many false alarms make 
users unconfident about it. Moreover, if we consider 
the difficulty of distinguishing between some kind of 
falls and ordinary movements in elderly people’s 
life, threshold systems (those that generate an alert 
when acceleration rise above a fixed value) become 
not be reliable enough (Noury, 2002). 

Figure 1.a. shows tri-axial acceleration when a 
person has a sideward fall. On the other hand, Figure 
1.b. shows accelerations when a person sits down on 
a sofa abruptly. Both figures were obtained with a 
device which measures triaxial accelerations, hanged 
around the neck. 

Figure 1a: Acceleration in three axes in a sideward fall. 

 
Figure 1b: Acceleration in three axes while sitting abruptly 
in a sofa.  

As we can see, both figures have similar 
acceleration peaks being also the shapes pretty 
similar.  

Our solution aims to distinguish falls from 
movements that have similar acceleration patterns 
not being falls using neural networks; that is to say, 
separate occurrences into true and false falls. 

2.1 Blocks Diagram 

The fall detector consists of a mobile device with an 
inertial sensor which is able to communicate through 
a ZigBee network. The system also needs a 
computer that analyzes data using a neural network. 
Figure 2 shows the portable device blocks: battery, 
sensor, microcontroller (µC), interface and Zigbee 
transceiver. Reduced size and low power 
consumption had been considered in the design 
process of every block. 

 

Vbat

Sensor

BATTERY

uC Transceiver

INTERFACE

Vbat

Vbat

 
Figure 2: Blocks of the portable device. 

The chosen sensor is MMA7260Q Freescale 
accelerometer because of its wide input voltage 
range (2,2 V - 3,6 V), current consumption (typically 
less than 500 µA and 3 µA in sleep mode) and 
reduced size (6x6x1,45mm). It also has three analog 
outputs that give the acceleration value in axis X, Y 
and Z. Its sensitivity is configured digitally into 
some ranges (1,5 g; 2 g; 4 g or 6 g). As some falls 
are above 4 g, our application uses the maximum 
range (6 g) and minimum sensitivity (200 mV/g). 

The chosen microcontroller is Microchip’s 
PIC16F688. It has eight A/D channels that can be 
configured to 10 bits. As well as working within a 
wide voltage supply range (2 V - 5,5 V), it also has 
very low current consumption (800 µA in active 
mode and 1 nA while sleeping). 

Regarding communications, we discarded the 
development of a proprietary network for 
interoperability reasons. Other standard wireless 
protocols such as Bluetooth or WiFi consume too 
much energy as they are intended for higher data 
rates. We decided to use ZigBee because its 
adequate data rate (250 kbps), security (128 bits 
AES encryption), low latency (30 ms to join and 15 
ms to access the network) and energy efficiency. Its 
interoperability with other potential applications 
(home control and automation), future projection of 
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the protocol, and its consequent cost reduction were 
other strategic reasons behind our decision (Geer, 
2005). 

The chosen ZigBee chip is ETRX2 from 
Telegesis. This is a ZigBee module on the  2,4 GHz 
ISM band based upon the Ember’s EM250 chip. We 
used the development environment proposed by 
Ember to develop a ZigBee-compliant network 
following mesh topology (ZigBee Alliance, 2007). 
The chip consumes 30 mA when receiving or 
transmitting data and 10 µA in sleep mode. As we 
will use the radio exceptionally, just when are 
reasonable indications about a fall (when a threshold 
is exceeded), average power consumption due to 
communication is reduced. 

The user interface consists of a single button and 
a buzzer for user interaction. Figure 3 shows the 
mobile device prototype. Its size, including battery, 
is 58x36x16 mm and it weights 30 gr. 

 

 
Figure 3: Mobile device prototype. 

In order to make the device useful is extremely 
important to keep it on working long time using the 
same set of batteries. That is why we gave 
preference to power-conservative and size of 
batteries among other designing requirements like 
transmission rate or processing time. Precise battery 
life estimation is very difficult because it will 
depende on the number of false alarms generated; 
every time the threshold is exceeded it sends data via 
ZigBee. Anycase, with the battery used (3 V, 1000 
mA·h), it can last for several months daily sending 
several false falls to analize.  

2.2 Software 

As we said before, we designed a neural net to detect 
falls also aiming to minimize the number of false-
falls compared to simple threshold based detectors. 

 
 
 

Figure 4: System’s simplified flow diagram. 

In our case, we use an acceleration threshold to 
get the “acceleration pattern” of the possible fall to 
be studied. Every 32 ms the device stores the current 
acceleration measurements. It keeps a buffer with 
the last 5 samples (t1 ≈ 160 ms). If the threshold is 
exceeded, a possible fall might have happened. Then 
we gather 25 samples more (t2 ≈ 800 ms) and all the 
data (960 ms) is sent via ZigBee to the PC. As we 
will see in section 3.2, those times and the threshold 
have been empirically set through acceleration 
pattern analysis of many falls and false-falls.  

The “window time” (tw=t1+t2) represents the time 
that the neural net analyzes the data in order to 
relation the detected event to a true fall. 
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Figure 5: Window time. 

In case the neural network detects a real fall, the 
PC asks the mobile device to buzz for one minute. 
During this time, the user can cancel the fall 
situation pressing the button; the user is okay and 
does not need assistance. In other case, an alert is 
sent to an assistance center asking for help. 

3 NEURAL NETWORK DESIGN 

We have chosen MLP (MultiLayer Perceptron) 
architecture because is the best neural network for 
pattern classification (Del Hoyo Alonso, 2003). 
MLPs are feedforward neural networks trained with 
the standard backpropagation algorithm. They are 
networks that learn how to transform input data into 
a desired response. As they are supervised, they 
require a set of known patterns with known 
responses to get trained. With one or two hidden 
layers, they can approximate virtually any input-
output map. They have been shown to approximate 
the performance of optimal statistical classifiers in 
difficult problems (Neurosolution web, 2007). 

Every acceleration point, within window time, is 
considered as input data to train neural network to 
distinguish between true and false falls (figures 1a 
and 1b). That is to say, if an event is represented by 
30 samples for each axis (X, Y and Z), the number 
of inputs will be 90 (30x3). Consequently, it is the 
same as we give the net the whole graph to compare 
and classify.   

We have decided to train the net with one hidden 
layer. To check if our choice is convenient or not, 
we have designed a test bench with different 
numbers of neurons, studying the absolute error in 
each case. To accelerate the training, we have 
chosen a bipolar sigmoid activation function for 
neurons of the hidden layer. The activation function 
of the output neuron is unipolar sigmoid so the 

output looks like a binary signal (1 = TRUE FALL; 
0 = FALSE FALL).  

The suitable number of neurons of the hidden 
layer is obtained doing simulations of different 
neural nets. Finally, we choose the one which 
produces the minimum absolute error. To reduce the 
number of simulations and to get patterns from the 
inputs able to generalize the results, we have defined 
a requirement: the number of inputs is greater than 
the number of neurons of the hidden layer.  

3.1 Input Data Harvesting 

Ten people of different ages, weight, height and sex 
imitated the movements of elderly people to create a 
data base of falls.  

Table 1: Volunteers’ characteristics. 

Age range 25-40 years 
Weight range 44-105 kg 
Height range 1.58-1.90 m 

 
To get the data as close to reality as possible, the 

volunteers had the acceleration detector hanged 
around the neck. Volunteers were asked to simulate 
true and false falls situations.   

 
TRUE falls: 

Every volunteer falls down 10 times on a 
straw mat. The fall intensity changed (rough 
and soft) and the way of falling down too 
(side, front, backwards), hitting the ground 
with their back, hip, knees, etc.  

 
FALSE falls: 

Every volunteer flings himself down 5 times 
on the center and 5 times on the side of a sofa.  
Every volunteer stumbles and hits a wall 
without falling down 5 times.  
Every volunteer walks around for 2 minutes 
doing normal movements like sitting up and 
down in chairs, picking up things, etc. 

 
During the test, the fall detector continuously 

samples the three acceleration axes each 32 ms 
sending them to a PC working as a data logger. In 
the end, we get a file with all the acceleration 
samples in axis X, Y and Z for every volunteer. The 
resulting data base consists of 99 samples of true 
falls (we had one error while collecting data) and 
150 of false falls.  
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3.2 Input Data Analysis 

First of all, data analysis has determined the window 
time length. After studying all the falls, we decided 
that an event could be represented with 30 samples 
(tv = 960 ms; t1 = 160 ms; t2 = 800 ms). This means 
that the microcontroller has to store always in 
memory the last five samples to send, in case the 
acceleration threshold is exceeded, the event to the 
PC to be analyzed.  

With the window time selected, the number of 
inputs to the neuronal network is set to 90. In order 
to reduce the number of network entries -and 
consequently the network size- we have done a PCA 
(Principal Component Analysis). This method lies in 
referencing input data to a new origin and coordinate 
base.  

In the new reference, the main components are 
chosen to be those with the maximum variance 
among samples (those with the highest covariance).  

Therefore, if we take the samples representing 
more than 95% of covariance, the number of input 
will be reduced without losing significant 
information. This leads to suppose that the greater is 
the variance of an input, the more information it 
gives. 

The acceleration threshold was decided 
experimentally. At first, guided by most of the 
bibliography (Chen et al., 2005), we chose a 3 g 
value. Then 97 out of 99 true falls and 121 out of 
150 false falls surpassed the selected threshold. 

Missing true falls is far worse than over-
detecting false falls, thus we reduced the threshold to 
2 g to prevent losing any fall. As expected, we got 
all the falls, but the number of false falls which 
surpassed the threshold, increased to 241 because 
even normal movements triggered the detection 
process. 

After using PCA analysis with the 340 events (99 
falls plus 241 false-falls), the number of inputs was 
reduced from 90 to 55, keeping the 95% of the 
covariance of the original data.  

3.3 Network Performance 

The network was trained used Levenberg-Marquardt 
algorithm (Neural-toolbox in Matlab).  
 We trained different MLP architectures 55xMx1 
(being M the number of neurons in the hidden layer, 
5≤M≤35). We repeated this process ten times in 
order to ensure the network design and its 
performance. Each test randomly selected 80% of 
the events for training and 20% for validating. That 
is to say, from the whole 340 events (99 falls plus 

241 false-falls), the validation group had 20 true 
falls and 48 events that could be confused with falls.  
In the end, a neural net with 22 hidden neurons was 
able to classify falls correctly. 
 When interpreting the neural net output give 
precedence to the fall detection. Thus, we decided 
that if the output is above or equal to 0.3, a fall is 
detected. On the other hand, if the output is below 
0.3, the analyzed event was not a true fall.  
In table 2 we can see the network performance for 
the ten tests. 

Table 2:  Validation group detection results. 

  

Network fall 
detection / 
Fall events 

Network fall 
detection / 

False-fall events

Test 1 20 / 20 0 / 48 

Test 2 20 / 20 0 / 48 

Test 3 20 / 20 1 / 48 

Test 4 20 / 20 0 / 48 

Test 5 18 / 20 1 / 48 

Test 6 20 / 20 1 / 48 

Test 7 16 / 20 1 / 48 

Test 8 18 / 20 0 / 48 

Test 9 17 / 20 1 / 48 

Test 10 15 / 20 0 / 48 
 
 We can see how the network is able to detect 
92% of all the falls and filter up 99% of the events 
that can be confused with falls.  
 In figure 6, we show the network output we got 
for the validating group in third test. 

 
Figure 6: Network output for the third validation group. 
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4 CONCLUSIONS 

The final results using MLP neural networks for fall 
detection have been quite satisfactory. The 
application classifies correctly 92% of the validation 
group falls, better performance than other detection 
methods: 80% in (Chen et al., 2005). Moreover, the 
number of false alarms is drastically reduced to 1%, 
which leads to enhance users trust on the fall 
detector. Nevertheless, a more extensive study with 
more users being also elderly has to be developed in 
order to gather more data and confirm the results.  

Although the portable device can run for months 
with the same battery, the system needs a computer 
to analyze all the data. In order to reduce costs, it is 
possible to analyze the pattern remotely. As the 
amount of exchanged data is reduced, it could be 
sent via ADSL (if the person is at home), GPRS or 
even SMS to a service center. Anyhow our 
application gets better performance than others 
embedded in a microcontroller but a higher cost and 
complexity. To overcome this, we are currently 
minimizing the neural network size so it can run in a 
microcontroller or FPGA.  
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Abstract: In this paper, we present a new approach for user biometric verification based on keystroke dynamics. In our
approach, the performance of simple classifiers (namely KNNand Bayes classifiers) is tested in a user tuned
feature selection method, based on a open password approach. The impact of the training set size is studied,
obtaining good results in a preliminary study on a population of 20 users.

1 INTRODUCTION

Keystroke dynamics is part of a class of biometrics
known as behavioral biometrics. Behavioral biomet-
rics is related to the dynamic characteristic traits of a
person which can be used to determine his/her iden-
tity. Examples are Handwriting, Voice, Speech, Lan-
guage, Gesture and typing patterns, etc.

In comparison to the other biometric techniques,
probably keystroke dynamics is one of the easiest
technique to implement. The reason is keystroke
recognition is completely software-based solution and
there is no need for any additional hardware. The al-
ready existent basic hardware in the context of a user
at his computer, namely the keyboard, is sufficient for
this technique.

1.1 Keystroke Dynamics

Keystroke dynamics (or typing rhythms) (Monrose
and Rubin, 2000) has been shown to be a useful be-
havioral biometric technique. This method analyzes
the way a user types on a terminal, by monitoring
the keyboard input. Typing characteristics have been
firstly identified in telegraphic communications where
it has been coined as the “fist of the sender” (Bartlow
and Cukic, 2006) given that the Morse code operators
could be distinguished one from another from their
typing rhythms.

The interest in Keystroke Dynamics as a new for-
mat for biometric identification has been recognized
from the growing number of publications with in-
creasing performance, along with new approaches for
biometric security systems. As a maturity indication
of this technique, we note that the International Com-
mittee for Information Technology Standards (IN-
CITS) has already produced standardization guide-
lines for data format for Keystroke dynamics(Friant,
2006). The document defines the format for inter-
change of keystroke data, containing information re-
lated to the type of keyboard (standard, laptop, pda-
keypad or pda-touchscreen among other) and the key-
board country/layout identification. It also establishes
how the events information will be kept in the file
specifying the format of input code (like if it is ASCII
or UNICODE) and the time resolution used.

The techniques being proposed in the context of
Keystroke Dynamics, can be divided into two modes:
short code (log-in verification) and long code (contin-
uous verification). The first case the user will type
his user name and/or his password and the system
uses this non-free text information to try to verify
the user identity (Modi, 2005). The continuous ap-
proach the user is in an already authenticated envi-
ronment and continues to be monitored in a free-text
approach where, if the keystroke dynamics varies too
much from the user model, the user can be asked for
some other strong biometric information (Shepherd,
1995) to regain access to the system.
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Any biometric technique is usually accompanied
by some metrics which evaluate its performance (Jain
et al., 2004). The rate at which the attempts of gen-
uine user are falsely classified as impostor and re-
jected by the biometric system is called false rejec-
tion rate (FRR). The rate at which the attempts of
an intruder are falsely classified as genuine and ac-
cepted by the biometric system is called false accep-
tance rate (FAR). The FAR and FRR indicate the er-
rors that could possibly occur while making decision
by the biometric system. The equal error rate (EER)
is the error rate when FAR equals FRR. The receiving
oprating curve (ROC) is the graph of FAR as a func-
tion of FRR. All these metrics (FAR,FRR,EER,ROC)
depend on the collected data ie. the population of
users and samples per each user. These are typical re-
ported performance measures in the biometrics field
that we will use in the rest of the paper.

We address some of the works conduced during
the last years in the area. In (Bergadano et al., 2002)
a continuous mode verification implementation pro-
vided a result of Equal error rate (EER) of 1.75% in a
population of 44 users (extracting 4 samples per user)
and 110 impostors. The users had to write 300 char-
acters text of in approximately 2 minute period of ac-
quisition. In (Hocquet et al., 2005) a fusion experi-
ment in a short code mode with 15 users, three differ-
ent classification algorithms were developed and pre-
formed a fusion of the results obtaining a final value
of 1.8% EER. Another study (de Magalhaes et al.,
2005; Revett et al., 2006), reports the construction
of a system based on short code login reporting a 5.8
EER in a population of 43 users. The report with more
users to date has been conduced in the base of log-in
short code mode (Jiang et al., 2007) with a population
of 56 users presenting the result of 2.54 EER. We note
that the population size is yet in a order of magnitude
lower than the sizes used in other more conventional
biometric techniques.

1.2 Our Proposal - User Tuned Feature
Selection

In this paper, we present a new approach for keystroke
dynamics based on a open password (all the users are
aware of pass sentence). We test the performance
of KNN and Bayes classifiers for user recognition
with all the features obtained (namely press times of
keystrokes and latency times of keystrokes) with all
the users typing a common sentence of 23 characters.

We selected a set of features for each user by se-
quential backward feature selection, thereby improv-
ing the performance considerably (Silva, 2007; Sied-
lencki and Sklansky, 1993).

Table 1: WIDAM Data message.

Field Bytes
message ID 1

event ID 1
object ID 1

relative position X 2
relative position Y 2
absolute position X 2
absolute position Y 2
other information 4

timestamp 4

In the following section, we describe the architec-
ture of the data acquisition system. Section 3 presents
the classifiers for user recognition and feature selec-
tion. Experimental results obtained from collected
data are presented in section 4. Section 5 presents
the conclusions and future work.

2 DATA ACQUISITION SYSTEM

The Keystroke Dynamics data was acquired using a
web-based acquisition system of human computer in-
teraction developed by the research group. The sys-
tem called Web Interaction Display and Monitoring
(WIDAM) (Gamboa and Ferreira, 2003). The system
has the capabilities of monitoring the events that oc-
cur in a particular web page. Examples of the events
are the mouse movements and clicks, and more rel-
evant to this biometric technique, the keypress and
keyup events generated while entering text in a web
page form. The data recorded in the WIDAM system
is listed in table 1, but the information required for
this implementation is the following: (1) the type of
event (if it is a keyup or keydown); (2) the keycode;
(3) the timestamp of when the event occured; (3) key-
board modifiers flags, idicating if a shift, ctrl or alt
key is being pressed.

For the Keystroke Dynamics experience, the user
is presented with a Web Page instructing to insert sev-
eral times a specific sentence. The sentence is com-
mon to all the users that we called the open-password.
This sentence is used as the genuine and impostor data
given that all the collected data for on user can be used
as impostor data for all the other.

The WIDAM Architecture is composed by a client
and server applications as depicted in figure 1.

The user accesses the WIDAM application via a
web browser that connects to the server. Then the
server sends back to the user a web page that is capa-
ble of monitoring and displaying the user interaction.
This page creates a connection to the server and se-
lects one of the services provided by WIDAM. Then
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Figure 1: WIDAM architecture.

the client and the server exchange messages using a
protocol defined by the authors.

In the server all the information is being recorded
in a database in order to be accessed both on real time
or off-line for the study of keystroke dynamics. In a
previous work (Gamboa et al., 2007), the same struc-
ture was used to study the biometrics capabilities of
the mouse movements dynamics.

3 RECOGNITION SYSTEM

The input to the recognition system is the press times
of keystrokes and latency times of keystrokes from the
users, recorded using the WIDAM module described
previously.

3.1 Classifier System

We use the K nearest neighbor (KNN) (Duda et al.,
2000) classifier at the first hand for user recognition.
The nearest neighbors are determined based on the
Euclidean distance of a testing sample from all the
samples of the training data.

The Euclidean distance (d) between two samples
X = (x1,x2,x3, ....,xn) andY = (y1,y2,y3, ...,yn) is

d =

√

n

∑
k=1

(xk−yk)2 (1)

We gather K nearest neighbors of a testing sample
amongst all the samples from the training data, and
depending on the majority of the nearest neighbors,
we classify each attempt as either a genuine attempt
or impostor attempt. If the majority of the nearest
neighbors are from the training data of the genuine
user, attempt is classified as genuine or else as an im-
postor attempt.

A Bayes classifier can be used if the distribution of
training data is known. The technique of Bayes clas-
sifier is based on Bayesian theorem and is best suited

when the size of training data is high. The posterior
probabilities of each class for the measurement vec-
tor X and based on the maximum of all the posterior
probabilities, we classify thatX belongs to the class
which has the maximum posterior probability, i.e. us-
ing the MAP rule.

ŵ = argmax
i

p(wi |X) (2)

The posterior probability that measurement vector
X belongs to the classwi is determined by

p(wi |X) =
p(X|wi)p(wi)

p(X)
(3)

wherep(X|wi) is the prior probability of the class
membership. Sincep(X) is a scaling factor, the
classification is based on maximum of the product
p(X|wi)p(wi).

ŵ = argmax
i
{p(X|wi)p(wi)} (4)

Since the measurement vectorX is the set of all
features, for simplicity of modeling we assume inde-
pendence among the features conducing to the prior
probabilityp(X|wi) as follows:

p(X|wi) =
n

∏
j=1

p(x j |wi) (5)

wheren is the total number of features.

3.2 Feature Selection

The classifiers described previously are implemented
with the set of all the features and tested for perfor-
mance. We select a subset of features from the set of
all the features (all the press times of keystrokes and
all the latency times of keystrokes) to best discrimi-
nate one user from the other (Jain and Ross, 2002).

For feature selection, we chose a set of features
for each user which minimizes his/her performance
metric M (we will detail latter the metrics used). To
minimize M, sequential backward feature selection is
used (Fukunaga, 1990). The algorithm for sequential
backward feature selection is as follows:

1. Consider the set of all featuresf =
{ f1, f2, f3, ...., fn} and M of f ie M f .

2. Create a subsetFi by excluding the feature
fi from f and calculate M ofFi ie MFi for
i=1,2,3,...,nf eatureswherenf eaturesis the number of
features inf .

3. ChooseF to be the set of features among all the
setsFi which has minimumMFi ; MF is the mini-
mum value ofMFi for i=1,2,3,...,nf eatures.
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4. If MF <= M f , then f =F andM f =MF and go to 2
; else, go to 5.

5. The desired feature vector isfdesired= f and
M f desired=M f .

The performance metric M is FAR+αFRR in
which α can be varied. We start feature selection by
choosingα = 0, so that M is FAR (ie. minimizing
FAR alone) and we can increaseα to infinity so that
M is FRR (ie. minimizing FRR alone).We can achieve
trade-off between FAR and FRR for intermediate val-
ues ofα .

4 RESULTS

We implemented KNN and Bayes classifiers for a sys-
tem which contains 20 users and each of the user typ-
ing the keyword for 17 times. We tested with 9 of
the 17 samples as training data and rest 8 samples as
testing data. When testing the system for one user,
an impostor is considered to be the one of the other
users.

When KNN classifier applied for the above sys-
tem with the set of all the features for various values
of K, the optimum value of K for the system is found
to be K=1 and for this value of K, the FAR obtained
is 1.48% and FRR obtained is 28.125%. Similarly,
the system when being tested with Bayes classifier
with the set of all features assuming the distribution
of training data to be gaussian, the FAR obtained is
2.13% and FRR obtained is 40.625%.

Since the performance of KNN classifier is better
compared to Bayes classifier, we used the KNN clas-
sifier to select the set of features as described in the
previous section, to improve the performance of the
system. Feature selection has been done for each user
separately and the KNN classifier is implemented for
the set of features obtained from feature selection for
the respective user. For the overall system, on imple-
menting the KNN classifier with feature selection us-
ing M=FAR (α = 0)and 9 training samples, the FAR is
minimized to 0% and FRR obtained is 21.25% for the
optimum value of K=1. More importance is placed on
FAR because it is vital to minimize the rate at which
an intruder successfully bypasses the authentication
system as a genuine user for any biometric system.

Since it is not practical to have 9 samples as the
training data (asking the user to type for 9 times to
gather the training data), we reapplied the feature se-
lection by considering only 4 samples per user as the
training data and 13 samples per user as the testing
data.On implementing the KNN classifier with fea-
ture selection and using M=FAR (α = 0), ignoring
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Figure 2: Histogram of length of feature vectors computed
over 20 users.

FRR, the FAR obtained is 0.546% and FRR obtained
is 56.59%. Since we cannot afford to have such a high
FRR, we chose to have a trade-off between FAR and
FRR ie. we decrease FRR at the expense of increasing
FAR. This is achieved by applying sequential back-
ward feature selection to minimize M=FAR+αFRR
for a value ofα > 0.

Setting the limit for FRR to be 15%, on imple-
menting feature selection for each user with the KNN
classifier, the FAR obtained for the system is 0.8502%
and FRR of the system is 15.00% for the value of
α = 1.

The average of length of features per user after
feature selection is 21.35. Figure 1 represents the his-
togram of length of features computed over 20 users.

5 CONCLUSIONS

A novel approach has been presented based on
behavioral biometric information obtained from
Keystroke Dynamics. The technique identifies rele-
vant keystroke typing patterns of a user by an user
tuned feature selection. For the implementation of
this technique, we used a system that includes a data
acquisition module for the collection of keystroke
data (time instances of key-up and key-down); the
recognition module which includes classification sys-
tem that uses the nearest K neighbors and decision
rule for user recognition, and feature selection to iden-
tify user specific features to improve the performance
of classification system.

The user authentication is based on the nearest
neighbor method and initially all the features obtained
from the data acquisition are used for recognition.
A feature selection algorithm was applied which re-
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duces the initial set of features to a subset of features
which is unique for each user. Application of KNN
classifier to the selected set of features for the respec-
tive users decides the authenticity of the user identity
claim.

The results show that the proposed technique
could be a competitive biometric technique which
minimizes the rate at which an imposter bypasses the
authentication system. Apart from that, as mentioned
earlier, this technique does not require any additional
hardware. The existent hardware namely keyboard is
sufficient for this technique which makes it inexpen-
sive.

The open password approach followed enabled a
more complete study given that we had access to more
impostor data, and validated the possibility of using a
known sentence.
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BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

550



PRINCIPAL COMPONENT ANALYSIS OF THE P-WAVE  
Quantification of Not-Dipolar Components of Atrial Depolarization 

Federica Censi, Giovanni Calcagnini, Pietro Bartolini 
Department of Technologies and Health, Istituto Superiore di Sanità, Roma, Italy 

federica.censi@iss.it , giovanni.calcagnini@iss.it, pietro.bartolini@iss.it  

Chiara Ricci 
Department of Statistics, Probability and Applied Statistics, Univ. of Rome "La Sapienza", Rome, Italy 

chiara_ricci@hotmail.com  

Renato Pietro Ricci, Massimo Santini 
Department of Cardiology, San Filippo Neri Hospital, Roma, Italy 

renatopietroricci@tin.it,  m.santini@sanfilipponeri.roma.it 

Keywords: Principal component analysis, atrial fibrillation, P-wave, not dipolar components. 

Abstract: Aim of this study is to perform the principal component analysis (PCA) of the P-wave in patients prone to 
atrial fibrillation (AF). Eighteen patients affected by paroxysmal AF and implanted with dual chamber 
pacemakers were studied. Two 5-minute ECG recordings were performed: during spontaneous (SR) and 
paced rhythm (PR). ECG signals were acquired using a 32-lead mapping system (2048 Hz, 24 bit, 0-400 Hz 
bandwidth). For each patient, PCA of the averaged P-waves extracted in any of the 32 leads has been 
performed. We extracted PCA parameters related to the dipolar (using the first 3 PCs) and not dipolar (from 
the 4th to the 32nd PCs) components of the P-wave. The number of PCs according to the latent root criterion 
ranges between 2 and 3 during SR and between 2 and 4 during PR. PCA parameters related to the 3 largest 
PCs, and describing the dipolar component of the P-wave, did not significantly differ during SR and PR. 
The not dipolar components during SR were significantly lower than during PR (PCAres%: 0.03±0.06 vs 
0.12±0.21, p=0.001; PCAres [mV4]: 0.10±0.14 vs 0.49±0.73, p=0.001). Factor analysis showed that on 
average all leads contributes to the first principal component. 

1 INTRODUCTION 

Atrial fibrillation (AF) is the most commonly 
encountered arrhythmia in clinical practice. It is 
defined by the absence of coordinated atrial systole, 
since it results from multiple reentrant electrical 
wavelets that move randomly around the atria. 
Althought it is not a lethal disease, AF may increase 
mortality up to 2-fold, primarily due to embolic 
stroke.  

Indeed, the lack of coordinated atrial contraction 
leads to unusual fluid flow states through the atrium 
that could favour the formation of thrombus at risk 
to embolize, expecially after return to normal sinus 
rhythm.  

The incidence of atrial fibrillation increases 
significantly with advancing age. When a patient 
spontaneously alternates between AF and a normal 
rhythm, the condition is known as paroxysmal AF. 

When a patient continues with AF as the dominant 
cardiac rhythm without reversion to the normal 
rhythm, the condition is known as chronic AF. Two 
main electrophysiological conditions are indicated 
for AF initiation and perpetuation (Clavier et al., 
2002): slower conduction velocity in some atrial 
areas and heterogeneity of cell refractory periods. 
This heterogeneity of structural and 
electrophysiologcal properties leads to a longer and 
more fragmented P-wave (Davies et al., 1963; 
Kawano et al., 1988; Dilaveris et al., 1998).  

Thus, many studies focused on the analysis of 
the P-wave to extract parameters to recognize a 
patient with paroxymal AF as well as to predict the 
development of AF (Dilaveris et al., 1998; Jordaens 
et al., 1998; Dilaveris et al., 2001; Darbar et al., 
2002; Dilaveris et al., 2002).  

Given the technical difficulties to analyze the P-
wave, and the different acquisition and processing  
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Figure 1: Scheme of the electrodes positioning and of the P-wave pre-processing procedure. 

systems used, these studies often lead diverse 
and not-comparable results in terms of cutoff values. 
Indeed, the analysis of the T-wave, corresponding to 
the ventricular repolarization, has been extensively 
used to quantify repolarization inhomogeneity that 
may create an arrhythmogenic ventricular substrate. 
Promising results have been obtained by measuring 
the QT interval (QT dispersion) and by performing 
the principal component analysis of the T-wave (De 
Ambroggi et al., 1997; Acar et al, 1999; Malik et al., 
2000; Kesek et al., 2004).   

The former analysis have been already applied to 
the P-wave: P-wave dispersion (which is the 
difference between the maximum and the minimum 
P-wave duration recorded from the 12 standard 
leads), has been shown to distinguish patients with 
paroxymal AF (Dilaveris et al., 1998; Jordaens et al., 
1998; Dilaveris et al., 2001; Darbar et al., 2002; 
Dilaveris et al., 2002).  

PCA of the T-wave has been extensively used to 
quantify both the complexity and the not dipolar 
components of the T-wave (De Ambroggi et al., 
1997; Acar et al, 1999; Malik et al., 2000; Kesek et 
al., 2004): particularly, if the ECG would be 
completely explained by a single electrical dipole, 
the three largest principal components (PCs), and 
their corresponding orthogonal eigenvectors, would 
span the real three dimensional space (dipolar 
components), while the remaining PCs (not dipolar 
components) would be zero (Kesek et al., 2004).  

For the T-wave it has been demonstrated that the 
not dipolar components, quantified by the PCA, are 
not zero, and reflect local repolarization 
inhomogeneity (Kesek et al., 2004). PCA has never 
been applied to the P-wave.  

Following the approach already used for the 
analysis of the T-wave, the aim of this study is to 
perform the PCA of the P-wave in patients prone to 

AF in order to: 1) evaluate how many principal 
components are necessary for an AF patient and in 
which way they are correlated with the ECG leads; 
2) evaluate if and to which extent pacing affects the 
dipolar and the not dipolar components of the atrial 
depolarization (as quantified by PCA).  

2 METHODS AND MATERIALS 

2.1 Study Population 

Nineteen patients with paroxysmal atrial fibrillation 
and permanent dual chamber pacemakers (AT500-
Medtronic Inc., Minneapolis, MN, USA) were 
recruited from S. Filippo Neri Hospital, Rome, Italy.  
The AT500 device combines atrial sensing and 
detection algorithms for monitoring and diagnostics, 
and atrial therapy delivery functions.  
The system can store up to 35 episodes of atrial 
tachycardia/ flutter with electrograms and up to 128 
episodes text summaries, without electrograms.  

This pacemaker allows for accurate classification 
of atrial fibrillation episodes, with detailed 
information about episode instant of occurrence and 
duration, and further features three distinct 
programmable pacing algorithms that suppress atrial 
tachyarrhythmia trigger mechanisms.  

When an episode occurs, the device is also 
programmed for arrhythmia termination. Three atrial 
pace-termination algorithms can recognise treatable 
atrial tachycardias and deliver antitachycardia pace-
therapies to restore sinus rhythm.  
The study population consisted of 9 female and 10 
men, aged 72±10.  

P-wave 

averaging 

P-wave 
template 

P-wave 
extraction 
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2.2 Experimental Protocols 

Two five-minute recordings were performed for 
each subject. In the first recording the pacemaker 
was programmed in VVI mode, i.e. in single-
chamber ventricular pacing mode set to a rate of 
40/min, so that to have spontaneous rhythm.  

In the second recording, pacemaker settings were 
changed back to the common operating DDD mode, 
i.e. with both atrial and ventricular pacing functions 
activated.  

Recordings were made using a multi-lead 
mapping system for high-resolution biopotential 
measurement (ActiveTwo, Biosemi, The 
Netherlands).  

The system is made of a battery powered isolated 
AD box that digitises the signals and transfers them 
to a PCI receiver on computer through a fibre-optic 
connection. The signals were digitised at a sampling 
rate of 2048 Hz and a resolution of 24 bits with a 
frequency response in the full DC-400Hz range.  

No further filtering was applied to the data. 
Thirty-two leads were positioned on the thorax 
(figure 1), to allow accurate recordings of atrial 
signals.  
ECG recordings were acquired as single-ended 
signals, with respect to a common reference 
position. Before starting the acquisition, signals 
were visualised on a computer screen to check for 
good electrode contact. 

2.3 P-wave Pre-processing  

Every lead signal was pre-processed and analysed to 
extract the average P-wave characteristic.  

The first step is to isolate the P-waves from the 
acquired signals: after detecting the R-wave (using 
an algorithm similar to that proposed by Pan and 
Tompkins) (Pan and Tompkins, 1985), P-waves are 
extracted in a 200ms-long window (410 samples) 
starting 300ms before the R-wave (figure 1).  

Secondly, a beat-by-beat linear piecewise 
interpolation was used to remove baseline wander, 
on each P-wave. Fiducial points for linear 
interpolation were taken from TP and PQ tracks of 
each beat.  

Third, a P-wave template is constructed (figure 
1) by averaging each extracted P-wave having a 
cross-correlation coefficient with the current 
template higher than 0.9.  

In order to take into account the variations in PR 
interval and/or the inaccuracy in R-wave detection 
before averaging P-waves were aligned according to 
the lag at which the cross-correlation function 

between the current averaged P-wave and each 
single P-wave shows its maximum (coherent 
averaging procedure).  

The coherent averaging procedure went on until 
200 beats were included. If the residual noise level 
(measured in the isoelectric TP track) remained at 
more than 1μV even after averaging of 200 beats, 
averaging procedure continued until the noise level 
reached a value lower than 1μV.  
If it was impossible, the lead was excluded from the 
study.  

2.4 Principal Component  
Analysis – Measures of Atrial 
Depolarizatrion Characteristics 

For each patient, PCA of the 32 averaged P-waves 
extracted from the 32 leads has been performed.  
Since PCA transforms the measured P-wave to 
virtual parameters that are mutually independent 
(orthogonal), the 3 largest PCs would contain all the 
information in the P-wave stemming from the 
vectorial concept of a single electrical dipole. 
Following an approach already applied to the T-
wave (Kesek et al., 2004; Acar et al, 1999), the other 
principal components (in this case from the 4th to the 
32nd) represent the not dipolar components of the 
atrial depolarization.    
We thus extracted the following parameters: 

 

 

 

 

 
 

where si denotes the i-th eingenvalue associated with 
the i-th principal component. We also extracted the 
number of principal components suggested by the 
latent root criterion (PCA number).  

In addition, in order to estimate to which extent 
each lead contributes to the first principal 
component, factor loadings have been calculated. 
Analogous to Pearson's coefficient, the squared 
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Table 1: Results of the PCA parameters during spontaneous rhythm (SR) and during paced rhythm (PR) for all 18 patients. 

 

 
Figure 2: Example of the 32 P-wave templates and of the results of the PCA for one patient. 

[mV4] [%] [%] [%] [%] 
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factor loading is the percent of variance in that 
variable explained by that PC (i.e the degree of 
correlation between the original data and the first 
principal component expressed in percentage).  

In addition, in order to estimate to which extent 
each lead contributes to the first principal 
component, factor loadings have been calculated.  
Analogous to Pearson's coefficient, the squared 
factor loading is the percent of variance in that 
variable explained by that PC (i.e the degree of 
correlation between the original data and the first 
principal component expressed in percentage).  

3 RESULTS 

Figure 2 shows the 32 P-wave templates and the 
results of the PCA for one patient.  

Table 1 summarizes the results obtained by the 
PCA parameters. The number of principal 
components according to the latent root criterion 
ranges between 2 and 3 (2,56±0,51) during 
spontaneous rhythm and between 2 and 4 during 
pacing (2,67±0,69, p=0,6).  

PCA parameters related to the three largest PC 
(PCA1[%], PCA2[%] and PCA3[%]), that describe 
the dipolar component of the P-wave, did not 
significantly differ during spontaneous and paced 
rhythm (table 1, Wilcoxon test for paired data). The 
not dipolar component (figure 3) as defined by both 
PCAres and PCAres% during spontaneous rhythm 
were significantly lower than during pacing 
(PCAres%: 0,03±0,06 vs 0,12±0,21, p=0,001; 
PCAres[mV4]: 0,10±0,14 vs 0,49±0,73, p=0,001). 

  

 
Figure 3: Notdipolar components as defined by both 
PCAres and PCAres% during spontaneous rhythm and 
during pacing. 

Factor analysis showed that on average all leads 
contributes to the first principal components. Figure 
4 shows the factor loadings averaged (in absolute 
values) all over the population during spontaneous 
rhythm and during pacing. Each lead but one in 
spontaneous rhythm (lead A17) correlates with the 
first principal component.     

4 DISCUSSION 

Analysis of the P-wave had been extensively 
developed to extract parameters related to atrial 
depolarization heterogeneities useful to recognize 
patients with paroxymal AF or to predict the 
development and the perpetuation of AF (Dilaveris 
et al., 1998; Jordaens et al., 1998; Dilaveris et al., 
2001; darbar et al., 2002;  Dilaveris et al., 2002).  
However, the technical difficulties to acquire and 
process the P-wave, had so far limited its clinical 
use. Indeed, promising results have been obtained by 
performing the PCA of the T-wave, in terms of 
quantification of ventricular repolarization 
inhomogeneity that may create an arrhythmogenic 
ventricular substrate (De Ambroggi et al., 1997; 
Acar et al, 1999; Malik et al., 2000; Kesek et al., 
2004).  

We hereby used an 32-lead ECG acquisition 
system particularly suitable for P-wave analysis, 
having 24 bit resolution and being DC-coupled. We 
performed the PCA of the P-wave in patients prone 
to AF. PCA has been applied to the average P-wave 
extracted in any of the 32 leads.  

For each patient we extracted the same PCA 
parameters employed for the T-wave (Kesek et al., 
2004; Acar et al, 1999). As for the T-wave, the PCA 
parameters related to the first three PCs are 
associated to the dipolar component of the P-wave, 
while the remaining PCs (form the 4th to the 32nd) 
are associated with the not dipolar component of the 
P-wave.  

To our knowledge this is the first time the PCA 
is performed on the P-wave, thus physiological 
interpretation and critical discussion can be related  
only to previous experimental evidences of 
ventricular conduction disturbance (PCA of the T-
wave ) (Kesek et al., 2004; Acar et al, 1999).  

The first important result is that pacing provokes 
a significant increase of the not dipolar components 
of the P-wave. Thus atrial pacing changes the atrial 
activation, disturbing the normal atrial 
depolarization process and generating additional 
paths not explainable by a single P-vector. Such a 
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Figure 4: Factor loadings obtained during spontaneous rhythm and during pacing.  

result is in agreement with previous studies showing 
an increase in P-wave duration and low-frequency 
energy during pacing respect to sinus rhythm in 
patients with AF (Keane et al., 1995). Non-dipolar 
components is plausible to be associated with local 
atrial depolarization inhomogeneity: pacing seems to 
provoke parts of the myocardium depolarized in a 
normal sequence and parts depolarized from an 
abnormal direction.  

The second important results is that, on average, 
all the 32 leads contributes to the first PC, having a  
significant correlation coefficient with almost all 
variables.  

Since any leads systematically show a not 
significant correlation with first PC, each lead seems 
to contribute to a similar extent to the dipolar 
component. However, we found an inter-patient 
variability for the factor loadings – some patients 
had not significant factor loadings in some leads. 
This result suggests that maps of the correlation with 
the first PC (or of the average correlation with the 
first 3 PCs) could help in identifying those leads (i.e. 
body surface zones) which mainly contribute to the 
dipolar component of the atrial depolarization.  
In conclusion, the study of the dipolar and not 
dipolar components of the P-wave could provide 

important information not present in a classical 
ECG. If the assumption that the not dipolar signal is 
associated with local depolarization inhomogeneity 
of the atrium is correct, the PCA is a useful 
mathematic tool to deeply investigate the atrial 
conduction disturbances as well as the effects of 
pharmacological or electrical therapies. This first 
study tempting the PCA on the P-wave shows that 
pacing alters the atrial depolarization patterns, 
provoking an increase of the not dipolar component 
of the P-wave.  
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Abstract: Pupillary response has been used for an index of sleepiness,but the validity of the index is not clear. In this
paper, the influence of blinks on the Pupillary Unrest Index (PUI) and the Power Spectrum Density (PSD) for
the frequency range 0.01< f < 0.8Hz, as indices of pupil’s instability during a sleepiness test, was examined.
To estimate pupil size during blink, a procedure for collecting the clinical data was developed using Support
Vector Regression (SVR). The values of PUI increased with experimental time, and the values and deviations
of PUI for experimental observation were larger than the ones with SVR estimation. The blink time also
increased with experimental time, and there were significant correlation relationships between the value of
PUI and blink time. The mean PSD also correlated significantly with blink time. The relationship between
pupillary indices and a subjective sleepiness index was notsignificant, as it was not in other previous works.
These results provide evidence that pupillary indices weresignificantly affected by blink, and they did not
reflect sleepiness correctly.

1 INTRODUCTION

Temporal observation of the human eye pupil is called
as pupillography, and these observations can be used
as an index for various human activities (Kuhlmann
and Böttcher, 1999; Beatty, 1982). In particular,
pupillography has been used for assessment of sleepi-
ness and exhaustion using the eye sleepiness test,
which consists of measuring the magnitude of pupil-
lary change as a Pupil Unrest Index (PUI) and making
readings of the frequency power spectrum. It is often
applied to clinical observations or used in industrial
engineering situations (Lüdtke et al., 1998; Wilhelm
et al., 1998; Wilhelm et al., 1999). These indices have
been applied to the evaluation of emotional change
(Norrish and Dwyer, 2005); this analysis procedure is
recognized as a significant measure.

Although these indices have also been applied to
diagnostic procedures, a series of research studies of
multiple sclerosis patients suggests that for healthy
people there is no significant correlational relation-
ship between PUI and subjective sleepiness indices
such as the Stanford Sleepiness Score (Egg et al.,

2002; Frauscher et al., 2005). This means that the
evaluation procedure should be examined carefully.

A possible problem with observing the pupil is the
influence of blink (Nakayama and Shimizu, 2001),
because most methods of measuring pupil size are
based upon processing the image of the eye. Blink
can affect measurements due to the eye being ob-
scured by the eye lid during blink. Blinks are
usually discussed as an artifact in temporal obser-
vations such as mean pupil sizes or for results of
frequency analysis (Nakayama and Shimizu, 2001;
Nakayama and Shimizu, 2002). To resolve these
problems, some methods of estimating pupil size dur-
ing blink were developed (Nakayama and Shimizu,
2001; Nakayama, 2005), and the performance was ex-
amined (Nakayama, 2006).

However, the effectiveness of the estimation pro-
cedure for a diagnostic procedure ( such as an eye
sleepiness test ) and the significance of pupil indices
which include blinks have not been discussed suffi-
ciently. In this paper, we address the influence of
blink and the validity of pupillary indices by exam-
ining the effectiveness of estimating pupil size during
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Table 1: Analysis condition.

Condition Original method This paper

Sampling

Sampling rate 25Hz 60Hz

Pre-processing moving average moving average

SVR

Average window size 0.4sec. 0.4sec.

PUI

Segment length 2048(82sec.) 4096(68.3sec.)

Unit for segment 16(0.64sec.) 32(0.53sec.)

N of units 128 128

Sampling rate 1.560Hz 1.875Hz

FFT

Data length 2048(82sec.) 4096(68.3sec.)

Frequency range 0.0<f<0.8Hz 0.01<f<0.8Hz, 4Hz

Original method:(Lüdtke et al., 1998; Wilhelm et al., 1999)

blink using the support vector regression (SVR) tech-
nique.

The purposes of this paper are as follows:

1. To develop an estimation procedure using SVR
for clinical pupillary observation.

2. To examine the influence of blink on the pupillary
indices.

3. To examine the relationship between pupil indices
and subjective sleepiness scores, and the influence
of blinks on them.

2 MEASURING PUPIL SIZE

2.1 Sleepiness Test

The most popular method to assess sleepiness is a
procedure which has been proposed by Wilhelm et
al. (Lüdtke et al., 1998; Wilhelm et al., 1999). The
measuring procedure in this paper was based on the
following method.

The measuring equipment was designed to be
worn on the eyes as goggles (Hamamatsu photon-
ics:C7364). The subjects were asked to wear this
equipment and to gaze at a small red LED light (in-
frared wave length: 890 nm) through the goggles,
with a CCD camera shooting an image of the pupil.
The subjects were instructed to sit and to remain
awake in a semi-dark room in a building during the
experiment, and were also asked to close their eyes
for one minute to promote sleepiness before starting
the experiment. The experiment lasted 12 minutes.
The pupil diameter size was measured at 60 Hz.

This experiment was conducted between 9 a.m.
and 4 p.m. in the late summer. 35 healthy males
joined the experiment, their average age was 37.9

years and the standard deviation was 4.1. They were
volunteer subjects and signed an agreement on the ex-
perimental procedure before it commenced.

Some parameters of the analyzing procedure
which were proposed by Wilhelm et al. (Lüdtke et al.,
1998) depended on the measuring equipment. One
example is the sampling rate of pupil size. The differ-
ences are summarized in Table 1.

2.2 Pre-processing

Pre-processing of pupil size during blink provides a
possible pupil size from the temporal sizes. To ex-
amine the effectiveness of pre-processing, the follow-
ing two pre-processings were created using moving
average method (MOV) and support vector regres-
sion (SVR) (Smola and Scholkopf, 1998; Nakayama,
2005). SVR and the kernel method are often used for
signal reconstruction or smoothening (Bishop, 1995;
Smola and Scholkopf, 1998).

2.2.1 Experimental Observation (Exp.)

This data set consisted of experimental observations
without any pre-processing. During the periods of
blink, the pupil diameter shows that the size was mea-
sured as 0.

2.2.2 Moving Average (MOV)

Moving average method was applied to exclude a
large deviation caused by blink and noise. Wilhelm
et al. conducted this method for every data series of
0.4 sec. (Lüdtke et al., 1998; Wilhelm et al., 1999).
This means that the sampling rate is reduced to 2.5
Hz.

2.2.3 Estimation with Svr

This processing provided estimation diameters dur-
ing blink using support vector regression (SVR) with
Gaussian kernel (Smola and Scholkopf, 1998). The
estimation function was derived from the training
data. This training data, as a prototype of pupil re-
sponse, consisted of measured pupil diameters during
the blink and estimated pupil sizes. To produce the
training data, a set of data containing 5000 data points
collected at the beginning of observations was pre-
pared. To obtain an optimized model, the dimension
n of input vector, and a precisionε(eps) andσ(std)
of Gaussian kernel needed to be calculated. A prac-
tical calculation was conducted using theSVMTorch
package (Collobert and Bengio, 2001), and parame-
ters were optimized. As a result, the following param-
eters were provided: input dimension= 45; σ = 40;
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Figure 1: Example of pre-processing for pupillary change
during blink.

ε = 0.5. Estimation accuracy was examined in the
previous estimation experiments (Nakayama, 2006).

3 RESULTS

3.1 Results of Pre-processing

To examine the pupil size pre-processing perfor-
mance, an example of experimental pupil size and
processed data for 10 seconds is illustrated in Fig-
ure 1, listed from bottom to top as Exp., MOV and
SVR. The horizontal axis shows time, the vertical axis
shows pupil size with drops indicating blinks. Pre-
processing with MOV shows that temporal changes
are influenced by blink and all points are smoothened,
although there is no null point during blink periods.
On the other hand, SVR indicates the same pupil size
without large blink drops and gives possible sizes of
pupil diameters during blinks. As a result, an appro-
priate estimation procedure for clinical pupillography
can be developed from this.

3.2 Results of Pupillary Unrest Index
(PUI)

PUI as an index of instability of pupillography was
calculated following a procedure which was modified
from the original method using the parameters listed
in Table 1. According to the definition of PUI as
cumulative changes in pupil diameter (Lüdtke et al.,
1998), firstly the data were reduced by calculating the
average for periods of 32 (0.53sec.) consecutive val-
ues, secondly the absolute values of the differences
from one 32-value average to the next one were sum-
marized for each 68.3sec. data segment, namely 127
differences for one segment. Calculating the average
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Figure 2: Result of PUIs across segments and pre-
processing procedures.

prior to cumulation serves as a simple low pass filter-
ing and excludes high frequency noise.

Average PUIs with standard error bars across the
pre-processing procedure results were summarized in
Figure 2. PUIs for Exp. and MOV conditions are sig-
nificantly higher than the ones for SVR. According to
the estimation procedure, PUI increases when pupil-
lary temporal change includes blink drop. Therefore,
PUIs for Exp. and MOV were relatively high.

Also, sleepiness may increase gradually with ex-
perimental time, so this suggests that the gradual
increase may depend on sleepiness. According to
the pre-processed PUI results and a previous work
(Nakayama, 2006), the biggest factor in PUI change
must be blink frequency, however.

3.3 Blink Time

Blink may influence a sleepiness index according to
the results of PUI. Blink time is defined as the sum of
blink drop duration of measured pupil diameters. Av-
erage blink times for each segment (68.3sec.) were
summarized as bar graphs with standard error bars in
Figure 3. The figure shows that the blink time in-
creases monotonically with the sequence number of
the segment excepting segment 5. According to blink
research, the estimated blink time may be around 1
minute per segment in the standard condition (Tada
et al., 1991). It was suggested that the blink time after
segment 5 was longer than the one for the standard
condition.

These results also indicated that blink influenced
PUIs. To examine the relationship between PUI and
blink time, correlation coefficients were calculated
across all segments and preprocessing procedures.
The coefficients were summarized in Table 2. Most
coefficients were significant (p < 0.05). During seg-
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Figure 3: Average blink time for segments.

Table 2: Correlation coefficient between PUI and blink
time.

Seg. No. Exp. MOV SVR

1 0.95 0.95 0.42
2 0.91 0.92 0.71
3 0.93 0.92 (0.23)
4 0.90 0.92 0.41
5 0.42 0.45 0.41
6 0.64 0.65 0.34
7 0.55 0.58 0.63
8 0.69 0.70 0.58
9 (0.16) (0.18) 0.35
N=35, ( ) not significant

ment numbers 1 to 4, there were large correlation co-
efficients for pupil diameters with blink times for Exp.
and MOV rather than for correlation coefficients for
SVR. Coefficients across all pre-processing stayed at
same levels after segment number 5, when the blink
times were longer than the ones in the standard con-
dition.

These results showed that blink significantly af-
fected PUI changes in the standard condition, and the
effectiveness of pre-processing for pupils was exam-
ined while the blink times stayed at the standard level.
The relationship was also affected by the incidence of
additional blinking. Furthermore, these results sug-
gested the blink time affected PUIs despite the con-
ducting of estimations of pupil size during blink.

3.4 Frequency Analysis

Frequency power value of pupillary change, which is
given by frequency analysis over 68.3sec., can be
used as another index of sleepiness (Lüdtke et al.,
1998; Wilhelm et al., 1999). According to the pro-
cedure, the power spectrum of pupil diameter change
was summarized. Figure 4 shows the results of Power
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Figure 4: PSD of pupillography across pre-processing.
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Figure 5: Averaged PSD of each segment for two frequency
ranges.

Spectrum Density (PSD) for the first segment of one
subject. PSD was estimated withpwelchfunction and
Parzen window function of MATLAB (MathWorks
Inc.). The vertical axis shows PSD in decibels (dB)
and the horizontal axis shows frequency (Hz) from
0.01 to 4.0Hz. DC component as frequency power
was excepted in following analysis. The pupillary
change has a low pass filter as low as 4Hz because
it is biological signal, and also pupilograms contain
0.05∼ 0.3 Hz components which are well known as
pupillary noise (Tsukahara, 1976).

During sleepiness tests, the average power value
for the frequency range (0.01< f < 0.8Hz) is often
evaluated as the index (Lüdtke et al., 1998; Wilhelm
et al., 1999). The average PSD for frequency range
(0.01< f < 0.8Hz) for each segment was compared
between pre-processing procedures. The results were
summarized in Figure 5. According to the results
of frequency analysis for the task evoked pupillog-
raphy, PSDs of frequency range (1.5 < f < 3.5Hz)
changed significantly in response to the task diffi-
culty. Therefore, average PSDs for frequency range
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Table 3: Correlation coefficients between PSDs and blink
for two frequency ranges.

Seg. 0.01< f < 0.8Hz 1.5 < f < 3.5Hz
No. Exp. MOV SVR Exp. MOV SVR
1 -.36 -.36 (-.29) 0.81 0.86 0.44
2 -.38 -.38 (-.25) 0.86 0.87 0.65
3 -.35 -.36 (-.30) 0.65 0.77 (0.20)
4 -.53 -.53 -.51 0.57 0.63 (0.21)
5 -.42 -.42 -.37 (0.11) (0.15) (-.03)
6 -.47 -.46 -.47 (0.28) 0.37 (0.10)
7 -.52 -.52 -.46 (0.13) (0.20) (0.19)
8 -.55 -.55 -.53 (0.31) 0.45 (0.20)
9 -.62 -.62 (-.30) (-.10) (-.07) (-.07)

N=35, ( ) not significant

(1.5 < f < 3.5Hz) were also summarized in the same
format in Figure 5. The figure shows that PSDs for
(0.01< f < 0.8Hz) are at the same level across seg-
ments and pre-processing procedures. The PSDs for
(1.5 < f < 3.5Hz) have some differences amongst
pre-processing, but they stay at the same levels dur-
ing each experimental time point. This suggests that
PSDs are not affected by a change in blink time, such
as during a change in the level of sleepiness.

3.5 Blink Influence On Psd

To examine the influence of blink, correlation coeffi-
cients between blink time and average PSDs for two
frequency ranges (0.01< f < 0.8Hz and 1.5 < f <
3.5Hz) across pre-processing procedures were calcu-
lated. The results were summarized in Table 3.

All coefficients for the frequency range (0.01 <
f < 0.8Hz) were negative values and significant ex-
cept for some coefficients for SVR. There was no sig-
nificant relationship between SVR and blink time dur-
ing the first three segments, and some absolute values
of coefficients for SVR were relatively smaller than
the ones for Exp. and MOV. Most PSDs for frequency
range (0.01< f < 0.8Hz) correlated with blink time,
however. This suggests that PSDs depend on blink
time, and that the relationship is affected by the pre-
processing procedure. Also, PSDs of Exp. and MOV
for frequency range (1.5< f < 3.5Hz) correlated with
blink time during segments 1-4. There were no signif-
icant relationships between them after Segment No.
5, while blink time was longer than in the standard
condition, however. These correlation relationships
seem to be caused by blinks.

3.6 Relationship with a Subjective Score

Subjective sleepiness was measured for each subject
using the Stanford Sleepiness Score (SSS) (Hoddes
et al., 1973). 33 out of 35 subjects responded to
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Figure 6: Averaged blink time across two sleepiness groups.
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Figure 7: PUI changes with pre-processing procedures and
two sleepiness groups.

this questionnaire. The scores were distributed from
2 to 4 on a 7 point scale. The correlation relation-
ships of SSS with both PUIs and PSDs were exam-
ined. The absolute value of the correlation coeffi-
cients (r) were less than 0.15 and they were not sig-
nificant (p > 0.10), because all subjects were healthy
and scores were distributed in a narrow range. There-
fore, indices of pupillography do not correlate with
the subjective scores as well as in previous works
(Egg et al., 2002; Frauscher et al., 2005).

4 DISCUSSION

The two observations and suggested causes which
have been reported in this paper are examined here;
there is an influence of blink on pupillary indices
(Nakayama, 2005; Nakayama, 2006), and there is no-
correlation between pupillary indices and subjective
sleepiness (Egg et al., 2002; Frauscher et al., 2005).
There was some distribution of subjective sleepiness
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Table 4: Correlation coefficients between PSD and blink timeacross pre-processing procedures and two sleepiness groups.

0.01< f < 0.8Hz 1.5 < f < 3.5Hz
Seg. High sleepiness Low sleepiness High sleepiness Low sleepiness
No. Exp. MOV SVR Exp. MOV SVR Exp. MOV SVR Exp. MOV SVR
1 (-.25) (-.25) (-.15) -.60 -.60 -.58 0.82 0.78 0.57 0.88 0.97 (0.18)
2 (-.33) (-.33) (-.15) (-.53) (-.53) (-.52) 0.88 0.88 0.74 0.87 0.96 (0.19)
3 (-.35) (-.35) (-.29) (-.37) (-.37) (-.31) 0.76 0.78 (0.04) 0.57 0.77 (0.38)
4 -.56 -.57 -.56 (-.51) (-.51) (-.44) 0.52 0.55 (0.15) 0.68 0.84 (0.27)
5 -.46 -.46 (-.41) (-.51) (-.51) (-.47) (0.04) (0.07) (-.12) (0.54) 0.71 (0.13)
6 -.59 -.59 -.61 (-.50) (-.50) (-.47) 0.42 (0.47) (0.01) (0.20) (0.31) (0.18)
7 -.55 -.55 -.51 (-.55) (-.55) (-.48) (0.09) (0.14) (0.31) (0.35) (0.48) (0.20)
8 -.60 -.60 -.62 -.65 -.65 -.60 (0.34) 0.48 0.55 0.60 0.71 (0.19)
9 -.68 -.68 (-.37) (-.32) (-.32) (-.31) (-.17) (-.14) (-.15) (0.45) 0.69 (0.11)
N=35, ( ) not significant

in this experiment, such as between 2 and 5 on the
7 point scale, therefore the effect of the difference in
the subjective sleepiness on the indices was analyzed.
Firstly, 33 responded subjects were divided into two
groups; the low sleepiness group consisted of 13 sub-
jects who answered 2 on the 7 point scale of sleepi-
ness, and the high sleepiness group consisted of 20
subjects who answered 3 to 5 on the 7 point scale of
sleepiness, with an average rate of 3.4.

Blink time for each segment was summarized
across two groups in Figure 6 using the same format
as in Figure 3. In Figure 6, bars show average blink
times with error bars as standard errors. In compar-
ing the two groups, the temporal change in segment
sequences were quite different. Blink times for the
high sleepiness group increased monotonically, and
the standard errors also increased with the average.
Blink times for the high sleepiness group in the 8th
segment became 7 times the length of the time of the
1st segment. On the other hand, the average blink
times for the low sleepiness group did not change dur-
ing the experiment. There were no significant differ-
ences in blink time between the two groups because
of the large deviation in blink time, however. If blink
time reflects sleepiness, the differences in blink time
between the two groups may significantly affect the
variation in the subjective sleepiness score.

PUIs for two groups were summarized in Figure 7
using the same format as in Figure 2. Differences of
PUIs for Exp. and MOV between the two groups in-
creased with experimental time. Also, the differences
in PUI for SVR between the two groups was small
and almost constant during the experiment. There
was no significant difference in PUI between the two
groups and three pre-processing procedures because
of the large deviation in PUI, particularly for the high
sleepiness group. Although there was no significant
difference between the two groups, it was noted that
blink affected PUI values on pupil diameter observa-
tions when blinks were not processed appropriately.

To examine the relationship between PSDs and
subjective sleepiness, correlation coefficients between
averaged PSDs and blink times for the two groups
were summarized in Table 4 using the same format
as in Table 3. Comparing correlation coefficients be-
tween the two groups of subjective sleepiness ratings,
the significance of coefficients for the frequency range
0.01< f < 0.8Hz changed across the two groups. Co-
efficients in the frequency rage 1.5< f < 3.5Hzwere
relatively stable with the subjective sleepiness ratings.
According to the results, coefficients between PSD
and blink time depend on both the pre-processing pro-
cedure for blink and the subjective sleepiness rating.
For coefficients in the frequency range 1.5 < f <
3.5Hz, the effect of the subjective sleepiness rating
was relatively smaller than the effect in the frequency
range 0.01< f < 0.8Hz.

The results of analyzing pupil indices during the
sleepiness test coincide with the clinical claims (Egg
et al., 2002; Frauscher et al., 2005); PUI does not
correlate with subjective sleepiness such as SSS. Al-
though it was suggested that the frequency power of
0.01< f < 0.8Hz reflected the subjective sleepiness
(Lüdtke et al., 1998; Wilhelm et al., 1998; Wilhelm
et al., 1999), the relationship was not confirmed in
this experiment. Additionally, even the influence of
blink when the blink drops during a temporal change
of pupil size were removed was examined. Consider-
ing the empirical evidence from these clinical obser-
vations, a sleepiness evaluation procedure should be
developed. A discussion of this will be the subject of
our further study.

5 CONCLUSIONS

In this paper, we used pupillography to examine the
influence of blink and validity of pupillary indices by
analyzing a clinical sleepiness test.

The following results were achieved:
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1. A pupil size during blink estimation procedure us-
ing the Support Vector Regression technique for
clinical pupillary observation was developed and
an appropriate level of performance was obtained.

2. The influence of blink in pupillary indices such
as Pupil Unrest Index (PUI) and Power Spectrum
Density (PSD) of pupillography was examined. In
particular, it was shown that blink time increased
monotonically with experimental time, therefore
the influence of blink changed as the experiment
progressed.

3. The relationship between pupil indices and sub-
jective sleepiness scores such as the Stanford
Sleepiness Score (SSS) was analyzed. There was
no significant relationship, but there were some
differences in pupil indices between high and low
SSS groups.

Development of a sleepiness test evaluation procedure
which considers blink and other factors will be the
subject of our further study.
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Abstract: This paper will summarize the results of a human volunteer study on the effects on sleep parameters of 
exposure to RF emissions from a mobile phone handset for 30min prior to going to sleep. A cohort of 55 
volunteers were tested over 4 nights in a double-blind design. The significant outcomes were: Rapid Eye 
Movement (REM) sleep latency reduced by 16%; EEG alpha power enhanced by 8% during 1st non-REM 
period. These results are compared for overall internal consistency and with studies from other laboratories. 
Part of the program of the Australian Centre for Radiofrequency Bioeffects Research extending these 
studies is described. 

1 INTRODUCTION 

The issue of whether or not mobile phone handset 
radiofrequency (RF) and other emissions are able to 
alter sleep patterns is controversial. The World 
Health Organisation has a RF research agenda which 
highlighted the need to extend and replicate earlier 
studies which demonstrated effects on sleep [WHO 
http://www.who.int/peh-emf/research/rf03/en/ 
index2.html]. A series of experiments have been 
carried out at Swinburne University in the period 
1999 – 2007 involving human volunteers on a range 
of immediate psychological and physiological 
consequences of use of mobile phone handsets, 
including sleep. In terms of health risk assessment, 
alterations of sleep quality may not appear to be as 
severe as possible links with cancer, but in terms of 
society’s expectations, if phone emissions are linked 
to any biological changes, these need to be 
thoroughly understood. Although the basic research 
question we have asked is ‘do the emissions from 
mobile phone handsets lead to an immediate change 
in ability to get a good night’s sleep?’, we have 
specific hypotheses formulated on the basis of 
previous research. A review of literature conducted 
at the start of the period (Hamblin and Wood, 2002) 
identified EEG alpha band power increase (both in 

awake and sleep experiments) as being the most 
consistent observation. The present experiment was 
designed to specifically examine the ‘increased 
alpha power’ hypothesis. 

2 MATERIALS AND METHODS 

2.1 Exposure  

A popular handset (Nokia 6110) has been used 
throughout the series of experiments. The 
manufacturer’s software is used to set into GSM 
pulsed ‘test’ mode (0.25 W average) via a serial 
cable which is then disconnected once the setting is 
complete. Since the current drawn from the battery 
follows the GSM pulsing scheme (217 Hz, 1/8 duty 
cycle), there is a strong extremely low-frequency 
magnetic field associated with this, in addition to the 
RF at 914 MHz. The other house-keeping pulses 
(including the blank 26th frame) were absent. Since 
all exposures were carried out with neither the 
participants nor those involved in administering 
cognitive tests aware or the exposure status, it is 
necessary to have independent verification that the 
phone was in the correct mode at each testing 
session. The RF output was checked i) by holding 
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the handset near to a landline phone and checking 
for a ‘buzz’ ii) direct connection of the antenna 
feedpoint to a RF power meter iii) by measurements 
in SAR phantom. The first of these was performed 
on each occasion, the second at six-monthly 
intervals to check the constancy of RF output over a 
3-hour period and the third was performed once to 
determine the appropriate Specific Absorption Rate 
(SAR) in the users’ heads.  

The peak SAR was 0.19 ± 0.03 W/kg (based on 1g 
average). At the relevant moment during the testing 
the phone was attached to a cradle in a normal 
position next to cheek, with the antenna 
approximately 2 cm from the skin. The phone was 
set in one of two modes: i) turned on and 
transmitting (active); ii) turned off (sham). In other 
experiments in our series we also used handsets in 
‘standby’ mode (turned on, but not emitting RF, 
except in intermittent bursts every few minutes or 
so). In order to ensure blinding, the phone was 
checked for audible cues from the phone circuitry, 
an important requirement in a quiet sleep laboratory. 
This was done by asking participants to indicate 
whether or not they thought the phone was 
transmitting. In order to fully prevent participants 
picking up the faint ‘buzz’ even with the 
loudspeaker disabled, a plastic foam pad was placed 
around the phone in a pouch. This also minimised 
the sensation of warmth when the phone was in 
active mode.  

The phone exposure consisted of the handset 
being placed next to the participants’ cheek for 30 
min just prior to having monitoring electrodes 
attached and getting into bed. 

2.2 Subjects 

60 subjects were recruited to the study, but five of 
these withdrew after provision for their participation 
had been made. Five more were excluded because of 
confirmed apnoeic event during at least one of their 
nights in the study. The final study sample thus 
comprised 50 healthy volunteers aged from 18 to 60 
years (Mean =27.9 SD = 10.9 years). Subjects were 
recruited from advertisements in local and state 
newspapers, and posters located at several 
universities and organizations in Melbourne. In the 
final sample there were 27 males and 23 females, 45 
of whom were right handed. No participant reported 
any psychological or neurological condition, serious 
head injury or extended periods of unconsciousness. 

The study took place at a purpose-made sleep 
laboratory (Eastern Sleep Disorders Service, 

Mitcham Private Hospital, Vic), which consisted of 
three individual bedrooms, a central monitoring 
room, together with a kitchen and a bathroom.. 

2.3 Design 

A double blind crossover design was used to collect 
the data i.e. both the subject and the tester were 
blind to the exposure condition.  Participants 
attended the sleep laboratory on Saturday and 
Sunday nights on two consecutive weekends. The 
Saturday nights were adaptation nights, to enable 
participants to become accustomed to sleeping in a 
strange environment and with monitoring sensors 
attached. Full sleep monitoring data were obtained 
and stored for these nights. On Sunday nights 
participants were required to sit for 30 min prior to 
getting into bed with the phone in either the 
transmitting condition or switched off, with the 
opposite condition the following Sunday. During 
this time the participants were instructed to look at a 
blank wall. At the cessation of real/sham exposure 
electrodes and sensors were attached, a task which 
normally occupied 15 – 20 min. 

2.4 Measures 

Sleep was recorded and stages were visually scored 
for 30 s epochs according to standard criteria 
(Rechtschaffen and Kales, 1968) by an experienced 
independent sleep technician who was blind to the 
experimental conditions.  During sleep, EEG (C3 
and C4), ECG, EOG, EMG, SaO2 and nasal airflow 
were monitored along with thoracic, abdominal, and 
leg movements, using the Compumedics™ E-series 
polysomnography system.  All EEG electrode 
impedances were below 5 kΩ initially.  Data were 
sampled as shown in Table 1. Data was stored in 
records of 1 second in duration in European Data 
Format (EDF). This format stores data points as 2 
byte binary representation and as such can be 
converted into continuous data records for each 
channel. This was then exported to Matlab™ in 
order to resample the data for subsequent analysis 
using Neuroscan data processing software. 
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Table 1: Sample rates for all recorded channels. 

Channel 
Number of 

samples in each 
data record 

EEG 250* 
EEG(second) 250* 
EOG(L) 50 
EOG(R) 50 
EMG 250 
ECG 50 
Leg(L) 50 
Leg(R) 50 
SaO2 5 
Airflow 25 
Thoracic Respiration 25 
Abdominal Respiration 25 
Sound 25 
CPAP 25 
Oxygen 1 
Total 1131 

*In some records the EEG was sampled at 125 Hz because of 
monitoring constraints: the EDF header provided the recording-
specific information. 

2.5 Analysis 

The sleep staging was carried out in accordance with 
routine procedures followed by the Eastern Sleep 
Disorders Service. Each 30 s epoch of sleep was 
assigned to a stage using the standard R & K 
(Rechtschaffen and Kales, 1968) classification. This 
analysis also provided timing markers for 
subsequent analysis of EEG records.  Matlab was 
used to extract the first 6 channels of each 
participant’s EDF file (EEG1, EEG2, EOGleft, 
EOGright, EMG, and ECG). The individual channel 
files were then converted to continuous files and 
opened using Matlab, where they were re-sampled 
(due to the original acquisition rates being different) 
so that all channels had the same number of points.  
The individual files were then recombined in Matlab 
as an EDF file for subsequent spectral analysis using 
Neuroscan software.  Using the staging data, the first 
NREM period (the time from sleep onset, defined as 
the first occurrence of stage 2, until the onset of the 
first REM sleep period) was extracted and artefact 
removal was performed by visual inspection (with 
the experimenter blind to the exposure condition).  
Only artefact free epochs were used for further 
analysis.  The first 30 minutes of each file was taken 
and the two EEG channels (C3, C4, referenced to 
linked mastoids) were extracted and spectral 
analysis was performed on the average of the two 
channels for each 20 second epoch (FFT routine, 

Hanning window, averages of five 4-second 
epochs). Data was then exported to SPSS statistical 
package Version 11.5 for further statistical analysis. 
Spectral data, with a resolution of 0.25 Hz, was thus 
obtained for each 20 second epoch for the first 30 
minutes from first stage 2 occurrence. The spectrum 
for each participant (and for each night) was an 
average of the spectra for 3 x 30 = 90 epochs. For 
each individual, the averaged spectrum on the active 
exposure night is then divided by the spectrum for 
the sham night an the ratio converted to a 
percentage. These intra-subject ratios are then 
averaged over the number of subjects (n = 50) and 
the overall percentage (± SEM) calculated. This is 
shown in Fig. 1 below, along with the overall 
averaged spectra for active and sham exposure 
nights. 

3 RESULTS 

3.1 Sleep Parameters 

Of the 10 sleep parameters measured all were non-
significant, except for REM latency, which was 
reduced 16% by exposure (p = 0.02) (Loughran et 
al., 2005). This was contrary to previous work which 
found a suppression of REM sleep (Mann and 
Röschke, 1996) and when corrected for multiple 
comparisons, the level of significance is marginal. 

3.2 Spectral Analysis of EEG 

As outlined above, the prior hypothesis was that 
EEG alpha power would be increased. Spectral 
analysis of the sleep EEG in the first 30 minutes of 
the first NREM period revealed no significant 
effects of EMF exposure on EEG power density in 
the alpha frequency range (8-13Hz) as a whole.  
Two alpha sub-bands (11.5-12.25Hz, 13.5-14Hz) 
that have previously shown effects in the first 
NREM period of an overnight polysomnography 
following EMF exposure (Huber et al., 2003) were 
also analysed.  EEG power density was found to be 
significantly enhanced by around 8% in the 11.5 – 
12.25 Hz frequency range following EMF exposure, 
F(1,48) = 5.56, p = 0.022 (Figure 1). No significant 
enhancement was found to be present in the 13.5 – 
14 Hz frequency range. Effect sizes (partial eta 
squared) were also calculated for the 0-25 Hz region 
and are shown in Figure 2. This shows a raised 
effect size for the 13.5 – 14 Hz sub-band which 
failed to reach significance.  
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Figure 1: Upper: Averaged EEG spectra for active and 
sham exposure nights respectively (for 50 paricipants); 
Lower: Mean EEG Power Density Spectrum for real 
exposure as a % of sham. Bars represent Standard Error of 
Mean. 

 
Figure 2: Effect sizes of EMF exposure on First 30 
minutes of the first NREM period. Effect sizes for each 
0.25 Hz bin (0 – 25 Hz) are illustrated and were calculated 
using the formula ηp

2 = SSeffect/(SSeffect + SSerror). (See 
Loughran et al. 2005). 

It should be noted that in the region 0 – 3 Hz and 17 
– 25 Hz there are enhancements of up to 20%, but as 
Figure 2 reveals, these are not statistically 
significant. Some of these data have previously been 
reported (Loughran et al., 2005). The averaged 
cross-participant spectra have a 1/f character (note 

log scale) with characteristic alpha and theta peaks 
shown. The differences in the spectra are only just 
distinguishable when plotted conventionally. Note 
that below 2 Hz the spectral estimates become 
unreliable. 

4 DISCUSSION 

Since our review paper which discusses papers 
published up to 2001 (Hamblin and Wood, 2002), 
we have continued to track the literature relating to 
reported EEG alpha band enhancements. Up to the 
end of 2006, we had noted that of the 18 papers 
reviewed, 9 showed data supporting alpha 
enhancement, 8 showed no effects, or a reduction 
and 1 showed both an enhancement and a reduction, 
based on gender. Although all reporting 
enhancement refer to the EEG band to be in the 
alpha region, further analysis shows that there is 
very little overlap between the actual sub-bands over 
which the significant changes were reported. In 
Figure 3 these bands are illustrated, in reverse 
chronological order of publication. Where multiple 
bands were shown to be significant in a single study 
these are shown as separate rows. 
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Figure 3: Frequency ranges over which increases in EEG 
power elicited by mobile phone radiation have been 
reported. In some cases, more than one sub-band was 
significantly enhanced. The studies are as follows: (Curcio 
et al., 2005, Huber et al., 2003*, Huber et al., 2002*, Croft 
et al., 2002, Huber et al., 2000*, Borbely et al., 1999*, 
Krause et al., 2000, Reiser et al., 1995. Those indicated 
thus (*) are during a non-REM period of sleep, the others 
were with awake subjects (Huber et al. 2002 showed 
increases with participants both awake and asleep. 
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5 FURTHER WORK 

A repeat study is now underway in which 20 of the 
original cohort of 50 have repeated their 
participation. The aim is to discover if those who 
showed strong Alpha power changes in the first 
study show similar changes in the second. There has 
been some speculation that sensitivity to EMF may 
vary with the individual. 

6 CONCLUSIONS 

Alpha power findings are inconsistent across studies, 
but sleep studies may show slightly more 
consistency. The actual frequency range for 
significant increases varies between studies and even 
between studies from the same laboratory. 
Nevertheless, the preponderance is of reported 
increases in alpha power: this may relate to 
increased blood flow in superficial regions of the 
face or ear or increased tympanic membrane 
temperature. It is difficult however to envisage how 
these effects could persist several hours after 
exposure. Overall, the evidence is insufficiently 
strong to conclude that mobile phone emissions 
affect sleep.  
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Abstract: This work proposes a methodology to screen obstructive sleep apnea (OSA) based on RR interval time series
using a time series novelty detection technique. Initially, the RR interval is modeled using an autoregressive
model. Next, for each data point of the time series, the modeloutput, x̂(t), is compared with the observed
value, xt , and the prediction error is generated. The prediction error is then processed in order to detect
novelties. Finally, the novelties detected are associatedwith apnea events. This methodology was applied to
the Computers in Cardiology sleep apnea test data and correctly classified 29 out of 30 cases (96.67%) of both
OSA and normal subjects, and correctly identified the presence of apnea events in 14078 out of 17268 minutes
(81.53%) of the test data set.

1 INTRODUCTION

Obstructive sleep apnea (OSA) is a sleep disorder
characterized by pauses in breathing during sleep with
a reported prevalence in 4% in adult men and 2% in
adult women (Young et al., 1993). Obstructive sleep
apnea is associated with increased risks of high blood
pressure, myocardial infarction, stroke, and with in-
creased mortality rates.

According to the (AASM, 1999) patients are diag-
nosed with OSA if they have 5 or more events of ap-
nea per hour of sleep during a full night sleep period.
Each event is characterized by a respiratory pause dur-
ing 10 seconds.

The definitive diagnosis of OSA is made by
polysomnography (PSG). PSG is a multi-parametric
test based on brain electrical activity (EEG), eye and
jaw muscle movement, leg muscle movement, air-
flow, respiratory effort (chest and abdominal excur-
sion), electrocardiography (ECG) and oxygen satura-
tion. This exam is expensive and requires the patient
to spend the night in the hospital.

In (Guilleminault et al., 1984) is reported that
OSA can be characterized by cyclical variations on
RR interval time series caused by progressive brady-
cardia, followed by abrupt tachycardia on resumption
of breathing. This events are highly nonlinear and non
stationary. Figure 1 illustrates a RR interval time se-
ries in two distinct time intervals, the first one, with no
apnea events and, the second one, with these events.

If an automatic method is developed to screen the
pathology using ECG monitoring instead of PSG, this
can be done on basis of a portable and inexpensive
device from patient home.

This paper proposes a methodology to detect OSA
from RR interval time series based on a novelty detec-
tion technique. The normal behavior of a system can
be characterized by a series of observations through
the time. The problem of novelty detection consists
in finding time periods where some characteristic of
the monitored system has been changed.

An autoregressive model is used to model the
RR interval time series using a subset without ap-
nea events. For each data point of the time series,
the model output is compared with the observed value
and the prediction error is generated. The prediction
error is then processed in order to detect novelties. Fi-
nally, the novelties detected are associated with apnea
events, since based on information given by (Guillem-
inault et al., 1984), this events are nonlinear and non
stationary.

This paper is divided as follows: in section 2 the
RR interval time series is preprocessed in order to be
modeled using an autoregressive model. Next, in sec-
tion 3 the time series novelty detection technique is
presented. In section 4 this technique is applied on
Computers in Cardiology sleep apnea dataset (Gold-
berger et al., 2000) in order to detect OSA. Finally,
section 5 presents conclusions and suggestions for
further research.
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Figure 1: A RR interval time series with and without apnea
events.

2 RR INTERVAL TIME SERIES
PREPROCESSING

In order to model the RR interval time series using an
autoregressive model, the time series must be prepro-
cessed to become stationary.

The preprocessing technique used in this work is
similar with the one used on (Mietus et al., 2000) and
is performed by the following steps:

1. The RR interval time series is extracted from ECG
using an automated beat detection and classifica-
tion algorithm selecting only normal sinus beats
intervals in order to eliminate the effects of ec-
topic beats.

2. A moving average filter is applied to the signal
in order to remove noise caused by beat detection

and classification algorithm errors. For each set
of 41 RR intervals, a local mean is computed ex-
cluding the central value and those values which
lie outside the range of 0.4 to 2.0 sec. The cen-
tral values is considered to be an outlier and is
excluded if lies outside of 20% of the mean.

3. The signal is linearly resampled at 1 Hz.

4. The signal is smoothed. For each window of 5
points, the value of the central point is replaced
by the average value over the window.

5. The signal is detrended. For each window of 81
points, the slope of the regression line over the
window is calculated, and the value of this fit
at the central point is subtracted from the actual
value of this point.

Figure 2 illustrates a RR interval time series be-
fore and after the preprocessing.

3 TIME SERIES NOVELTY
DETECTION TECHNIQUE

In this section the time series novelty detection tech-
nique used to detect OSA will be presented. This
technique is based on a detector build on the variation
of an autoregressive model prediction error.

3.1 Autoregressive Model

An autoregressive model of orderp, AR(p) estimates
the current value of a stochastic process as a linear
combination of its lastp values and a white noise. The
white noise process,at , is assumed to be Gaussian, in-
dependent and identically distributed (i.i.d), with zero
mean and varianceσ2

a. This model can be written as:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p +at (1)

whereφ = φ1,φ2, · · · ,φp and σ2
a are model parame-

ters.
Given a time series that can be described as a

stochastic process, to build a forecasting model for
this series using (1) initially it is necessary to estimate
the model parameters for several values ofp and then
evaluate which is the most suitable value forp using
some statistical criterion.

TheMaximum Likelihood Estimatorfor the model
parameters,φ = φ1,φ2, · · · ,φp and σ2

a, is defined as
(Box and Jenkins, 1990), (Davis and Vinter, 1985):
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Figure 2: RR interval time series before and after prepro-
cessing.

φ̂ = (X′X)−1(X′Z) (2)

σ̂a
2 = τ̂−1 =

1
N− p

(Z−Xφ̂)(Z−Xφ̂)−1

whereZ =









Xp+1
Xp+2

...
XN









eX =









Xp · · · X1
Xp−1 · · · X2

...
...

...
XN−1 · · · XN−p









Once the parameters of severalAR(p) models
have been calculated, the most suitable value ofp
must be estimated. TheScharwaz’s Bayesian Infor-
mation Criterion (BIC)(Schwarz, 1978) is used to se-
lect thep value. The BIC is given by:

BIC = log(σ̂a
2)+

M log(N)

N
(3)

whereM = p+1 andN is the length of the time series.

3.2 The Detector

For each time series data point, the detector must be
capable to distinguish between the following hypothe-
ses:

H0 : xt is normal

H1 : xt is a novelty

For a given inputxt the detector must be capable
to classify the point as normal meaning that it can be
predicted by the forecasting model build for the time
series, or novelty, the point can not be predicted by
the model.

The detection probabilityPD is the probability of
the detector to classify the point as a novelty cor-
rectly, P(H1;H1). The false alarm probabilityPFA is
the probability of the detector to classify the point as a
novelty when the point is actually normal,P(H1;H0).

Initially, the forecasting model parameters are es-
timated using a dataset of the time series assumed as
normal. Then, for each new observed value of the
time seriesxt the statistical inference on the hypothe-
ses is performed by the following steps:

1. The predicted value ˆxt is calculated usingp last
points of the time series.

2. The parameters of the predicted value distribution
are estimated and the thresholds of the interval are
calculated given a significance levelα.

3. If the observed value of the time seriesxt is in-
side the prediction interval, the null hypothesis is
considered true.

The conditional probability density function of the
forecasting model output when the null hypothesis is
true, given the lastp observations, is:

p(X̂t |xt−1, · · · ,xt−p;H0) =
1

√
2πσ̂a

2 exp−
1

2σ̂a
2 (X̂t −µt)

2

(4)

whereµt = φ1xt−1 + · · ·+ φpxt−p.
The thresholds of the prediction interval given a

significance levelα is:

µt ±Q−1
(α

2

)

σ̂a (5)

where Q(x) is the complementary cumulative dis-
tribution function of the normal distribution (Kay,
1993).
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The false alarm ratePFA is equal to the
prediction interval significance levelα. How-
ever the conditional novelty probability distribution
P(X̂t |xt−1, · · · ,xt−p;H1) it is not know, so it is not
possible to calculate the detection probability analyt-
ically.

3.3 Detector Output Processing

The detector classifies each point of the time series
as a novelty or normal. However, the novelty to be
detected, apnea events, is formed by a sequence of
points. So, in order to use this detector it is proposed
a technique to process the detector output using a slid-
ing window of sizeW.

GivenN detector outputs related toN data points
of the time series,N−W+1 windows are generated.
The first window is formed by the outputs on the in-
terval[1,W], the second on the interval[2,W+1], and
so on:









c(1) c(2) · · · c(W)
c(2) c(3) · · · c(W+1)

...
...

. . .
c(N−W+1) c(N−W+2) · · · c(N)









whereci is the detector output relative to the time se-
ries data point on time instanti andci is equal to 0 if
the null hypothesis is true and 1 otherwise.

Each window is defined as anevent EW(t) and its
1-normis given by:

|EW(t)| =
i=W−1

∑
i=0

c(t + i) (6)

and measures how many novelties are found on the
event.

Assuming that the detector output is an identical
distributed Bernoulli variable,|EW(t)| will be a bino-
mial random variable:

p|EW|(|eW|) =



















(

W

|eW|

)

q|eW(t)|(1−q)n−|eW(t)|

if |eW(t)| = 0· · ·W
0 otherwise

(7)

whereq is the probability of occurrence of a novelty,
and it is given byq = α.

A unilateral confidence interval is built upon
p|EW|(|eW|) and if the value of|EW(t)| is bigger than
this interval, all the points present in this event (win-
dow W) are partially classified as novelties. The

threshold of this confidence interval is calculated find-
ing the smallest integer whose cumulative distribution
function evaluated in this point is equal or exceeds the
value ofα.

After this procedure, each point of the interval
[W,N−W + 1] will have W distinct partial classifi-
cations, since each one of these points appears on
W windows. On the other hand, the first points of
the interval[1,W1] will have i distinct classifications,
where i is its position on the interval. Finally the
points of the interval[N−W+2,N] will have j clas-
sifications, wherej = N− i.

The final result for each point is obtained defining
a percentage of partial novelties classifications that
each point must have to be finally classified as a nov-
elty. This constant is a parameter of the proposed al-
gorithm defined ask and is defined for the interval
(0,1].

3.4 Parameters

The proposed time series novelty detection technique
has the following parameters:

• The significance levelα used to build theAR(p)
prediction intervals and thep|EW|(|eW|) confi-
dence interval.

• The window sizeW used to process the detector
output.

• The percentage of partial novelty classificationsk
that each point must have to be finally classified
as a novelty.

4 EXPERIMENTS

In this section the time series novelty detection tech-
nique is used to detect OSA on Computers in Cardi-
ology sleep apnea dataset.

4.1 Dataset

This dataset contains 70 records varying in length
from almost 7 hours to nearly 10 hours of continuous
digitized ECG signal and reference apnea annotations
for each minute performed by human experts on the
basis of simultaneously recorded respiration and re-
lated signals.

This dataset was used on a competition for devel-
opment and evaluation of ECG-based apnea detectors
(Penzel et al., 2002) and is divided in a learning set
of 35 records and a test set containing the remain-
ing records. All records were previously classified in
three groups: a first group (A) with clear evidence
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Figure 3: Reference and detector resulting annotations for
each minute for the record a05 of the learning set.

of sleep apnea with more than 100 minutes of apnea
events; a second group (B) with some degree of ap-
nea, with 5 to 100 minutes of apnea events; and a third
group (C) of healthy patients with less than 5 minutes
of apnea events.

The competition consisted of two challenges. The
first challenge was to distinguish between healthy pa-
tients (group C) and patients with OSA (group A).
The second challenge was to label each minute of all
records as either containing apnea events or not.

4.2 Methods

For each record, the RR interval time series was ex-
tracted from the ECG signal and preprocessed using
the methodology described on section 2.

Next, 10 minutes of the resulting time series with-
out apnea events where used to estimate theAR(p)
model parameters. The order of the model was set to
p = 17, according to BIC.

Finally the time series novelty detection technique
was used to label each minute of the signal as contain-
ing apnea ( novelty ) or not ( normal ). The parameters
of the algorithm were set toW = 240 points (4 min-
utes),α = 0.01 andk = 1.

The signal is sampled at 1 Hz, so in order to gen-
erate a label for each minute, if a window of 60 points
have more than 10 points classified as novelty, the cor-
responding minute is labeled as apnea.

Figure 3 illustrates the detector resulting annota-
tions and reference annotations for the record a05 of
the learning set.

In order to distinguish between records of healthy
patients and patients with OSA, if the record contain
less than 50 minutes labeled as apnea the patient is
considered to be healthy.

4.3 Results

The technique proposed was able to correctly distin-
guish between healthy and OSA patients on 57 out of
60 records ( 95.00%), 29 out of 30 (96.67%) of the
learning set and 28 out of 30 (93.33%) from the test
set.

When used to label each minute of the records,
it correctly classified 28119 out of 34313 minutes
(81.95%), 14041 out of 17045 of the learning set
(82.38%) and 14078 out of 17268 (81.53%) of the
test set.

5 CONCLUSIONS AND FUTURE
WORK

Experiments shows that the technique proposed can
be used to screen OSA based on RR interval time
series. When compared with the 10 best results of
the Computers in Cardiology magazine competition
(Penzel et al., 2002), for the first challenge, the tech-
nique achieved similar results. For the second chal-
lenge, minute by minute apnea event annotations, the
results were slightly lower than the best results of the
competition. The technique was able to correctly clas-
sify 81.5% of the test set and the top 10 competition’s
techniques correctly classify 84.5% up to 96.2%.

Table 1 compares the results achieved by the
methodology proposed with the results achieved by
Physionet’s apdet tool (Mietus et al., 2003) for the
dataset described later.

Table 1: Comparison results.

Dataset Challenge Proposed Methodology apdet

Train
1 96.7% 86.6%
2 82.0% 82.1%

Test
1 93.3% 93.3%
2 81.5% 84.5%

The main advantage of the technique proposed is
the simplicity. The detection algorithm can be imple-
mented in linear time and space, so it can run on cheap
hardware. However, the main drawback of this tech-
nique is that it needs a dataset without apnea events
in order to train the model. This dataset has to be
achieved for each patient by a specialist or by another
automatic methodology.

In order to use anAR(p) model, the time series
must be stationary, what was assumed for the RR in-
terval time series preprocessed. However this is not
completely true, so this technique can be improved
using an adaptive autoregressive model.
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The time series novelty detection technique pre-
sented is general purpose and can be used for screen-
ing other anomalies. It has already been used to detect
ECG arrhythmias (Lemos et al., 2007).

The novelty detection technique proposed in this
work can be integrated on a physiological remote
monitoring system in order to reduce the amount of
data transmitted. Those systems are used to monitor
chronic patients biomedical signals ( ECG, breathing
frequency, temperature ). At patient’s location, some
sensors are used to read biomedical signals. These
signals are sent through a network to a remote station
where the data is stored and analysed by specialists
(Lin et al., 2004). The novelty detection technique
proposed can be used to filter the data that needs to be
sent to the remote station, where only data classified
as novelty is sent.
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