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FOREWORD 

 

This volume contains the proceedings of the First International Conference on Bio-inspired Systems and 
Signal Processing (BIOSIGNALS 2008), organized by the Institute for Systems and Technologies of 
Information Control and Communication (INSTICC) and the University of Madeira, technically 
co-sponsored by the IEEE Engineering in Medicine and Biology Society (EMB) and in 
cooperation with AAAI. 

The purpose of the International Conference on Bio-inspired Systems and Signal Processing is to bring 
together researchers and practitioners from multiple areas of knowledge, including biology, 
medicine, engineering and other physical sciences, interested in studying and using models and 
techniques inspired from or applied to biological systems. A diversity of signal types can be found 
in this area, including image, audio and other biological sources of information. The analysis and 
use of these signals is a multidisciplinary area including signal processing, pattern recognition and 
computational intelligence techniques, amongst others. 

BIOSIGNALS is one of three integrated conferences that are co-located and constitute the 
International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC). 
The other two component conferences are HEALTHINF (International Conference on Health 
Informatics) and BIODEVICES (International Conference on Biomedical Electronics and 
Devices).  

The joint conference, BIOSTEC, has received 494 paper submissions from more than 40 countries 
in all continents. 65 papers were published and presented as full papers, i.e. completed work (8 
pages/30’ oral presentation), 189 papers reflecting work-in-progress or position papers were 
accepted for short presentation, and another 86 contributions were accepted for poster 
presentation. These numbers, leading to a “full-paper” acceptance ratio below 14% and a total oral 
paper presentations acceptance ratio below 52%, show the intention of preserving a high quality 
forum for the next editions of this conference.  

The conference included a panel and six invited talks delivered by internationally distinguished 
speakers, namely: Sergio Cerutti, Kevin Warwick, F. H. Lopes da Silva, Vipul Kashyap, David Hall 
and Albert Cook. Their participation has positively contributed to reinforce the overall quality of 
the Conference and to provide a deeper understanding of the field of Biomedical Engineering 
Systems and Technologies.  

The proceedings of the conference will be indexed by several major indices including DBLP, 
INSPEC and ISI-Proceedings and it will also be submitted for indexing to EI. A book with the 
revised versions of a short list of selected papers from the conference will be published by 
Springer-Verlag in the new CS book series: Communications in Computer and Information Science 
(CCIS). Additionally, a special issue of the IEEE Transactions on Biomedical Circuits and Systems 
will be edited based on the very best papers of the conference.  
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FOREWORD (CONT.) 

 

The program for this conference required the dedicated effort of many people. Firstly, we must 
thank the authors, whose research and development efforts are recorded here. Secondly, we thank 
the members of the program committee and the additional reviewers for their diligence and expert 
reviewing. Thirdly, we thank the keynote speakers for their invaluable contribution and for taking 
the time to synthesise and prepare their talks. Fourthly, we thank the program chairs, Pedro 
Encarnação and António Veloso, whose collaboration was much appreciated. Finally, special 
thanks to all the members of the INSTICC team, especially Marina Carvalho at the conference 
secretariat, and the local organising committee from the University of Madeira, especially Jorge 
Cardoso and Paulo Sampaio, whose collaboration was fundamental for the success of this 
conference. 

This year, the organization will distribute two paper awards at the conference closing session: the 
best paper award and the best student paper award. The decision was mainly based on the paper 
classifications provided by the Program Committee.  

We wish you all an exciting conference and an unforgettable stay in the lovely island of Madeira. 
We hope to meet you again next year for the 2nd BIOSIGNALS, details of which are available at 
http://www.biosignals.org.  

 

Joaquim Filipe 

INSTICC/Polytechnic Institute of Setúbal 
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MULTIVARIATE, MULTIORGAN  
AND MULTISCALE INTEGRATION OF INFORMATION  

IN BIOMEDICAL SIGNAL PROCESSING 

Sergio Cerutti 
Department of Bioengineering, Polytechnic University, Milano, Italy 

sergio.cerutti@polimi.it 

Abstract: Biomedical signals carry important information about the behavior of the living systems under studying. A 
proper processing of these signals allows in many instances to obtain useful physiological and clinical 
information. Many advanced algorithms of signal and image processing have recently been introduced in 
such an advanced area of research and therefore important selective information is obtainable even in 
presence of strong sources of noise or low signal/noise ratio. Traditional stationary signal analysis together 
with innovative methods of investigation of dynamical properties of biological systems and signals in 
second-order or in higher-order approaches (i.e., in time-frequency, time-variant and time-scale analysis, as 
well as in non linear dynamics analysis) provide a wide variety of even complex processing tools for 
information enhancement procedures. Another important innovative aspect is also remarked: the integration 
between signal processing and modeling of the relevant biological systems is capable to directly attribute 
patho-physiological meaning to the parameters obtained from the processing and viceversa the modeling 
fitting could certainly be improved by taking into account the results from signal processing procedure. 
Such an integration process could comprehend parameters and observations detected at different scales, at 
different organs and with different modalities. This approach is reputed promising for obtaining an olistic 
view of the patient rather than an atomistic one which considers the whole as a simple sum of the single 
component parts. 

BRIEF BIOGRAPHY 

Sergio Cerutti is Professor in Biomedical Signal and 
Data Processing at the Department of 
Bioengineering of the Polytechnic University in 
Milano, Italy. In the period 2000-2006 he has been 
the Chairman of the same Department. His research 
interests are mainly in the following topics: 
biomedical signal processing (ECG, blood pressure 
signal and respiration, cardiovascular variability 
signals, EEG and evoked potentials), neurosciences 
and cardiovascular modelling. In his research 
activity he has put emphasis on the integration of 
information at different modalities, at different 
sources and at different scales in various 
physiological systems. Since 1983 he has taught a 
course at a graduate and a doc level on Biomedical 
Signal Processing and Modelling at Engineering 
Faculties (Milano and Roma) as well as at 
Specialisation Schools of Medical Faculties (Milano 
and Roma). He has been Elected Member of IEEE-
EMBS AdCom (Region 8) in the period 1993-1996. 

He is actually Fellow Member of IEEE and of 
EAMBES and Associate Editor of IEEE Trans 
BME. He is a member of the Steering Committee of 
the IEEE-EMBS Summer School on Biomedical 
Signal Processing: he was the local organiser of four 
Summer Schools held in Siena. He has been Visiting 
Professor at Harvard-MIT Division Health Science 
and Technology, Boston, USA for an overall period 
of 1 year. He is the Author of more than 400 
international scientific contributions (more than 180 
on indexed scientific journals). 

1 INTRODUCTION 

Biomedical signals and imaging carry important 
information about the behavior of the living systems 
under studying. A proper processing of these signals 
and images allow in many instances to obtain useful 
physiological and clinical information. Actually, 
many advanced algorithms of digital signal and 
image processing are at disposal and therefore 
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important selective information is now obtainable 
even in presence of strong sources of noise or low 
signal/noise ratio. In most of the cases it is not sure 
whether such sources might derive even by complex 
and unknown interactions with other biological 
systems whose implications could be important from 
the physiological or clinical standpoints. Traditional 
stationary signal analysis together with innovative 
methods of investigation of dynamical properties of 
biological systems and signals in second-order or in 
higher-order approaches (i.e., in time-frequency, 
time-variant and time-scale analysis, as well as in 
non linear dynamics analysis) provide a wide variety 
of even complex processing tools for information 
enhancement procedures in the challenging studying 
of a better explanation of many physiological and 
clinical phenomena.    

2 INTEGRATION BETWEEN 
SIGNAL PROCESSING AND 
PHYSIOLOGICAL MODELING 

Another important innovative aspect to improve the 
information content from biomedical data is 
constituted by the integration between signal 
processing and modeling of the relevant biological 
systems, thus directly attributing patho-physiological 
meaning to the model parameters obtained from the 
processing; and, viceversa, the modeling fitting 
could certainly be improved by taking into account 
the results from signal/image processing procedures. 

3 MONOVARIATE AND 
MULTIVARIATE SIGNAL 
PROCESSING 

Other kinds of integration may be fulfilled, taking 
into account more signals from the same system in a 
multivariate way (i.e. from a single-lead vs 
multichannel EEG or ECG analysis) and combining 
also the action of different systems such as 
autonomic nervous system, cardiovascular and 
respiratory systems, etc. Sleep is a formidable 
example of multiorgan involvement in both 
physiological (sleep staging and correlation with 
cardiorespiratory system) and pathological 
conditions (sleep apnea, sleep deprivation, restless 
leg syndrome and so on). 

4 MULTISCALE APPROACH 

Further, modern rehabilition techniques (motor and 
/or cognitive) make use actually of objective indices 
obtained from the patient’s biosignals and images to 
better “personalize” rehabilitation protocols (from 
EEG, EP’s, ERP’s, MRI, fMRI, NIRS, etc). In 
neurosciences such an integration process could 
comprehend parameters and observations detected 
also at different scales, from genome and proteome 
up to the single organ and to the entire body 
compartment. Examples will be described where an 
animal model (murine model) is developed by 
alterating a gene putative to a determined patholopy 
(i.e.epilepsy) and changes in EEG signals are studied 
(spike/wave occurrences and modifications in signal 
power bands). In clinical applications, it is worth 
mentioning the important data fusion which could be 
fulfilled by the integration of simultaneous EEG 
recordings and fMRI in some epileptic patients 
during inter-critical or critical events.  

Finally, another important integration can be 
obtained along different observation scales. 
Traditionally, biological signal analysis is carried 
out at the level of organ or system to be investigated 
(i.e., ECG or EEG signal, arterial blood pressure, 
respiration and so on). It is very clear the advantage 
of correlating this information with that one obtained 
about the same system, but at different scale level, 
i.e. at cellular level or even at subcellular level (for 
example, analyzing possible genetic correlates or 
typical patterns of proteins or even DNA/RNA 
sequences). Biomedical engineering as a dedicated 
discipline may strongly contribute to this multiscale 
information processing 

Along this approach line, even the long-QT 
syndrome, can be efficiently studied at different 
scale level: a mutation in a portion of gene SCN5A 
which presents a phenotype compatible to long-QT3 
type, is known to produce an altered function of Na+ 
channels. Through a proper model which describes 
the functioning of ventricular cells is possible to 
evidence that this alteration may induce a 
prolongation of QT duration, as detected on ECG 
tracing. This event is further correlated with an 
increased risk of ventricular tachyarrhythmias. 
Hence, the path is completed: from the genetic 
expression up to the disease manifestation (Clancy  
and Rudy, 1999), (Priori ey al., 2003). Many 
different signal processing and modeling are 
involved in this paradigmatic example: an 
integration along the various scales of observation 
may undoubtedly contribute to a better 
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understanding of the complex pathophysiological 
correlates. 
A great effort is on course nowadays for creating 
very large databases and networking of models and 
technologies for integrating such information 
(Physiome project (Hunter et al., 2002), (Rudy, 
2000) to be connected with Genome and Proteome 
projects and Virtual Physiological Human project – 
VPH – which  is inserted into the activities of the 7th 
Framework Programme of EU). 
Other examples are constituted by the studying of 
the profile of expressed proteins in 2D-gel supports, 
or after mass-spectrometry analysis, relative to a 
variety of pathologies (i.e. epilepsy, peripheral 
neuropathies or Amyotrophic Lateral Sclerosis 
(ALS), or in oncological studies) thus singling out 
the set of proteins which present a correlate with the 
pathology in respect to the control group.  
This overall approach is reputed promising for 
obtaining an olistic view of the patient rather than an 
atomistic one which considers the whole as a simple 
sum of the single component parts. 
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OUTTHINKING AND ENHANCING BIOLOGICAL BRAINS 

Kevin Warwick  
University of Reading, UK 

Keywords: Brain-Computer Interface, Biological systems, Implant technology, Feedback control. 

Abstract: In this paper an attempt has been made to take a look at how the use of implant and electrode technology 
can now be employed to create biological brains for robots, to enable human enhancement and to diminish 
the effects of certain neural illnesses. In all cases the end result is to increase the range of abilities of the 
recipients. An indication is given of a number of areas in which such technology has already had a profound 
effect, a key element being the need for a clear interface linking the human brain directly with a computer. 
An overview of some of the latest developments in the field of Brain to Computer Interfacing is also given 
in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that 
have been and are being undertaken and reported on, as opposed to those speculated, simulated or proposed 
as future projects. Related areas are discussed briefly only in the context of their contribution to the studies 
being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is 
made directly with the cerebral cortex and/or nervous system.  
Tests and experimentation which do not involve human subjects are invariably carried out a priori to 
indicate the eventual possibilities before human subjects are themselves involved. Some of the more 
pertinent animal studies from this area are discussed including our own involving neural growth. The paper 
goes on to describe human experimentation, in which neural implants have linked the human nervous 
system bi-directionally with technology and the internet. A view is taken as to the prospects for the future 
for this implantable computing in terms of both therapy and enhancement. 
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1 INTRODUCTION 

Research is being carried out in which biological 
signals of some form are measured, are acted upon 
by some appropriate signal processing technique and 
are then employed either to control a device or as an 
input to some feedback mechanism (Penny et al., 
2000), (Roitberg, 2005). In many cases neural 
signals are employed, for example 
Electroencephalogram (EEG) signals can be 
measured externally to the body, using externally 
adhered electrodes on the scalp (Wolpaw  et al., 
1990) and can then employed as a control input. 
Most likely this is because the procedure is 
relatively simple from a research point of view and 
is not particularly taxing on the researchers 
involved. However, reliable interpretation of EEG 
data is extremely complex – partly due to both the 
compound nature of the multi-neuronal signals being 
measured and the difficulties in recording such 
highly attenuated  

In the last few years interest has also grown in the 
use of real-time functional Magnetic Resonance 
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Imaging (fMRI) for applications such as computer 
cursor control. This typically involves an individual 
activating their brain in different areas by 
reproducible thoughts (Warwick, 2007) or by 
recreating events (Pan et al., 2007). Alternatively 
fMRI and EEG technologies can be combined so 
that individuals can learn how to regulate Slow 
Cortical Potentials (SCPs) in order to activate 
external devices (Hinterberger et al., 2005). Once 
again the technology is external to the body. It is 
though relatively expensive and cumbersome.  

It is worth noting that external monitoring of neural 
signals, by means of either EEG analysis or indeed 
fMRI, leaves much to be desired. Almost surely the 
measuring technique considerably restricts the user’s 
mobility and, as is especially the case with fMRI, the 
situation far from presents a natural or comfortable 
setting. Such systems also tend to be relatively slow, 
partly because of the nature of recordings via the 
indirect connection, but also because it takes time 
for the individual themselves to actually initiate 
changes in the signal. As a result of this, 
distractions, both conscious and sub-conscious, can 
result in false indicators thus preventing the use of 
such techniques for safety critical, highly dynamic 
and, to be honest, most realistic practical 
applications. Despite this, the method can enable 
some individuals who otherwise have extremely 
limited communication abilities to operate some 
local technology in their environment, and, in any 
case, it can serve as a test bed for a more direct and 
useful connection.     

The definition of what constitutes a Brain-Computer 
Interface (BCI) is extremely broad. A standard 
keyboard could be so regarded. It is clear however 
that various wearable computer techniques and 
virtual reality systems, e.g. glasses containing a 
miniature computer screen for a remote visual 
experience (Mann, 1997), are felt by some 
researchers to fit this category. Although it is 
acknowledged that certain body conditions, such as 
stress or alertness, can be monitored in this way, the 
focus of this paper is on bidirectional BCIs and is 
more concerned with a direct connection between a 
biological brain and technology, and ultimately a 
human and technology.  

2 IN VIVO STUDIES  

Non-human animal studies can be considered to be a 
pointer for what is potentially achievable with 
humans in the future. As an example, in one 

particular animal study the extracted brain of a 
lamprey, retained in a solution, was used to control 
the movement of a small wheeled robot to which it 
was attached (Reger et al., 2000). The lamprey 
innately exhibits a response to light reflections on 
the surface of water by trying to align its body with 
respect to the light source. When connected into the 
robot body, this response was utilised by 
surrounding the robot with a ring of lights. As 
different lights were switched on and off, so the 
robot moved around its corral, trying to position 
itself appropriately.  

Meanwhile in studies involving rats, a group of rats 
were taught to pull a lever in order to receive a 
suitable reward. Electrodes were then chronically 
implanted into the rats’ brains such that the reward 
was proffered when each rat thought (one supposes) 
about pulling the lever, but before any actual 
physical movement occurred. Over a period of days, 
four of the six rats involved in the experiment 
learned that they did not in fact need to initiate any 
action in order to obtain a reward; merely thinking 
about it was sufficient (Chapin, 2004). 

In another series of experiments, implants consisting 
of microelectrode arrays have been positioned into 
the frontal and parietal lobes of the brains of two 
female rhesus macaque monkeys. Each monkey 
learned firstly how to control a remote robot arm 
through arm movements coupled with visual 
feedback, and it is reported that ultimately one of the 
monkeys was able to control the arm using only 
brain derived neural signals with no associated 
physical movement. Notably, control signals for the 
reaching and grasping movements of the robotic arm 
were derived from the same set of implanted 
electrodes (Carmena et al., 2003), (Nicolelis et al., 
2000). 
 
Such promising results from animal studies have 
given the drive towards human applications a new 
impetus. 

3 ROBOT WITH A BIOLOGICAL 
BRAIN 

Human concepts of a robot may involve a little 
wheeled device, perhaps a metallic head that looks 
roughly human-like or possibly a biped walking 
robot. Whatever the physical appearance our idea 
tends to be that the robot might be operated remotely 
by a human, or is being controlled by a simple 
programme, or even may be able to learn with a 
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microprocessor/computer as its brain. We regard a 
robot as a machine. 
In a present project neurons are being cultured in a 
laboratory in Reading University to grow on and 
interact with a flat multi-electrode array. The neural 
culture, a biological brain, can be electronically 
stimulated via the electrodes and its trained response 
can be witnessed.  

The project now involves networking the biological 
brain to be part of a robot device. In the first 
instance this will be a small wheeled robot. The 
input (sensory) signals in this case will be only the 
signals obtained from the wheeled robot’s ultrasonic 
sensors. The output from the biological brain will be 
used to drive the robot around. The goal of the 
project initially will be to train the brain to drive the 
robot forwards without bumping into any object. 
Secondly, a separate biological brain will be grown 
to be the thinking process within a robot head (called 
Morgui) which houses 5 separate sensory inputs. 

What this means is that the brain of these robots will 
shortly be a biological brain, not a computer. All the 
brain will know is what it perceives from the robot 
body and all it will do will be to drive the robot body 
around or control the robot head respectively. The 
biological brain will, to all intents and purposes, be 
the brain of the robot. It will have no life, no 
existence outside its robotic embodiment. 

Clearly this research alters our concept of what a 
robot is, particularly in terms of ethical and 
responsibility issues. If a role of animal research is 
to open up possibilities for future human trials, then 
in this case the research could well be opening a 
window on the ultimate possibility of human 
neurons being employed in a robot body. All the 
‘human’ brain would know would be its life as a 
robot.  

4 HUMAN APPLICATION  

At the present time the general class of Brain-
Computer Interfaces (BCIs) for humans, of one form 
or another, have been specifically developed for a 
range of applications including military weapon and 
drive systems, personnel monitoring and for games 
consoles. However, by far the largest driving force 
for BCI research to date has been the requirement 
for new therapeutic devices such as neural 
prostheses.  

The most ubiquitous sensory neural prosthesis in 
humans is by far the cochlea implant (Fin and 

LoPresti, 2003). Here the destruction of inner ear 
hair cells and the related degeneration of auditory 
nerve fibres results in sensorineural hearing loss. As 
such, the prosthesis is designed to elicit patterns of 
neural activity via an array of electrodes implanted 
into the patient’s cochlea, the result being to mimic 
the workings of a normal ear over a range of 
frequencies. It is claimed that some current devices 
restore up to approximately 80% of normal hearing, 
although for most recipients it is sufficient that they 
can communicate to a respectable degree without the 
need for any form of lip reading. The typically 
modest success of cochlea implantation is related to 
the ratio of stimulation channels to active sensor 
channels in a fully functioning ear. Recent devices 
consist of up to 32 channels, whilst the human ear 
utilises upwards of 30,000 fibres on the auditory 
nerve. There are now reportedly well over 10,000 of 
these prostheses in regular operation.   
 
Studies investigating the integration of technology 
with the human central nervous system have varied 
from merely diagnostic to the amelioration of 
symptoms (Warwick and Gasson, 2004). In the last 
few years some of the most widely reported research 
involving human subjects is that based on the 
development of an artificial retina (Rizzo, 2001). 
Here, small electrode arrays have been successfully 
implanted into a functioning optic nerve. With direct 
stimulation of the nerve it has been possible for the 
otherwise blind recipient to perceive simple shapes 
and letters. The difficulties with restoring sight are 
though several orders of magnitude greater than 
those of the cochlea implant simply because the 
retina contains millions of photodetectors that need 
to be artificially replicated. An alternative is to 
bypass the optic nerve altogether and use cortical 
surface or intracortical stimulation to generate 
phosphenes (Dobelle, 2000).  
 
Most invasive BCIs monitor multi-neuronal 
intracortical action potentials, requiring an interface 
which includes sufficient processing in order to 
relate recorded neural signals with movement intent. 
Problems incurred are the need to position electrodes 
as close as possible to the source of signals, the need 
for long term reliability and stability of interface in 
both a mechanical and a chemical sense, and 
adaptivity in signal processing to deal with 
technological and neuronal time dependence. 
However, in recent years a number of different 
collective assemblies of microelectrodes have been 
successfully employed both for recording and 
stimulating neural activity. Although themselves of 
small scale, nevertheless high density 
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connectors/transmitters are required to shift the 
signals to/from significant signal processing and 
conditioning devices and also for onward/receptive 
signal transmission.  
 
Some research has focussed on patients who have 
suffered a stroke resulting in paralysis. The most 
relevant to this paper is the use of a ‘3rd generation’ 
brain implant which enables a physically incapable 
brainstem stroke victim to control the movement of 
a cursor on a computer screen (Kennedy, 2000), 
(Kennedy, 2004). Functional Magnetic Resonance 
Imaging (fMRI) of the subject’s brain was initially 
carried out to localise where activity was most 
pronounced whilst the subject was thinking about 
various movements. A hollow glass electrode cone 
containing two gold wires and a neurotrophic 
compound (giving it the title ‘Neurotrophic 
Electrode’) was then implanted into the motor 
cortex, in the area of maximum activity. The 
neurotrophic compound encouraged nerve tissue to 
grow into the glass cone such that when the patient 
thought about moving his hand, the subsequent 
activity was detected by the electrode, then 
amplified and transmitted by a radio link to a 
computer where the signals were translated into 
control signals to bring about movement of the 
cursor. With two electrodes in place, the subject 
successfully learnt to move the cursor around by 
thinking about different movements. Eventually the 
patient reached a level of control where no 
abstraction was needed – to move the cursor he 
simply thought about moving the cursor.  Notably, 
during the period that the implant was in place, no 
rejection of the implant was observed; indeed the 
neurons growing into the electrode allowed for 
stable long-term recordings.  
 
Electronic neural stimulation has proved to be 
extremely successful in other areas, including 
applications such as the treatment of Parkinson’s 
disease symptoms. With Parkinson’s Disease 
diminished levels of the neurotransmitter dopamine 
cause over-activation in the ventral posterior nucleus 
and the subthalamic nucleus, resulting in slowness, 
stiffness, gait difficulties and hand tremors. By 
implanting electrodes into the subthalamic nucleus 
to provide a constant stimulation pulse, the over 
activity can be inhibited allowing the patient, to all 
external intents and purposes, to function normally 
(Pinter et al., 1999).  

5 BRAIN WITHIN A BRAIN 

Ongoing research, funded by the UK Medical 
Research Council, is investigating how the onset of 
tremors can be accurately predicted such that merely 
a stimulation current burst is required rather than a 
constant pulsing (Gasson et al., 2005: pp.16/1-16/4). 
This has implications for battery inter-recharge 
periods as well as limiting the extent of in-body 
intrusive signalling. The deep brain stimulator can 
be used to collect local field potential (LFP) signals 
generated by the neurons around the deep brain 
electrodes (Gasson et al., 2005: pp.16/1-16/4). 
Determining the onset of events can be investigated 
by using fourier transforms to transfer the time 
based signal to a frequency based spectrogram to 
determine the change in frequency at the critical 
time period. However, in addition to that, the 
frequency changes in the period of time immediately 
prior to the tremor occurrence can give important 
information. 
 
Fig.1 shows the results of an initial attempt to train 
an artificial neural network to indicate not only that 
a Parkinsonian tremor is present but also that one is 
very likely to occur in the near future. The aim of 
this research is that, once a reliable predictor has 
been obtained, the stimulating pulsing will only be 
enacted when a tremor is predicted, in order to stop 
the actual physical tremor occurring before it even 
starts in the first place.  
 
The bottom trace in Fig.1 shows emg (muscular) 
signals, measured externally, associated with 
movement due to the tremors. It can be seen that the 
tremors in this incident actually start at around the 
45 to 50 second point.  The trace just above this 
indicates the corresponding electrical data measured 
as deep brain Local Field Potentials in the Sub-
Thalamic Nucleus of the patient involved. It can be 
witnessed how, in this case, the electrical data takes 
on a different form (in terms of variance at least) at 
around the 45 to 50 second point. The four top plots 
meanwhile indicate the outputs from 4 differently 
structured artificial neural networks, based on multi-
layer perceptrons with different numbers of neurons 
in the hidden (middle) layer.  
 
It can be seen how, for each network, the output of 
the network goes high (logic 1) at the 45 to 50 
second point, to indicate the presence of a 
Parkinsonian tremor. This is all well and good, what 
is important however is that the output of the 
networks also briefly goes high around the 30 
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Figure 1: Time plot of the onset of a Parkisonian tremor incident with corresponding artificial neural network indicators. 

second point and this can be seen as an indication of 
the fact that a tremor will shortly occur. Ongoing 
research is involved with selection of the type and 
number of inputs to the network, presently these 
being based on the energy spectrum in different 
frequency ranges. The networks are also being tested 
on considerable amounts of resting data, that is long 
periods of brain activity where no tremors at all 
actually occur in patients. Clearly the aim is that a 
network will not give false predictions of tremors. 
 

In fact false positive predictions are not so much of a 
critical problem. The end result with a false positive 
is that a stimulation may occur when it is not strictly 
necessary. In any event no actual tremor would 
occur, which is indeed a good outcome, however 
unnecessary energy would have been used – in fact 
if numerous false predictions occurred the intelligent 
stimulator would tend toward the present ‘blind’ 
stimulator. Effectively the occasional false positive 
prediction is perhaps not a problem, unless it became 
a regular occurrence. The good news is that results 
show that the network can be readily tuned to avoid 
false positives anyway. 

6 GENERAL IMPLANT STUDIES 

Some of the most impressive human research to date 
has been carried out using the microelectrode array, 
shown in Figure 2. The individual electrodes are 

only 1.5mm long and taper to a tip diameter of less 
than 90 microns. Although a number of trials not 
using humans as a test subject have occurred 
(Branner and Normann, 2000), human tests are at 
present limited to two studies. In the second of these 
the array has been employed in a recording only role 
(Donoghue et al., 2002), (Donoghue et al., 2004), 
(Friehs et al., 2004), most notably recently as part of 
the ‘Braingate’ system. Essentially activity from a 
few neurons monitored by the array electrodes is 
decoded into a signal to direct cursor movement. 
This has enabled an individual to position a cursor 
on a computer screen, using neural signals for 
control combined with visual feedback. The first use 
of the microelectrode array (Figure 2) will be 
discussed in the following section as this has 
considerably broader implications which extend the 
capabilities of the human recipient. 
 
A key selection point at the present time are what 
type of implant to employ, as several different 
possibilities exist, ranging from single electrode 
devices to multielectrode needles which contain 
electrode points at different depths to multielectrode 
arrays which either contain a number of electrodes 
which penetrate to the same depth (as in Figure 2) or 
are positioned in a banked/sloped arrangement. A 
further key area of consideration is the exact 
positioning of a BCI. In particular certain areas of 
the brain are, apparently, only really useful for 
monitoring purposes whilst others are more useful 
for stimulation. 
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Actually deriving a reliable command signal from a 
collection of captured neural signals is not 
necessarily a simple task, partly due to the 
complexity of signals recorded and partly due to 
time constraints in dealing with the data. In some 
cases however it can be relatively easy to look for 
and obtain a system response to certain anticipated 
neural signals – especially when an individual has 
trained extensively with the system. In fact neural 
signal shape, magnitude and waveform with respect 
to time are considerably different to the other signals 
that it is possible to measure in this situation. 
 

If a greater understanding is required of neural 
signals recorded, before significant progress can be 
made, then this will almost surely present a major 
problem. This is especially true if a number of 
simultaneous channels are being employed, each 
requiring a rate of digitization of (most likely) 
greater than 20KHz in the presence of unwanted 
noise. For real time use this data will also need to be 
processed within a few milliseconds (100 
milliseconds at most). Further, although many 
studies have looked into the extraction of command 
signals (indicating intent) from measured values, it 
is clear that the range of neural activity is 
considerable. Even in the motor area not only are 
motor signals present but so too are sensory, 
cognitive, perceptual along with other signals, the 
exact purpose of which is not clear – merely 
classifying them as noise is not really sufficient and 
indeed can be problematic when they are repeated 
and apparently linked in some way to activity. 
 

It is worth stressing here that the human brain and 
spinal cord are linking structures, the functioning of 
which can be changed through electronic stimulation 
such as that provided via an electrode arrangement. 
This type of technology therefore offers a variety of 
therapeutic possibilities. In particular the use of 
implanted systems when applied to spinal cord 
injured patients, in whom nerve function is 
disordered, was described in (Warwick, 2004) as 
having the following potential benefits (among 
others):     
 

1. Re-education of the brain and spinal cord 
through repeated stimulation patterns 

2. Prevention of spinal deformity 
3. Treatment of intractable neurogenic and other 

pain 
4. Assisting bladder emptying 
5. Improving bowel function 
6. Treatment of spasticity 
7. Improvement of respiratory function – 

assisting coughing and breathing 

8. Reduction of cardiovascular maleffects 
9. Prevention of pressure sores – possibly 

providing sensory feedback from denervated 
areas 

10. Improvement and restoration of sexual 
function 

11. Improved mobility 
12. Improved capability in daily living, especially 

through improved hand, upper limb and 
truncal control 

 

Sensate prosthetics is another growing application 
area of neural interface technology, whereby a 
measure of sensation is restored using signals from 
small tactile transducers distributed within an 
artificial limb (Fin and LoPresti, 2003). The 
transducer output can be employed to stimulate the 
sensory axons remaining in the residual limb which 
are naturally associated with a sensation. This more 
closely replicates stimuli in the original sensory 
modality, rather than forming a type of feedback 
using neural pathways not normally associated with 
the information being fed back. As a result it is 
supposed that the user can employ lower level 
reflexes that exist within the central nervous system, 
making control of the prosthesis more subconscious. 
 

One final noteworthy therapeutic procedure is 
Functional Electrical Stimulation (FES), although it 
is debatable if it can be truly referred to as a BCI, 
however it aims to bring about muscular excitation, 
thereby enabling the controlled movement of limbs. 
FES has been shown to be successful for artificial 
hand grasping and release and for standing and 
walking in quadriplegic and paraplegic individuals 
as well as restoring some basic body functions such 
as bladder and bowel control (Grill and Kirsch, 
2000). It must be noted though that controlling and 
coordinating concerted muscle movements for 
complex and generic tasks such as picking up an 
arbitrary object is proving to be a difficult, if not 
insurmountable, challenge. 
 

In the cases described in which human subjects are 
involved, the aim on each occasion is to either 
restore functions since the individual has a physical 
problem of some kind or it is to give a new ability to 
an individual who has very limited motor abilities. 
In this latter case whilst the procedure can be 
regarded as having a therapeutic purpose, it is quite 
possible to provide an individual with an ability that 
they have in fact never experienced before. On the 
one hand it may be that whilst the individual in 
question has never previously experienced such an 
ability, some or most other humans have – in this 
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case it could be considered that the therapy is 
bringing the individual more in line with the “norm” 
of human abilities. 
It is though also potentially possible to give extra 
capabilities to a human, to enable them to achieve a 
broader range of skills – to go beyond the “norm”. 
Apart from the, potentially insurmountable, problem 
of universally deciding on what constitutes the 
“norm”, extending the concept of therapy to include 
endowing an individual with abilities that allow 
them to do things that a perfectly able human cannot 
do raises enormous ethical issues. Indeed it could be 
considered that a cochlea implant with a wider 
frequency response range does just that for an 
individual or rather an individual who can control 
the curser on a computer screen directly from neural 
signals falls into this category. But the possibilities 
of enhancement are enormous. In the next section 
we consider how far things could be taken, by 
referring to relevant experimental results. 

7 HUMAN ENHANCEMENT 

The interface through which a user interacts with 
technology provides a distinct layer of separation 
between what the user wants the machine to do, and 
what it actually does. This separation imposes a 
considerable cognitive load upon the user that is 
directly proportional to the level of difficulty 
experienced. The main issue it appears is interfacing 
the human motor and sensory channels with the 
technology. One solution is to avoid this 
sensorimotor bottleneck altogether by interfacing 
directly with the human nervous system. It is 
certainly worthwhile considering what may 

potentially be gained from such an invasive 
undertaking.  
Advantages of machine intelligence are for example 
rapid and highly accurate mathematical abilities in 
terms of ‘number crunching’, a high speed, almost 
infinite, internet knowledge base, and accurate long 
term memory. Additionally, it is widely 
acknowledged that humans have only five senses 
that we know of, whereas machines offer a view of 
the world which includes infra-red, ultraviolet and 
ultrasonic. Humans are also limited in that they can 
only visualise and understand the world around them 
in terms of a limited dimensional perception, 
whereas computers are quite capable of dealing with 
hundreds of dimensions. Also, the human means of 
communication, essentially transferring an electro-
chemical signal from one brain to another via an 
intermediate, often mechanical medium, is 
extremely poor, particularly in terms of speed, 
power and precision. It is clear that connecting a 
human brain, by means of an implant, with a 
computer network could in the long term open up 
the distinct advantages of machine intelligence, 
communication and sensing abilities to the 
implanted individual. 

As a step towards this more broader concept of 
human-machine symbiosis, in the first study of its 
kind, the microelectrode array (as shown in Figure 
2) was implanted into the median nerve fibres of a 
healthy human individual (myself) in order to test 
bidirectional functionality in a series of experiments. 
A stimulation current direct onto the nervous system 
allowed information to be sent to the user, while 
control signals were decoded from neural activity in 
the region of the electrodes (Gasson et al., 2005:pp  
365-375), (Warwick et al., 2003).  

 
Figure 2: A 100 electrode, 4X4mm Microelectrode Array, shown on a UK 1 pence piece for scale. 
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In this way a number of experimental trials were 
successfully concluded (Warwick et al., 2004), 
(Warwick et al., 2005): In particular: 

1. Extra sensory (ultrasonic) input was 
successfully implemented and made use of.  

2. Extended control of a robotic hand across the 
internet was achieved, with feedback from the 
robotic fingertips being sent back as neural 
stimulation to give a sense of force being 
applied to an object (this was achieved 
between New York (USA) and Reading(UK)) 

3. A primitive form of telegraphic 
communication directly between the nervous 
systems of two humans was performed.  

4. A wheelchair was successfully driven around 
by means of neural signals.  

5. The colour of jewellery was changed as a 
result of neural signals – as indeed was the 
behaviour of a collection of small robots.  

In each of the above cases it could be regarded that 
the trial proved useful for purely therapeutic reasons, 
e.g. the ultrasonic sense could be useful for an 
individual who is blind or the telegraphic 
communication could be very useful for those with 
certain forms of Motor Neurone Disease. However 
each trial can also be seen as a potential form of 
augmentation or enhancement for an individual. The 
question then arises as to how far should things be 
taken? Clearly enhancement by means of BCIs 
opens up all sorts of new technological and 
intellectual opportunities, however it also throws up 
a raft of different ethical considerations that need to 
be addressed directly.  

8 ON STIMULATION 

After extensive experimentation it was found that 
injecting currents below 80µA onto the median 
nerve fibers had little perceivable effect. Between 
80µA and 100µA all the functional electrodes were 
able to produce a recognizable stimulation, with an 
applied voltage of 40 to 50 volts, dependant on the 
series electrode impedance. Increasing the current 
above 100µA had no apparent additional effect; the 
stimulation switching mechanisms in the median 
nerve fascicle exhibited a non-linear thresholding 
characteristic. 
 

During this experimental phase, it was pseudo 
randomly decided whether a stimulation pulse was 
applied or not. The volunteer (myself), wearing a 
blindfold, was unaware of whether a pulse had been 
applied or not, other than by means of its effect in 
terms of neural stimulation. The user’s accuracy in 
distinguishing between an actual pulse and no pulse 
at a range of amplitudes is shown in Figure 3. 
 

In all subsequent successful trials, the current was 
applied as a bi-phasic signal with pulse duration of 
200 µsec and an inter-phase delay of 100 µsec. A 
typical stimulation waveform of constant current 
being applied to one of the MEA’s implanted 
electrodes is shown in Fig 4. 

It was, in this way, possible to create alternative 
sensations via this new input route to the nervous 
system. Of the 5 enhancement features mentioned in 
the previous section, this one will be described, as an 
example, in further detail. Background information 
on the other enhancements can be found in a number 
of references, e.g. (Gasson et al., 2005:pp  365-375), 
(Warwick et al., 2003), (Warwick et al., 2004), 
(Warwick and Gasson, 2004). 
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Figure 4: Voltage profile during one bi-phasic stimulation pulse cycle with a constant current of 80µA. 

It must be reported that it took 6 weeks for my brain 
to repetitively recognize the stimulating signals 
accurately. This time period can be due to a number 
of contributing factors:  

(a) The team had to learn which signals (what 
amplitude, frequency etc.) would be best in 
order to bring about a recognizable 
stimulation. 

(b) The recipient’s brain had to learn to 
recognize the new signals it was receiving. 

(c) The bond between the recipient’s nervous 
system and the implant was physically 
changing (becoming stronger).  

9 EXTRA SENSORY 
EXPERIMENT 

An experiment was set up to determine if the human 
brain is able to understand and successfully operate 
with sensory information to which it had not 
previously been exposed. Whilst it is quite possible 
to feed in such sensory information via a normal 
human sensory route, e.g. electromagnetic radar or 
infra-red signals are converted to visual, what we 
were interested in was feeding such signals directly 
onto the human nervous system, thereby bi-passing 
the normal human sensory input. 

Ultrasonic sensors were fitted to the rim of a 
baseball cap (see Figure 5) and the output from these 
sensors, in the form of a proportional count, was 
employed to bring about a direct stimulation of the 
nervous system.  Hence when no objects were in the 
vicinity of the sensors, no stimulation occurred, and 
as an object moved close by so the rate of 
stimulation pulses being applied increased in a linear 
fashion up to a pre-selected maximum rate. No 
increase in stimulation occurred when an object 
moved closer than 10cm to the sensors. 

The ultrasonic sensors were open type piezoelectric 
ceramic transducers with conical metal resonators 
and operated at 40 KHz. These were used in a pair, 
one for transmit and one for receive, to give 
maximum sensitivity for small and distant objects. 
The most useful range for the experimentation was 
found to be 2 – 3m, this being also dependent on the 
size of object. A simple microcontroller was 
programmed to perform the echo ranging on the pair 
of transducers, and provide the range to the first 
detectable object only. This was translated into a 
stimulation pulse train, which operated on a single 
pin of the electrode array. Pins on the array had been 
tested for their suitability for stimulation by the 
earlier experimentation in which the recipient 
identified the presence or absence of stimulation 
pulse trains at various amplitudes and repetition 
frequencies. 
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Figure 5: Experimentation and testing of the ultrasonic baseball cap. 

It was found that very little learning was required for 
the new ultrasonic sense to be used effectively and 
successfully – merely a matter of 5/6 minutes. This 
said it must be remembered that it had already taken 
several weeks for the recipient’s brain to 
successfully, accurately recognize the current signals 
being injected.   
As a result, in a witnessed experiment, the recipient, 
whilst wearing a blindfold, was able to move around 
successfully within a cluttered laboratory 
environment, albeit at a slower than normal walking 
pace. The sensory input was “felt” as a new form of 
sensory input (not as touch or movement) in the 
sense that the brain made a direct link between the 
signals being witnessed and the fact that these 
corresponded in a linear fashion to a nearby object.  

10 CONCLUSIONS 

External input-output interfaces with human and 
animal brains have been studied for many years. 
These are sometimes referred to as Brain-Computer 
Interfaces (BCIs) even though the interface may be 
external to the (human) body and its sensorimotor 
mechanism. In this paper an attempt has been made 
to put such systems in perspective. Emphasis has 
been placed on such interfaces that can be obtained 

by means of implanted devices through invasive 
surgery and actual direct neural connections. In 
particular a number of trials in this area have clearly 
shown the possibilities of monitoring, stimulating 
and enhancing brain functioning. 
Although there is no distinct dividing line it is quite 
possible as far as humans are concerned to 
investigate BCIs in terms of those employed for 
direct therapeutic means and those which can have 
an enhanced role to play. It is clear that the 
interaction of electronic signals with the human 
brain can cause the brain to operate in a distinctly 
different manner. Such is the situation with the 
stimulator implants that are successfully used to 
counteract, purely electronically, the tremor effects 
associated with Parkinson’s disease. Such 
technology can though potentially be employed to 
modify the normal functioning of the human brain 
and nervous system in a number of different ways. 
The same stimulator, with slightly different 
positioning, has been shown to elicit feelings of 
sadness or happiness in the recipient. Given the 
nature of the intelligent stimulator described here it 
would appear to be possible to monitor, in real time, 
a human brain with a computer brain, and for the 
computer brain to predict when the human is going 
to feel sad – quite some time before they actually 
feel sad. In theory a signal could then be injected at 
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that time to make them feel happy, or at least to stop 
them actually ever feeling sad in the first place. 
Maybe this could be regarded as an electronic anti-
depressant. There are of course questions about 
recreational use here – but this would need a deep 
brain implant which might well prove to be rather 
too onerous for most people.   
Perhaps understandably, invasive BCIs are presently 
far less well investigated in University experiments 
than their external BCI counterparts. A number of 
animal trials have though been carried out and the 
more pertinent have been indicated here along with 
the relevant human trials and practice. In particular 
the focus of attention has been given to the 
embodiment of grown neural tissue within a 
technological body. Whilst only 1,000 or so neurons 
are involved this presents an interesting research 
area in a number of ways. But once the number of 
such neurons used increases 1,000 or 1,000,000-
fold, it also raises enormous philosophical and 
ethical issues. For example is the robot ‘thinking’ 
and what rights should it have?   
The potential for BCI applications for individuals 
who are paralysed is enormous, where cerebral 
functioning to generate command signals is 
functional despite the motor neural pathways being 
in some way impaired – such as in Lou Gehrig’s 
disease. The major role is then either one of relaying 
a signal of intention to the appropriate actuator 
muscles or to reinterpret the neural signals to operate 
technology thereby acting as an enabler. In these 
situations no other medical ‘cure’ is available, 
something which presents a huge driver for an 
invasive implant solution for the millions of 
individuals who are so affected. Clearly though, 
bidirectional signalling is important, not only to 
monitor and enact an individual’s intent but also to 
provide feedback on that individual’s resultant 
interaction with the real world. For grasping, 
walking and even as a defensive safety stimulant, 
feedback is vital. This paper has therefore focussed 
on such studies.  

Where invasive interfaces are employed in human 
trails, a purely therapeutic scenario often exists. In a 
small number of instances, such as use of the 
microelectrode array as an interface, an individual 
has been given different abilities, something which 
opens up the possibilities of human enhancement. 
These latter cases however raise more topical ethical 
questions with regard to the need and use of a BCI. 
What might be seen as a new means of 
communication for an individual with an extreme 
form of paralysis or a new sensory input for 

someone who is blind, opening up a new world for 
them, can also be seen as an unnecessary extra for 
another individual, even though it may provide 
novel commercial opportunities. What is therapy for 
one person may be regarded as an enhancement or 
upgrading for another.   

Whilst there are still many technical problems to be 
overcome in the development of BCIs, significant 
recent experimental results have indicated that a 
sufficient technological infrastructure now exists for 
further major advances to be made. Although a more 
detailed understanding of the underlying neural 
processes will be needed in the years ahead, it is not 
felt that this will present a major hold up over the 
next few years, rather it will provide an avenue of 
research in which many new results will shortly 
appear through trials and experimentation, possibly 
initially through animal studies although it must be 
recognised that it is only through human studies that 
a full analysis can be made and all encompassing 
conclusions can be drawn. Nevertheless the topic 
opens up various ethical questions that need to be 
addressed and as such, research in this area should, I 
believe, only proceed in light of a pervasive ethical 
consensus. 
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ANALYSIS AND MODELS OF BRAIN EPILEPTIC ACTIVITIES 

Fernando Henrique Lopes da Silva 
University of Amsterdam, The Netherlands 

Abstract: The essence of epilepsy is the sudden occurrence of a qualitative change in the behaviour of neuronal 
networks of some specific areas of the brain. In general we may assume that neuronal networks possess 
multistable dynamics. We may simplify this concept considering the case that a neuronal network may 
display, at least, two dynamical states: an interictal state characterised by a normal on-going neural activity, 
as revealed in the Eletcroencephalogram of Magnetoencephalogram (EEG, MEG), that may be apparently 
random, and another one – the ictal state - that is characterised by the sudden occurrence of synchronous 
oscillations, most commonly with large amplitude. The latter becomes manifest as a paroxysmal change of 
behaviour and /of the state of consciousness of a patient, i.e. an epileptic seizure. In the terminology of the 
mathematics of non-linear systems, we may state that a neuronal network behaves as a bistable system with 
two attractors, to which the system converges depending on initial conditions and on the system’s 
parameters.  
We propose schematically that the transition between the normal on-going to the seizure activity can take 
place according to three basic models: Model I – a transition may occur due to random fluctuations of some 
system’s parameters. These transitions are thus unpredictable. Models II and III – a transition may result 
from a gradual change of some unstable parameters, either due to endogenous (model II) or exogenous 
(model III). In these cases the change of parameter values causes a deformation of the attractor resulting in a 
transition from the basin of the attractor corresponding to the normal state, to the attractor corresponding to 
the seizure dynamical state. Some experimental findings obtained in different cases of epilepsy, both in 
human and in animals, are compatible with each of these 3 models. Some examples of these cases are 
illustrated. 
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FROM THE BENCH TO THE BEDSIDE 
The Role of Semantics in Enabling the Vision of Translational Medicine 

Vipul Kashyap 
Partners HealthCare System, Clinical Informatics R&D, USA 

Abstract: Biomedical research and healthcare clinical transactions are generating huge volumes of data and 
information. At the same time, the results of biomedical research in the form of new molecular diagnostic 
tests and therapies are being increasingly used in the context of clinical practice. There is a critical need to 
speed "translation" of genomic research insights into clinical research and practice. In this talk, we will 
discuss challenges faced by a healthcare enterprise in realizing the vision of Translational Medicine, such as: 
- The need to create structured and semantic representations of genotypic and phenotypic data such as 
clinical observations and molecular diagnostic tests.  
- The need for cost-effective and incremental data integration for combining genotypic and phenotypic 
information at the point of care.  
- The need for actionable decision support for suggesting molecular diagnostic tests and therapies in the 
context of clinical care.  
- The need for knowledge update, propagation and consistency to keep abreast of the rapid pace of 
knowledge discovery being witnessed in the life sciences, a crucial pre-requisite to reduce the cost of 
knowledge acquisition and maintenance.  
Semantics-based approaches to address the above-mentioned challenges, including the applicability of 
semantic web standard (RDF, OWL, Rules); and issues related to the value proposition of these 
technologies will be presented. 

BRIEF BIOGRAPHY 

Vipul Kashyap, PhD is a Senior Medical 
Informatician in the Clinical Informatics Research & 
Development group at Partners HealthCare System 
and is currently the chief architect of a Knowledge 
Management Platform that enables browsing, 
retrieval, aggregation, analysis and management of 
clinical knowledge across the Partners Healthcare 
System. Vipul received his PhD from the 
Department of Computer Science at Rutgers 
University in New Brunswick in the area of 
metadata and semantics-based knowledge and 
information management. He is also interested in 
characterization of the value proposition of semantic 
technologies in the enterprise context. Before 
coming to Partners, Vipul has held positions at 
MCC, Telcordia (Bellcore) and was a fellow at the 
National Library of Medicine. Vipul has published 2 
books on the topic of Semantics, 40-50 articles in 
prestigious conferences and journals; and has 
participated in panels and presented tutorials on the 
topic of semantic technologies. Vipul sits on the 
technical advisory board of an early stage company 
developing semantics-based products, and represents 

Partners on the W3C advisory committee and the 
HealthCare Information Technology Standards 
Panel (HITSP). 



 

 

 



 

IS-25 

THE CANCER INFORMATICS ECOSYSTEM 
A Case Study in the Accretion of Federated Systems based on  

Service Oriented Architectures, Semantic Integration and Computing Grids 

David Hall 
Research Triangle Institute in North Carolina, USA 

Abstract: Information technology is playing an increasingly critical role in health and life sciences research due to the 
profound expansion in the scope of research projects in the post-genomic age. Robust data management and 
analysis systems are becoming essential enablers of these studies. Driven by funding agency requirements, 
funding opportunities, and grass roots organizing, efforts are underway to develop standards and 
technologies to promote large-scale integration of publicly-funded systems and databases including 
infrastructure developed for individual studies. Predicted benefits include an enhanced ability to conduct 
meta-analyses, an increase in the usable lifespan of data, a funding agency-wide reduction in the total cost 
of IT infrastructure, and an increased opportunity for the development of third party software tools. This 
presentation will critically examine efforts towards developing publicly-accessible interoperable and 
distributed production systems in the health and life sciences via ontologies, formal metadata, service 
oriented architectures, and grid computing models with a focus on several projects under the direction of the 
author in the area of cancer informatics. 
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ICT AND PERSONS WITH DISABILITIES 
The Solution or the Problem? 
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Abstract: In order to lead full and productive lives, persons with disabilities need to have the same access to 
information and communication systems as the rest of the population. Advances in information and 
communication technologies (ICT) are occurring quickly, and the capability of technologies to meet the 
needs of persons with disabilities is growing daily. Future developments in assistive technologies (AT) and 
the successful application of these technologies to meet the needs of people who have disabilities are 
dependent on exploitation of these ICT advances. AT also involves the development of specialized 
interfaces such as the brain computer interface (BCI), adaptive interfaces that accommodate for changes in 
the user’s physical skills, cognitive interfaces that allow understanding of the human technology interface 
by individuals with intellectual disabilities and systems that accommodate for user needs based on 
environmental sensing (e.g., GPS interfaces) and downloading of profiles to meet specific user needs. 
Universal Design (or design for all) calls for the design of products and environments to be usable by all 
people, to the greatest extent possible, without the need for adaptation or specialized design. In the physical 
world this often means ramps, curb cuts and other adaptations to the built environment to accommodate 
individuals who have disabilities. In the ICT world the barriers to access are technological, and the goal for 
ICT universal design is to have an environment with enough embedded intelligence to be easily adaptable to 
the varying cognitive, physical and sensory skills of a wide range of individual’s in order to meet their 
productivity, leisure and self care needs. If ICT advances are not adaptable enough to be accessible to 
persons with disabilities it will further increase the disparity between those individuals and the rest of the 
population leading to further isolation and economic disadvantage. On the other hand, availability of these 
technologies in a transparent way will contribute to full inclusion of individuals who have disabilities in the 
mainstream of society. 
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research has focussed on the use of robotics with 
young children who have severe disabilities to 
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1 ICT AND PERSONS WITH 
DISABILITIES TECHNOLOGY 
AND PROGRESS 

Societal Progress requires change much of which is 
accomplished through advances in technology. In his 
book, A Short History of Progress, Ronald Wright 
(2004) points out that this characteristic has been 
true for millions of years as societies have advanced 
through greater utilization of technology. 

Wright goes on to describe the problems that 
technology typically creates such as over 
consumption, environmental ruin, and separation of 
classes. These problems are amplified for people 
who have disabilities, and they lead to a gap in the 
access to work, self care and community 
participation for persons with disabilities compared 
to the general population. Since people with 
disabilities often depend on technologies for societal 
participation, the lack of availability of accessible 
technology or the obsolescence of accessible 
technologies isolates them further. This is an 
extension of the concept of the “digital divide” that 
separates people along socioeconomic lines based on 
their access to ICT. I refer to it as the “disability 
gap”. 

2 ADVANCES IN INFORMATION 
AND COMMUNICATION 
TECHNOLOGIES (ICT)  

The 21st Century is characterized by a continuous 
move from a machine-based to a knowledge based 
economy (Ungson & Trudel, 1999). In this shift, the 
basis of competence is changing to knowledge skills 
from machine skills. Information currently amounts 
to 75% of value added to products This will 
continually increase, and connectivity will be the 
key to business success. There is also a move from a 
regional or national scope of business influence to a 
global scope, in which virtual networks dictate 
organizational structures.  

Key players in business development are 
becoming communication suppliers with the move 
from host-based to network based systems. 
Telephone, cable TV and internet service providers 
control commercial growth. Along with these 
changes networks will become more graphically-
based moving increasingly from text-based systems. 
In order to lead full and productive lives, persons 
with disabilities need to have the same access to this 
new information and communication system as the 
rest of the population. 

2.1 What Can we Expect from 
Technology in the Next 20 Years? 

The cost of information technology is continually 
dropping for comparable or increased computing 
power and speed. There is also a greater 
understanding of the biological/physical interface for 
the control of computers. The human computer 
interface (HCI) is being developed to be more 
human-like, more user oriented and more intelligent-
providing additional capabilities for searching, 
processing and evaluating information.   

There are a number of changes that are likely to 
occur over the next few years (Applewhite, 2004). 
There will be an increase in automated transactions 
between individuals and organizations enabling 
people to complete all transactions without face-
toface interactions. It is expected that we will 
achieve equalized access to the web and information 
between the developed and developing world. 
Embedded systems will dramatically increase with 
application such as “intelligence in the doorknob” 
that recognizes the owner and doesn’t require key 
manipulation. We are likely to see much greater 
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understanding of the biological to physical interface 
for the control of computers. 

2.2 Changes in Mainstream Tech with 
AT Implications  

There are many examples of emerging mainstream 
technologies with potential for assisting people with 
disabilities to access ICT systems. A few of these 
are described in this section.  

Display-based assistive technologies present an 
array of choices for a user to select from (Cook & 
Polgar, 2007). This often referred to as scanning 
since the choices are highlighted sequentially and 
then chosen using some sort of gross movement. 
One of the problems associated with this approach is 
that there must be a physical display for making 
selections. This often requires the overall system to 
be larger and more bulky or places a display 
between a user and a communication partner. A new 
development is a direct retinal display that creates 
image that overlays view of real object (Lewis, 
2004). The retinal display is low powered because it 
is shined on retina directly. Scanning light into the 
eye allows the image to overlay an object such as a 
communication partner’s face-enabling eye contact 
and small size. The scanning array could be the 
retinal image, since display scans across the retina 
power levels can be kept low kept low for safety. 

Another development is 3-D displays that create a 
more intuitive view of objects, events and activities 
(Lewis, 2004). This type of display may be helpful 
to individuals who have cognitive disabilities. It 
might also create new challenges for individuals 
with visual limitations. 

Embedded automatic speech recognition is being 
developed for PDAs because of the need for 
keyboards with more and more functions and the 
limitations of very small keyboards (Kumagai, 
2004). This feature could be very useful to reduce 
individuals who have limited hand function or for 
those who cannot see the keyboard to make entries.  

3 MEETING THE ICT NEEDS OF 
PERSONS WITH DISABILITIES  

Over the centuries, our ability to make tools is what 
distinguishes us as human, but our tools ultimately 
control us by making us dependent on them (Wright, 
2004). This dependence is less optional for people 
who have disabilities 

3.1 Impact of Technology Advances on 
People who have Disabilities 

Technology advances increase the gap between 
people who have disabilities and those who don’t 
(Wright, 2004). All societies become hierarchical 
with an upward concentration of wealth (including 
aggregations of technology tools) that ensures that 
“there can never be enough to go around", and this 
disparity contributes to the “digital divide" and the 
"disability gap".  As advances occur more quickly, 
the gap widens faster and the people who are poor 
and/or disabled loose out even more completely and 
faster. This is a characteristic of cultural and societal 
"progress" over centuries-technology drives change, 
and creates both positive and negative outcomes in 
the process 

The prognosis is not good for people with 
disabilities unless there is considerable effort to keep 
them connected to ICT and thereby to commerce, 
employment and personal achievement. There two 
fundamental approaches to this problem (1) make 
mainstream technologies accessible to people who 
have disabilities, or (2) design special purpose 
technologies specifically for people with disabilities.  
The former approach is referred to as universal 
design or design for all. The second approach 
utilizes assistive technologies.  

3.2 Implications for Assistive 
Technologies 

Access to ICT for people with disabilities is a 
significant global problem, and it has major 
implications for assistive technologies. There is a 
constant challenge to keep ICT systems accessible to 
persons who have disabilities as mainstream 
advances occur and adaptations become potentially 
incompatible with the new systems.  Communication 
technologies change rapidly, and each change may 
result in the need to re-design accessible interfaces. 
We are closer to goal of having assistive technology 
adaptations available when the mainstream 
consumer product ships, but there are still many 
problems with “workarounds” necessary to make 
mainstream operating system, productivity software 
and internet access accessible to people with 
disabilities.  

Development and maintenance of access to ICT 
must be driven by the needs of people with 
disabilities. Developments which broaden the scope, 
applicability and usability of the human technology 
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interface will be driven, at least in part by the needs 
of people who have disabilities. 

The Internet (e-mail and chat rooms) have the 
advantage of anonymity, and this can be a major 
benefit to individuals who have disabilities. Because 
the person’s disability is not immediately visible, 
people who have disabilities report that they enjoy 
establishing relationships with people who 
experience them first as a person and then learn of 
their disability. For example, Blackstone, (1996) 
describes some of the advantages of e-mail for 
individuals who have disabilities.  Since the receiver 
of the message reads it at a later time composition 
can be at a slower speed. The person with a 
disability can communicate with another person 
without someone else being present, establishing a 
greater sense of privacy than situations in which an 
attendant is required. It is also possible to work form 
any location-avoiding some transportation problems 

3.3 Universal Design 

Increasingly, commercial products are being 
designed to be usable by all people, to the greatest 
extent possible, without the need for adaptation or 
specialized design (NC State University, The Center 
for Universal Design, 1997).  

3.3.1 General Principles of Universal Design 

Features are built into products to make them  more 
useful to persons who have disabilities (e.g., larger 
knobs; a variety of display options--visual, tactile, 
auditory; alternatives to reading text--icons, 
pictures) are built into the product. This is much less 
expensive than modifying a product after production 
to meet the needs of a person with a disability. The 
North Carolina State University Center for Universal 
Design, in conjunction with advocates of universal 
design, have compiled a set of principles of 
universal design, shown in Box 1. This center also 
maintains a Web site on universal design 
(www.design.ncsu.edu/cud). 

3.3.2 Universal Design for ICT  

In universal design for ICT the barriers are 
technological rather than political and economic 
barriers that characterize architectural and 
commercial product design (Emiliani, 2006). The 
goal of universal design for ICT is to have an 
environment with enough embedded intelligence to 
be easily adaptable. The features of future 
information services are that there will be no clearly 

predefined service and little distinction between 
interpersonal communication and access to 
information. Services will need to be highly 
interactive, inherently multimedia, sensory 
multimodal (i.e., access via auditory or visual means 
is equally possible). To achieve this cooperation 
between users or representatives of users is critical 
in a variety of contexts of use. The overall goal is to 
have access to information involving communities 
of users with a wide range of motor, sensory and 
cognitive skills. 

ONE: EQUITABLE USE 
The design is useful and marketable to people with 
diverse abilities. 
TWO: FLEXIBILITY IN USE 
The design accommodates a wide range of individual 
preferences and abilities. 
THREE: SIMPLE AND INTUITIVE USE 
Use of the design is easy to understand, regardless of 
the user's experience, knowledge, language skills, or 
current concentration level. 
FOUR: PERCEPTIBLE INFORMATION 
The design communicates necessary information 
effectively to the user, regardless of ambient 
conditions or the user's sensory abilities. 
FIVE: TOLERANCE FOR ERROR 
The design minimizes hazards and the adverse 
consequences of accidental or unintended actions. 
SIX: LOW PHYSICAL EFFORT 
The design can be used efficiently and comfortably 
and with a minimum of fatigue. 
SEVEN: SIZE AND SPACE FOR APPROACH 
AND USE 
Appropriate size and space is provided for approach, 
reach, manipulation, and use regardless of user's body 
size, posture, or mobility. 

Box 1: Principles of Universal Design From North 
Carolina State University, The Center for. Universal 
Design, 1997. 

In addition to Universal Design for ICT, access 
to capabilities of mainstream technologies includes 
individualized assistive technologies that are easily – 
customized. This in return requires an increased 
understanding of the biological/physical interface for 
the control of assistive technologies and expanded 
availability of embedded systems networks.  

3.4 A Working Definition of Assistive 
Technologies  

The International Classification of Functioning, 
Disability and Health (ICF) is a system developed 
by the World Health Organization (WHO) that is 
designed to describe and classify health and health 
related states. These two domains are described by 
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body factors (body structures and functions) and 
individual and societal elements (activities and 
participation) (WHO, 2001). The ICF recognizes 
two contextual factors that modify health and health 
related states: the environment and personal factors 
(WHO, 2001). Environmental elements include 
assistive technologies in relation to activities of daily 
living, mobility, communication, religion and 
spirituality as well as in specific contexts such as 
education, employment and culture, recreation and 
sport (WHO, 2001). Other environmental elements 
such as access to public and private buildings, and 
the natural and built outdoor environments, also 
have implications for assistive technologies. 

A commonly used definition of assistive 
technology is from the Technical Assistance to the 
States Act in the United States (Public Law (PL) 
100-407): Any item, piece of equipment or product 
system whether acquired commercially off the 
shelf, modified, or customized that is used to 
increase, maintain or improve functional 
capabilities of individuals with disabilities. 

3.4.1 Hard and Soft Technologies 

Odor (1984) has distinguished between hard 
technologies and soft technologies. Hard 
technologies are readily available components that 
can be purchased and assembled into assistive 
technology systems. The main distinguishing feature 
of hard technologies is that they are tangible. On the 
other hand, soft technologies are the human areas of 
decision making, strategies, training, concept 
formation, and service delivery as described earlier 
in this chapter. Soft technologies are generally 
captured in one of three forms: (1) people, (2) 
written, and (3) computer (Bailey, 1997). These 
aspects of technology, without which the hard 
technology cannot be successful, are much harder to 
obtain. Soft technologies are difficult to acquire 
because they are highly dependent on human 
knowledge rather than tangible objects. This 
knowledge is obtained slowly through formal 
training, experience, and textbooks such as this one. 
The development of effective strategies of use also 
has a major effect on assistive technology system 
success. Initially the formulation of these strategies 
may rely heavily on the knowledge, experience, and 
ingenuity of the assistive technology practitioner. 
With growing experience, the assistive technology 
user originates strategies that facilitate successful 
device use. There is a false belief that progress is 
solely driven by “hard” technological change The 
gap between the general public and persons with 

disabilities can only be closed by gains in both soft 
and hard technologies 

3.4.2 Mainstream Technologies to Specially 
Designed Technologies: A Range of 
Options 

As illustrated in Figure 1, the needs of people with 
disabilities can be met in a number of ways. Off the 
shelf “standard” (i.e., mainstream technologies) 
commercially available devices (especially those 
designed using the principles of universal design) 
can often be used by people with a variety of 
disabilities. For example, standard personal 
computers designed for the general population are 
often used by persons with disabilities. Sometimes 
these need to be modified however, to make them 
useable. Another type of commercially available 
device is one that is mass-produced but specifically 
designed for individuals with disabilities (special 
commercially available devices). These devices 
often need to be modified to meet the needs of a 
specific individual.  Our goal is to reduce the 
amount of modification necessary and to make 
mainstream technologies as accessible as possible. 
However, there will always be a portion of the 
disabled population that will require specifically 
designed assistive technologies.  

Commercially AvailableCommercially Available

StandardStandard
(for general(for general
population)population)

SpecialSpecial
(for disabled(for disabled
population)population)

ModifiedModified

CustomCustom
 

Figure 1: This diagram shows the progression from 
commercially available devices for the general population 
and commercially available devices for special 
populations to modified devices and custom devices. From 
Cook and  Polgar, (2007). 
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3.5 The Human Technology Interface 
for ICT 

3.5.1 General Concepts 

It is estimated that as many as 40 million persons in 
the United States alone have physical, cognitive, or 
sensory disabilities (Lazzaro, 1999). The world-wide 
impact is significantly larger. If these people are to 
compete on an equal basis with non-disabled 
individuals, then it is extremely important that the 
internet be accessible to all. As the internet becomes 
more and more dependent on multimedia 
representations involving complex graphics, 
animation, and audible sources of information, the 
challenges for people who have disabilities increase. 
In order for access to the Internet to be useful to 
people with disabilities, the accessibility approach 
must be independent of individual devices. This 
means that users must be able to interact with a user 
agent (and the document it renders) using the input 
and output devices of their choice based on their 
specific needs. A user agent is defined as software 
to access Web content (www.w3.org/wai). This 
includes desktop graphical browsers, text and voice 
browsers, mobile phones, multimedia players, and 
software assistive technologies (e.g., screen readers, 
magnifiers) that are used with browsers. The person 
with a disability interacts with technology through 
the Human Technology Interface (HTI) (Cook and 
Polgar, 2007).  

The graphical user interface (GUI) has both 
positive and negative implications for persons with 
disabilities. The positive features are those that 
apply to non-disabled users (e.g., use of icons, 
recognition rather than recall memory, screen icons 
for the same task look the same, operations such as 
opening and closing files are always the same). The 
GUI is the standard user interface because of its ease 
of operation for novices and its consistency of 
operation for experts. The latter ensures that every 
application behaves in basically the same way. 
People with motor disabilities may not have the 
necessary physical (eye-hand coordination) and 
visual skills to navigate the GUI. Modification of the 
GUI to allow specialized access (see Figure 1) can 
also be more challenging for GUI-based operating 
systems. 

As networks are expanded and more devices 
(e.g., cell phones, PDAs) have open architectures, it 
will be possible to download profiles, adaptations 
and special instructions that enable adaptable 
systems to be developed to meet the needs of people 

who have disabilities. Some examples are (1) 
trainable hearing aids that adjust automatically to the 
environments in which they are used; (2) a “Smart 
House” that assesses occupants current state and the 
state of various home utilities to aid with common 
activities of daily living, provides feedback should 
residents become disoriented or confused and report 
medical emergencies automatically; an orientation 
and direction finding device that senses the current 
location (via GPS) and gives directions to a desired 
location for individuals who cannot read maps 
because of visual or cognitive disabilities. 

3.5.2 Access for Motor Impairment 

There are a significant number of people who cannot 
effectively use standard keyboards, mouse controls 
or switches. It is likely that we will see a much 
greater understanding of the biological/physical 
interface for the control of computers in the future 
(Applewhite, 2004). 

One approach that may offer promise is the brain 
computer interface (BCI).  BCI systems may be 
grouped into a set of functional components 
including the input device, amplification, feature 
extraction, feature translation and user feedback 
(Mason and Birch, 2003). Signals are 
mathematically analyzed to extract features useful 
for control (Fabiani, Mcfarland, Walla, and 
Pfurtscheller 2004). Features or signals that have 
been used include slow cortical potentials, P300 
evoked potential, sensorimotor rhythms recorded 
from the cortex and neuronal action potentials 
recorded within the cortex). A typical task for a user 
is to visualize different movements or sensations or 
images.   

Another approach to cursor control is the use of a 
digital camera and image recognition software to 
track a particular body feature to control an on-
screen mouse cursor (Betke, Gips and Fleming, 
2002). The most easily tracked feature is the tip of 
the nose, but the eye (gross eye position not point of 
gaze), lip, chin and thumb have also been used. Non-
disabled subjects used this approach and fund that 
the camera mouse was accurate but slower than a 
typical hand-controlled mouse.  Using an on-screen 
keyboard the camera mouse was half as fast as a 
regular mouse in a typing task, but the accuracy 
obtained was equivalent on each system. More and 
more computers have built-in cameras, so the 
camera mouse requires only software to capture the 
body feature image and interpret its movement as 
mouse commands. This may lead to wider 
application of this technique.  
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There are many other approaches that are used to 
provide access to and control over technologies for 
people with severe motor disabilities (Cook and 
Polgar, 2007) \. These range form keyboards of 
various type, to automatic speech recognition to 
mouse and mouse emulators systems to single and 
multiple switches.  

3.5.3 Access for Cognitive Impairment 

Cognitive disabilities include a wide range of skills 
and deficiencies. Learning disabilities typically 
involve significant difficulties in understanding or in 
using either spoken or written language, and these 
difficulties may be evident in problems with reading, 
writing, mathematical manipulation, listening, 
spelling or speaking (Edyburn, 2005). These 
limitations make it increasingly difficult to access 
complicated Web sites that may include flashing 
pictures, complicated charts, and large amounts of 
audio and video data. While there are assistive 
technologies that are specifically designed to address 
these areas (discussed later in this chapter), many of 
the technological tools are useful for all students, 
and are part of instructional technology (Ashton, 
2005). Even the so-called assistive technologies 
have features (e.g., multimedia, synthetic speech 
output, voice recognition input) that are useful to all 
learners. 

For individuals with acquired cognitive 
disabilities due to injury (e.g., traumatic brain 
injury) or disease (e.g., stroke (CVA) or dementia) 
changing features such as font size, background/ 
foreground color combinations, contrast, spacing 
between words, letters and paragraphs and using 
graphics can all improve access to screen-based 
information. Another technological concept for these 
individuals is a cognitive prosthesis, which is a 
custom-designed computer-based compensatory 
strategy that directly assists in performing daily 
activities1. It may also include additional 
technologies such as a cell phone, pager, digital 
camera or low tech approaches  

Persons with intellectual disabilities have 
difficulties with memory, language use and 
communication, abstract conceptualization, 
generalization and problem identification/problem 
solving. Characteristics of the HTI that are important 
for these individuals include simplicity of operation, 
capacity of the technology to support repetition, 
consistency in presentation, and inclusion of 

                                                 
1 Institute for Cognitive Prosthetics, http://www.brain-rehab.com/ 
definecp.htm  

multiple modalities (e.g., speech, sounds and 
graphical representations) (Wehmeyer, Smith and 
Davies, 2005). 

An example of technology designed for cognitive 
needs is the Planning and Execution Assistant and 
Trainer (PEAT). It is a PDA-based personal 
planning assistant designed to assist individuals with 
cognitive disorders due to brain injury, stroke, 
Alzheimer's disease, and similar conditions 
(Levinson, 1997). PEAT employs artificial 
intelligence to automatically generate plans and also 
to revise those plans when unexpected events occur. 
PEAT uses a combination of manually entered 
schedules and a library of stored scripts describing 
activities of daily living (e.g., morning routine or 
shopping). Scripts can be used for both planning and 
for execution. Planning involves a simulation of the 
activity with key decision points presented and 
prompts (auditory and visual) supplied necessary to 
aid the individual through the planning process. The 
plan to be executed can be either the stored script or 
a modified script based on the simulation. The 
PEAT artificial intelligence software generates the 
best strategy to execute the required steps in the plan 
(LoPresti, Mihailidis, and Kirsch, 2004). PEAT also 
automatically monitors performance, and corrects 
schedule problems when necessary. 

3.5.4 Access for Auditory Impairment 

Since web pages are a mixture of text, graphics, and 
sound, people who are deaf may be prevented from 
accessing some information unless alternative 
methods are available. The primary approach for 
thee individual is the use of the Microsoft 
Synchronized Accessible Media Interchange 
(SAMI), which allows authors of Web pages and 
multimedia software to add closed captioning for 
users who are deaf or hard of hearing. This approach 
is similar to the use of closed captioning for 
television viewers. The W3C WAI SMIL 
(www.w3.org/WAI) is designed to facilitate 
multimedia presentations in which an author can 
describe the behavior of a multimedia presentation, 
associate hyperlinks with media objects, and 
describe the layout of the presentation on a screen  

Trainable hearing aids adjust automatically to the 
environments in which they are used through access 
to embedded information networks. This allows 
automatic adaptation to changing noise levels and 
environments.  
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3.5.5 Access for Visual Impairment 

The W3C WAI user agent guidelines are based on 
several principles that are intended to improve the 
design of both types of user agents. The first is to 
ensure that the user interface is accessible. This 
means that the consumer using an adapted input 
system must have access to the functionality offered 
by the user agent through its user interface. Second, 
the user must have access to document content 
through the provision of control of the style (e.g., 
colors, fonts, speech rate, and speech volume) and 
format of a document. A third principle is that the 
user agent help orient the user to where he is in the 
document or series of documents. In addition to 
providing alternative representations of location in a 
document (e.g., how many links the document 
contains or the number of the current link), a well-
designed navigation system that uses numerical 
position information allows the user to jump to a 
specific link. Finally, the guidelines call for the user 
agent to be designed following system standards and 
conventions. These are changing rapidly as 
development tools are improved.  

Communication through standard interfaces is 
particularly important for graphical desktop user 
agents, which must make information available to 
assistive technologies. Technologies such as those 
produced by the W3C include built-in accessibility 
features that facilitate interoperability. The standards 
being developed by the W3C WAI provide guidance 
for the design of user agents that are consistent with 
these principles. The guidelines are available on the 
W3C WAI Web page (www.w3.org/wai). 

3.5.6 Other ICT Access 

Cellular telephones are becoming more powerful 
with capabilities approaching that of personal 
computers. This expanded capability will provide 
significant advantages for people with disabilities, 
especially those with low vision or blindness. 
describes Three changes will be particularly 
valuable to people who have disabilities:: (1) 
standard cell phones will have sufficient processing 
power for almost all the requirement of persons with 
visual impairments, (2) software will be able to be 
downloaded into these phones easily, (3) wireless 
connection to a worldwide network will provide a 
wide range of information and services in a highly 
mobile way (Fruchterman, 2003). Because many of 
these features will be built into standard cell phones 
the cost will be low and reachable by persons with 
disabilities.  A major advance will occur if the cell 

phone industry moves away from proprietary 
software to an open source format providing the 
basis for a greater diversity of software for tasks 
such as text-to-speech output, voice recognition and 
optical character recognition in a variety of 
languages. Many applications for people with 
disabilities will be able to be downloaded from the 
internet. With expanded availability of embedded 
systems, it will be possible for a user to store their 
customized programs on the network and download 
them as needed form any remote location.  

Downloading a talking book program into a cell 
phone can provide access to digital libraries for 
persons who are blind. Outputs in speech or enlarged 
visual displays can be added as needed by the user.  
With a built-in camera and network access a blind 
person could obtain a verbal description of a scene 
by linking to on-line volunteers who provide 
descriptions of images. These applications will 
depend on the increasing application of universal 
design in information technology products (Tobias, 
2003). These applications include ATMs, cell 
phones, vending machines and other systems that are 
encountered on a daily basis (Tobias, 2003).  

4 INFRASTRUCTURE FOR 
FUTURE ACCESSIBILITY 

The infrastructure for future accessibility consists of: 
(1) an expanded, smarter and more available "real" 
and "virtual" internet, (2) Home automation systems 
that are smarter and have greater interconnectivity, 
(3) universal design principles that are applied more 
widely, (4) alternative approaches for accessing 
information technologies, and (5) special-purpose 
assistive technologies. 

The Infrastructure for future accessibility will 
depend on several factors. These include: Web-
based virtual systems, home automation, universal 
design for ICT, alternatives for accessing 
information technologies and special-purpose 
assistive technologies. In addition there is n on going 
need for the development of soft technology tools. 

If ICT advances are not adaptable enough to be 
accessible to persons with disabilities it will further 
increase the disparity between those individuals and 
the rest of the population leading to further isolation 
and economic disadvantage. On the other hand, 
availability of these technologies in a transparent 
way will contribute to full inclusion of individuals 
who have disabilities in the mainstream of society. 
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5 CONCLUSIONS 

The move to the information age offers great 
promise for persons with disabilities. It also holds 
great threats for persons with disabilities. Constant 
vigilance is required to insure that information 
technologies remain accessible and responsive to the 
needs of persons with disabilities. The future for 
persons with disabilities will not be driven by 
advances in technology, but rather by how well we 
can take advantage of those advances for the 
accomplishment of the many tasks of living that 
require technological assistance 

6 SUMMARY  

Anticipated changes in technologies coupled with 
the focus on the social aspects of disability, provide 
a significant opportunity for major advances in the 
degree to which individuals with disabilities can 
participate in all aspects of life, including work, 
school, leisure and self care.  

Technological advances will be particularly 
important as the percentage of the population that is 
elderly rises. Concepts from universal design will be 
important in ensuring that this segment of the 
population remains active and is able to participate 
in society. This new group of elderly individuals will 
also be more experienced with computers and other 
technologies than their predecessors and they may 
well demand greater performance and adaptability 
from both assistive technologies and mainstream 
ICT (e.g., telephones, internet communication).  

The percentage of individuals with long-term 
disabilities who join the over 65 age group will also 
increase. These individuals will have been long-term 
users of assistive technologies, and their experience 
will have major implications for developments to 
meet future needs.   

While much of what I have described is 
conjecture, it is based on modest extrapolation from 
the current state of the art. There are some things 
that we know with a high degree of certainty. We 
know that computer systems will be faster, have 
more memory be smaller and be less expensive for 
the same or greater functionality. We also know that 
the communication channel bandwidth will continue 
to increase allowing much more information and 
much more sophisticated information processing.  
Finally, it is clear that people with disabilities will 
continue to assert their right to fully participate in 
society. 

Technological advances also raise questions for 
people who have disabilities. The most important of 
these is whether accessibility will keep pace with 
technological developments. For example, will 
assistive technologies for input and output be 
compatible with the user agents and operating 
systems of tomorrow. A second major question is 
whether the needs of persons with disabilities will be 
a driving force in future technological developments. 
Will people who have disabilities have to adapt to 
the existing technologies based on characteristics for 
non-disabled people or will universal design become 
a greater reality?  In the latter case, adaptations will 
become less important and accessibility will become 
the rule rather than the exception.  

For people who have disabilities, there are 
significant implications of emerging information 
processing technologies. If not closely monitored, 
these could result in less rather than more access to 
the new information economy for persons with 
disabilities. Despite the wider use of universal 
design principles, there will still be a need for 
effective assistive technology design and application 
if individuals with disabilities are to realize the full 
potential of the new information age. 
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Abstract: In this paper, we present our research on automatic speech recognition of surface electromyographic signals
that are generated by the human articulatory muscles. With parallel recorded audible speech and electromyo-
graphic signals, experiments are conducted to show the anticipatory behavior of electromyographic signals
with respect to speech signals. Additionally, we demonstrate how to develop phone-based speech recogniz-
ers with carefully designed electromyographic feature extraction methods. We show that articulatory feature
(AF) classifiers can also benefit from the novel feature, which improve the F-score of the AF classifiers from
0.467 to 0.686. With a stream architecture, the AF classifiers are then integrated into the decoding framework.
Overall, the word error rate improves from 86.8% to 29.9% on a 100 word vocabulary recognition task.

1 INTRODUCTION

As computer technologies advance, computers have
become an integral part of modern daily lives and our
expectations for a user-friendly interface grow every-
day. Automatic speech recognition (ASR) is one of
the most efficient front-end for human-computer in-
terface because it is natural for humans to commu-
nicate through speech. ASR is an automatic com-
puterized speech-to-text process which converts hu-
man speech signals into written words. It has vari-
ous applications, such as voice command and control,
dictation, dialog systems, audio indexing, speech-to-
speech translation, etc. However, these ASR applica-
tions usually do not work well in noisy environments.
Besides, they usually require the user to speak aloud,
which may be disturbing to bystanders and brings up
concern of privacy loss. In this paper, we describe our
research of integrating signals based on electromyog-
raphy with traditional acoustic speech signals for the
purpose of speech recognition.

The input speech signal of the traditional ASR
process is usually recorded with a microphone, e.g., a
close-talking headset or a telephone. However, from
the ASR point of view, microphone recordings of-
ten suffer from ambient noise or in other words the
noise robustness issue, because microphones pick up
vibration from the air-transmitted channel; therefore,
while picking up air vibration generated by human

voices, microphones also pick up air-transmitted am-
bient noises. In most cases, ambient noise deterio-
rates the ASR performance and the decrease in perfor-
mance depends on how badly the original voice signal
has been corrupted by noise. Besides the noise ro-
bustness issue, microphone-based ASR often has ap-
plicability issues, by which we mean that it is often
suboptimal to use microphones as the input device of
speech applications in certain situation. For exam-
ple, in an on-line shopping system, it is often required
to input confidential information such as credit card
numbers, which may be overheard if the user speak
aloud via the air-transmitted channels. Usually this
kind of overhearing results in confidentiality or pri-
vacy infringement. Besides, another issue of applica-
bility is that speaking aloud usually annoys other peo-
ple. Just imagine how annoying it would be if your
officemate spends all day dictating to the computer to
write a report, let alone many people dictate simulta-
neously.

In order to resolve the noise robustness and the ap-
plicability issues, we have applied electromyographic
(EMG) method to our speech recognition research.
The motivation is that the EMG method is inherently
robust to ambient noise and it enables silent speech
recognition to avoid disturbance and confidentiality
issues. The EMG method measures muscular electric
potential with a set of electrodes attached to the skin
where the articulatory muscles underlie. In the physi-
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ological speech production process, as we speak, neu-
ral control signals are transmitted to articulatory mus-
cles, and the articulatory muscles contract and relax
accordingly to produce voice. The muscle activity
alters the electric potential along the muscle fibers,
and the EMG method can measure this kind of po-
tential change. In other words, the articulatory mus-
cle activities result in electric potential change, which
can be picked up by EMG electrodes for further sig-
nal processing, e.g., speech recognition. The EMG
method is inherently robust to ambient noise because
the EMG electrodes contact to the human tissue di-
rectly without the air-transmission channel. In ad-
dition, the EMG method has better applicability be-
cause the EMG method makes it possible to recognize
silent speech, which means mouthing words without
making any sound.

For silent speech recognition with EMG, Man-
abe et al. first showed that it is possible to recog-
nize five Japanese vowels and ten Japanese isolated
digits using surface EMG signals recorded with elec-
trodes pressed on the facial skin (Manabe et al., 2003;
Manabe and Zhang, 2004). EMG has been a use-
ful analytic tool in speech research since the 1960’s
(Fromkin and Ladefoged, 1966), and the recent appli-
cation of surface EMG signals to automatic speech
recognition was proposed by Chan et al. They fo-
cused on recognizing voice command from jet pi-
lots under noisy environment, so they showed digit
recognition in normal audible speech (Chan et al.,
2002). Jorgensen et al. proposed sub auditory speech
recognition using two pairs of EMG electrodes at-
tached to the throat. Sub vocal isolated word recogni-
tion was demonstrated with various feature extraction
and classification methods (Jorgensen et al., 2003;
Jorgensen and Binsted, 2005; Betts and Jorgensen,
2006). Maier-Hein et al. reported non-audible EMG
speech recognition focusing on speaker and session
independency issues. (Maier-Hein et al., 2005).

However, these pioneering studies are limited to
small vocabulary ranging from five to around forty
isolated words. The main reason of this limitation is
that the classification unit is restrained to a whole ut-
terance, instead of a phone as a smaller and more flex-
ible unit. As a standard practice of large vocabulary
continuous speech recognition (LVCSR), the phone
is a natural unit based on linguistic knowledge. From
the pattern recognition’s point of view, the phone as
a smaller unit is preferred over a whole utterance be-
cause phones get more training data per classification
unit for more reliable statistical inference. The phone
unit is also more flexible in order to constitute any
pronunciation combination of words as theoretically
unlimited vocabulary for speech recognition. With

the phone unit relaxation, EMG speech recognition
can be treated as a standard LVCSR task and we can
apply any advanced LVCSR algorithms to improve
the EMG speech recognizer.

In this paper, we introduce such an EMG speech
recognition system with the following research as-
pects. Firstly, we analyze the phone-based EMG
speech recognition system with articulatory features
and their relationship with signals of different EMG
channels. Next, we demonstrate the challenges of
EMG signal processing with the aspect of feature
extraction for the speech recognition system. We
then describe our novel EMG feature extraction meth-
ods which makes the phone-based system possible.
Lastly, we integrate the novel EMG feature extrac-
tion methods and the articulatory feature classifiers
into the phone-based EMG speech recognition sys-
tem with a stream architecture. Notice that the ex-
periments described in this paper are conducted on
normal audible speech, not silent mouthing speech.

2 RESEARCH APPROACH

2.1 Data Acquisition

In this paper, we report results of data collected from
one male speaker in one recording session, which
means the EMG electrode positions were stable and
consistent during this whole session. In a quiet room,
the speaker read English sentences in normal audi-
ble speech, which was simultaneously recorded with
a parallel setup of an EMG recorder and a USB
soundcard with a standard close-talking microphone
attached to it. When the speaker pressed the push-
to-record button, the recording software started to
record both EMG and speech channels and generated
a marker signal fed into both the EMG recorder and
the USB soundcard. The marker signal was then used
for synchronizing the EMG and the speech signals.
The speaker read 10 times of a set of 38 phonetically-
balanced sentences and 10 times of 12 sentences from
news articles. The 380 phonetically-balanced utter-
ances were used for training and the 120 news article
utterances were used for testing. The total duration
of the training and test set are 45.9 and 10.6 minutes,
respectively. We also recorded ten special silence ut-
terances, each of which is about five seconds long
on average. The format of the speech recordings is
16 kHz sampling rate, two bytes per sample, and lin-
ear PCM, while the EMG recording format is 600 Hz
sampling rate, two bytes per sample, and linear PCM.
The speech was recorded with a Sennheiser HMD 410
close-talking headset.
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Figure 1: EMG positioning.

The EMG signals were recorded with six pairs of
Ag/Ag-Cl surface electrodes attached to the skin, as
shown in Fig. 1. Additionally, a common ground ref-
erence for the EMG signals is connected via a self-
adhesive button electrode placed on the left wrist.
The six electrode pairs are positioned in order to pick
up the signals of corresponding articulatory muscles:
the levator angulis oris (EMG2,3), the zygomaticus
major (EMG2,3), the platysma (EMG4), the orbic-
ularis oris (EMG5), the anterior belly of the digas-
tric (EMG1), and the tongue (EMG1,6) (Chan et al.,
2002; Maier-Hein et al., 2005). Two of these six chan-
nels (EMG2,6) are positioned with a classical bipo-
lar configuration, where a 2cm center-to-center inter-
electrode spacing is applied. For the other four chan-
nels, one of the electrodes is placed directly on the
articulatory muscles while the other electrode is used
as a reference attached to either the nose (EMG1) or
to both ears (EMG 3,4,5).

In order to reduce the impedance at the electrode-
skin junctions, a small amount of electrode gel was
applied to each electrode. All the electrode pairs were
connected to the EMG recorder (Becker, 2005), in
which each of the detection electrode pairs pick up
the EMG signal and the ground electrode provides a
common reference. EMG responses were differen-
tially amplified, filtered by a 300 Hz low-pass and a
1Hz high-pass filter and sampled at 600 Hz. In or-
der to avoid loss of relevant information contained
in the signals we did not apply a 50 Hz notch filter
which can be used for the removal of line interference.
Also note that all care was taken such that wearing the
close-talking headset does not interfere with the EMG
electrode attachment.

2.2 EMG-based Speech Recognition

We used the following approach to bootstrap the
phone-based EMG speech recognizer. First of all, the
forced alignment of the audible speech data is gen-
erated with a Broadcast News (BN) speech recog-
nizer (Yu and Waibel, 2000), which is trained with

the Janus Recognition Toolkit (JRTk). Since we have
parallel recorded audible and EMG speech data, the
forced-aligned labels of the audible speech were used
to bootstrap the EMG speech recognizer. Since the
training set is very small, we only trained context-
independent acoustic models. The trained acoustic
model was used together with a trigram BN language
model for decoding. Because the problem of large
vocabulary continuous speech recognition is still very
difficult for state-of-the-art EMG speech processing,
we restricted the decoding vocabulary to the words
appearing in the test set in this study. This approach
allows us to better demonstrate the performance dif-
ferences introduced by different feature extraction
methods. To cover all the test sentences, the decod-
ing vocabulary contains 108 words in total. Note
that the training vocabulary contains 415 words, 35
of which also exist in the decoding vocabulary. Also
note that the test sentences were not applied for lan-
guage model training.

2.3 Articulatory Feature Classifier and
Stream Architecture

Compared to widely-used cepstral features for au-
tomatic speech recognition, articulatory features are
expected to be more robust because they represent
articulatory movements, which are less affected by
speech signal variation or noise. Instead of measur-
ing the AFs directly, we derive them from phones as
described in (Metze and Waibel, 2002). More pre-
cisely, we use the IPA phonological features for AF
derivation. In this work, we use AFs that have binary
values. For example, each of the positions of the dor-
sum, namely FRONT, CENTRAL and BACK is an
AF that has a value either present or absent. To clas-
sify the AF as present or absent, the likelihood scores
of the corresponding present model and absent model
are compared. Also, the models take into account a
prior value based on the frequency of features in the
training data.

The training of AF classifiers is done on middle
frames of the phones only, because they are more
stable than the beginning or ending frames. Identi-
cal to the training of EMG speech recognizer, the AF
classifiers are also trained solely on the EMG signals
without speech acoustics. There are 29 AF classifiers,
each of which is a Gaussian Mixture Model (GMM)
containing 60 Gaussians. To test the performance, the
AF classifiers are applied and generate frame-based
hypotheses.

The idea behind the stream architecture with AF
classifiers is that the AF streams are expected to pro-
vide additional robust phonological information to the
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phone-based hidden Markov model (HMM) speech
recognizer. The stream architecture employs a list of
parallel feature streams, each of which contains one of
the acoustic or articulatory features. Information from
all streams are combined with a weighting scheme to
generate the EMG acoustic model scores for decoding
(Metze and Waibel, 2002).

2.4 Feature Extraction

2.4.1 Traditional Spectral Feature

The recorded EMG signal is transformed into 18-
dimensional feature vectors, with 54-ms observation
window and 10-ms frame-shift for each channel.

For each channel, hamming-windowed Short
Time Fourier Transform is computed, and then its
delta coefficients serve as the first 17 coefficients of
the final feature. The 18th coefficient consists of the
mean of the time domain values in the given observa-
tion window (Maier-Hein et al., 2005). In the follow-
ing experiments, features of one or more channels can
be applied. If more than one channel are used for clas-
sification, the features of the corresponding channels
are concatenated to form the final feature vector.

2.4.2 Special EMG Feature

Since the EMG signal is very different from the
speech signal, it is necessary to explore feature ex-
traction methods that are suitable for EMG speech
recognition. Here we describe the signal preprocess-
ing steps and feature extraction methods we designed
for EMG signals.

As noted above, the EMG signals vary across dif-
ferent sessions. Nonetheless, the DC offsets of the
EMG signals vary, too. In the attempt to make the
DC offset zero, we estimate the DC offset from the
special silence utterances on a per session basis, then
all the EMG signals are preprocessed to subtract this
session-based DC offset. Although we only discuss
a single session of a single speaker in this paper, we
expect this DC offset preprocessing step makes the
EMG signals more stable.

To describe the features designed for EMG sig-
nals, we denote the EMG signal with normalized
DC as x[n] and its short-time Fourier spectrum as X.
We also denote the nine-point double-averaged signal
w[n], high frequency signal p[n], and the correspond-
ing rectified signal r[n].

We then define the time-domain mean features
x̄, w̄, and r̄ of the signals x[n],w[n], and r[n], respec-
tively. Besides, we use the power features Pw and Pr
and we define z as the frame-based zero-crossing rate
of p[n].

To better model the context, we use the fol-
lowing contextual filters, which can be applied
on any feature to generate a new one. The
delta filter: D(f j) = f j − f j−1. The trend filter:
T (f j,k) = f j+k− f j−k. The stacking filter: S(f j,k) =
[f j−k, f j−k+1, ..., f j+k−1, f j+k], where j is the frame in-
dex and k is the context width. Note that we always
apply linear discriminant analysis (LDA) on the final
feature in order to reduce the dimensionality to 32.

3 EXPERIMENTS AND
ANALYSES

The performance metrics used in this paper are F-
score and word error rate (WER). F-score (α = 0.5)
is reported for the AF performances and WER is re-
ported for the speech recognition performances1.

3.1 Articulatory Feature Analysis

3.1.1 Baseline System

First of all, we forced-aligned the speech data us-
ing the aforementioned BN system. In the baseline
system, this time-alignment was used for both the
speech and the EMG signals. Because we have a
marker channel in each signal, the marker signal is
used to offset the two signals to get accurate time-
synchronization. Then the aforementioned AF train-
ing and testing procedures were applied both on the
speech and the six-channel concatenated EMG sig-
nals. The averaged F-scores of all 29 AFs are 0.814
for the speech signal and 0.467 for the EMG sig-
nal. Fig. 2 shows individual AF performances for the
speech and EMG signals along with the amount of
training data. We can see that the amount of training
data (given in frames of 10 ms) has an impact on the
EMG AF performance.

3.1.2 Channel Synchronization

It is observed that human articulator movements are
anticipatory to the speech signal as speech signal is
a product of articulator movements and source ex-
citation (Chan et al., 2002). This means the time
alignment we used for bootstrapping our EMG-based

1With α = 0.5, F-score = 2PR/(P+R), where precision
P =Ct p/(Ct p +C f p), recall R =Ct p/(Ct p +C f n), Ct p = true
positive count, C f p = false positive count, C f n = false neg-
ative count.

WER = S+D+I
N , where S = word substitution count, D =

word deletion count, I = word insertion count, N = number
of reference words.
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Figure 2: Baseline F-scores of the EMG and speech signals vs. the amount of training data.

system is actually mis-aligned for the EMG signals,
because the speech and the EMG signals are inher-
ently asynchronous in time. Based on this, we de-
layed the EMG signal with various duration to the
forced-alignment labels of speech signal, and con-
ducted the training and testing experiments respec-
tively. As shown in Fig. 3, the initial time-alignment
does not have the best F-score, while the best F-scores
come with time delays around 0.02 second to 0.12
second. This result suggests that a time-delayed ef-
fect exists between the speech and the EMG signals.

Figure 3: F-scores of concatenated six-channel EMG sig-
nals with various time delays (a delay of 0.1 means that the
EMG signal is delayed to the acoustic signal by 0.1 sec-
onds).

3.1.3 Articulator-Dependent Synchronization

To explore the time-delayed effect of EMG signals,
we conducted the same experiments on the level of
single EMG channels, instead of previously concate-
nated six-channels. The rationale is that articulators’
behaviors are different from each other, so the re-
sulted time delays are different on the corresponding
EMG signals. The effect of different time delays can
be seen in Fig. 4. We observed that some EMG sig-
nals are more sensitive to time delay than others, e.g.
EMG1 vs. EMG6, where EMG6 is more consistent
with different time delays. The delays to achieve peak

performance vary for each channel and the variation
is within the range of 0.02 to 0.10 seconds. To fur-
ther show the time-delay effect, we also conducted an
experiment which is identical to the baseline, except
each channel is offset with its known best time de-
lay. This approach gave a better F-score of 0.502 than
the baseline’s 0.467. It also outperforms the uniform
delay of 0.04 second which gave 0.492.

Figure 4: F-scores of single-channel EMG signals with var-
ious time delays with respect to the speech signals.

3.1.4 Complementary EMG Pairs

As suggested in (Maier-Hein et al., 2005), concate-
nated multi-channel EMG features usually work bet-
ter than single-channel EMG features. Therefore,
based on aforementioned time-delayed results, we
conducted experiments on EMG-pairs in which each
EMG signal is adjusted with its best single-channel
time offset. The first row of values in Table 1 shows
the F-scores of single-channel baseline (i.e. without
any time delay) and the second row shows those with
the best single-channel time delay, while the rest of
the values are F-scores of EMG pairs. The F-scores
suggest that some EMG signals are complementary to
each other, e.g. EMG1-3 and EMG2-6, which pairs
perform better than both their single channels do.
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Table 1: F-Score of EMG and EMG Pairs.
F-Scores EMG1 EMG2 EMG3 EMG4 EMG5 EMG6

single 0.435 0.399 0.413 0.404 0.357 0.440
+delay 0.463 0.419 0.435 0.415 0.366 0.450

EMG1 0.439 0.465 0.443 0.417 0.458
EMG2 0.440 0.443 0.414 0.464
EMG3 0.421 0.414 0.449
EMG4 0.400 0.433
EMG5 0.399

3.1.5 Performance of Individual Articulators

In Table 2 and 3, we list the top-4 articulators that
have the best F-scores. For single channels, EMG1
performs the best across these top-perfomance artic-
ulators, while EMG1-3, EMG1-6, and EMG2-6 are
the better paired channels. Interestingly, even though
EMG5 performs the worst as a single channel clas-
sifier, EMG5 can be complemented with EMG2 to
form a better pair for VOWEL. In Fig. 5, we show
six AFs that represent different characteristics of per-
formance changes with different delays. For example,
VOICED’s F-scores are rather stable with various de-
lay values while BILABIAL is rather sensitive. How-
ever, we do not have conclusive explanation on the
relation between the AFs and the delays. Further ex-
ploration shall be conducted.

Table 2: Best F-Scores of Single EMG channels w.r.t. AF.

AFs VOICED CONSONANT ALVEOLAR VOWEL
1 0.80 2 0.73 1 0.65 1 0.59

Sorted 6 0.79 3 0.72 3 0.61 2 0.59
F-score 3 0.76 1 0.71 2 0.59 6 0.56

4 0.75 6 0.71 6 0.56 3 0.52
2 0.74 4 0.69 4 0.55 4 0.51
5 0.74 5 0.63 5 0.45 5 0.51

Table 3: Best F-Scores of Paired EMG Channels w.r.t. AF

AFs VOICED CONSONANT ALVEOLAR VOWEL
1-6 0.77 1-6 0.76 1-3 0.69 2-6 0.64

Sorted 1-3 0.76 2-3 0.75 1-6 0.67 2-4 0.62
F-Score 1-2 0.76 3-6 0.74 1-2 0.66 2-5 0.62

2-6 0.75 2-4 0.74 2-6 0.66 1-6 0.62
3-6 0.75 2-6 0.74 2-3 0.65 1-3 0.61

3.2 Feature Extraction Experiments

In the following experiments, the final EMG features
are generated by stacking single-channel EMG fea-
tures of channels 1, 2, 3, 4, 6. We do not use chan-
nel 5 because it is relatively noisy for this experiment.
The final LDA dimensions are reduced to 32 for all
the experiments.

Figure 5: Performances of six representative AFs.

3.2.1 EMG ASR using Spectral Features

It was reported that the spectral coefficients are better
than cepstral and LPC coefficients on EMG speech
recognition (Maier-Hein et al., 2005). Therefore, we
use the spectral features as baseline in this paper. As
their WER is shown in Fig. 6, the spectral features are
S0 = X, SD = [X,D(X)], and SS = S(X,1). We can
see that the contextual features improve WER. Addi-
tionally, adding time delays for modeling the antic-
ipatory effects also helps. This is consistent to the
articulatory feature analysis above.
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Figure 6: Word Error Rate on Spectral Features.

3.2.2 EMG ASR Systems using
Spectral+temporal (ST) Features

Is was also reported that the time-domain mean fea-
ture provided additional gain to spectral features
(Maier-Hein et al., 2005). Here we also added the
time-domain mean feature, as their WER is shown in
Fig. 7: S0M = Xm, SDM = [Xm,D(Xm)], SSM =
S(Xm,1), and SSMR = S(Xmr,1). where Xm = [X, x̄]
and Xmr = [X, x̄, r̄,z].
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Figure 7: Word Error Rate on Spectral+Temporal Features.

3.2.3 EMG ASR Systems using EMG Features

We have observed that even though the spectral fea-
tures are among the better ones, they are still very
noisy for acoustic model training. Therefore we de-
signed the EMG features that are normalized and
smoothed in order to extract features from EMG sig-
nals in a more robust fashion. The performance of the
EMG features are shown in Fig. 8, where the EMG
features are

E0 = [f0,D(f0),D(D(f0)),T (f0,3)],
where f0 = [w̄,Pw]

E1 = [f1,D(f1),T (f1,3)],
where f1 = [w̄,Pw,Pr,z]

E2 = [f2,D(f2),T (f2,3)],
where f2 = [w̄,Pw,Pr,z, r̄]

E3 = S(E2,1)
E4 = S(f2,5)

The essence of the design of feature extraction meth-
ods is to reduce noise while keeping the useful in-
formation for classification. Since the EMG spectral
feature is noisy, we decide to first extract the time-
domain mean feature, which is empirically known to
be useful in literature. By adding power and con-
textual information to the time-domain mean, E0 is
generated and it already outperforms all the spectral-
only features. Since the mean and power only rep-
resent the low-frequency components, we add the
high-frequency power and the high-frequency zero-
crossing rate to form E1, which gives us another 10%
improvement. With one more feature of the high-
frequency mean, E2 is generated. E2 again improves
the WER. E1 and E2 show that the specific high-
frequency information can be helpful. E3 and E4
use different approaches to model the contextual in-
formation, and they show that large context provides
useful information for the LDA feature optimization
step. They also show that the features with large con-
text are more robust against the EMG anticipatory ef-

fect. We summarize by showing the performance of
all the presented feature extraction methods in Fig. 9,
in which all the feature extraction methods apply a
50-ms delay.
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3.3 Integration of Special EMG Feature
and AF Classifiers

3.3.1 AF Classification with the E4 Feature

Identical to the aforementioned experiments, we
forced-aligned the speech data using the BN speech
recognizer. In the baseline system, this time-
alignment was used for both the speech and the
EMG signals. Because we have a marker channel
in each signal, the marker signal is used to offset
the two signals to get accurate time-synchronization.
Then the AF training and testing procedures were
applied both on the speech and the five-channel
concatenated EMG signals, with the ST and E4
features. The averaged F-scores of all 29 AFs are
0.492 for EMG-ST, 0.686 for EMG-E4, and 0.814
for the speech signal. Fig. 10 shows individual AF
performances for the speech and EMG signals along
with the amount of training data in frames. The E4
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Figure 10: F-scores of the EMG-ST, EMG-E4 and speech articulatory features vs. the amount of training data.

significantly outperforms ST in that the EMG-E4
feature performance is much closer to the speech
feature performance.
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Figure 11: F-scores of concatenated five-channel EMG-ST
and EMG-E4 articulatory features with various LDA frame
sizes on time delays for modeling anticipatory effect.

We also conducted the time-delay experiments as
done in previous ones to investigate the EMG vs.
speech anticipatory effect. Fig. 11 shows the F-scores
of E4 with various LDA frame sizes and delays. We
observe similar anticipatory effect of E4-LDA and ST
with time delay around 0.02 to 0.10 second. Com-
pared to the 90-dimension ST feature, E4-LDA1 has
a dimensionality of 25 while having a much higher F-
score. The figure also shows that a wider LDA context
width provides a higher F-score and is more robust for
modeling the anticipatory effect, because LDA is able
to pick up useful information from the wider context.

3.3.2 EMG Channel Pairs

In order to analyze E4 for individual EMG channels,
we trained the AF classifiers on single channels and
channel pairs. The F-scores are shown in Fig. 12. It
shows E4 outperforms ST in all configurations. More-
over, E4 on single-channel EMG 1, 2, 3, 6 are already
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Figure 12: F-scores of the EMG-ST and EMG-E4 AFs on
single EMG channel and paired EMG channels.

better than the all-channel ST’s best F-score 0.492.
For ST, the paired channel combination only provides
marginal improvements; in contrast, for E4, the fig-
ure shows significant improvements of paired chan-
nels compared to single channels. We believe this
significant improvements come from a better decor-
related feature space provided by E4.

3.3.3 Decoding in the Stream Architecture

We then conducted a full decoding experiment with
the stream architecture. The test set was divided into
two equally-sized subsets, on which the following
procedure was done in two-fold cross-validation. On
the development subset, we incrementally added the
AF classifiers one by one into the decoder in a greedy
approach, i.e., the AF that helps to achieve the best
WER was kept in the streams for later experiments.
After the WER improvement was saturated, we fixed
the AF sequence and applied them on the test subset.
Fig. 13 shows the WER and its relative improvements
averaged on the two cross-validation turns. With five
AFs, the WER tops 11.8% relative improvement, but
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there is no additional gain with more AFs.
Among the selected AFs, only four of them are

selected in both cross-validation turns. This inconsis-
tency suggests a further investigation of AF selection
is necessary for generalization.

25.00

26.00

27.00

28.00

29.00

30.00

31.00

32.00

33.00

34.00

35.00

No A
F

VOIC
ED / 

FR
IC

ATIV
E

DENTA
L /

 LA
BIO

DEN

PO
STA

LV
 / 

BACK

UNROUND / 
VELA

R

GLO
TT

AL /
 LA

TERAL-A
P

BACK / 
CONSONANT

CENTRAL /
 U

NROUND

CONSONANT / 
VOIC

ED

Incrementally Added Articulatory Features

W
o

r
d

 E
r
r
o

r
 R

a
te

 (
%

)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

R
e
la

ti
v
e
 I

m
p

r
o

v
e
m

e
n

t 
(
%

)

WER (Dev) WER (Test) Relative Improvement (Test)

Figure 13: Word error rates and relative improvements of
incrementally added EMG articulatory feature classifiers in
the stream architecture. The two AF sequences correspond
to the best AF-insertion on the development subsets in two-
fold cross-validation.

4 COLLECTING MORE DATA

We are making efforts on larger-scale data collection
of EMG speech. The targeted total number of speak-
ers is in dozens and the recording modalities include
acoustic speech, EMG, and video. Each speaker par-
ticipates in two recording sessions, each of which in-
cludes a part of normal audible speech recording and
a part of silent mouthing speech recording. In each
part, two sets of phonetically balanced sentences are
collected. One set is referred to as the general set and
it exists in every part of every speaker. The other set
is a speaker specific set, which is different for dif-
ferent speakers. Per part, the general set contains 10
sentences and the speaker specific set contains 40 sen-
tences.

The data collection process is designed to be as
unbiased as possible, e.g., to eliminate the fatigue fac-
tor. The two sessions are recorded one week apart.
Besides, the order of the silent part and the audible
part is reversed in the two sessions. In each recording
part, the two sentence sets are mixed together into a
set of 50 sentences and the sentences appear in ran-
dom order. Table 4 shows the data details per speaker.

With this larger EMG corpus, we expect to be able
to study the effects of speaker dependency, session de-
pendency, audible versus mouthing speech kinemat-
ics, just to name a few.

Table 4: Data per speaker.

Speaker
Session 1 Session 2

Part 1 audible speech Part 1 silent speech
rand(10+40 sentences) rand(10+40 sentences)

Part 2 silent speech Part 2 audible speech
rand(10+40 sentences) rand(10+40 sentences)

5 CONCLUSIONS

We have presented our recent advances on EMG
speech recognition research, which has the advan-
tages of better noise robustness and better applicabil-
ity compared to traditional acoustic speech recogni-
tion. With the special EMG feature extraction meth-
ods and articulatory feature analyses, we have ad-
vanced the EMG speech recognition research from
isolated word recognition to phone-based continuous
speech recognition. Besides, the introduction of an-
ticipatory effect modeling also plays an important role
in this study. In summary, the EMG articulatory fea-
ture performance improves from 0.467 to 0.686 and
the overall speech recognition word error rate im-
proves from 86.8% to 29.9%.

This research topic is relatively new and unex-
plored with many questions waiting for answers. Al-
though the proposed special EMG feature extraction
methods do improve the performance, we believe they
are still sub-optimal. Designing a better EMG feature
extraction method for speech recognition is still an
open problem and we are continuously working on it.
Another issue is that the multi-channel EMG signals
are inherently asynchronous with respect to articula-
tory apparatus movements. How to model this asyn-
chronicity remains an open problem. We believe this
modeling would benefit the study of speech recogni-
tion as well as articulatory kinematics.
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Abstract: This paper deals with a segmentation (classification) problem which arises in the diagnostic and treatment
of shoulder disorders. Classical techniques can be appliedsuccessfully to solve the binary problem but they
do not provide a suitable method for the multiphase problem we consider. To this end we compare two
different methods which have been applied successfully to other medical images modalities and structures.
Our preliminary results suggest that a successful segmentation and classification has to be based on an hybrid
method combining statistical and geometric information.

1 INTRODUCTION

Shoulder imaging is one of the major applications in
MRI and the primary diagnostic tool in the evalua-
tion of musculoskeletal disease, (Vahlensieck, 2000),
(Ehman et al., 2001).

Accurate diagnosis and treatment of painful shoul-
der and others musculoskeletal complaints and dis-
orders (such as arthritis, abnormalities, bone tumors,
worn-out cartilage, torn ligaments, or infection) may
prevent from functional loss, instability and disability.
Recent interest is also in musculoskeletal tumor and
disorders associated with HIV infection and AIDS,
(Biviji et al., 2002), (Johnson and Steinbach LS,
2003). In order to provide a reliable method for suc-
cessful clinical evaluation an increasing effort has to
be done in mathematical engineering and biomedi-
cal imaging where the specific protocols of 2D seg-
mentation, 3D reconstruction, feature extraction and
4D motion are modeled. In this approach for im-
age guided analysis of shoulder pathologies, auto-
matic and unsupervised segmentation and classifica-
tion represent the first challenging task. In fact, prac-
tical difficulties arise due to the high resolution re-
quired for visualization of small but critical structures,
to the gross inhomogeneities of field coil response,

to the degree of noise present with the signal and to
extreme low contrast details between some distinct
anatomical structures (fat, bone regions, muscle and
tendons, ligaments and cartilage). The existence of
a general technique able to cope with all these dif-
ficulties for all 3D MRI images sequences is still an
open question. A preliminary analysis of the model
problem is done here, where a multiphase (2 phases,
4 classes) variational framework is considered for 2D
image segmentation and classification. Notice that
2D segmentation is a fundamental step towards the
3D morpho-dynamic reconstruction problem of auto-
matic segmentation. This in turn allows for motion
tracking for 4D reconstruction and visualization of
musculoskeletal structures.

2 MATERIAL AND METHODS

This contribution is devoted to the preliminary anal-
ysis and application of a modified multiphase seg-
mentation and classification algorithm based on pre-
vious work of Chan and Vese (Chan and Vese, 2001).
This multiphase approach can manage the classifica-
tion problem underlying the segmentation exercise so
broadening the scope of these PDE-based segmenta-
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tion models.
In order to validate our results we compare with a

mixture density estimation algorithm for image clas-
sification previously presented in (Mignotte et al.,
2001), in the context of brain MRI images.
As an application of our method we consider coronal
and transverse (axial), 2D MRI shoulder images ex-
tracted from two 3D sequences. The images are cour-
tesy of the Ruber International Hospital in Madrid.

The shoulder joint is composed of three bones: the
clavicle (collarbone), the scapula (shoulder blade),
and the humerus (upper arm bone). The bones of the
shoulder are held in place by muscles, tendons and
ligaments. Tendons are tough cords of tissue that at-
tach the shoulder muscles to bone and assist the mus-
cles in moving the shoulder. Ligaments attach shoul-
der bones to each other, providing stability. The ends
bones are covered by cartilage which provides pain-
less motion. See Figure 1.

Figure 1: Components of the shoulder, Coronal MR image.

The classification problem we are about can be
considered in the framework of minimal partition
problems (Mumford-Shah) and cannot be dealt with
classical techniques whereas binarization of image se-
quence is not suitable to produce the segmentation of
all the classes we are interested in. Nervertheless it
is interesting to compare the binary images obtained
with thresholding techniques for the two classes (1
phase) problem in order to assess the performance of
our algorithms when the full classification problem is
considered. To cope with the difficulties above men-
tioned we consider two different approaches based
on density mixture estimations (see (Mignotte et al.,
2001)) and a variational model formulated in a level
set framework (Chan and Vese, 2001).

The proposed algorithms are described in the next
sections. The results obtained with classical (global

and local thresholding or the popular k-means algo-
rithm) techniques for the 2 classes (1 phase) problem
are also reported for comparison. In particular we
used the original Otsu’s method (Otsu, 1979) and the
Ridler-Calvard technique (Ridler and Calvard, 1978).
We show the results obtained in figures 3 and 4 (d)
and e)).

2.1 Density Mixture Estimation

In the case of the density mixture estimations frame-
work the original magnitude images have been pre-
processed in order to eliminate the high frequencies
associated to noise and to increase the low contrast
present in some parts of the image. As in (Brinkmann
and Manduca, 1998), (Pérez et al., 2004). We con-
sider a low pass homomorphic filter in the frequency
domain which has been successfully used in previous
works.

The initial pre-processing step is performed with
a homomorphic filter in order to correct the gray
scale inhomogeneity field. These inhomogeneities are
known to appear in MR images as systematic changes
in the local statistical characteristics of tissues and are
often quite subtle to the human eye. However, even
inhomogeneities that are invisible to the human ob-
server alter tissue characteristics enough to hamper
automated and semi-automated classification.

Figure 2: On the left the original image and on the right the
pre-processed, corrected image.

Then, in a denoising step, the homogenized im-
age is then filtered again with an adaptative filter to
produce 2D wiener denoised sequence of the original
image. The denoised slices are then normalized using
a dynamical range operator in order to increase the
(low) contrast present in the images. We then char-
acterized the different soft tissues and bony structures
in 4 classes (bone, muscle, cartilage, fat) partitioning
the shoulder complex estimating their initial parame-
ter statistics.

In order to show the basic steps of the algorithm
we follow the Bayesian mixture parameter estimation
method proposed by (Mignotte et al., 2001)
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Let Z = (X,Y) define two random fields where
Y = {Ys,s∈ S} represents the field of observations
corresponding to the pixels of the MR image and
X = {Xs,s∈ S} corresponds to the label field repre-
senting the segmented image. Following a Bayesian
approach, the posterior distribution of(X,Y), P(x|y),
will result by combining the prior distribution, as-
sumed to be stationary and Markovian,

P(x) = exp{− ∑
<s,t>

β(1− δ(xs,xt))},

and the site-wise likelihoodP(ys|xs), modelled as a
mixture of densities

P(ys|xs,k,Φk) =
K

∑
k=1

πkP(ys|xs,k,Φk)

whereπk are the mixing proportion (∑k πk = 1) and
where P(ys|xs,k,Φk) define Gaussian distributions,
with parametersΦk = (µk,σ2

k) in each segmented
classk.

Let Φ = (Φ1,Φ2, . . . ,ΦK) and π =
(π1,π2, . . . ,πK). In order to proceed with the
segmentation procedure, we perform the following
algorithm:

0. Initialize parameters(Φ[0],π[0]).

Given(Φ[p]
,π[p]), we can calculate(Φ[p+1]

,π[p+1]) by

1. Using the Gibbs sampler, simulate one realization
x from the posterior distributionP(x|y) with pa-
rameter(Φ[p],π[p]).

2. Define(Φ[p+1],π[p+1]) as the ML estimation of
the data(Y,x)

3. Repeat till convergence is achieved.

2.2 Active Contours Without Edges

Since the work of Kass (Kass et al., 1987) is well
known that the segmentation problem of digital im-
ages can be dealt with in the framework of variational
calculus. Nevertheless in medical images there are of-
ten no sharp-gradient induced edges at all and region-
based active contours driven by gradients can fail in
automatic approaches. Recently a new model has
been suggested by Chan-Vese which can be deduced
from the Mumford -Shah minimal partition problem,
(Mumford and Shah, 1989), a basic problem in com-
puter vision. Successful applications of this method
have been reported in many papers and fields (see
(Chan and Vese, 2001) and (Vese and Chan, 2002)).
Our aim is to show that this active contour without
edges model (or statistical feature driven model) can
be used to solve the classification problem we con-
sider here where a multiphase level set framework for

image segmentation is implemented. The basic idea is
that, fixed the number of classes in which we are in-
terested in (fat, bone regions, muscle and tendons, lig-
aments and cartilage), it is sufficient to consider a two
phase model, sayφ1, φ2, in order to provided partition
of the image in four classes ( (φ1 > 0 andφ2 > 0),
(φ1 < 0 andφ2 > 0), (φ1 > 0 andφ2 < 0), (φ1 < 0 and
φ2 < 0) ).

Now, we explain the one phase (binary) and two
phases models considered in the experiments. Let
Ω ⊂ IR2 be an open, bounded domain (usually a
square) where(x,y) ∈ Ω denotes pixel location and
I(x,y) is a function representing the intensity image
values. Let moreover the level sets functions denoted
by φ1,φ2 : Ω→ IR. The union of the zero-level sets of
φ1 andφ2 represents the edges of segmentation. Using
this formalism the functionsφ1 andφ2 can be charac-
terized as the minimum of the following energy func-
tional:
F(C,Φ) =

∫

Ω
(I −c11)

2H(φ1)H(φ2)dxdy

+
∫

Ω
(I −c10)

2H(φ1)(1−H(φ2))dxdy

+

∫

Ω
(I −c01)

2(1−H(φ1))H(φ2)dxdy

+
∫

Ω
(I −c00)

2(1−H(φ1))(1−H(φ2))dxdy

+ ν
∫

Ω
|∇H(φ1)|dxdy+ (1)

+ ν
∫

Ω
|∇H(φ2)|dxdy

whereC = (c11,c10,c01,c00) is a constant vector
representing the mean of each region (or class),Φ =
(φ1,φ2), ν is a parameter of smoothness andH(x) is
the Heaviside function,H(x) = 1 if x≥ 0 andH(x) =
0 otherwise,

The Euler-Lagrange equations obtained by mini-
mizing (1) with respect toC andΦ are solved with
a gradient descent method leading to the coupled
parabolic PDE system (Vese and Chan, 2002):

∂φ1

∂t
= δε(φ1)

{

ν∇ ·
(

∇φ1

|∇φ1|

)

−

−
[

(I −c11)
2− (I −c2

01)
]

H(φ2) +

+
[

(I −c10)
2− (I −c2

00)
]

(1−H(φ2))

}

(2)

∂φ2

∂t
= δε(φ2)

{

ν∇ ·
(

∇φ2

|∇φ2|

)

−

−
[

(I −c11)
2− (I−c2

01)
]

H(φ1)+

+
[

(I −c10)
2− (I−c2

00)
]

(1−H(φ1))

}

.

(3)
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Where δε denotes a smooth (not compactly sup-
ported) approximation to the Dirac delta distribution.
Notice that the equations (2) and (3) are (weakly) cou-
pled in the lower order terms. In case of two regions
only one level set functionφ is needed. The resulting
one phase energy functional to minimize is as follows:

Ecv(c1,c0,φ) = ν
∫

Ω
|∇H(φ)|dxdy+

+

∫

Ω
H(φ)|I(x,y)−c1|

2dxdy+

+
∫

Ω
(1−H(φ))|I(x,y)−c0|

2dxdy

(4)

and the associated gradient descent equation is :

∂φ
∂t

= δε(φ)

[

ν∇ ·
(

∇φ
|∇φ|

)

−

− |I(x,y)−c1|
2 + |I(x,y)−c0|

2
]

. (5)

The equations(2), (3) or (5) have to be comple-
mented with feasible (due to the non-uniqueness of
the corresponding steady states) initial conditions and
homogeneous boundary conditions of Neumann type
(no flux). As in Chan and Vese (Chan and Vese, 2001)
the steady states associated to system(2), (3) or the
eq.(5) can be asymptotically reached by using a gra-
dient descent method whereδε is substituted by 1 (this
is possible becauseδε has no compact support). Nu-
merically, as we are concerned with the quality of the
classification and not in to speed it up, we used a sim-
ple first order (in time) Euler explicit finite difference
scheme and weighted, centered, second order formu-
las in space, with a regularization of the (degenerate)
diffusion term to avoid division by zero (which occurs
in homogeneous, very low gradient regions which are
located far from the active contour and do not affect
the final segmentation as soon as the regularizing pa-
rameter is small). The time steps have been choosen
accordingly in order to preserv numerical stability and
convergence.

3 RESULTS

We present the results obtained by applying the above
methods to a pair of slices extracted from a volume
MRI sequence of the shoulder complex. The slices
dimensions are 512x512.

Binary segmentations obtained with both meth-
ods (the bayesian density mixture estimation and the
PDE-based hybrid active contours method without

edges) are shown in Figures 3-4 before of the mul-
tiphase classification, see figures 5-6.

Figure 3: Slice 1. Segmentation image for one phase (2
classes) with: a) k-means b) Density mixture c) Active con-
tours without edges d) Otsu’s and e) Ridler Calvard algo-
rithms.

For comparison and in both cases, we also include
the results provided by classical methods. Binary seg-
mentation is also used to assess the parameters in-
volved in the model equations and to provide auto-
matic, robust initial conditions for the evolutive prob-
lem in the multiphase case.

Figure 4: Slice 2. Segmentation image for one phase (2
classes) with: a) k-means b) Density mixture c) Active con-
tours without edges d) Otsu’s and e) Ridler Calvard algo-
rithms.

In Figures 3-4 we see that in both cases the bony
structures (head of scapula, head of humerus, clavi-
cle, acromion) are properly classified. Background,
skin, and muscle are also characterized in the binary
images as the soft (tissue) class. Visual inspection
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suggests convergence to the same limit solution. This
is indeed confirmed when the differences images are
computed and classical methods (first row) are com-
pared.

Figure 5: Slice 1. Segmentation image for two phases (4
classes) a) k-means b) Density mixture c) Active contours
without edges algorithms.

As aspected, some more differences between the
quality reconstruction of the different methods can
be appreciated in the multiphase (four classes) clas-
sification problem. In Figures 5-6 we report the re-
sults obtained with the classical (k-means) algorithm
(left), the bayesian mixture model (center) and the
Chan-Vese model (right). The greater tubercle and
the head of the humerus are properly classified and
shaped with our methods (center and right) while the
classical k-means fails in both aspects (and in both
slices, see Figures 5-6, on the left, where the bone
is under-estimated and muscle is wrongly detected).
Articular cartilage has been detected in (center and
right) but not in (left). Muscle is properly classified
with the Chan-Vese model (right) and the classical
method (left) but no classification has been done in
the bayesian approach where the background is as-
signed to the same class. At the same time the head of
the scapula has been properly classified in (right) but
not in (center) where the shape, nevertheless is cor-
rectly obtained. Notice also that the acromial process
has been characterized by the two methods.

Figure 6: Slice 2. Segmentation image for two phases (4
classes) a) k-means b) Density mixture c) Active contours
without edges algorithms.

4 CONCLUSIONS

We considered the problem of automatic segmenta-
tion of 2D images using an hybrid, statistical and
geometrical model based on Chan-Vese work. This

method provides correct classification of bony struc-
tures but soft tissues are not yet properly classified.
This is also manifested in the bayesian approach. The
differences between the results obtained with the two
methods suggest the conclusion that hybrid methods
can give better results as far as the right statistics are
included in the model and this will be the aim of our
future work.
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Abstract: In this paper, we propose a novel classification system for ECG signals based on particle swarm 
optimization (PSO). The main objective of this system is to optimize the performance of the support vector 
machine (SVM) classifier in terms of accuracy by automatically: i) searching for the best subset of features 
where to carry out the classification task; and ii) solving the SVM model selection issue. Experiments 
conducted on the basis of ECG data from the MIT-BIH arrhythmia database to classify five kinds of 
abnormal waveforms and normal beats confirm the effectiveness of the proposed PSO-SVM classification 
system. 

1 INTRODUCTION 

The recent literature reports different and interesting 
methodologies for the automatic classification of 
electrocardiogram (ECG) signals (e.g., de Chazal et 
Reilly, 2006, and Inan et Giovangrandi, 2006). 
However, in the design of an ECG classification 
system, there are still some open issues, which if 
suitably addressed may lead to the development of 
more robust and efficient classifiers. One of these 
issues is related to the choice of the classification 
approach to be adopted. In particular, we think that, 
despite its great potential, the SVM approach has not 
received the attention it deserves in the ECG 
classification literature compared to other research 
fields. Indeed, the SVM classifier exhibits a 
promising generalization capability thanks to the 
maximal margin principle (MMP) it is based on 
(Vapnik, 1998). Another important property is its 
lower sensitivity to the curse of dimensionality 
compared to traditional classification approaches. 
This is explained by the fact that the MMP makes 
unnecessary to estimate explicitly the statistical 
distributions of classes in the hyperdimensional 
feature space in order to carry out the classification 
task. Thanks to these interesting properties, the SVM 
classifier proved successful in numerous and 

different application fields, such as 3D object 
recognition (Pontil et Verri, 1998), biomedical 
imaging (El-Naqa et al., 2002), remote sensing 
(Melgani et Bruzzone, 2004 and Bazi et Melgani, 
2006). Turning back to ECG classification, other 
issues which can be identified are: 1) feature 
selection is not performed in a completely automatic 
way; and 2) the selection of the best free parameters 
of the adopted classifier is generally performed 
empirically (model selection issue). 

In this paper, we present in a first step a thorough 
experimental exploration of the SVM capabilities for 
ECG classification. In a second step, in order to 
address the aforementioned issues, we propose to 
optimize further the performances of the SVM 
approach in terms of classification accuracy by 1) 
automatically detecting the best discriminating 
features from the whole considered feature space 
and 2) solving the model selection issue. The 
detection process is implemented through a particle 
swarm optimization (PSO) framework that exploits a 
criterion intrinsically related to the SVM classifier 
properties, namely the number of support vectors 
(#SV). 
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2 PROPOSED APPROACH  

2.1 Support Vector Machine (SVM) 

Let us first for simplicity consider a supervised 
binary classification problem. Let us assume that the 
training set consists of N vectors xi ∈ ℜ d (i =   1, 2, 
…, N) from the d-dimensional feature space X. To 
each vector xi, we associate a target yi ∈ {-1, +1}. 
The linear SVM classification approach consists of 
looking for a separation between the two classes in 
X by means of an optimal hyperplane that 
maximizes the separating margin (Vapnik, 1998). In 
the nonlinear case, which is the most commonly 
used as data are often linearly nonseparable, they are 
first mapped with a kernel method in a higher 
dimensional feature space, i.e., Φ(X) ∈ ℜd’ (d’> d). 
The membership decision rule is based on the 
function sign[f(x)], where f(x) represents the 
discriminant function associated with the hyperplane 
in the transformed space and is defined as: 

f(x) = w*⋅Φ(x) + b*  (1) 
The optimal hyperplane defined by the weight 

vector w* ∈ ℜd’ and the bias b* ∈ ℜ is the one that 
minimizes a cost function that expresses a 
combination of two criteria: margin maximization 
and error minimization. It is expressed as: 

∑
=

+=
N

i
iξC

1
2
1)( 2wξw,Ψ   

 
(2) 

     
This cost function minimization is subject to the 

following constraints: 
 

iξ1biΦiy −≥+⋅ ))(( xw ,  i = 1,…, N  (3) 

    
and 
 

0≥iξ ,   i = 1, 2, …, N  (4) 
 
where the ξi’s are slack variables introduced to 
account for non-separable data. The constant C 
represents a regularization parameter that allows to 
control the shape of the discriminant function. The 
above optimization problem can be reformulated 
through a Lagrange functional, for which the 
Lagrange multipliers can be found by means of a 
dual optimization leading to a Quadratic 
Programming (QP) solution, i.e., 
 

∑ ∑
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−
N
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jijijii ,Kyyααα

1

)(
2
1   max xx

α
 

 
(5) 

under the constraints: 

0≥iα  for i = 1, 2, …, N (6) 

and 

∑
=

=
N

1i
ii 0yα  

 
(7) 

where α=[α1, α2,…, αN] is the vector of Lagrange 
multipliers and )( ⋅⋅,K  is a kernel function. The final 
result is a discriminant function conveniently 
expressed as a function of the data in the original 
(lower) dimensional feature space X: 
 

∑
∈

+=
Si

*
ii

*
i b,Kyα)f( )( xxx  (8) 

 
The set S is a subset of the indices {1, 2, …, N} 
corresponding to the non-zero Lagrange multipliers 
αi’s, which define the so-called support vectors.  

As described above, SVMs are intrinsically binary 
classifiers. But the classification of ECG signals 
often involves the simultaneous discrimination of 
numerous information classes. In order to face this 
issue, different multiclass classification strategies 
can be adopted (Melgani et Bruzzone, 2004). In this 
paper, we shall consider the commonly used one-
against-all strategy.  

2.2 PSO Principles 

Particle swarm optimization (PSO) is a stochastic 
optimization technique introduced recently by 
Kennedy and Eberhart, which is inspired by social 
behavior of bird flocking and fish schooling 
(Kennedy et Eberhart, 2001). Similarly to other 
evolutionary computation algorithms such as genetic 
algorithms (GAs) (Bazi et Melgani, 2006), PSO is a 
population-based search method, which exploits the 
concept of social sharing of information. This means 
that each individual (called particle) of a given 
population (called swarm) can profit from the 
previous experiences of all other individuals from 
the same population. During the iterative search 
process in the d-dimensional solution space, each 
particle (i.e., candidate solution) will adjust its flying 
velocity and position according to its own flying 
experience as well as the experiences of the other 
companion particles of the swarm.  

Let us consider a swarm of size S. Each 
particle ) ,...,2 ,1(  SiPi =  from the swarm is 
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characterized by: 1) its current position d
i t ℜ∈)(p , 

which refers to a candidate solution of the 
optimization problem at iteration t; 2) its velocity 

d
i t ℜ∈)(v ; and 3) the best position d

bi t ℜ∈)(p  
identified during its past trajectory. Let d

g t ℜ∈)(p  
be the best global position found over all trajectories 
traveled by the particles of the swarm. The position 
optimality is measured by means of one or more 
fitness functions defined in relation to the considered 
optimization problem. During the search process, the 
particles move according to the following equations: 

 
( )

( ))()()(                 
)()()()()1(

22
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)()()1( ttt iii vpp +=+  

(9) 
 
 

(10) 
where r1(⋅) and r2(⋅) are random variables drawn 

from a uniform distribution in the range [0, 1] so that 
to provide a stochastic weighting of the different 
components participating in the particle velocity 
definition. c1 and c2 are two acceleration constants 
regulating the relative velocities with respect to the 
best global and local positions, respectively. The 
inertia weight w is used as a tradeoff between global 
and local exploration capabilities of the swarm.  

2.3 PSO Setup 

The position 2+ℜ∈ d
ip  of each particle Pi from the 

swarm is viewed as a vector encoding: 1) a 
candidate subset F of features among the d available 
input features, and 2) the value of the two SVM 
classifier parameters, which are the regularization 
and the kernel parameters C and γ, respectively. 
Since the first part of the position vector implements 
a feature detection task, each component 
(coordinate) of this part will assume either a “0” 
(feature discarded) or a “1” (feature selected) value. 
The conversion from real to binary values will be 
done by a simple thresholding operation at the 0.5 
value. 

Let f(i) be the fitness function value associated 
with the ith particle Pi. The choice of the fitness 
function is important since, on its basis, the PSO 
evaluates the goodness of each candidate solution pi 
for designing our SVM classification system. A 
possible choice is to adopt the class of criteria that 
estimates the leave-one-out error bound, which 
exhibits the interesting property of representing an 
unbiased estimation of the generalization 
performance of classifiers. In particular, for SVM 
classifiers, different measures of this error bound 
have been derived, such as the radius-margin bound 
and the simple support vector (SV) count (Vapnik, 

1998). In this paper, we will explore the simple SV 
count as fitness criterion in the PSO optimization 
framework because of its simplicity and 
effectiveness as shown in the context of the 
classification of hyperspectral remote sensing 
images (Bazi et Melgani, 2006). 

2.4 SVM Classification with PSO 

• Initialization 
Step 1: Generate randomly an initial swarm of size 
S. 
Step 2: Set to zero the velocity vectors vi (i= 1, 2,..., 
S) associated with the S particles. 
Step 3: For each position 2+ℜ∈ d

ip  of the particle 
) ,...,2 ,1(  SiPi =  from the swarm, train an SVM 

classifier and compute the corresponding fitness 
function f(i) (i.e., the #SV measure). 
Step 4: Set the best position of each particle with its 
initial position, i.e., 

ibi pp = , (i=1, 2,.., S) (11) 

• Search process 
Step 5:  Detect the best global position gp  in the 
swarm exhibiting the minimal value of the 
considered fitness function over all explored 
trajectories. 
Step 6: Update the speed of each particle using 
Equation (9). 
Step 7: Update the position of each particle using 
Equation (10). If a particle goes beyond the 
predefined boundaries of the search space, truncate 
the updating by setting the position of the particle at 
the space boundary and reverse its search direction 
(i.e., multiply its speed vector by -1). This will 
permit to forbid the particles from further attempting 
to go outside the allowed search space. 
Step 8: For each candidate particle pi (i= 1, 2,..., S), 
train an SVM classifier and compute the 
corresponding fitness function. 
Step 9: Update the best position bip  of each particle 
if its new current position ip  (i= 1, 2,..., S) has a 
smaller fitness function. 

• Convergence 
Step 10: If the maximal number of iterations is not 
yet reached, return to Step 5. 

• Classification 
Step 11: Select the best global position *

gp  in the 
swarm and train an SVM classifier fed with the 
subset of detected features mapped by *

gp  and 
modeled with the values of the two parameters C 
and γ encoded in the same position. 
Step 12: Classify the ECG signals with the trained 
SVM classifier. 
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3 EXPERIMENTAL RESULTS 

Our experiments were conducted on the basis of 
ECG data from the MIT-BIH arrhythmia database 
(Mark et Moody, 1997). In particular, the considered 
beats make reference to the following classes: 
normal sinus rhythm (N), atrial premature beat (A), 
ventricular premature beat (V), right bundle branch 
block (RB), left bundle branch block (LB), and 
paced beat (/). Similarly to (Inan et al., 2006), the 
beats were selected from the recordings of 18 
patients, which correspond to the following files: 
100, 102, 104, 105, 106, 107, 118, 119, 200, 201, 
203, 205, 208, 212, 213, 214, 215, and 217. For 
feeding the classification process, we adopted in this 
study the two following kinds of features: i) ECG 
morphology features; and ii) three ECG temporal 
features that are the QRS complex duration, the RR 
interval (i.e., time span between two consecutive R 
points representing the distance between the QRS 
peaks of the present and previous beats), and the RR 
interval averaged over the ten last beats (de Chazal 
et Reilly, 2006). The total number of morphology 
and temporal features is equal to 303 for each beat. 
In order to train the classification process and to 
assess its accuracy, we selected randomly from the 
considered recordings 500 beats for the training set, 
whereas 42185 beats were used as test set (thus, the 
training set represents just 1.18% of the test set). The 
detailed numbers of training and test beats are 
reported for each class in Table 1. Classification 
performance was evaluated in terms of three 
accuracy measures, which are: 1) the overall 
accuracy (OA); 2) the accuracy of each class; and 3) 
the average accuracy (AA). 

Due to the good performances generally 
achieved by the nonlinear SVM classifier based on 
the Gaussian kernel [6], we adopted this kernel in all 
experiments. The parameters C and γ were varied in 
the ranges [10-3, 200] and [10-3, 2], respectively. The 
k value and the number of hidden nodes (h) of the 
kNN and the RBF classifiers were tuned in the 
intervals [1, 15] and [10, 60], respectively. 
Concerning the PSO algorithm, we considered the 
following standard parameters: swarm size S=40, 
inertia weight w=0.4, acceleration constants c1 and 
c2 equal to the unity, and maximum number of 
iterations fixed to 40. 

3.1 Experiment 1: Classification in the 
Original Feature Space 

In this experiment, we applied the SVM classifier 
directly on the whole original hyperdimensional 

feature space which is composed of 303 features. 
During the training phase, the SVM parameters (i.e., 
C and γ) were selected according to a m-fold cross-
validation (CV) procedure. In all experiments 
reported in this paper, we adopted a 5-fold CV. The 
same procedure was adopted to find the best 
parameters for the kNN and the RBF classifiers. The 
best values obtained for the three investigated 
classifiers are C=25, γ=0.5, k=3 and h=20. As 
reported in Table 2, the OA and AA accuracies 
achieved by the SVM classifier on the test set are 
equal to 87.95% and 87.60%, respectively. These 
results are much better than those achieved by the 
RBF and the kNN classifiers. Indeed, the OA and 
AA accuracies are equal to 82.78% and 82.34% for 
the RBF classifier, and 78.21% and 79.34% for the 
kNN classifier, respectively. This experiment 
appears to confirm what observed in other 
application fields, i.e., the superiority of SVM with 
respect to traditional classifiers when dealing with 
feature spaces of very high dimensionality.  

3.2 Experiment 2: Classification based 
on Feature Reduction 

In this experiment, we trained the SVM classifier in 
feature subspaces of various dimensionalities. The 
desired number of features was varied from 10 to 50 
with a step of 10, namely from small to high 
dimensional feature subspaces. Feature reduction 
was achieved by means of the traditional Principal 
Component Analysis (PCA) algorithm. Figure 1-a 
depicts the results obtained in terms of OA by the 
three considered classifiers combined with the PCA 
algorithm, namely the PCA-SVM, the PCA-RBF 
and the PCA-kNN classifiers. In particular, it can be 
seen that, for all feature subspace dimensionalities 
except the lowest one (i.e., 10 features), the PCA-
SVM classifier maintains a clear superiority over the 
two other classifiers. Its best accuracy was found by 
using a feature subspace composed of the first 40 
components. The corresponding OA and AA 
accuracies are equal to 88.98% and 88%, 
respectively. Comparing these results with those 
obtained by the SVM classifier in the original 
feature space (i.e., without feature reduction), a 
slight increase of 1.03% and 0.4% in terms of OA 
and AA, respectively, was achieved (see Table 2).  

3.3 Experiment 3: Classification with 
PSO-SVM 

In this experiment, we applied the PSO-SVM 
classifier on the available training beats. At 
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convergence of the optimization process, we 
assessed the PSO-SVM classifier accuracy on the 
test samples. The achieved overall and average 
accuracies are equal to 91.44% and 91.19% 
corresponding to substantial accuracy gains with 
respect to what yielded either by the SVM classifier 
applied on all available features (+3.49% and 
+3.59%, respectively) or by the PCA-SVM classifier 
(+2.46% and +3.19%, respectively) (see Table 2 and 
Figure 1). Its worst class accuracy was obtained for 
atrial premature beats (A) (88.16%) while that of the 
SVM and the PCA-SVM classifiers corresponded to 
paced beats (/) (73.43%) and ventricular premature 
beats (V) (78.06%), respectively. This shows the 
capability of the PSO-SVM classifier to reduce 
significantly the gap between the worst and best 
class accuracies (8.25% against 15.43% and 20.21% 
for the PCA-SVM and the SVM classifiers, 
respectively) while keeping the overall accuracy to a 
high level. 

4 CONCLUSIONS 

The main novelty of this paper is to be found in the 
proposed PSO-based approach that aims at 
optimizing the performances of SVM classifiers in 
terms of classification accuracy by detecting the best 
subset of available features and by solving the tricky 
model selection issue. Its completely automatic 
nature renders it particularly useful and attractive. 
The results confirm that the PSO-SVM classification 
system boosts up significantly the generalization 
capability achievable with the SVM classifier. 
Finally, it is noteworthy that the general nature of 
the proposed PSO-SVM system makes it applicable 
not just to morphology and temporal features but to 
other kinds of features such as those based on 
wavelets and high-order statistics. Finally, other 
optimization criteria could be considered as well 
individually or jointly depending on the application 
requirements. 
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Figure 1: Overall percentage accuracy (OA) versus 
number of selected features (first principal components) 
achieved on the test beats by the different classifiers. 

Table 1: Numbers of training and test beats used in the experiments. 

Class N A V RB / LB Total 

Training beats 150 100 100 50 50 50 500 
Test beats 24966 119 4239 3939 6971 1951 42185 
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Table 2: Overall (OA), average (AA), and class percentage accuracies achieved on the test beats by the different 
investigated classifiers.  

Method OA AA N A V RB / LB 
SVM 87.95 87.60 90.05 83.19 92.12 93.15 73.43 93.64 
RBF 82.78 82.34 85.14 78.99 90.39 86.74 66.53 86.26 
kNN 78.21 79.34 76.50 66.38 71.99 93.27 75.92 92.00 
PCA-SVM 88.98 88.00 89.36 83.19 78.06 93.50 90.60 93.28 
PCA-RBF 83.04 82.11 85.86 80.67 87.85 83.87 68.85 85.54 
PCA-kNN 83.91 82.02 85.62 69.74 79.05 93.04 73.89 90.77 
PSO-SVM 91.44 91.19 91.12 88.16 93.70 93.70 92.01 96.41 
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Abstract: UV-VIS spectroscopy is a powerfull qualitative and quantitative technique used in analytical chemistry, which
gives information about electronic transitions of electrons in molecular orbitals. As in UV-VIS spectra there is
no direct information on characteristic organic groups, vibrational spectroscopy (e.g. infrared) has been pre-
ferred for biological applications. In this research, we try to use state-of-the-art fiber optics probes to obtain
UV-VIS-SWNIR diffusive reflectance measurements of yeastsand bacteria colonies on plate count agar in the
region of 200-1200nm; in order to discriminate the following microorganisms: i) yeasts:Saccharomyces cere-
visiae, Saccharomyces bayanus, Candida albicans, Yarrowia lipolytica; and ii) bacteria:Micrococcus luteus,
Pseudomonas fluorescens, Escherichia coli, Bacillus cereus. Spectroscopy results show that UV-VIS-SWNIR
has great potential for identifying microorganisms on plate count agar. Scattering artifacts of both colonies
and plate count agar can be significantly removed using a robust mean scattering algorithm, allowing also
better discriminations between the scores obtained by singular value decomposition. Hierarchical clustering
analysis of UV-VIS and VIS-SWNIR decomposed spectral scores lead to the conclusion that the use of VIS-
SWNIR light source produces higher discrimination ratios for all the studied microorganisms, presenting great
potential for developing biotechnology applications.

1 INTRODUCTION

Spectroscopy is a powerful tool for biological appli-
cations, being applicable to liquids, solutions, pastes,
powders, films, fibres, gases and surfaces, and mak-
ing possible to characterize proteins, peptides, lipids,
membranes, carbohydrates in pharmaceuticals, foods,
plants or animal tissues (Hammes, 2005).

One of the most popular method is Infrared Spec-
troscopy (IR), and was firstly applied to biological
materials in 1911 (Riddle et al., 1956). In the 1950s
and 1960s research IR spectroscopy began to be ap-
plied for microorganism differentiation, but this re-
search was abandoned due to the unsatisfactory re-
sults obtained with dispersive spectrometers (Dziuba
et al., 2007). These were ignored during 20 years,
until modern interferometric Fourier Transform Infra-
Red spectrometers (FT-IR) and statistical comput-
ing methodologies became available (Dziuba et al.,
2007).

Recent techniques using FT-IR allowed microbio-
logical characterization and the discrimination at level

of sorting better species and strains. Attenuated to-
tal reflection and IR micro-spectroscopy have been
associated to the discrimination and identification of
strains according to taxonomic classification, gram
+/- factor, or even susceptibility to antibiotics and
grown medium (Mariey et al., 2001).

FT-IR has also been used to identify lactic acid
bacteria strains (e.g. Lactobacillus, Lactococcus,
Leuconostoc, PediococcusandStreptococcus(Dziuba
et al., 2007), and the rapid identification ofAcineto-
bacter species (Winder et al., 2004). An extensive
FT-IR spectroscopy database for the identification
of bacteria from the two subordersMicrococcineae
andCorynebacterineae(Actinomycetales, Actinobac-
teria) as well as other morphologically similar gen-
era was established in 2002 by Helene Oberreuter and
its team (Oberreuter et al., 2002). Furthemore, FT-
IR was used for the first time to determine the ra-
tios of different yeast species (Saccharomyces cere-
visiae, Hanseniaspora uvarum) and two yoghurt lac-
tic acid bacteria (Lactobacillus acidophilus, Strepto-
coccus salivarius ssp. thermophilus) in suspensions
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Table 1: Studied microorganisms characteristics and experimental conditions: Gram factor, colony colour and shape and
integration time.

Integration Time (ms)
Microorganism Gram Colony color Shape Medium UV-VIS (ms) VIS-NIR (ms)
Saccharomyces cerevisiae na white spherical YPD 70 66
Saccharomyces bayanus na white spherical YPD 45 61
Candida albicans na white spherical YPD 70 66
Yarrowia lipolytica na white rod YPD 70 61
Micrococcus luteus - yellow spherical TSA 20 19
Pseudomonas fluorescens - translucent rod MP 20 30
Escherichia coli - translucent rod LB 30 13
Bacillus cereus + opaque rod LB 36 61

of distilled water (Oberreuter et al., 2000).
Raman Spectroscopy has also shown great poten-

tial for microorganisms identifications in microscopy,
such as forCandidayeast strains and bacterial strains
such asStaphylococus, Enterococusand Echerichia
Coli) (Guibeta et al., ). Applications are also found
in oral hygiene, for the identification ofStreptococ-
cusmutants,S. sanguis, S.intermediusandS. oralis
(Berger and Zhu, 2003). Moreover, this technique
is currently used to identify baterials cells ofStaphy-
lococcusunder different cultivation conditions (Harz
et al., 2005) and single yeast cells (Rch et al., 2005).
Fluorescence Spectroscopy (FS) is one of the most
important spectroscopic techniques in molecular bi-
ology, and consequently can also be used to microbi-
ological identification. FS applications can be found
on the differentiation of yeast and bacteria, by their
intrinsic fluorescence to UV excitation (Bhatta et al.,
2005).

UV-VIS-SWNIR spectroscopy is one of the most
widely used techniques in analytical chemistry, but it
has almost not been used for microorganism identi-
fication. This is perhaps attributed to the fact that
UV-VIS spectroscopy records transmitions between
electron energy levels from molecular orbitals, in-
stead of vibrational or structural oscillation of molec-
ular groups as in the infrared region. It is widely ac-
cepted that vibrational spectroscopy is more adequate
for organic chemistry measurement than transitional
spectroscopy. Nevertheless an asset of this technique
has never been done use for microbiological identifi-
cation.

Electronic transitions in the UV-VIS region de-
pend upon the energy involved. For any molecular
bound (sharing a pair of electrons), orbitals are a mix-
ture of two contributing orbitalsσ and π, with cor-
responding anti-bounding orbitalsσ∗ andπ∗, respec-
tively. Some chemical bounds present characteristic
orbital conditions, ordered by higher to lower order
energy transitions: i) alkanes (σ → σ∗; 150nm); ii)
carbonyls (σ → π∗; 170nm); iii) unsaturated com-

pounds (π → π∗; 180nm); iv) molecular bounds to
O, N, S and halogens (n → σ∗; 190nm); and v) car-
bonyls (n → π∗; 300nm). As most UV-VIS spec-
trometers yield a minimum wavelength of 200nm, this
technique has been considered to provide lower infor-
mation in terms of functional groups when compared
to IR, being the spectral differences mostly attributed
to conjugatedπ → π∗ transitions andn → π∗ tran-
sitions (Perkauparus et al., 1994).

Only recordingπ → π∗ and n → π∗ tran-
sitions above the 200nm is however not totally a
handicap. Many organic molecules present con-
jugated unsaturated and carbonyls bounds, such as
aminoacids, phospholipids, free fatty acids, phe-
nols and flavonoids, peroxides, peptides and pro-
teins, sugars and their polymers absorbance in these
bands. Furthermore, many biological molecules
present chromophore groups, which increase the ab-
sortion in the UV-VIS region, such as: nitro, nitroso,
azo, azo-amino, azoxy, carbonyl and thiocarbonyl,
which can be used to identify microorganisms.

UV-VIS-SWNIR has some advantages to FTIR
for microbiological identification in plate count agar.
The lower wavelength turns this radiation attractive
due to the lower penetration, being easier to mon-
itor surfaces than NIR or MIR radiation. Further-
more, state-of-the-art fiber-optics miniature UV-VIS-
SWNIR are today affordable for mobile applications
such as identification of microorganisms in surfaces,
using spectroscopy may became feasible in a near
future. Although UV-VIS retrieves only molecular
spectroscopy information, today’s equipments also
include high frequency vibrational spectroscopy in
the SWNIR region, giving important information on
water, fats and proteins which may be used to discrim-
inate between microorganisms.

In this research was tried to discriminate both
Yeasts and Bacteria of comonly used in microbi-
ology laboratories: i) yeasts:Saccharomyces cere-
visiae, Saccharomyces bayanus, Candida albicans,
Yarrowia lipolytica, ii) bacteria:Micrococcus luteus,
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Figure 1: Yeast and bacteria growth media: (a) Tryptic Soy
Agar (TSA): Micrococcus luteus; (b) Pseudomonas Iso-
lation Agar (MP) (Pseudomonas fluorescens); (c) Luria-
Bertani (LB): Escherichia coli, (d) LB: Bacillus cereus;
(e) YPD (Saccharomyces cerevisiae); (f) YPD (Saccha-
romyces bayanus); (g) YPD (Candida albicans); and (h)
YPD (Yarrowia lipolytica).

Pseudomonas fluorescens, Escherichia coli, Bacillus
cereus; under plate count agar growth media.

The physical properties of the UV-VIS-SWNIR
spectra can also provide a great potential for the iden-
tification of microorganism, using multivariate statis-
tical analysis and signal processing techniques. Mi-
crobes may not be directly identified by their main
colony chemical composition but rather by charac-
teristic metabolites produced under different growth
media. This is especially true for yeasts that ex-
hibit one of the most complex metabolisms in this
study. Therefore, not only the colony but changes
in the composition of the plate count agar in the sur-
roundings of each colony are expected to affect the
UV-VIS-SWNIR spectra in order to obtain significant
discrimination between the different microorganisms
spectra. Therefore, the main objective of this research
work were to investigate the discrimination potential
of UV-VIS and VIS-NIR wavelengths to classify the
following microorganisms: i) yeasts:Saccharomyces
cerevisiae, Saccharomyces bayanus, Candida albi-
cans, Yarrowia lipolytica, ii) bacteria: Micrococcus
luteus, Pseudomonas fluorescens, Escherichia coli,
Bacillus cereus; under plate count agar growth media.

2 MATERIALS AND METHODS

2.1 Sample Preparation

The microorganisms were obtained from the mi-
crobiological collection of the IBB - Institute for
Biotechnology and Bioengineering at the University
of Minho. The microorganisms were incubated un-
der aerobic conditions at 35oC during 72h.Micrococ-
cus luteuswas cultivated on Difco Tryptic Soy Agar
(TSA) while Pseudomonas fluorescens was grown on

Difco Pseudomonas Isolation Agar (MP). Escherichia
coli and Bacillus cereus were cultivated on Difco
Luria-Bertani Agar (LB). Yeast strains were grown on
Difco YPD Agar (YPD), at the same temperature and
time (Difco, 2005).

2.2 Spectroscopy

Yeast and bacteria UV-VIS-SWNIR spectroscopy
analysis was performed using the fiber optic spec-
trometer AvaSpec-2048-4-DT (2048 pixel, 200-
1100nm). Standart reflection UV-VIS and VIS-
SWNIR probes, models FCR-7UV200-2ME and
FCR-7IR200-2-ME (Avantes, 2007). A xenon and
halogen light sources, models AvaLight XE-2000
and AvaLight-Hal were used for UV-VIS and VIR-
SWNIR transmission measurements respectively; and
recorded using AvaSoft 6.0 (Avantes, 2007). Trans-
mission measurements were performed at the room
temperature of 18±2oC, and: (a) UV-VIS: the xenon
lamp was let to stabilize during 20 min; (b) VIS-NIR:
the tungsten lamp lamp was let to stabilize during 15
min. The dark spectra was recorded and measure-
ments were taken with linear and electric dark cor-
rection. Both light spectra were monitored by statisti-
cally assessing the reproducibility of the light source
with measurements of light during the several days
of the experiment. Fifteen spectra replicates were
recorded of UV-VIS and VIS-SWNIR measurement
of both plate count agar and microorganisms colonies
to study scattering effects. Futhermore, spectra were
obtained inside a box designed to isolate the environ-
mental light and maintain the probe at 90o angle with
the plate agar.

2.3 Spectral Analysis

2.3.1 Spectra Pre-processing

Table 1 presents the UV-VIS and VIS-NIR spectra ac-
quisition conditions. Experimental setup has shown
that it is impossible to use the same integration time
for the different microorganisms. Under these cir-
cumstances, all the collected spectra were normalized
xnorm to remove this effect:

xnormi = DS×
xraw i

max(xi)
(1)

wherexrawi is the original spectra,DS is the detec-
tor saturation value (14000 counts) andxnormi the i’th
spectra normalized by its maximum value and resized
to the detector saturation.

Furthermore, as most plaque count agar growth
media are translucid, the signal recorded is in major-
ity the media information. To increase spectral vari-
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Figure 2: Plaque count agar spectra: (a) raw UV-VIS; (b)
MSC UV-VIS; (c) raw VIS-NIR; (d) MSC VIS-NIR.

ance, the normalized media spectra matrix was sub-
tracted to the microorganisms spectra, obtaining the
spectra matrix (x), which is thereafter subjected to
robust mean scattering correction, and singular value
decomposition.

2.3.2 Robust Mean Scattering Correction

The collected spectra were smoothed by using a
Savisky-Golay filter (length = 4, Order= 2) (?) prior
to any exploratory data analysis procedure. After-
wards, the spectra was pre-processed using a modified
multiplicative scatter correction algorithm (Gallagher
et al., 2005; Martens and Stark, 1991; Martens et al.,
2003). Each spectra is corrected by using the follow-
ing equation:

xcorr = xb+a= xre f (2)

Thea andb are computed by minimizing the fol-
lowing error:

e j = bx j +a−xre f (3)

where thex j is the j sample spectra andxre f is a
reference spectra.

This RMSC algorithm is based on the application
of the robust least squares method to determine thea
andb matrices ensuring that spectral areas that do not
correspond to scattering artifacts are not taken into
account. The robust least squares algorithm is im-
plemented by the re-weighted least squares with the
weights computed by using the Huber function. The
algorithm high breakdown point (50%) means that ex-
istent outliers will not distort the model fitting (eq. 3)
and thus, thea andb scatter correction parameters are
determined using only consistent spectral areas. The
iterative algorithm can be described, briefly as follow:
1) set the reference spectra (xre f ) equal to the sample
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Figure 3: Growth media Gabriel plot: (a) UV-VIS (PC1
(96.40%), PC2 (2.3%) and (b) VIS-NIR (PC1 (98.60%),
PC2 (0.70%) to the corresponding growth media: TSA (�),
MP (◦), LB (•) and YPD (⋄).

spectra closest to the median spectra; 2) correct the
remaining sample spectra by applying the above de-
scribed robust least squares procedure; eq.3) recom-
pute the median spectra and iterate until convergence.

2.3.3 Singular Value Decompostion

Singular value decomposition (SVD) is a blind signal
technique widely used in spectroscopy data, where
the corrected spectra (xcorr) is decomposed in order of
magnitude of variation directions in the variable space
(wavelengths). Generally, most variability is captured
in the first principal components (PC), where as, in
good signal to noise spectral data, noise is captured
in the last orthogonal decompositions, and therefore a
spectra can be decomposed as:

xcorr = x̂+ ε(x) (4)

where thêx is the signal andε(x) is the estimated
noise ofx. Spectra matrixxcorr can be decomposed
by (SVD), where:

x = USVT (5)

where US are the scores,VT the loadings and
the S singular values, respectively (Jolliffe, 1986;
Krzanowski, 1998; Baig and Rehman, 2006).

To distinguish between the number of relevant de-
compositions, one can determine the number of rele-
vant singular values by performing n randomizations
of the original spectra matrix (x) (Manly, 1998). In
this research, 5000 randomizations were performed
by rotating the spectral scope value at the same wave-
lengths among the different samples, in order to not
violate the spectral continuity. Singular values from
the original spectrax above the 1st singular value of
randomized spectra (xrand) define the number of inde-
pendent singular values of the original signal where is
possible to discriminate the different microorganisms
spectra:

x̂ = USrelvVT
relv (6)
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Figure 4: Microorganisms spectra: (a) raw UV-VIS; (b)
MSC UV-VIS; (c) raw VIS-NIR; (d) MSC VIS-NIR.

WhereUSrelv andVT
relv are the statistically rele-

vant scores and loading ofx, respectively. To further
discriminate between the microorganisms spectra, the
relevant PC’s scores(USrelv) were subjected to hierar-
chical clustering according to the euclidean distance,
to determine the potential of using UV-VIS and VIS-
NIR to identify the studied yeast and bacteria. All
statistical computing analysis were performed using
R (R-Project, 2006).

3 RESULTS AND DISCUSSION

3.1 Spectral Analysis

Figure 2 presents the UV-VIS and VIS-NIR plate
count agar growth media spectra, respectively. It is
possible to observe in Figure 2(a) and 2(c) that all
plate count agar are highly dispersive, generating a
high scattering effect. This undesired scattering ef-
fect is due to the light path length to be very sensitive
to the probe angle, particles in the agar, surface tex-
ture of both agar and petri disk. If the light scattering
effect is not corrected, variance due to this physical
phenomenon affects significantly the chemical inter-
pretation of the spectra due to scattering artifacts.

As pure additive effects of light scattering are
rarely observed in samples with complex compo-
sitions, being mainly of multiplicative origin, the
growth media spectra was subjected to RMSC, be-
ing the corrected spectra presented in Figures 2 (b)
and 2 (c), respectively. By directly comparing Fig-
ures 2 (a)-(b), and 2 (c)-(d), one can observe the scat-
tering effect is obtained in both light sources. After
applying the RMSC one can observe that, this scat-
tering artifacts are significantly reduced in the region

of 700-1000nm, but nevertheless both light sources
present higher degree of spectral variance in the re-
gion of 400-700nm.

Furthermore, it is observable that all spectra are
proportional to each other. Variation is mostly in
terms of signal intensity than in spectra shape. In this
sense it is difficult to distinguish the different growth
media by direct spectra comparison. Figure 3 presents
the Gabriel plot (PC1 vs PC2) of the growth media
spectra, for UV-VIS and VIS-NIR wavelengths, re-
spectively. Both UV-VIS and VIS-NIR biplots evi-
dence optical properties of the growth media, being
thin mostly described by the 1st principal component.
In both biplots, it is possible to observe that the MP
growth media is the most translucid and YPD the
most opaque, and therefore PC1 can be interpreted as
the amount of signal that the detector records. Media
such as TSA and LB present similar spectra records.
Such is mainly attributed to their similar composition
in terms of main components such as sodium chloride,
agar and water.

Results show that MP and YPD media are more
suceptible to variability than TSA and LB in spec-
troscopy terms. As no chemical assessment was per-
formed to the media, we cannot present the cause for
this source of variation.

Figure 4 presents the UV-VIS and VIS-NIR mi-
croorganisms spectra, respectively. Similarly to the
growth media, the microbe spectra exhibits high scat-
tering artifacts (see Figures 4a and 4c). The scatter-
ing effect is in this case due to the light scattering at
the colony surface and growth media, which signifi-
cantly affects the observed spectra. Similarly to the
growth media, scattering is significantly high in both
light sources and evenly distributed from 450 to 1000
nm, nevetheless scattering is significantly reduced by
the RMSC algorithm. The corrected spectra presents
higher variability in the region of 400-700nm, but
nevertheless it is difficult to recognize directly spec-
tral characteristics that distinguish the different mi-
croorganisms under study, and therefore SVD analy-
sis is necessary.

3.2 Singular Value Decomposition
Analysis

Figure 5 presents the Gabriel plot of the first
two components obtained by SVD (PC1(78.40%),
PC2(8.03%)), and the corresponding hierarchical
clustering analysis. The first two decompositions en-
sure the majority of the spectral variation to pro-
portional to the average spectrum (PC1(78.40%)),
and that linear variance also with discriminant power
(8.03%), evidences smaller but discriminate spectral
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Figure 5: UV-VIS Microorganisms Spectra PCA Analysis: (a) Gabriel Plot (PC1 (78.40%), PC2 (8.03%);S. cerevisiae(⋄), S.
bayanus(△), C. albicans(▽), Y. lipolytica(H), M. luteus(•), P. fluorescens(◦), E. coli (�) andB. cereus(�); (b) hierarquical
clustering of Microorganisms.

differences between the studied microorganisms.
PC1(78.40%) discriminates between spectral in-

tensity, being possible to observe that colonies of
B. cereus, C. albicansand S.cerevisiae, present the
higher scores indicating that the colonies of this mi-
croorganisms are well suited for diffusive reflectance.
Although the relative proximity in the scores space, it
is observable thatB. cereus, C. albicansandS. cere-
visiaeare discriminated by the 2nd PC. In the group,
it is possible to observe a higher similarity betweenC.
albicansandS.cerevisiaespectra than withB. Cereus.

It is further observable that althoughS. bayanus
and Y. lipolityca exhibit similar spectral intensity,
their spectra is possible to he discriminated in the 2nd
PC.S. bayanuswho presents larger variability thenY.
lipolityca, being more difficult to identify.

E. coli and M. luteus colonies are distinguish-
able from all the other microorganisms group. These
present the lowest signal intensity, and the proximity
of the two spectra may in part he due to the growth
media spectral similarity between TSA and LB, as
show in Figure 3a. Nevertheless, the UV-VIS spectra
decomposition is capable of discriminating between
E. coli andM. luteusspectra.

In the UV-VIS, P. fluorescensspectra has proved
to he highly unreproducible, being its scores
well spread throughout the 2nd PC. This un-
reproducibility is attributed to the high translucent
of both P. fluorescenscolonies and the MP growth
media, and to the experimental microbiological tech-
nique. As microorganisms were inoculated using a
inoculating loop, a significant part of radiation is dif-

fused into de media inP. fluorescens. Better growth
may in the future improve the spectral measurement
and therefore its identification, as already observed in
E. coli colonies, which although are smaller, are ca-
pable of developing thicker colonies.

Dispite the experimental difficulties hierarchical
clustering analysis presented in Figure 5b shows that
the majority of the studied microorganisms cluster to-
gether with exception ofP. fluorescens. This gives
good perspectives of using UV-VIS spectroscopy for
microorganisms identification in plate count agar af-
ter experimental and signal processing improvements.

The VIS-SWNIR spectra also exhibits high scat-
tering artifacts in the 400-1000nm region (see Fig-
ure 4c), the scattering effect is effectively removed
by the RMSC algorithm used during the spectral pre-
processing. Figure 4d, shows that in the corrected
spectra, variance is higher in the 400-700nm as al-
ready observed as with the UV-VIS light source. The
majority of the spectra are proportional to each other,
varying only in signal intensity.

Figure 6a presents the Gabriel plot of the first
two PCs of the decompose VIS-NIR spectra (PC1
(75.40%), PC2 (10.95%), and the corresponding
scores hierarchical clustering. Similarly to the UV-
VIS spectra, the first spectra decomposition discrim-
inating variance proportional to the average spec-
tra, and PC2 (lower variance) tends to discriminate
smaller details between the spectra of the studied mi-
croorganisms, evidencing that VIS-NIR is a viable
methodology for identification microorganisms on
plate count agar. PC1 (75.40%) of VIS-SWNIR spec-
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Figure 6: VIS-NIR Microorganisms SpectraPCA Analysis: (a)Gabriel Plot (PC1 (75.40%), PC2 (10.95%);S. cerevisiae.
(⋄), S. bayanus(△), C. albicans(▽), Y. lipolytica (H), M. luteus(•), P. fluorescens(◦), E. coli (�) andB. cereus(�); (b)
hierarquical clustering of Microorganisms.

tra presents a clear discrimination between groups
of microorganisms: (a)B. cereus, S.cerevisiae, S.
bayanus, Y. lipolityca, C. albicans, and (b)M. luteus,
E. coli and P. fluorescens. PC2 (10.95%) is capa-
ble of discriminate the microorganisms inside these
two groups, and therefore, complete discrimination is
achievable with VIS-SWNIR wavelengths.

In the VIS-SWNIR spectraE. coli and P. fluo-
rescenspresent higher dispersion of signal when com-
pared to the rest of the spectra of microorganisms.
Nevertheless, results reproductivity inside these two
groups is significantly higher than with the UV-VIS
measurements; indicating that translucid colonies
were better identified under the VIS-SWNIR radi-
ation. Furthermore, data suggest that VIS-SWNIR
may be better to be used under non-optimal measur-
ing conditions. This is especially problematic if we
want to identify microorganisms in plate count agar
with similar compositions and metabolism.

3.3 Methodology Improvements

This preliminary study shows that UV-VIS and VIS-
SWNIR reflection spectroscopy has a great potential
for rapid qualitative discrimination of yeasts and bac-
teria in plate count agar. Nevertheless, both experi-
mental methodology and signal processing techniques
should be improved to take advantage of the informa-
tion contained in the UV-VIS-SWNIR.
Improvements to the experimental methodology are
necessary to improve discrimination in the studied re-
gion of the spectra. For example, the use of liquid
cultures to replicate microorganisms and then innoc-

ulate by a droplet on the surface agar will allow the
growth of compact and thicker colonies. Small and
thin colonies lead to readings with much media infor-
mation, because the light is reflected from both sites
of the agar. This is particularly relevant forE. coli
and P. fluorescensbecause of the small size of the
colonies and small thickness ofP. fluorescens; being
the spectra highly affected by the media composition,
leading to sistematic errors in discrimination. Mi-
croorganisms signal spectra can also be maximised
by reducing the growth media thickness. Such min-
imises light dispersion accross the agar, and increases
the colony spectral intensity by passing through it the
reflected light; ans as well by optimising fiber optics
diffusive reflectance position and angle control, min-
imizing scattering effects in the colonies and growth
media.
Scattering artifacts and small noise were success-
fully removed by pre-processing the spectra with the
RMSC and Savisky-Golay filter, respectively; being
possible to achieve high-quality and resolution final
spectra before signal treatment. Improvements can
also be performed to the spectra processing proce-
dure. Methods such as the combination of logis-
tic partial least squares (log-PLS) with multiblock
(e.g. UV-Vis+Vis-Nir spectra) can provide a new in-
sight to the discrimination of microorganisms using
spectroscopy. If these methodologies provide good
discriminations, more robust techniques such as the
use of wavelets for compressing the original spectra
and orthogonal-PLS classification of spectra will be
tested.
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4 CONCLUSIONS

Results show that UV-VIS-SWNIR spectroscopy is a
feasable technology for plate count agar microorgan-
isms identifications. The robust mean scattering cor-
rection algorithm was able to efficiently remove the
growth media and colonies scattering artifacts, allow-
ing a better interpretation of the singular value de-
composition scores loading. In this exploratory ex-
periment, VIS-SWNIR wavelengths were able to pro-
duce better discriminations between microorganisms
than the UV-VIS region. Nevertheless, experimen-
tal methodology and signal processing improvements
proposed may increase the discrimination resolution,
making UV-VIS-SWNIR an attractive methodology
for rapid microorganisms identification in plate count
agar.
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Abstract: This paper introduces multifractal analysis to the Fuzzy Markov Random Field (MRF) Model, used for 
brain tissue classification of Magnetic Resonance Images (MRI). The traditional classifying method using 
Fuzzy MRF Model is already able to calculate out the memberships of each voxel, to solve the Partial 
Volume Effect (PVE). But its accuracy is relatively low, for its spatial resolution is not high enough. 
Therefore the multifractal analysis is brought in to raise the accuracy by providing local information. The 
improved method is tests on both simulated data and real images, where results on membership average 
errors and position errors are calculated. These results show that the improved method can provide much 
higher accuracy.        

1 INTRODUCTION 

Magnetic Resonance Images (MRI) have been 
widely used for brain diagnosis and disorder 
detections. Accordingly, segmenting brain images 
into different tissues, such as cerebrospinal fluid 
(CSF), grey matter (GM) and white matter (WM), 
for clinical uses, has become a classical problem. 

Many different tissue segmenting methods and 
algorithms are proposed these years. Some methods 
are using T1 weighted images (Rajapakse et al, 
1996), while others use multispectral MR data (Taxt 
and Lundervold, 1994). Algorithms can be based on 
histogram determination Suzuki and Toriwaki, 
1991), or on a priori information on anatomy (Joliot 
and Mazoyer, 1993). Mathematical models are used, 
from cluster analysis (Simmons et al, 1994) to 
Bayesian estimation (Chang et al, 1996). All these 
methods assume that each voxel in the images to be 
segmented belongs to only one specific tissue. 
However, due to the partial volume effect (PVE), 
one voxel may contain information from several 
different tissues, flawing the segmenting results of 
the methods proposed. 

To solve the effect of PVE, Markov Random 
Field (MRF) Model is applied to tissue classification 
(Ruan and Cyril et al, 2000). The a priori 
information from an image and the classifying 
criteria are combined into energy functions of 

MRF’s distribution, and then the voxels with mixed 
tissues can be classified by the iterated conditional 
mode (ICM). This method achieves a so-called 
‘Hard Classifying’, classifying each voxel into one 
tissue who contributes the most, and contributions 
from other tissues are neglected. Considering that 
the neglected information is usually useful, a further 
model, the Fuzzy MRF Model, is brought in (Ruan 
and Moretti et al, 2001). The Fuzzy MRF Model 
takes into account the contextual information, the 
statistical information and the anatomical 
information of the brain. And ‘Hard Classifying’ is 
replaced by ‘Fuzzy Classifying’, providing 
‘memberships’ for each voxel, indicating each 
voxel’s partial volume degree, in other words,  
representing how much these tissues occupy one 
voxel respectively. 

The fuzzy MRF Model is proved effective on 
PVE, but still limitations it has. Experiments show 
that this method performs poorly at brinks of brain 
images, where grey-level of voxels changes 
suddenly, which implies its spatial resolution is not 
high enough. Also, this method being noise sensitive, 
when it encounters images with high noise, its 
accuracy becomes even worse. These limitations can 
be attributed to the lack of local properties extracted 
from images, so what we need to do is to provide the 
Fuzzy MRF abundant local information.  

As a new signal processing method, multifractal 
analysis is competent for this object. Multifractal is 
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first studied mathematically (Halsey et al, 1986), 
and introduced to image processing by Sarkar and 
Katsuragawa (1995). It has derived various methods 
for image analysis, and has shown its advantages in 
local feature extraction (Liu and Li, 1997). It is also 
adapted to MRI brain tissue classifying, to remove 
ambiguities in the ‘Hard Classifying’ caused by 
intensity overlap, and performed well (Ruan et al, 
2000) 

Our research aims to raise the spatial resolution 
by local information while using fuzzy MRF model. 
We propose a combining both fuzzy MRF model 
and multifractal analysis together, to achieve a more 
accurate ‘Fuzzy Classifying’. In this paper, we 
firstly show an overall of the proposed scheme and 
two kenel algorithms, fuzzy MRF and multifractal 
analysis, then explain how to combine these two 
parts in section 2. The validation of this improved 
scheme is done both by some experiments and in 
comparison with traditional fuzzy MRF method. The 
results and discussion are shown in section 3. This 
improved algorithm takes the same frame as the 
original method, while changes are done 
mathematically. Experiments and tests are done on 
various images, including real and virtual data with 
different amount of added noise. 

2 ALGORITHMS  

In this section we will introduce the algorithms for 
Fuzzy MRF Model along with multifractal analysis. 
We will show how the Fuzzy MRF Model works 
and how the multifractal information improves its 
classifying results. 

2.1 A Whole Algorithm for Fuzzy MRF 
Model with Multifractal Analysis 

Here we give out the flowchart of the whole 
algorithm using Fuzzy MRF Model with multifractal 
analysis, as Figure 1. 

A parallel treatment, such as a preteatment for 
the  parameter estimation of Fuzzy MRF Model  and 
a multifractal analysis for producing a novel 
parameter U3 to adjust a traditional Fuzzy MRF 
Model, is the contribution of this scheme. 

The region framed by dashed line rectangle is the 
multifractal part added to the original frame. The 
other modules form the ICM iteration of Fuzzy MRF 
(Ruan and Moretti et al, 2001), and the multifractal 
part provides a ‘tendence’ to instruct the iterating 
course. We will discuss them in detail in following 
subsections. 

 
Figure 1: Flowchart of the whole algorithm. 

2.2 Fuzzy MRF Model  

The MRF Model is an a priori model, it represents 
the spatial correlation of image data. Considering a 
random field A with its realization a, in practice we 
usually use the joint probability density function of 
A on the whole image. Particularly when the 
probability density is distributed Gibbsian, the 
density function takes form as (1): 
 

1( ) exp( ( )),  

 exp( ( ))
x

P X x U x
Z

Z U x

= = −

= −∑
 (1) 

  
where U(a) stands for the energy function, and Z the 
normalizing constant. 

Fuzzy MRF Model applied to image 
segmentation, there are two random fields. One is 
the membership field A, whose realization is a, the 
other is the grey-level field Y, whose realization is y, 
which is known a priori. The goal of tissue 
classifying is to achieve the maximum joint 
probability density distribution of these two random 
field: 

 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

34



 

| || { ( , ) ( , ), }result AY AYa a P a y P x y x= ≥ ∀  (2) 
 
The joint probability can be represented by 

conditional probability as:  
 

, |( , ) ( ) ( | )A Y A Y AP a y P a P y a=  (3) 
 
Comparing (1) and (3), we can get the 

probability distribution of Fuzzy MRF of image: 
 

, 1 2
1( , ) exp( ( , ) ( ))A YP a y U a y U a
Z

= − −  (4) 

 
Here U1 represents the incompatibility between the 
grey-levels and the memberships, and U2 represents 
the inhomogeneity of memberships themselves. 
They can be calculated using statistical parameters, 
which are acquired by fitting the grey-level 
histogram with several Gaussian functions (Ruan 
and Jaggi et al, 2000). 

Once the two parts of energy function are 
calculated out, we can use the deterministic 
relaxation iterated conditional modes (ICM) to find 
the optimum realization of membership a, to ensure 
the energy function U being minimum, which means 
the joint probability in (1) being maximum. 

The original algorithm concerns only these two 
parts of energy function, and information about the 
partial details are not taken into account. So we can 
see the shortcome of the original algorithms clearly 
by calculating the set-difference between classifying 
resluts and standard modules. Here we use a noise-
free virtual image of normal brain with no RF. The 
original image is shown in Figure 2. Classifying 
results are shown in Figure 3 and differences in 
Figure 4, as we can see, the spatial differences 
mainly locate on the brinks, stings and nicks of the 
image, where grey level changes suddenly. If we 
could provide the algorithm enough local 
information to raise its spatial resolution, the result 
should be more accurate. 

2.3 Multifractal Analysis 

The multifractal analysis is first adopted into ‘Hard 
Classification’ by Ruan (Ruan and Bloyet, 2000), to 
remove the ambiguity caused by intensity overlap. 
The intensity overlap has nothing to do with the 
fuzzy model, since in fuzzy circumstances, we need 
not to reclassify a mixed voxel into one particular 
pure tissue. But the local information provided by 
multifractal still helps in raising the spatial 

resolution, thus we introduce the multifractal method 
to the Fuzzy MRF Model.  
 

 
Figure 2: The original image named Vn00. 

 
Figure 3: The classifying results of a virtual image. 

 
Figure 4: The spatial difference between classifying 
results and standard modules of a virtual image. 

2.3.1 Multifractal in Signals 

It is well known that fractal is widely used to 
process self-similar signals, by providing its global 
information of similarity to the ‘fractal dimension’. 
But to provide local information, we need the 
‘fractal dimension’ to vary from part to part of the 
signal. This is multifractal. 

Therefore Multifractal dimension is defined 
locally by the measurement and length of a 
shrinking small region, as (5):  

 

0

loglim
loga

b
a

α
→

=  (5) 

 
where α denotes the multifractal dimension, also 
called Hölder exponent, b denotes the measurement, 
and a the length of the region. 
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Each small region has its own Hölder exponent, 
and then the whole signal can be considered as the 
union of many subsets that combining with each 
other. To characterize the local characteristics, we 
need another parameter to decompose these small 
regions, and group all voxels being in the same kind 
of detail into a set. The parameter brought in is 
called ‘multifractal spectrum’, defined as ( )f α . 

( )f α ’s definition can be Hausdorff, Legendrea, or 
others. We can also define it particularly. 

2.3.2 Multifractal in Brain Images 

To describe the local details of brain images, first we 
need to abstract these details into several simple 
models. Observe the images, we can find out three 
kinds of details shown in Figure 5.  
 

 
Figure 5: The details of brain image. 

 
(a)  plain detail 

 
(b)  hill detail 

 
(c)  valley detail 

Figure 6: The models of details. The intensity model is on 
the left, while grey-level model is on the right. 

Grey levels of voxels in plain region has little 
difference from the central voxel, most of the small 
regions are proved to be plain. Hill region has 
several voxels much lighter in the centre, and valley 

region has a much darker centre. The models can be 
illustrated as Figure 6. 

After defined the three detail models, the Hölder 
exponent α  is ready to be calculated out for each 
model. From the equation (5) we could know that α  
is defined to be a limit process. Because the image is 
composed by discrete voxels, the values of length a 
must also be discrete, thus the limit process is 
discrete: first a takes the radius of the small region R 
as its value, then each time a minus 1 until a 
becomes 0. The corresponding value of b is the sum 
of grey level of voxels in a diminishing spherical 
small region whose radius is a. Both a and b gotten, 
the Hölder exponent α  can be gotten in succession. 
Since we only care about the relative size of the 
Hölder exponentα , the values themselves make no 
sense to us; we can also use some approximate 
method, such as linear fitting, instead of the 
complicate limit process. 

At last, we can get the relative size of the Hölder 
exponent α  in different details: for hill, α is 
relatively smaller, and for valley, α is relatively 
bigger, while for plain, it’s in the middle. 

To decompose image details and group the 
voxels into three sets, ( )f α needs to be generated 
from α . And for concision, we define ( )f α as α ’s 
histogram, that means:  

( ) ( ( ), )i i
k I

f kα δ α α
∈

=∑  (6) 

where I represents the whole image, ( )kα is the 
Hölder exponent at voxel k, ( ( ),  )ikδ α α  is 
Kronecker Function, which takes the value 1 while 

( ) ikα α= , and 0 while ( ) ikα α≠ . 
 

 
Figure 7: Multifractal spectrum of MR brain image. 

Then we get the histogram as spectrum, shown in 
Figure 7. A correctly collected MR Brain image 
must has a multiractal spectrum in this shape, 
because most voxels are in plain regions, which 
makes the high peak in the middle. Therefore we 
need only to find the position of the peak, denoted as 

plain 
 
 
hill 
 
 
valley 
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0α , representing the corresponding voxels being in 
plain detail, and voxels with an α  smaller than 

0α are in hill regions, others are in valley regions. 

2.4 Multifractal Applied to Fuzzy MRF 

Using multifractal, we can label every voxel the 
detail type it belongs to, and the rest to be done is to 
combine the multifractal and Fuzzy MRF together, 
by influencing the ICM iterating process with these 
detail labels. 

We consider translating the labels into some sort 
of ‘tendence’. If a voxel is labelled ‘hill’, that means 
it’s brighter than its neighbours, then it should have 
a tendence to be classified into a brighter tissue. If 
the voxel is labelled ‘valley’, on contrary, it should 
have a tendence to be classified into a darker tissue. 
If the voxel is labelled ‘plain’, its brightness is 
almost the same as its neighbours’, so it should have 
no tendence. 

Then the main problem is how to translate the 
detail labels into ‘tendences’. Here we propose the 
3rd energy function U3, to change the value of U, 
therefore to impose the ‘tendence’ to the iterating 
process. From  to gradient label (denoted by D), then 
to U3, can be defined as equation (7): 

 

3

1 ( )
0 ( ) ,
1 ( )

1
0  ,  0,
1

hill

hill valley

valley

current

fractal current fractal

current

hill
D plain

valley

a a
U D a a

a a

α α
α α α

α α

β β

⎧ <
⎪= ≤ ≤⎨
⎪− >⎩

− >⎧
⎪= ⋅ ⋅ = >⎨
⎪ <⎩

 
(7) 

 
For equation (7), hillα  and valleyα  are thresholds 

generated from the spectrum ( )f α  shown in Figure 
7, e.g, 0 0max( | ( ) ( ) / 2 & )hill f fα α α α α α= < <  
and 0 0min( | ( ) ( ) / 2 & )valley f fα α α α α α= < > . 
And fractalβ  is a positive weight coefficient for U3, 
whose value depends on how much you want the 
multifractal part to affect the whole system. 

Using (7), the detail ‘hill’ can make U with 
brighter membership a smaller, and U with darker 
membership a bigger. For the detail ‘valley’, the 
performance is on the contrary. Thus multifractal 
can be applied to the algorithm frame shown in 
Figure 1. 

3 EXPERIMENTS AND RESULTS 

3.1 Experiment Materials 

Experiments are done on 9 data sets to test the 
improved algorithm. These 9 sets of data includes 
various conditions, such as virtual data and real 
images, data with different noise levels and RF 
levels, data of normal brains and brains with defect. 
We name each image the way as following. The 1st 
letter indicates its source in V (virtual) and R (real). 
The 2nd letter indicates the defect of the brain, in n 
(normal), s (multiple sclerosis) and t (tumour). The 
1st number indicates its noise level in percent. And 
the 2nd number indicates whether RF is added, in 1 if 
added or 0 if not.  

The information of the 9 sets of data is listed in 
Table 1. 

Table 1: Information of data sets used for tests. 

Name Source Defect Noise RF 

Vn00 virtual normal 0% 0% 

Vn30 virtual normal 3% 0% 

Vn50 virtual normal 5% 0% 

Vn70 virtual normal 7% 0% 

Vn01 virtual normal 0% 20% 

Vn71 virtual normal 7% 20% 

Vs00 virtual 
multiple 
sclerosis 0% 0% 

Rn real normal   

Rt real tumour   
 
To quantify the tests of accuracy, we mainly use 

the virtual data and their standard modules. The 
virtual data is from Montréal Neurological Institute, 
McGill University, McConnell Brain Imaging 
Centre (Website: http://www.bic.mni.mcgill.ca/ 
brainweb/ ). 

3.2 Evaluating Method 

The classifying results of virtual images are 
evaluated in two ways. The 1st way is the position 
error ep, which is the number of voxels classified 
differently from the standard module.  The position 
error is defined as equation (8).  
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(8) 

And the 2nd way is the membership average error 
em, which indicates the average error of 
memberships from the whole images. The 
membership average error is defined as equation (9), 
where N(I) represents the number of voxels. 

 
( , , ) ( , , )

( , , )

( )

result i j k std i j k
i j k I

m

a a
e

N I
∈

−
=
∑

 (9) 

3.3 Result and Discussion 

The position error of each image data using each 
algorithm is listed in Table 2, the membership 
average errors are listed in Table 3. 

Both Table 2 and Table 3 show that the 
algorithm with multifractal has lower errors, in other 
words, higher accuracy than the original one. (In 
spite of some exceptions caused by noise and RF, 
such as GMs of Vn50 and Vn01 in Table 2, the 
flaws can be compensated by better results on the 
other tissues. ) 

Table 2: Position errors of two algorithms. 

ep  (number of voxels) 
Data Multi- 

fractal CSF GM WM 

without 68232 105738 55071 
Vn00 

with 66398 98904 54122 

without 114829 140443 139721 
Vn30 

with 115507 134358 139774 

without 188361 193855 223821 
Vn50 

with 183362 194035 222067 

without 228503 238072 281032 
Vn70 

with 228273 230507 278875 

without 165458 255996 195482 
Vn01 

with 166628 256531 190323 

without 232630 256904 306778 
Vn71 

with 232336 250765 302827 

without 72145 124560 72968 
Vs00 

with 72170 119322 69315 

Table 3: Membership average errors of two algorithms. 

em 
Data Multi-

fractal CSF GM WM 

without 1.6322 3.3685 1.3824 
Vn00 

with 1.5104 3.1752 1.3422 

without 2.1395 4.9949 2.7958 
Vn30 

with 2.0264 4.8018 2.7688 

without 2.9763 7.4779 4.6330 
Vn50 

with 2.8443 7.2597 4.5960 

without 4.3948 9.4826 5.9437 
Vn70 

with 3.5422 9.1410 5.9312 

without 2.3392 6.2700 3.9262 
Vn01 

with 2.2365 6.1273 3.8102 

without 3.8495 10.526 7.0626 
Vn71 

with 3.6663 10.136 7.0032 

without 1.6992 3.4159 1.4649 
Vs00 

with 1.6233 3.2771 1.4197 
 
Because of the effect of other tissues such as 

muscles and bones, the errors are still not very low, 
but we could observe just the voxels at brinks, which 
we care about. Comparing the result images, we find 
that the voxels improved are mainly what we wanted 
to improve. Compare to the results from original 
method, the results of multifractal method have 
much less error voxels at the brinks of images. One 
comparison of position error using Vn00, the same 
data as Figure 2, is shown in Figure 8. 

 

 
Figure 8: Position error of original algorithm (above) and 
improved algorithm with multifractal (below). 
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Figure 9: Membership average error of original algorithm 
(real line) and improved algorithm with multifractal 
(dotted line). 

Another improvement is the better robustness on 
noise. We chart the average errors of Vn00 to Vn07 
in Table 2, the curves are shown in Figure 9. 

The higher the noise level becomes, the greater 
the accuracy improves. The improved method with 
multifractal is improved less sensitive to noise, and 
can be used to contain the deterioration caused by 
high noise. 

Results of real image Rn and Rt have been 
compared to some manual segmenting results, and 
they match each other. The improved method can be 
well used for real applications. 

4 CONCLUSIONS 

An improvement from multifractal analysis has been 
done to the traditional tissue classifying algorithm 
using Fuzzy MRF Model. The original mathematical 
models and fuzzy features are reserved, when spatial 
resolution is increased, thus accuracy is improved. In 
numbers of tests on various sorts of data, the 
improved method shows its advantage on accuracy 
to the original method. Also an entire algorithm 
using the improved method is proposed and tested, 
doing well in real applications. 
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Abstract: This study experimentally investigates the relationships between central cardiovascular variables and 
oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-
ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas 
exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage.  The 
modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms 
traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error 
between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with 
small training data set. 

1 INTRODUCTION 

The relationships between central cardiovascular 
variables and oxygen uptake during steady state of 
graded exercise have been widely examined by 
numerous investigators (Allor et al., 2000) (Astrand 
et al., 1964) (Fairbarn et al., 1994) (Freedman et al., 
1955) (Kobayashi et al., 1978) (Reeves et al., 1961) 
(Richard et al., 2004) (Rowland et al., 1997) (Turley 
et al., 1997). Most of them investigated the 
relationship between cardiac output (CO) and 
oxygen uptake ( 2OV ) using linear regression 
methods and found the slope between the two 
variables to be approximately 5 – 6 in normal and 
athletic subjects (Rowell et al., 1986). Beck et al 
(Beck et al., 2006) in contrast, investigated this 
relationship in healthy humans using polynomial 
regression. Turley (Turley et al., 1997) described 
both the relationship of stroke volume (SV) and the 
total peripheral resistance (TPR) to oxygen uptake 
during steady state of sub-maximal exercise using 
linear regression. However, from the point view of 
modeling, the regression methods used by the 
previous researchers have several limitations. First 
the empirical risk minimization (ERM) principle 

used by traditional regression models does not 
guarantee good generalization performance and may 
produce models that over-fit the data (Gunn, 1997). 
Secondly, most of the regression models developed 
from early research based on a small sample set with 
limited subjects during three or four exercise 
intensities. Traditional regression approachs are 
particularly not recommended for modeling small 
training sets. Determination of the size of the 
training set is a main issue to be solved in the 
modeling performance because the sufficiency and 
efficiency of the training set is one of the most 
important factors to be considered.  

This study presents a novel machine learning 
approach, Support Vector Regression (SVR) 
(Drucker et al., 1997) to model the central 
cardiovascular response to exercise. SVR, developed 
by Vapnik and his co-workers in 1995, has been 
widely applied in forecasting and regression (Su et 
al., 2007) (Su et al., 2005) (Su et al., 2006) (Valerity 
et al., 2003).  The following characteristics of SVR 
make it an ideal approach in modeling of 
cardiovascular system. Firstly, SVR avoids the over-
fitting problem which exists in the traditional 
modeling approaches. Second, SVR condenses 
information in the training data and provide a sparse 
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representation by using a small number of data 
points (Girosi, 1998). Thirdly, SVR is insensitive to 
modeling assumption due to its being a non-
parametric model structure. Finally, the SVR model 
is unique and globally optimal, unlike traditional 
training which can risk converging to local minima.   

The rest of this paper is organized as follows: 
section 2 describes the experimental design for the 
data collection. Section 3 applies SVR for modeling 
the relationships between central cardiovascular 
variables and oxygen uptake. Finally, some 
conclusions are drawn in Section 4. 

2 EXPERIMENTAL DESIGN 

2.1 Subjects 

We studied 12 normal male subjects. They are all 
active, but do not participate in formal training or 
organized sports. However, since two of them could 
not complete 6 minutes of higher level exercise, only 
the data recorded from 10 subjects (aged 25 ± 4yr, 
height 177 ± 5cm, body weight 73 ± 11kg) are used 
for this study. All the subjects knew the protocol and 
the potential risks, and had given their informed 
consent.  

2.2 Experimental Procedure 

All tests were conducted in the afternoon in an air-
conditioned laboratory with temperature maintained 
between 23-24 oC. The subjects were studied during 
rest and a series of exercise in an upright position on 
an electronically braked cycle ergometer. Exercise 
was maintained at a constant workload for 6 
minutes, followed by a period of rest. The initial 
exercise level was 25W and each successive stint of 
exercise was increased in 25W steps until a 
workload of 125W was reached. The rest periods 
were increased progressively from 10 to 30 minutes 
after each stint of exercise. Six minutes of exercise 
was long enough to approach a steady state since the 
values of oxygen uptake and the A-V oxygen 
difference had become stable by the 5th and 6th 
minutes even for near maximum exertion (Reeves et 
al., 1961). 

2.3 Measurement and Data Processing 

Heart rate was monitored beat by beat using a single 
lead ECG instrument, while ventilation and 
pulmonary exchange were measured on a breath by 
breath basis. Minute ventilation was measured 

during inspiration using a Turbine Flow Transducer 
model K520-C521 (Applied Electrochemistry, 
USA). Pulmonary gas exchange was measured using 
S-3A and CD-3A gas analyzers (Applied 
Electrochemistry, USA). Before each individual 
exercise test, the turbine flow meter was calibrated 
using a 3.0 liters calibration syringe. Before and 
after each test, the gas analyzers were calibrated 
using reference gases with known O2 and CO2 
concentrations. The outputs of the ECG, the flow 
transducer and the gas analyzers were interfaced to a 
laptop through an A/D converter (NI DAQ 6062E) 
with a sampling rate of 500 Hz. Programs were 
developed in Labview 7.0 for breath by breath 
determination of pulmonary gas exchange variables 
but with particular reference to 2OV  ( 2OV  STPD). 
Beat by beat stroke volume and cardiac outputs were 
measured noninvasively using the ultrasound based 
device (USCOM, Sydney, Australia) at the 
ascending aorta. This device has previously been 
reported to be both accurate and reproducible 
(Knobloch et al., 2005). In order to keep consistent 
measurements, all CO/SV measurements were 
conducted by the same person. An oscillometric 
blood pressure measurement device (CBM-700, 
Colin, France) was used to measure blood pressure.  

The measurement of 2OV  and HR were 
conducted during the whole exercise and recovery 
stage. The static values ( 2OV  and HR) were 
calculated for each workload from data collected in 
the last minute of the six minute exercise protocol. 
The measurements of SV, CO and BP (blood 
pressure) were similarly conducted during the last 
minute of  the six minute exercise for each workload 
with the additional requirement that subjects keep 
their upper body as still as possible to minimize 
artifacts caused by the movement of the chest during 
exercise. We then, calculated their static values (CO, 
SV and BP) based on the measurement in the last 
minute for each workload.  

2.4 Results 

We found that the percentage changes of 
cardiovascular variables relative to their rest values 
more uniform than when absolute values are used. 
This may be because using relative values diminish 
the variability between subjects. For example, 
Figure 1 (a) shows the relationship between the 
absolute value of mean arterial blood pressure 
response and the absolute value of oxygen uptake 
rate for all the ten subjects, while Figure 1 (b) is the 
percentage change in mean arterial blood pressure 
relative to its rest value with the percentage change 
in oxygen uptake rate to its rest value for the ten 
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subjects. Obviously, the response in Figure 1 (b) is 
more consistent and gives clearer trend than that in 
Figure 1 (a). It is thus reasonable to believe that 
modeling of cardiovascular responses using relative 
changes may give more robust results than modeling 
with the absolute values. 

 
(a). Mean arterial blood pressure response to oxygen  

uptake rate (in absolute value). 

 
(b). Mean arterial blood pressure response to oxygen 

 uptake rate (in relative value). 

Figure 1: Mean arterial blood pressure response to oxygen 
uptake rate for the ten subjects. 

Based on the above finding, we model CO, SV 
and TPR to 2OV  by modeling the percentage 
changes in CO, SV and TPR with respect to their 
corresponding rest values to percentage change in 

2OV  with respect to its rest value. We use CO%, 
SV%, TPR% and 2OV % to represent their relative 
values (expressed as percentage), respectively.    

3 APPLICATION OF SVR FOR 
MODELING 

We selected radial basic function (RBF) kernels for 

this study, that is  )
22

2

exp(),(
σ

ixx
ixxK

−
−=  whereσ is 

the kernel parameter, ix  is the ith input support 
value and x is the input value. 

Detailed discussion about SVR, such as the 
selection of regularization constant C , radius ε  of 
the tube and kernel function, can be found in (Gunn, 
1997) (Vapnik, 1998). 

In order to show the effectiveness of SVR, we 
applied both SVR and traditional linear regression 
(Least-Square linear regression (LS)) to investigate 
the relationships between percentage change of 
cardiovascular variables (CO%, SV% and TPR%) 
and 2OV %. 

3.1 The Relationship between CO% 
and 2OV % 

3.1.1 Model Identification 

A SVR model was developed to estimate CO% from 
2OV % (Table 1 and Figure 2). Although it is widely 

accepted that there is a linear relationship between 
cardiac output and oxygen consumption (Allor et al., 
2000) (Astrand et al., 1964) (Freedman et al., 1955),  

 
(a). Estimation of percentage change in CO from  

percentage change in 
2OV  using SVR. 

 
(b). Estimation of percentage change in CO from 

percentage change in 
2OV  using LS. 

Figure 2: Comparison of estimation results of CO% 
between using SVR and using LS. 
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their relationship can be better described by the 
nonlinear SVR model in terms of reducing the errors 
(MSE) from 418 to 171 (Table 2), an improvement 
of 59% comparing with that of LS method 

The results in Table 1 also show the efficiency of 
SVR. Unlike traditional regression method where 
the solution of the model depends on the whole 
training data points, in SVR, the solution to the 
problem is only dependent on a subset of training 
data points which are referred to as support vectors. 
Using only support vectors, the same solution can be 
obtained as using all the training data points. SVR 
uses just 13% of the total points available to model 
their nonlinear behavior efficiently.  

3.1.2 Model Validation 

To further evaluate the feasibility of this proposed 
SVR model, the whole data set is divided into two 
parts: the first part (70% of the data) is used to 
design the model and the second part (30% of the 
data) is used to test its performance. Because we do 
not have large sample of data, we separated the data 
set into two parts randomly five times. Each time we 
use 70% of the data for training and the rest for 
testing. We established the SVR model with the 
three design parameters (kernel function, capacity 
( C ) and the radius of insensitivity ( ε  )) based on 
the training set, and test its goodness on the testing 
set. In Figure 3, we present the results for one of the 
5 tests. As shown in Table 3, the averaged results 
(MSE) for the 5 times testing for SVR is 245±15. 
However, the averaged error for traditional linear 
regression is as high as 521±19. It indicates that 
SVR can build more robust models to predict CO% 
from 2OV % using only a small training set. It also 
demonstrates that SVR can overcome the over-
fitting problem, even though SVR has more model 
parameters than the traditional linear regression 
method. 

3.2 The Relationship between SV% 
and 

2OV % 

Figure 4 shows the models for estimating SV%. The 
SVR model gives more precisely estimation than the 
LS does and decreases estimation errors (MSE) by 
67% (Table 2).   

The testing models are given in Figure 5 and the 
testing errors are in Table 3. As indicated, the SVR 
model decreases the testing error by 64%. 

 
 
 

(a). Testing of SVR model. 

 
(b). Testing of LS model 

Figure 3: Comparison of models of CO% against % 
change in oxygen uptake using SVR and using LS 
methods. 

 
(a). Estimation of percentage change in SV from 

 percentage change in 
2OV  using SVR. 

 
(b). Estimation of percentage change in SV with   percentage 

change in 
2OV  using linear regression. 

Figure 4: Comparison of estimation results for SV% 
between using SVR and using LS. 
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(a). Testing of SVR model. 

 
(b). Testing of LS model. 

Figure 5: Comparison of the testing results for Stroke 
Volume using SVR and using traditional linear regression. 

3.3 The Relationship between TPR% 
and 2OV % 

As shown in Figure 6, the SVR model describes a 
rapid fall in TPR% at low workloads which remains 
relatively constant even with increasing 2OV %. SVR 
uses just 13% (Table 1) of the total points to get an 
efficient nonlinear model. Compared with linear 
regression, the SVR model decreases MSE from 151 
to 30, an improvement of 80%.  

The testing results for this SVR model and the 
equivalent LS model are given in Figure 7 and Table 
3, respectively. Both of these (Figure 7 and Table 3) 
demonstrate that SVR outperforms the traditional 
linear regression method by reducing testing errors 
significantly, from 130 to 36. 

 
 
 
 
 
 
 
 
 

(a). Estimation of percentage change in TPR from 
percentage change in 

2OV  using SVR. 

 
(b). Estimation of percentage change in TPR with  
percentage change in 

2OV  using linear regression. 

Figure 6: Comparison of the estimation results of TPR% 
between using SVR and LS. 

 
(a). Testing of SVR model. 

 
(b). Testing of LS model. 

Figure 7: Comparison of the test results of TPR% against 
% change on Oxygen uptake using SVR and using LS. 
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Table 1: Fitting data for the model of cardiovascular 
variables and oxygen uptake rate using SVR. 

Relation 
CO% Vs 

2OV % 
SV% Vs 

2OV % 

TPR% 
Vs 

2OV % 
Kernel RBF RBF RBF 
Parameter σ = 200 σ = 500 σ = 500 

Regularization 
constant  C 5000 5000 5000 

ε-insensitivity 19 3 8 
Support 
vectors 
number 

8 (13.3%) 8 
(13.3%) 8 (13.3%) 

Estimation 
error 171 5 30 

Table 2: Comparison of the estimation errors (MSE) 
between using SVR and using linear regression method 

Relation 
CO% Vs 

2OV % 
SV% Vs 

2OV % 
TPR% Vs 

2OV % 
SVR 171 5 30 
LS 418 15 151 

Table3: Comparison of the model fitting errors (MSE) 
using SVR and linear regression methods (N=5). 

Relation 
CO% Vs 

2OV % 
SV% Vs 

2OV % 
TPR%  

Vs 2OV % 
SVR testing 

error 245 ± 15 8 ± 2 36 ± 5 

LS Testing 
error 521 ± 19 22 ± 7 130 ± 12 

4 CONCLUSIONS 

This is the first time that SVR has been applied to 
experimentally investigate the steady state 
relationships between key central cardiovascular 
variables and oxygen consumption during 
incremental exercise. The impressive results 
obtained prove that SVR is an effective approach 
that can be recommended for the modeling of 
physiological data.  
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Abstract: Pre-eclampsia is a serious disorder with high morbidity and mortality occurring during pregnancy; 3%–5% 
of all pregnant women are affected. Although most pre-eclamptic patients show pathological uterine perfu-
sion in the second trimester, this parameter has a positive predictive accuracy of only 30%, which makes it 
unsuitable for early, reliable prediction. The study is based on the hypothesis that alterations in cardiovascu-
lar regulatory behavior can be used to predict PE. Ninety-six pregnant women in whom Doppler investiga-
tion detected perfusion disorders of the uterine arteries were included in the study. Twentyfour of these 
pregnant women developed PE after the 30th week of gestation. During pregnancy, additional several non-
invasive continuous blood pressure recordings were made over 30 min under resting conditions by means of 
a finger cuff. In the period between the 18th and 26th weeks of pregnancy, three special variability and 
baroreflex parameters were able to predict PE several weeks before clinical manifestation. Discriminant 
function analysis of these parameters was able to predict PE with a sensitivity and specificity of 87.5% and 
a positive predictive value of 70%. The combined clinical assessment of uterine perfusion and cardiovascu-
lar variability demonstrates the best current prediction several weeks before clinical manifestation of PE. 

1 INTRODUCTION 

Pre-eclampsia (PE) is a serious pregnancy-specific 
disorder. It is characterized by sudden hypertension 
>140/90 mm Hg and a proteinuria (>300 mg in 24 
hours). The manifestation of PE is the main cause of 
maternal and neonatal morbidity and mortality; it 
occurs in 3-5 % of all pregnancies. 

Although the etiology and pathogenetic factors 
of the disease are largely unknown, early risk as-
sessment by Doppler sonography has become an 
established procedure. However, the positive predic-
tive accuracy (PPA) of Doppler sonography is lim-
ited to 30 %, as pregnant women with disturbed 
uterine perfusion may develop a PE, a pregnancy-
induced hypertension (PIH), or a neonatal intra-
uterine growth retardation (IUGR) (Chien, 2000).  
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Earlier studies were unable to find either inde-
pendent markers in the maternal plasma or physio-
logical parameters easy to measure and, in this way, 
improve the screening efficacy of Doppler sonogra-
phy (Benedetto, 1998).  

Analyses of heart rate variability (HRV), systolic 
(SBPV) and diastolic blood pressure variability 
(DBPV) and baroreflex (BR) sensitivity (BRS) were 
able to demonstrate their high diagnostic and prog-
nostic powers in various studies characterizing 
autonomous cardiovascular regulation in various 
diseases (La Rovere, 2001). Various studies demon-
strated the suitability of these methods in hyperten-
sive disorders of pregnancy, such as chronic hyper-
tension (Walther, 2005), gestational hypertension 
(Hermida, 1998), and in PE (Faber, 2004). However, 
these diseases were clinically manifest already at the 
time of examination.  

In contrast to those other studies, this study em-
ploys the approach of looking for characteristic al-
terations in cardiovascular regulation before the 
sudden rise of blood pressure. The study is based on 
the hypothesis that alterations in cardiovascular 
regulatory behavior can be used to predict PE. Con-
ventional clinical prediction, i.e. Doppler sonogra-
phy, has to be taken into account. Earlier findings 
have shown that the sole use of variability analysis 
in the 18th – 22nd weeks of gestation (WOG) was 
able to attain a PPA of 50 % (Walther, 2006). In 
addition, a combined study of variability and uterine 
perfusion achieved a PPA of 71.6 %, which may be 
considered the best finding for a non-invasive risk 
marker of PE at this point in time. In the study out-
lined below, findings are to be validated in an ex-
tended group of patients over a longer period of ex-
amination between the 18th and the 26th weeks of 
gestation.  

2 PATIENTS 

96 patients with abnormal uterine perfusion (AUP) 
were included in the study. All pregnant women 
underwent Doppler sonography in the 2nd trimester 
of pregnancy (median 22nd week of gestation, 
WOG, range 18 – 26 weeks) at the Department of 
Obstetrics and Gynecology of the University of 
Leipzig. 24 of these pregnant women developed PE 
after the 30th week of gestation. Approval by the 
local ethics committee and the informed consent of 
all subjects were obtained. All pregnancies were 
singleton. At the time of examination, the women 
were healthy, normotensive, without clinical signs of 
cervical incompetence, and on no medication. 

Clinically, the development of pregnancy was 
subdivided in accordance with PE, pregnancy-
induced hypertension (PIH), intrauterine growth 
retardation (IUGR), or pregnancy without any fur-
ther complications. PE was classified in line with the 
guidelines of the International Society for the Study 
of Hypertension in Pregnancy. PIH was described by 
the rise of several blood pressure levels to more than 
140 mm Hg in the systole and more than 90 mm Hg 
in the diastole within four hours. Significant pro-
teinuria is characterized by an excretion of more 
than 300 mg of total protein in 24 hours. Where 
these data were not available, proteinuria was de-
tected by dipstick on two consecutive occasions 
within four hours. Intrauterine growth retardation 
was defined by the birth weight being below the 
10th percentile of a reference group. 

3 METHODS 

Doppler examination of the uterine arteries was car-
ried out with a LOGIQ 9 ultrasound machine (GE, 
Solingen, Germany) with a 5 MHz convex trans-
ducer by the same sonographer. Uterine perfusion 
was classified as pathological when there was bilat-
eral notching or a mean pulsatility index (PI) of both 
arteries above 1.45. Immediately after the Doppler 
examination, continuous blood pressure monitoring 
was conducted non-invasively via finger cuff (100 
Hz, Portapres device mod. 2, BMI-TNO, Amster-
dam, The Netherlands). The measurements were 
performed under standardized resting conditions 
between 8 a.m. and 12 noon. The continuous blood 
pressure curves were used to extract the time series 
of beat-to-beat intervals, systolic and diastolic blood 
pressures. 

3.1 Preprocessing 

The main objective of the analysis of heart rate and 
blood pressure is to investigate the cardiovascular 
system during normal sinus rhythm. Therefore, it is 
necessary to exclude not only artifacts (e.g. double 
recognition, i.e. R-peak and T-wave recognized as 
two beats) but also beats not coming from the sinus 
node of the heart, so called ventricular premature 
complexes (VPC). VPCs are not directly controlled 
by the autonomous nervous system. Practically, this 
exclusion means filtering of the time series. The 
original time series are denoted RR-series (derived 
from the RR-intervals) and the filtered time series, 
NN-series (normal-to-normal beat interval, NNI). 
VPCs in the tachogram are usually characterized by 
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regular ventricular premature beat and supraven-
tricular premature beat complexes). The 20%-filter 
(Kleiger, 1987) considers these facts; if the current 
value of the tachogram differs from its predecessor 
by more than 20%, the current value and its succes-
sor are marked not normal. VPCs with less than 20% 
difference are not removed from the series and may 
falsify almost all HRV or BPV parameters. The RR-
intervals recognized as not normal are treated in 
different ways: either they are simply removed from 
the series or interpolated linearly or spline interpo-
lated (Lippmann, 1994). Interpolating linearly may 
lead to false decreased variability’s, interpolating 
with splines often fails in time series with many 
VPCs. In several clinical studies, an adaptive filter-
ing algorithm introduced in (Wessel, 2000) has been 
proven to exclude premature beats and artifacts. The 
main advantage of this procedure is the spontaneous 
adaptation to variability changes in the series, which 
enables a more reliable removal of artifacts and 
VPCs. This new filtering algorithm consists of three 
sub-procedures: (i) the removal of obvious recogni-
tion errors, (ii) the adaptive percent filter, and (iii) 
the adaptive controlling filter. A MATLAB imple-
mentation of the preprocessing algorithm is avail-
able from <tocsy.agnld.uni-potsdam.de>. 

3.2 Heart rate and Blood Pressure 
Variability 

Standard methods of HRV analysis include time and 
frequency domain parameters; these are linear meth-
ods. Time domain parameters are based on simple 
statistical methods derived from the RR-intervals as 
well as the differences between them. The mean 
heart rate is the simplest parameter, but the standard 
deviation over the whole time series (sdNN) is the 
most prominent HRV measure for estimating overall 
HRV. A list of these parameters is given in Table 1. 
These parameters can be calculated for short (5 min-
utes) and long (24 hours) term epochs, representing 
short-term and long-term variability, respectively, or 
for averaged short-term epochs (e.g. a mean of 288 
five-minute intervals a day). The overall HRV esti-
mate, sdNN, and other time domain parameters can 
be used to predict mortality in the recovery period 
after myocardial infarction. In one of the first risk 
studies using these parameters, (Kleiger, 1987) 
showed that an sdNN<50ms was associated with a 
5.3-fold increased mortality when compared to pa-
tients with preserved HRV (sdNN>100ms).  

Time domain geometric methods (see Table 1) 
are methods by which the NNIs are converted into 
special geometric forms quantifying their distribu-
tion. Special forms are used to make the approach 

more insensitive to artifacts and ectopic beats. A 
disadvantage of these methods is that they require a 
considerable number of RR-intervals; they are thus 
not applicable to very short-term time series. A tri-
angular index, HRVi, showing reduced HRV has 
been associated with both arrhythmic and non-
arrhythmic death (Task Force, 1996).  

Table 1: Description of time and frequency domain pa-
rameters, adopted standards (Task Force, 1996) and addi-
tional measures developed by the authors (•). NNI stands 
for the filtered beat-to-beat intervals (NN-intervals). 

Variable Units Definition 
Time domain statistical methods 

meanNN ms/mm Hg Mean NNI and mean BP, re-
spectively 

sdNN ms/mm Hg Standard deviation of all NNI 
and BP values, respectively 

rmssd ms/mm Hg Root mean square of succes-
sive NNI/BP differences 

•pNNX % 

Percentage of beat-to-beat 
differences greater than X 
ms/mm Hg (e.g. X = 3/6/9 

ms/mm Hg) 

•pNNlX % 

Percentage of beat-to-beat 
differences lower than X 

ms/mm Hg (e.g. X = 3/6/9/12 
ms/mm Hg) 

•Shannon None 
Shannon entropy of the histo-
gram (density distribution of 

the NNIs/ BP values) 

•RenyiX None 
Renyi entropy of the order X of 

the histogram (e.g. X = 
2/4/0.25) 

Time domain geometric methods 

HRVi none HRV triangular index (see 
(Task Force, 1996) for details) 

TINN ms Baseline width of the minimum 
square difference triangle 

Frequency domain methods 
P ms2/mm Hg2 Total power from 0 − 0.4Hz 

VLF ms2/mm Hg2 Very low frequency band, 
0.0033 − 0.04Hz 

LF ms2/mm Hg2 Low-frequency band, 0.04 − 
0.15 Hz 

HF ms2/mm Hg2 High-frequency band, 0.15 − 
0.4 Hz 

LF/HF None Quotient of LF and HF 

LFn None Normalized low-frequency 
band (LF/(LF+HF)) 

cross 1/f  Intercept of a log-log-power 
spectrum 

slope 1/f  Slope of a log-log-power spec-
trum 
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We introduced a more robust method to quantify 
the distribution (Voss, 1996) based on information 
theory, in particular the Shannon and the Renyi en-
tropies of the histogram. We demonstrated the use-
fulness for risk stratification in a blinded study two 
years later (Voss, 1998). Frequency domain HRV 
parameters allow periodic dynamics in the heart rate 
time series to be analyzed (Akselrod, 1981). There 
are mainly two different techniques for spectral 
analysis: methods based on Fast Fourier Transform 
(FFT) and parametric autoregressive model esti-
mates of wavelet approaches. The results obtained 
from using different spectral methods should be 
comparable though (apart from differences in time 
and frequency resolution). The Task Force on HRV 
(Task Force, 1996) recommended that power spec-
tral analysis of 5-minute ECG recordings be used to 
assess autonomic physiology and pharmacology.  

Very low, low and high frequencies (see Table 
1) can be estimated from such 5-minute ECG re-
cordings. In this study, all frequency domain pa-
rameters were calculated from the complete 30-
minute recording.The high frequency power reflects 
the modulation of vagal activity by respiration 
whereas the low-frequency power represents vagal 
and sympathetic activities via the baroreflex loop. 
The low-to-high frequency ratio is used as an index 
of sympathovagal balance (Malliani, 1991). The 
suitability of frequency domain parameters for risk 
stratification of post-infarction patients was proven 
by Bigger et al. (Bigger, 1992) - a reduction in ultra 
low and very low frequency power is associated 
with pathologies.For blood pressure series, all HRV 
parameters described can be calculated accordingly, 
only some statistical parameters need to be adapted 
(e.g. pNN50 makes no sense for BPV - the standard 
deviation for BP series varies between 5 and 10 
mmHg). 

3.3 Baroreflex Sensitivity 

Analysis of spontaneous baroreflex sensitivity 
(BRS) is very important for cardiac risk stratification 
of various cardiovascular diseases (La Rovere, 
2001). BRS slope is defined as the instinctive 
change of NNI related to increasing or decreasing 
levels of systolic blood pressure and is expressed in 
[ms/mmHg]. There is evidence showing that a de-
creased BRS may carry an adverse prognosis in car-
diac patients (La Rovere, 1998).  

For several years, BRS was determined pharma-
cologically (phenylephrine, nitro-prusside) (Vanoli, 
1994) or mechanically (Cohen, 1981) until, in the 
1980s, innovative methods of estimating BRS were 

developed based on spontaneous heart rate and 
blood pressure fluctuations (Di Rienzo, 1985).  

 
Figure 1: The Dual Sequence Method of estimating spon-
taneous BRS analyses simultaneous (sync) and delayed 
responses (shift 3, variable delay) of heart rate to blood 
pressure increases (a) as well as bradycardic and tachy-
cardic blood pressure fluctuations (classical sequence 
method (b). Moreover, also the slope sector distribution is 
quantified (c). These slope sectors also can be defined as 
overlapping regions. 

These methods evaluate arterial baroreflex func-
tion in the absence of external stimulations of the 
cardiovascular system, therefore defined as “sponta-
neous”. These spontaneous techniques nowadays are 
the state of the art in research, though not in clinical 
practice. We introduced the Dual Sequence Method 
(DSM) (Malberg, 2002) for advanced spontaneous 
baroreflex sensitivity estimates. This method con-
siders not only bradycardic (blood pressure increase 
causes RR-interval increase) and tachycardic (blood 
pressure decrease causes RR-interval decrease) 
blood pressure fluctuations as introduced in the se-
quence method (Di Rienzo, 1985) (see Figure 1 (a)), 
but also defines slope sectors quantifying the BRS 
slope distribution (see Figure 1 (b)). Earlier studies 
showed that the heart rate does not simultaneously 
respond to the blood pressure fluctuation (Manicia, 
1985). Therefore, DSM quantifies synchronous as 
well as delayed heart rate response to the same BP 
fluctuation (see Figure 1 (c)).  

In summary, these are the parameter blocks and 
ranges calculated by DSM: 

(i) the total number of slopes in different sec-
tors within the time series, 

(ii) the percentage of slopes relative to the to-
tal number of slopes in different sectors,(iii) the 
numbers of bradycardic and tachycardic slopes, 

(iv) the shift operation from the first to the third 
heart beat triples, a variable lag, and 

(v) the average slope of all fluctuations and its 
standard deviation. 
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The average BRS slope is defined as the NNI 
difference related to SBP changes, and is estimated 
by linear regression.  

The parameters, ‘P_brady’, and, ‘P_tachy’, char-
acterize the incidence of increasing and decreasing 
SBP triples with regard to the total number of SBP 
values. Consequently, these parameters estimate the 
basic cause of BRS activity. A reduced number of 
ramps in SBP unavoidably leads to a reduced num-
ber of HR responses. The parameters are defined as  

P_brady = (No. of increasing SBP triples/  
total No. of SBP triples) * 100%   

P_tachy = (No. of decreasing SBP triples/ 
   total No. of SBP triples) * 100%    

The percentage of adequate HR responses (BRS 
events) relative to the numbers of SBP ramps is de-
scribed by the ‘Activation’ parameter. It is defined 
as 

Activation = (No. of BRS events/   
  No. of SBP ramps) * 100%.  

In contrast to classical BRS methods, DSM de-
fines slope sectors allowing to quantify the BRS 
slope distribution. Sectors with a range of 2 ms/mm 
Hg have been proven to act as a suitable partition in 
patient studies. Then, the percentages of BRS events 
in different slope sectors relative to the total number 
of BRS can be estimated. Moreover, the total num-
ber of BRS events is normalized to the mean heart 
rate. For detailed definitions of the DSM parameters, 
reference is made to the original contribution (Mal-
berg, 2002). These parameters are calculated for 
bradycardic as well as tachycardic fluctuations, both 
synchronous or delayed, to analyze a possibly de-
layed response of the heart rate to the same blood 
pressure oscillation. This DSM method is used to 
quantify sequences of length three; longer sequences 
turned out not to be useful for spontaneous BRS 
estimates because of their low occurrence. 

3.4 Statistics 

In this study, the Kruskal-Wallis test was used to 
determine intergroup differences in clinical parame-
ters. The Mann-Whitney U test was employed to 
analyze the differences in variability parameters 
among pregnant women with uterine perfusion dis-
orders developing PE (number = 24) compared to 
those not developing PE (NoPE, number = 72). The 
level of significance of the intergroup differences 
was defined as p < 0.05. Due to the explorative 
character of the study we did not apply the multiple 
test correction. Stepwise discriminant analysis was 
employed to determine the best combinations of 
parameters for separating individual groups. 

4 RESULTS 

In this study, no pregnant woman with normal uter-
ine perfusion developed hypertensive pregnancy-
related disorders. In the period between the 18th and 
the 26th weeks of gestation, in the abnormal uterine 
perfusion group, the following differences were 
found by variability analysis (Tables 2 – 3). In HRV 
analysis, both the mean and the standard deviation 
were unchanged, while some frequency domain pa-
rameters showed significant differences. Interest-
ingly, all significant parameters point to very low 
frequencies below 0.04 Hz. 

As in the HRV analysis, the mean values and the 
standard deviation were unchanged also in SBPV 
and DBPV. On the other hand, especially in DBP, 
time domain and frequency domain parameters as 
well as non-linear parameters showed significant 
differences. The most prominent difference was 
found to be the ‘high frequency’ in diastolic blood 
pressure. 

Table 2: HRV analysis in the 18th – 26th weeks of gesta-
tion in pregnant women with abnormal Doppler findings 
developing either PE or NoPE after the 30th week of ges-
tation. 

 NoPE PE P value 
meanNN 759.8±104.4 755.3±113.4 n.s. 

sdNN 44.7±16.2 49.0±18.1 n.s. 
VLF 10.18±11.45 13.46±11.46 0.013 

VLF/P 0.35±0.11 0.44±0.10 0.005 
ULF/P 0.21±0.15 0.14±0.08 0.029 

cross 1/f 1.79±1.62 3.09±1.48 <0.001 
slope 1/f -0.77±0.56 -0.38±0.51 0.002 

Table 3: Analysis of systolic and diastolic blood pressure 
variability in the 18th – 26th weeks of gestation in preg-
nant women with abnormal Doppler findings developing 
either PE or NoPE after the 30th week of gestation. 

SBPV NoPE PE P value 
meanNN 122.4±16.1 128.6±13.2 n.s. 

sdNN 7.81± 2.03 8.36±1.86 n.s. 
Rmssd 2.66±0.56 3.02±0.81 n.s. 
pNN2 0.27±0.11 0.34±0.13 n.s. 

LF 0.14±0.09 0.16±0.07 n.s. 
HF 0.03±0.02 0.05±0.03 0.021 

WPSUM02 0.46±0.16 0.43±0.11 n.s. 
PLVAR2 0.031±0.045 0.014±.0171 n.s. 

DBPV NoPE PE P value 
meanNN 68.0±11.2 72.9±9.0 n.s. 

sdNN 4.15±1.07 4.74±1.43 n.s. 
Rmssd 1.89±0.33 2.18±0.59 0.033 
pNN2 0.13±0.06 0.20±0.11 0.012 

LF 0.05±0.03 0.07±0.04 0.011 
HF 0.01±0.01 0.02±0.01 0.002 

WPSUM02 0.47±0.14 0.41±0.13 0.049 
PLVAR2 0.110±0.083 0.080±0.114 0.004 
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Also BR regulation as characterized by DSM 
showed differences in pregnant women developing 
PE compared to women without PE (Table 4). 
Analysis reveals that the number of rises in SBP 
potentially initiating BR increases significantly in 
PE. 

Table 4: Baroreflex analysis by the dual sequence tech-
nique in the 18th – 26th weeks of gestation in pregnant 
women with abnormal Doppler findings developing either 
PE or NoPE after the 30th week of gestation. 

  

 Bradycardic BR Regulation 
Parameters NoPE PE P 
No. of  SBP 
ramps 

458.6±94.1 528.1±128.5 0.005 

No. of  SBP 
ramps [%] 

18.5±2.6 21.1±4.0 <0.001 

BR time delay 
[beats]  

1.7±0.4 1.8±0.3 n.s. 

No. of slopes 
between 4-6 
ms/mm Hg 

35.4±13.6 46.6±22.2 0.019 

No. of slopes 
between 3-5 
ms/mm Hg 

36.5±15.2 49.1±20.4 0.004 

No. of slopes 
between 5-7 
ms/mm Hg 

32.2±12.3 41.1±19.2 n.s. 

Total No. of BR 
slopes 

173.9±50.0 216.7±77.9 0.009 

average BR slope 
[ms/mm Hg] 

13.3±5.6 13.2±5.6 n.s. 

BR Activation 
[%] 

38.3±8.7 41.3±10.9 n.s. 

 Tachycardic BR Regulation 
Parameters NoPE PE P 
No. of  SBP 
ramps 

464.9±106.3 527.0±97.3 0.008 

No. of  SBP 
ramps [%] 

18.8±3.4 21.2±2.7 0.005 

BR time delay 
[beats]  

1.5±0.3 1.7±0.5 0.029 

No. of slopes 
between 4-6 
ms/mm Hg 

41.9±19.3 60.6±20.6 <0.001 

No. of slopes 
between 3-5 
ms/mm Hg 

47.0±22.7 65.3±24.8 0.003 

No. of slopes 
between 5-7 
ms/mm Hg 

38.4±17.4 50.2±17.6 0.004 

Total No. of BR 
slopes 

200.0±59.1 242.0±64.6 0.005 

average BR slope 
[ms/mm Hg] 

12.9±5.6 12.2±6.1 n.s. 

BR Activation 
[%] 

43.5±9.4 46.5±11.5 n.s. 

Nevertheless, BR per se does not change in its 
response to activation and mean rise.   Also, the total 
number of BR fluctuations and the number in the 
low regulation segment (between 3 and 7 ms/mm 
Hg) is elevated in PE. In the tachycardic range, BR 
regulation also starts later in the PE group than in 
the NoPE group.  

The application of stepwise discriminant analysis 
selected the following three parameters as the best 
parameters predicting PE: HRV: VLF/P, DBP: HF, 
BR: number of tachycardic slopes between 4-6 
ms/mm Hg. A sensitivity and a specificity of 87.5 
%, a positive predictive accuracy of 70.0 % were 
found with a negative predicted accuracy of 95 %. 
Interestingly, these are the same parameters which 
had been found in our previous study (Walther,  
2006). 

 
Figure 2: Example of the change in variability measure 
during pregnancy in the case of PE genesis. The increase 
in the high-frequency component of diastolic blood pres-
sure is shown. 

Figure 2 shows an example of the change over 
time of variability measure in the course of preg-
nancy in patients developing PE as against pregnant 
women without this development.  

5 DISCUSSION 

Early prediction of PE is one of the most important 
challenge in obstetrics. Establishing a simple test 
manageable under clinical conditions is a major 
challenge. Doppler sonography or combined with 
humoral or endothelial parameters either attained 
low sensitivity / sufficient sensitivity or a low posi-
tive predictive value and are very costly or even in-
vasive.  

Although BRV, BPV, and BRS have been estab-
lished in cardiology for risk stratification, their use 
for early detection of hypertensive pregnancy disor-
ders is still very rare. As various cardiovascular dis-
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eases can be predicted by a gradual change in car-
diovascular regulation, the approach used in this 
study also was to cover the genesis of PE. This study 
is aimed at investigating alterations in HRV, BPV 
and BRS to predict the sudden steep increase of 
blood pressure which is caused by PE.  

With an incidence of 3 – 5 % of all pregnancies 
in the Western population, pathological uterine per-
fusion in the second trimester is known as an indi-
rect sign of inadequate trophoblasts. The positive 
predicted value of this study, however, is only 
around 30 %. In an earlier study of the variability 
analysis of PE, the authors were able to show that 
the use of only the variability parameter was able to 
raise to 50 % the positive predictive value, which 
does represent the highest possible PPA, but is not 
yet sufficient for clinical routine screening. Except 
for that, the three variability parameters described 
above attained the highest PPA of any one method 
of examination which, in addition, is independent of 
humoral factors and other single clinical parameters. 

This study has shown that the combination with 
Doppler sonography of uterine arteries confirms the 
highest possible PPA as compared to all published 
non-invasive trials (Walther, 2006). The PPA of 
approx. 70% is indicative of the clinical relevance of 
Doppler examination combined with variability 
analysis. However, due to the exploratory design of 
this study, these parameters need to be validated 
prospectively - especially in connection with hu-
moral factors. Anyway, the same three parameters, 
which had been found in our previous study 
(Walther, 2006), were selected in the discriminant 
analysis. These parameters obtained nearly the same 
classification results – which is already a first vali-
dation.   

On the basis of the variability measures deter-
mined, the following interpretation could be possible 
in the course of pregnancy for the genesis of PE in a 
cardiovascular model (see Figure 3). 

 
Figure 3: Connections between the heart rate, NNI, the 
cardiac output, CO, and the blood pressure, BP, in 
autonomous regulation of the cardiovascular system, 
modified from [Saul, 1991) 

In Figure 3 a simplified model of the cardiovascular 
circulatory system is presented. Mediated by the 
electromechanical coupling, the NNIs initiate a car-
diac output (CO) of the heart. The resulting blood 
pressure in the periphery is influenced by this CO 
and by the vascular system. In the feedback the 
NNIs are influenced by the BRS via sympathetic and 
parasympathetic activation. Additionally, the total 
system is superimposed by mechanical and neuronal 
influences of the respiration. 

Our analyses point to a more vascular disorder as 
the cause of the cardiovascular alteration. Obvi-
ously, the heart plays only a secondary role. Appar-
ently, there is an early pathological modification in 
vessel behavior measurable already in the Doppler 
sonogram. However, this parameter obtains a low 
PPA only. This incipient endothelial dysfunction, 
which is still very weak in the 18th – 26th weeks of 
gestation, has no influence on the mean values of 
diastole, systole, and heart rate. On the other hand, 
especially the variability of blood pressure seems to 
change as a consequence of continuing pathological 
arterial stiffness in so far as the minor fluctuations in 
blood pressure become more pronounced as a result 
of the decreasing windkessel function of vessels. 
This can be represented by the changes in blood 
pressure variability (see parameters: SBPV: ‘HF’, 
DBP: ‘Rmssd’, ‘pNN2’, ‘LF’, ‘HF’, ‘WPSUM02’, 
‘PLVAR2’, BRS: ‘No. of  SBP ramps’, ‘No. of  SBP 
ramps [%]’). The baroreflex reacts more strongly to 
this change, i.e. it reacts more frequently to these 
slight, but more frequent blood pressure stimuli (see 
BR parameters: ‘No. of slopes between 4-6 ms/mm 
Hg’, ‘No. of slopes between 3-5 ms/mm Hg’, ‘No. 
of slopes between 5-7 ms/mm Hg’, ‘Total No. of BR 
slopes’). The baroreflex function (i.e. the intensity of 
response of the BR) seems to be completely un-
changed (see BR parameters: ‘average BR slope’, 
‘BR activation’). The changes in BPV and BR are 
continued in HRV either as a consequence of the 
counter regulation of the heart rate responding to 
blood pressure fluctuations, or due to other regula-
tory influences modulated by respiratory sinus ar-
rhythmia (see HRV parameters: ‘VLF’, ‘VLF/P’, 
‘ULF/P’, ‘cross 1/f’, ‘slope 1/f’). Thus, for example, 
the increase in diastolic high frequency, which is 
modulated by respiratory sinus arrhythmia, may re-
flect early pathological arterial stiffness. This leads 
to the undamped, respiration-induced pulse-wave 
oscillations detected by our method. This is congru-
ent with the hypothesis that patients later developing 
PE are characterized by early pathological modifica-
tions in vessel behavior. The physiological conclu-
sion could be drawn that variability analysis meas-
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ures the consequences to blood pressure, to the in-
teraction between blood pressure and heart rate, and 
to the heart rate of incipient endothelial dysfunction, 
which is not thought to be sufficient to predict PE 
solely on the basis of the Doppler sonogram.  

In a previous methodological study the applica-
bility of different BR methods was tested (Vanoli, 
1994, Laude, 2004). All described methods estimate 
only the average BRS slope. The DSM however, is 
able to obtain additional insights into the cardiovas-
cular regulation. In this study, ‘average slope’ is not 
altered, however more sophisticated DSM parame-
ters found high significant differences. So we con-
clude, that the parameter ‘average slope’ is not suffi-
cient for PE prediction. The best discrimination had 
been obtained by the combination of non-linear BR 
parameters and linear HRV und BPV parameters.  

In summary, it can be said that examination of 
uterine perfusion combined with the characterization 
of cardiovascular regulation in the second trimester 
has achieved the most accurate prediction of PE sev-
eral weeks before its clinical manifestation  so far. In 
this application, the biosignal analysis emphasizes 
its importance as a non-invasive, cheap and univer-
sal diagnostic approach. This opens up potential 
therapeutic strategies for suppressing pathophysi-
ological symptoms of the disease to further decrease 
maternal and neonatal morbidity and mortality rates. 
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Abstract: The post-Genomic Era is characterized by the proliferation of high-throughput platforms that allow the par-
allel study of a complete body of molecules in one single run of experiments (omic approach). Analysis and
integration of omic data represent one of the most challenging frontiers for all the disciplines related to Sys-
tems Biology. From the computational perspective this requires, among others, the massive use of automated
approaches in several steps of the complex analysis pipeline, often consisting of cascades of statistical tests.
In this frame, the identification of statistical significance has been one of the early challenges in the handling
of omic data and remains a critical step due to the multiple hypotheses testing issue, given the large number
of hypotheses examined at one time. Two main approaches are currently used: p-values based on random
permutation approaches and the False Discovery Rate. Both give meaningful and important results, however
they suffer respectively from being computationally heavy -due to the large number of data that has to be
generated-, or extremely flexible with respect to the definition of the significance threshold, leading to diffi-
culties in standardization. We present here a complementary/alternative approach to these current ones and
discuss performances and limitations.

1 INTRODUCTION

In recent times high-throughput devices for genome-
wide analyses have greatly increased in size, scope
and type. In the post-Genomic Era, several solutions
have been devised to extend the successful approach
adopted for gene expression analyses with microar-
ray technology to other bodies of data such as pro-
teomes, DNA copy number, single nucleotide poly-
morphisms, promoter sites and many more (Nardini
et al., 2006). These data supports, and notably their
integration, represent the future of molecular biology;
for this reason the elucidation and definition of tools
and methods suited to handle the data produced by
these high-throughput devices is of great importance.

Early methods for such analyses were mainly
dealing with gene expression data, their goal being
to extract items that appear to have coherent trends
among themselves (in this context commonly called
unsupervised methods) or with respect to external fea-
tures, such as clinical markers (supervised methods).
Both types of approaches have been used for example

for the classification of subtypes of poorly understood
diseases with unpredictable outcomes (Ramaswamy
et al., 2003; Lapointe et al., 2004). Currently, other
approaches, that take advantage of larger and diverse
sources of information are being devised to address
questions of varying complexity in different areas of
research rooted in molecular biology. These methods
cover a broad variety of applications, from the study
of complex hereditary diseases (Rossi et al., 2006)
to the identification of radiological traits’ surrogate
markers (the molecular origin of a clinical trait) for
enabling non-invasive personalized medicine (Segal
et al., 2007). Overall, besides the variety and com-
plexity of the analyses and methods adopted, some in-
variants can be identified. The most common atomic
step is the identification on the large scale of similari-
ties or associations among molecular behaviors. Such
association measures consist for example of scores
that evaluate similarities across several samples of
genes’ expression profiles, or genetic coherence in
genes copy number or deletion, and more. Coher-
ence among expression profiles and other association
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measures can be assessed by means of statistical tech-
niques, namely, by computing a measure of trend sim-
ilarity (test score, θ) and evaluating the likelihood of
this measure to occur by chance (α-level or p-value).
The test score is then assumed to be either a measure
of actual similarity or only a random effect, based on
the value of the associated p-value. The p-value rep-
resents the probability of being wrong when assuming
that the score represents an actual similarity. This er-
ror (type I error) can happen for non-extreme values
of the test θ that are difficult to classify as good or
bad and results in erroneously refuting the null hy-
pothesis (H0 : θ = 0) which assumes that there is no
relationship, when actual facts show that the items are
tightly related. The scientific community typically
assumes to be meaningful (i.e. statistically signifi-
cant) test scores that are coupled to p-values lower
or equal to one of the following nominal p-values:
0.05,0.01,0.001. These values represent the proba-
bility of committing typeI errors. Given these defini-
tions, the highly dimensional nature of genome-wide
data has posed problems and challenges to conven-
tional biostatistical approaches. Indeed, when per-
forming in parallel such a large number of tests, typeI
errors inherently rise in number, since over a large
number of items, the possibility of faults increases.
For this reason, p-values need to be readjusted in a
more conservative way, accounting for the so called
multiple hypothesis testing issue. The most classical
technique to account for this problem is the Bonfer-
roni correction (R.R.Sokal and F.J.Rohlf, 2003) that
simply multiplies the actual p-value of every single
test by the total number of tests observed. However,
this approach is not considered viable in omic studies,
as in fact it often leads to the rejection of too many
tests, since none of the corrected p-value are smaller
than any of the nominal p-values. An alternative and
less conservative approach to this problem is the gen-
eration of a random distribution, based on random re-
sampling or on the generation of scores obtained from
the randomization of the data. Such approaches allow
to build a distribution that represents the population’s
behavior, and can thus be used to test the hypothesis
of interest. When operating with omic data, another
statistic, the False Discovery Rate (FDR) has been in-
troduced (Benjamini and Hochberg, 1995; Storey and
Tibshirani, 2003; Tusher et al., 2001). Like the p-
value, the FDR measures the false positives, however
while the p-value controls the number of false posi-
tive over the number of truly null tests, the FDR con-
trols the number of false positive over the fraction of
significant tests. The utility of this statistic is unde-
niable, however, its interpretation is far less standard-
ized than the better known p-value, and thus, very of-

ten, the value of acceptance of a test based on FDR is
much more flexible and dependent on the investigator
experience. Globally, these characteristics make the
results assessed by FDR highly dependent on the re-
jection level the investigator chooses. This makes it
difficult to automate with high parallelism the iden-
tification of statistically significant hypotheses. This
problem can becomes relevant due to the increasingly
common necessity to merge different sources of in-
formation to assess the validity of a given biologi-
cal hypothesis. Examples of such circumstances arise
whenever, for example, the analysis aims at refining,
by means of cascades of statistical tests, a set of genes
candidate to explain a biological assumption. The
hypothesis in fact is refined collecting information
across various databases or other forms of a priori
knowledge, that progressively filter out the spurious
data -only as an example see various tools presented
in (Tiffin et al., 2006; Rossi et al., 2006). To be ef-
ficient, the analysis requires the result of each filter-
ing step to be automatically sent to the following one.
Thus the possibility to assess significance by mean of
universally accepted values of significance becomes
relevant. This latter observation was one of the stim-
uli motivating the search for an alternative/integrative
approach to the multiple hypotheses problem encoun-
tered when dealing with genomic datasets. We also
wanted this method to be reasonably efficient to be
computed. We thus approached the problem based
on techniques that allow the intrinsic correction of
p-values in case of multiple tests (meta analyses ap-
proaches) used for the combination of various statis-
tical tests. Among them, we turned our attention to
the category of the omnibus tests (L.B.Hedges and
I.Olkin, 1985). These approaches are non-parametric,
meaning that they do not depend on the distribution
of the underlying data, as long as the test statistic is
continuous. In fact, p-values derived from such tests
have a uniform distribution under the null hypothe-
sis, regardless of the test statistic or the distribution
they have been derived from. However, omnibus tests
suffer from a strong limitation: they can be used to as-
sess whether there is a superior outcome in any of the
studies performed. This means that the combined sig-
nificance is not a measure of the average significance
of the studies performed. An omnibus test therefore
cannot be used as is, to assess the global statistical
validity of the number of tests considered simultane-
ously. Thus, we manipulated this approach to make it
applicable to the definition of a significance threshold.

The main advantage of our solution is twofold. On
one side the p-values can be computed in very reason-
able times and can thus help managing the computa-
tional issues related to permutations techniques; on
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the other side they represent p-values for which nom-
inal threshold of significance (e.g. 0.05,0.01,0.001)
can be applied, and can overcome the threshold selec-
tion issue faced when using FDR approaches. Addi-
tionally, this method appears to perform slightly bet-
ter than other methods in avoiding the selection of
false positives. However, this is coupled to a partially
diminished ability in identifying correctly true posi-
tives in complex patterns of association. These con-
sideration support the findings of several authors that
strongly suggest to validate the results obtained from
omic studies through the use of different techniques
and threshold of significance, given the highly noisy
nature of the data (Pan et al., 2005).

2 RELATED WORK

Two main methodologies are currently being used to
approach the multiple hypothesis testing issue. The
first is based on the principles that define the resam-
pling statistical approaches (R.R.Sokal and F.J.Rohlf,
2003). In particular we adopted the permutation
method that requires the construction of a null dis-
tribution to which to compare the actual data. This
distribution must be built from the generation of a
large number of random data. When the distribu-
tion is built using the randomized data generated by
all the tests, the corresponding p-value is corrected
for these same multiple hypotheses. This represents
a structurally simple, robust, but computationally in-
tensive approach, given the large numbers involved
in the analysis of omic data. The computational ef-
ficiency issue can become extremely relevant, since
most of the interpreted languages commonly used for
their large libraries of bioinformatics related functions
(notably R and the Bioconductor Project (Gentleman
et al., 2005), and Matlab), cannot reasonably han-
dle such approaches. Even with the recent improve-
ments for (implicit) parallelization of the computa-
tion, time lags for the evaluation of the results re-
main large. Moreover, for large datasets, compiled
languages such as C also require intensive and long
lasting computational efforts, unless specific archi-
tectures are adopted to enhance efficiency. The sec-
ond approach consists of novel methods purposely
introduced to handle omic data that defines the con-
cept of False Discovery Rate. This statistic comes
in a number of flavors, and relies on complex sta-
tistical assumption. A full description is beyond the
scope of this paper, here we briefly describe three of
the most used approaches: (i) the pioneering work
of Benjamini (Benjamini and Hochberg, 1995); (ii)
the definition of the q-value (Storey and Tibshirani,

2003); (iii) the FDR adopted in the tool Significance
Analysis of Microarray -SAM, (Tusher et al., 2001)- a
widespread software used for the analysis of microar-
ray data.

Benjamini FDR: This approach controls the FDR
by modifying the p-values obtained on a single test,
rescaling it in the following way: FDRBEN = K pi

i∑K
i=1 i−1 ,

where pi represents the i-th of the K single p-values.
q-value: The q-value is the minimum false discov-

ery rate. This measure can be approximated by the
ratio of the number of false positives over the num-
ber of significant tests, the implementation of the q-
value provides several options to evaluate this esti-
mate and to compare it to the corresponding p-values.
q≈ min(#false positives/#significant tests).

SAM FDR: SAM is a tool that allows the ex-
traction of significant genes that help differentiate 2
or more sample classes by means of various scores
suited to answer different questions (i.e. depending
on the number of sample classes observed and on
the meaning of the scores defining the classes, such
as survival times, experimental points in time course
experiments etc.). Statistical validation of the score
value produced by SAM is performed by the genera-
tion of a distribution of random score values. These
scores are evaluated by means of random permuta-
tions of the class labels. These new values, along with
the ones from the original classification are used to
evaluate the FDR as the average of falsely significant

items: FDRSAM =
#signi f . permuted scores

#permutations
#signi f . actual scores i.e. the number

of items with permuted test scores called significant
divided by the number of permutations over the num-
ber of items called significant in actual data.

The q-value approach is one of the most
widespread, both because of its quality and because of
the various and user-friendly implementations the au-
thors have made available. For this reason we choose
this method for comparison to ours. In general, FDR
scores represent an extremely valuable information
while dealing with omic data, however, the main is-
sue to the fully automated use of these techniques lies
in the flexible acceptance of the threshold values for
significance. In other words the investigator can set
his threshold for the acceptance of the False Discov-
ery Rate, but no universally accepted thresholds have
been recognized. This issue has been pointed out for
example in (Cheng et al., 2004). In this work the au-
thors designed three other statistical scores to help in
the choice of the threshold for significance. Among
these scores, two are designed to assess general sig-
nificance threshold criteria for large-scale multiple
tests and one is based on existing biological knowl-
edge. Our method does not represent a novel way to
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evaluate FDR, but it defines a p-value, for this reason
universally accepted thresholds for significance can
be adopted.

More recently and independently from our ap-
proach (Yang and Yang, 2006) have designed a
method based on omnibus tests to improve the identi-
fication of the FDR. Again, one of our goals is to pro-
vide an efficient way to evaluate a p-value that takes
into account the multiple hypotheses tested, in order
to be able to adopt the thresholds of significance ac-
cepted by the scientific community (0.05,0.01,0.001),
easier to automate in long pipelines of tests. In this
paper we show that the p-value obtained with manip-
ulation of the inverse χ2 method (one of the omnibus
tests) can also be used directly as a measure of sig-
nificance for the identification of statistically signifi-
cantly tests.

3 METHOD

We chose as the base for our approach the inverse
χ2 method (L.B.Hedges and I.Olkin, 1985), an om-
nibus statistical test used to ascertain if at least one
among several tests is significant, by evaluation of
the following statistics: S(k) = −2∑k

i=1 ln(pi) and
s(k) = χ2(S,2k) where k = 1...K are the tests per-
formed and pi the p-value of the i-th test. S has a
χ2

(s,2k) distribution, where s is the p-value of the χ2

distribution with 2k degrees of freedom, and repre-
sents the significance of the combined tests, meaning
that it can assess if any of the tests can be consid-
ered significant, accounting for the total number of K
tests performed. Thus, in the following, s will indi-
cate the p-value we can use for assessing the statis-
tical significance of the tests taking into account the
multiple hypothesis issue, while p will indicate the
significance of the single test. The score θ is the value
resulting from the statistical test. Making use of the
χ2 inverse method means testing the null hypothesis
H0 : H0,1 = ... = H0,K = 0. Values of s > 0.05 indi-
cate that H0 cannot be rejected and thus that it holds
for all the subhypotheses H0,i = 0, i ∈ [1,K]. Con-
versely, more than one combination of rejection and
non rejection of single hypotheses H0,i is possible to
justify the rejection of the global null hypothesis H0.
For example all but one of the subhypotheses could
be null, or only one could be null etc. Evaluating s
on all the tests performed would be of no interest in
terms of defining a global threshold for significance.
In fact, while a non significant value of s would indi-
cate that none of the items has a score value that al-
lows the rejection of the null hypothesis, a low value
of s (< 0.05) would only mean that at least one item’s

score is relevant to the rejection of the null hypothesis,
with no indication on which one(s) are the relevant
items. To overcome this limitation we ranked the tests
scores θ in ascending order (assuming that significant
values of the test are represented by high values of
the score), and ordered the p-values consistently. We
then evaluated s for sets of p-values of increasing size,
starting from a set made of only the p-value corre-
sponding to the worse test score, then adding at each
iteration of this algorithm another p-value coupled to
the immediately higher or equal (better) score (θ), and
closing the last iteration with all the p-values. By in-
duction (Equation 1) we can show that whenever the
value of s drops below any of the standard values of
significance (0.05,0.01,0.001) the score correspond-
ing to the last p-value added is the threshold for sig-
nificance, since it represents the specific test that ac-
counts for the impossibility to reject the global null
hypothesis H0. By construction, at each iteration, the
p-value added is always smaller, and correspondingly,
due to the logarithm properties, S shows a fast growth
(S(k) =−2∑k

i=1 ln(pi)). At the same time the param-
eter of the χ2 function k, grows linearly (2 · k). Be-
cause of the shape of the χ2 function and because of
the logarithm properties, if there are enough small p-
values, S becomes quickly and abruptly very large,
and moves to behaviors typical of the ones on the right
hand side of Figure 1(c), χ2

k(S)→k→inf,S→inf 0. This
gives s its typical shape (shown in Figure 1(b)), with a
very abrupt drop from values very close to 1 to values
very close to 0.

For i = 1 s(i) > 0.05⇒
H0 not re j. H0,1 not re j.

Let i = n s(i) > 0.05⇒
H0 not re j. H0,i not re j.,∀i ∈ [1,n]

T hen i = n+1 s(i) > 0.05⇒
H0 not re j. H0,i not re j.,∀i ∈ [1,n+1]

s(i)≤ 0.05⇒
H0 re j. H0,i not re j.,∀i ∈ [1,n],

H0,n+1 re j.
(1)

Figure 1 shows an example of the trends of the
variables involved in the evaluation of global signifi-
cance: the statistics S and s that define the global sig-
nificance, the test score θ and the corresponding sin-
gle p-value that are the basic units of the analysis. The
statistic S represents the argument of the χ2 function
and is associated to a given degree of freedom (k). For
any given degree of freedom it is possible to identify
the minimum value (here called Sidα) for which the
inverse χ2 function returns the suited probability α.
Since Sid is the minimum value, the p-value that rep-
resents the threshold for significance is associated to
ksignα and can be conveniently visualized as the point
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Figure 1: Graphical representation of the different scores involved in the analysis. Figure(a) deals with the statistic S and Sid .
Figure(b) plots the corrected p-value s, the absolute value of the correlation score θ and the single p-value p. Figure(c) shows
the χ2 probability density function..

in which ksignα = k|Sidα(k) = S(k). Equivalently for s
the threshold for significance at a given nominal level
α can be defined as ksign = mink∈[1,K]|s(k) ≤ α. In
our experiments θ is the Spearman correlation score
(R.R.Sokal and F.J.Rohlf, 2003). Before processing
the test values we separated positive from negative
scores, and then performed the previously described
operations on the absolute values. This sign segre-
gation of the data has a two-fold objective. On one
side this fulfills the requirement for the applicabil-
ity of the test since one tailed p-values are required.
On the other side it satisfies the biological necessity
to discern between significantly over and under ex-
pressed genes, based on positive and negative values
of the test scores. As far as the permutation approach
is involved we generated 1000 random permutations
of each trait values as it was done in other applica-
tions with this same goal (Liang et al., 2005). We
then re-evaluate the θ scores for all 1000 randomized
instance of each trait, these constitute the null distri-
bution. For the FDR approach, we used the q-value
R package with default settings. For the identification
of significant items, we adopted as threshold the same
values we used for the p-value. The method was im-
plemented in Matlab, scripts for the method are avail-
able upon request.

3.1 Data

To test our method, we simulated the typical set up of
a common genomic experiment. Namely, we gener-
ated a random expression matrix 1000x100 (i.e. 1000
genes and 100 samples) and we defined 5 external
traits for which we search the surrogate markers. In
other words, these external traits mimic any clini-
cal trait or molecular marker. The goal of the ex-
periment is to identify the genes associated to the
external traits, to define the traits’ surrogate mark-
ers. This approach is then used to investigate the

molecular etiology of commonly used clinical mark-
ers. Several examples of such approaches can be
found in literature, only as a sample see (Lapointe
et al., 2004; Liang et al., 2005). At first, we tested
the method’s ability to recognize surrogate markers
of variable size. The surrogate markers were obtained
either by simple copy of expression profiles (in vary-
ing number of copies, namely 0,1,5), or by sum of
varying numbers of profiles (namely 5,30). The first
group of external traits (#1,#2,#3) provides both the
negative control (0 copies, obtained by elimination of
a randomly chosen expression profile, and exported
as external trait) and helps measuring the compara-
tive ability of the 3 different approaches (FDR, per-
mutations and our method) in extracting small clus-
ter of correlated profiles (1,5 copies). The second set
of traits (#4,#5) tests the approach with more chal-
lenging data (sums of 5,30 copies). To each ex-
pression value we added varying levels of gaussian
noise (0%,50%,100%) proportional to the expression
value, to better mimic real data (Bansal et al., 2007).
To avoid specific case results, we replicated our ap-
proach 3 times per each noise level and averaged the
results of specificity, sensitivity, positive and negative
predictive value. We observed the approach for the
3 levels of significance 0.05,0.01, 0.001. Finally, we
tested our method to assess its reliability with variable
numbers of genes.

3.2 Multiclass Statistical Scores

To compare our results we evaluated the specificity,
sensitivity, negative and positive predictive value of
the 3 methods: permutations, FDR and ours. These
statistics are used in combination to quantify different
aspects of the accuracy of a binary test, evaluating dif-
ferent proportions of correctly and incorrectly classi-
fied items, when compared to a known classification,
considered the gold standard. In this context the test is
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the ensemble of all the operations performed to clas-
sify each items; positive and negatives label the items
according to the two classes c = N,P = 0,1 they be-
long to; true (T) and false (F) represent the ability of
the test to classify coherently or not a given item in
the test classification with respect to the gold stan-
dard classification. Thus, for example, in classical
definitions TN (true negative) labels items belonging
to class 0 (N) correctly classified by the test, and FP
(false positive) labels items incorrectly classified as 1
(P) by the test. Given these definitions, positive and
negative predictive value (PPV, NPV), sensitivity (Se)
and specificity (Sp) are usually formalized with the
relationships in the first part of Equations 2.

Table 1: Classical definition and generalization to 3 classes
for true, false, negatives, positives.

(a) Classical Definition
Gold Standard
T F

Te
st P TP FP → Pt

N FN TN → Nt
↓ ↓

Pgs Ngs

(b) 3-Classes Definition
Gold Standard

2 1 0

Te
st 2 T2 x12 x13 →C2,t

1 x21 T1 x23 →C1,t
0 x31 x32 T0 →C0,t

↓ ↓ ↓
C2,gs C1,gs C0,gs

When the test classifies n > 2 categories, these
definitions become more complex to apply. However,
it still remains important to be able to characterize the
performances of the test in terms of its ability to dis-
tinguish between items that belong and do not belong
to any category (in our case between genes that con-
stitute and do not constitute any molecular surrogate).
To reach this goal and preserve the meaning of the 4
scores (PPV, NPV, Se, Sp) some caution must be used.
In fact the meaning of positive and negative is not rel-
evant anymore, since there are now positives. Then,
while the definition of true remains straightforward,
as it indicates coherence between the classification of
the test and the gold standard, the definition of false
can be cumbersome, since there are n−1 ways to mis-
classify an item. Additionally, the possibly intuitive
definition of false positives (or negatives as items that
are non-zero in the test (or in the gold standard) clas-
sification leads to ambiguity, since items happen to
be contemporary false positives and false negatives.
To avoid confusion and ambiguities the actual values
of all false can be identified by rewriting the prob-
lem in terms of a system of equation based on the

relationships indicated in Table 1. Here Pt ,Nt repre-
sent the total number of positive and negative items
that can be found in the test (t) categorization, and
Pgs,Ngs in the gold standard (gs) classification. The
definitions can be generalized to n > 2 classes chang-
ing the term negative and positive with the indices of
the corresponding classes c = 0,1, ...,n, and having
Cc that designs the total number of positives for each
given class. The system of equations obtained from
the relationships in the rows and columns of Table 1
contains 2 · n equations (i.e. T P + FP = Pt ) and 2 · n
unknown (xi j), thus it is completely specified. It is
worth noticing, that with these general definitions, in
case of 2-classes test, Se and Sp appear to be dual
scores. Thus, when generalizing to n-classes it is pos-
sible to define the predictive ability of the test for each
given class c∈ 0,1, ..,n as PVc = Tc/Ct and the Sensi-
tivity/Specificity (now called Sep) for the same class
c as Sepc = Tc/Cgs. To clarify the situation it is ex-
tremely useful to rewrite the definitions as they are
written on the left hand side of Equation 2, namely:

PPV = T P/T P+FP) = T P/Pt
PPN = T N/(T N +FN) = T N/Nt
Se = T P/(T P+FN) = T P/Pgs
Sp = T N/(T N +FP) = T N/Ngs

(2)

For n classes this gives:
PPV = ∑c Tc/∑c Cc,t ,c = 1, ..,n
PPN = T0/Nt = T0/C0,t

Se = ∑c Tc/∑c Cc,gs,c = 1, ..,n
Sp = T0/Ngs = T0/C0,gs

(3)

4 RESULTS AND DISCUSSION

All the results obtained with our method were ob-
tained in much more efficient times compared to the
permutation method, since the computational com-
plexity of our algorithm is O(g ·t) while the bootstrap-
ping one is O(g ·t · p), with g indicating the number of
genes, t the number of external traits, and p the num-
ber of permutations. The comparison with FDR in
these terms is not relevant, since this method is com-
putationally efficient. We performed 3 main experi-
ments: the first for comparison among the 3 methods
across all the types of traits (global comparison, Ta-
ble 2); then more specifically, trait by trait (Table 3);
finally we explored the stability of the method across
varying numbers of tests performed.

As far as the first comparison is involved, all meth-
ods performed with varying good degrees of speci-
ficity (Sp > 0.95), but none had satisfactory sensitiv-
ity (Se < 0.5 to Se << 0.5) except the permutation
method for only the threshold 0.05, Seperm,α=0.05 =
.67. In particular, our method has intermediate sen-
sitivity (better than FDR) and specificity (better than
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Table 2: Statistics of the performances of the 3 methods compared: our method, permuted p-values and FDR. The comparison
is done on expression matrices 1000x100 and 5 traits as they are described in Section 3.1. Results are averaged over 3
instances of the random data generated with the same specifics. Standard deviations of these averages are below 10−2. The
first column indicates the noise level (n), the second the threshold of significance chosen (α) and then all the scores for the 3
methods. Because of space constraints only values for noise 0.5 are shown.

Our Method Permutations FDR - q-value
n α Se Sp Se Sp Se Sp

.05 .1905 .9998 .6746 .9512 .1667 .9948
0.5 .01 .1667 .9999 .4603 .9898 .1667 .9948

.001 .1667 1.000 .3175 .9981 .1667 .9948

Table 3: Class by class comparison of the algorithms performances. Our method performs better in terms of avoiding false
positive ans worse with false negatives. Data are shown as averages across the random replicates and across the 3 different
levels of significance, for 3 different levels of noise (n). Figures in italic were inferred from NANs.

PV (classes) Sep (classes)
n Method 0 1 2 3 4 5 0 1 2 3 4 5

Ours .9998 1.000 1.000 1.000 .3111 .0556 .9936 1.000 1.000 1.000 0.000 0.000
0 Perm. .9797 1.000 1.000 1.000 .9556 .2852 .9956 .2510 0.000 .3846 .4325 .3494

Ours .9999 1.000 1.000 1.000 .0444 .0037 .9931 1.000 1.000 1.000 0.000 0.000
0.5 Perm. .9797 1.000 1.000 1.000 .9556 .2852 .9956 .2510 0.000 .3846 .4325 .3494

Ours .9999 .3333 1.000 .7333 .0000 .0037 .9925 0.000 1.000 .9506 0.000 0.000
1 Perm. .9797 1.000 1.000 1.000 .9556 .2852 .9956 .2510 0.000 .3846 .4325 .3494

permutations). Since the FDR method at the chosen
thresholds for significance appears to behave in ex-
treme ways, i.e. with better specificity and worse sen-
sitivity with respect to both methods, we focused our
attention to a more refined comparison between the
bootstrapping method and ours, and did not pursue
the goal, out of our scope here, to evaluate results with
other thresholds for significance.
Namely, we performed the second experiment, on a
trait by trait basis, with two goals: to investigate the
reasons of the improved performances of our method
in terms of specificity; to assess the reasons for the
poor global performances in terms of sensitivity. For
this we evaluated PV and Sep for each one of the 6
classes (c = 0,1, ..,n). In general our method seems
to have more problems with false negatives, while the
bootstrapping method collects a much larger number
of false positives (Table 3). These characteristics de-
pend on the intrinsic properties of s as they have been
described in Section 3. The abrupt drop in value of
s is responsible for an almost binary behavior of this
score. This leaves very little gray areas for spurious
classification, thus ambiguous θ values are quickly
coupled to high s values and discarded from the sig-
nificant tests set. Overall, trait #5 defines a too com-
plex pattern (sum of 30 profiles), and none of the
method can treat it correctly, conversely, trait #4 (sum
of 5 profiles) can be superiorly handled by the permu-
tation method and trait #1, #2 and #3 (1,0,5 corre-
lated profiles) are better recognized with our method.
It is difficult to speculate on whether surrogate mark-
ers of type #3 are more or less common than the ones
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Figure 2: ROC curve for PV, AUC ≈ 0.6.

of type #4 in actual biology, we can state however that
our method is able to identify the surrogate markers
of trait #3 with profiles that have as little correlation
as 0.33 (100% noise addedd). To summarize these
results we evaluated ROC curves to assess if any of
the methods was strikingly outperforming the other
(ROC curves in this case are not used to evaluate the
relationship between sensitivity and specificity, but to
compare two populations of data, that happen to be
PV and Sep scores). We compared: (i) PV and Sep
for each method, (ii) Sep only, (iii) PV only. Namely,
sensitivity and specificity combined, as well as sensi-
tivity alone lead to AUC ≈ 0.5, while the specificity
test leads to AUC ≈ 0.6, slightly better, but not statis-
tically significant (Figure 2, AUC = 0.5 indicates tests
with comparable performances).

Finally, we tested our method for the same hy-
potheses for varying numbers of genes, from 100 to
2000 (steps of 100 genes). Across 20 samples we ob-
tained median values that reproduce the findings of
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the two previous experiments (global and trait by trait
performances) with very small variances across the 20
samples (≈ 10−2 for sensitivity and≈ 10−3 for speci-
ficity). Thus, the method appears to be stable with
respect to the number of items tested.

5 CONCLUSIONS

We presented a method for the identification of p-
values in omic studies. This approach is based on a
meta-analysis and has two main advantages. On one
side it is computationally efficient, and can thus be
used in interpreted languages such as R and Matlab
that offer rich libraries of functions for omic analyses.
On the other side it is based on the identification of
a p-value rather than FDR, and can thus take advan-
tage of nominal threshold for significance, allowing
for an easier automation of filtering steps in analyses
based on statistical tests. Conversely to the permuta-
tion technique, that remains a computationally inten-
sive but very robust reference method, our approach,
globally, appears to be more specific but less sensi-
tive. This improved specificity can be extremely ad-
vantageous in the practice of Systems Biology, since
novel compact functional subunits can emerge or re-
main uncovered and require longer and costly exper-
imental investigations to be extracted, depending on
the noise they appear to be identified with. Applica-
tion to real data needs to be provided and this repre-
sents our current research activity. For these reasons
we believe the definition of alternative and comple-
mentary method is appropriate.
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Abstract: Multiclass learning problems can be cast as the task of assigning instances to a finite set of classes. Although
in the wide variety of learning tools there exist some algorithms capable of handling polychotomies, many
of the tools were designed by nature for dichotomies. In the literature, many techniques that decompose a
polychotomy into a series of dichotomies have been proposed. One of the possible approaches, known as
one-per-class, is based on a pool of binary modules, where each one distinguishes the elements of one class
from those of the others. In this framework, we propose a novel reconstruction criterion, i.e. a rule that sets the
final decision on the basis of the single binary classifications. It looks at the quality of the current input and,
more specifically, it is a function of the reliability of each classification act provided by the binary modules.
The approach has been tested on four biological and medical datasets and the achieved performance has been
compared with the one previously reported in the literature, showing that the method improves the accuracies
so far.

1 INTRODUCTION

Many supervised pattern recognition tasks can be cast
as the problem of assigning elements to a finite set
of classes or categories. Such tasks are referred to
as binary learning, or dichotomies, when they aim at
distinguishing instances of two classes, whereas they
are named multiclass learning, or polychotomies, if
there are more categories.

There is a huge number of applications that re-
quire multiclass categorization. Some examples are
text classification, object recognition and support to
medical diagnosis, to name a few.

In the literature numerous learning algorithms
have been devised for multiclass problems, such as
neural networks or decision trees. However it ex-
ists a different approach that is based on the reduc-
tion of the multiclass task into multiple binary prob-
lems, referred to as decomposition method. The prob-
lem complexity is therefore reduced trough the de-
composition of the polychotomy in less complex sub-
tasks. The basic observation that supports such an ap-
proach is that in the literature most of the available
algorithms, which handle classification problems, are
best suited to learning binary function (Dietterich and
Bakiri, 1995; Mayoraz and Moreira, 1997). Different
dichotomizers, i.e. the discriminating functions that

subdivide the input patterns in two separated classes,
perform the corresponding recognition task. To pro-
vide the final classification, their outputs are com-
bined according to a given rule, usually referred to
as decision or reconstruction rule.

In the framework of decomposition methods for
classification, the various methods proposed to-date
can be traced back to the following three categories
(Dietterich and Bakiri, 1995; Mayoraz and Moreira,
1997; Jelonek and Stefanowski, 1998; Masulli and
Valentini, 2000; Allwein et al., 2001; Crammer and
Singer, 2002; Hastie and Tibshirani, 1998; Kuncheva,
2005).

The first one, called one-per-class, is based on
a pool of binary learning functions, where each one
separates a single class from all the others. The as-
signment of a new input to a certain class can be
performed, for example, looking at the function that
returns the highest activation (Dietterich and Bakiri,
1995; Masulli and Valentini, 2000).

The second approach, commonly referred to as
distribuited output code, assigns a unique codeword,
i.e. a binary string, to each class. If we assume that
the string has n bit, the recognition system is com-
posed by n binary classification functions. Given
an unknown pattern, the classifiers provide a n-bit
string that is compared with the codeword to set the
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final decision. For example, the input sample is as-
signed to the class with the closest codeword, accord-
ing to a distance measure, such as the Hamming one.
In this framework, in (Dietterich and Bakiri, 1995)
the authors proposed an approach, known as error-
correcting techniques (ECOC), where they employed
error-correcting codes as a distributed output repre-
sentation. Their strategy was a decomposition method
based on the coding theory that allowed obtaining a
recognition system less sensitive to noise via the im-
plementation of an error-recovering capability. Al-
though the traditional measure of diversity between
the codewords and the outputs of dichotomizers is
the Hamming distance, other works proposed differ-
ent measures. For example, Kuncheva in (Kuncheva,
2005) presented a measure that accounted for the
overall diversity in the ensemble of binary classifiers.

The last approach is called n2 classifier. In this
case the recognition system is composed of (n2−n)/2
base dichotomizers, where each one is specialized
in discriminating respective pair of decision classes.
Then, their predictions are aggregated to a final deci-
sion using a voting criterion. For example, in (Jelonek
and Stefanowski, 1998) the authors proposed a voting
scheme adjusted by the credibilities of the base classi-
fiers, which were calculated during the learning phase
of the classification.

This short description of the methods so far shows
that the recognition systems based on decomposition
methods are constituted by an ensemble of binary dis-
criminating functions. On this motivation, for brevity
such systems are referred to as Multy Dichotomies
System (MDS) in the following.

In the framework of the one-per-class approach,
we present here a novel reconstruction rule that re-
lies upon the quality of the input pattern and looks
at the reliability of each classification act provided
by the binary modules. Furthermore, the classifica-
tion scheme that we propose allows employing either
a single expert or an ensemble of classifiers internal
to each module that solves a dichotomy. Finally, the
effectiveness of the recognition system has been eval-
uated on four different datasets that belongs to biolog-
ical and medical applications.

The rest of the paper is organized as follows: in
the next section we introduce some notations and
we present general considerations related to the sys-
tem configuration. Section 3 details the reconstruc-
tion method and section 4 describes and discusses
the experiments performed on four different medical
datasets. Finally section 5 offers a conclusion.

2 PROBLEM DEFINITION

2.1 Background

Let us consider a classification task on c data classes,
represented by the set of labels Ω = {ω1, · · · ,ωc},
with c > 2. With reference to the one-per-class ap-
proach, the multiclass problem is reduced into c bi-
nary problems, each one addressed by one module of
the pool M = {M1, · · · ,Mc}. We say that the module,
or the dichotomizer, M j is specialized in the jth class
when it aims at recognizing if the sample x belongs
either to the jth class ω j or, alternatively, to any other
class ωi, with i 6= j. Therefore each module assigns
to the input pattern x ∈ℜn a binary label:

M j(x) =
{

1 if x ∈ ω j
0 if x ∈ ωi, i 6= j (1)

where M j(x) indicates the output of the jth module on
the pattern x. On this basis, the codeword associated
to the class ω j has a bit equal to 1 at the jth position,
and 0 elsewhere.

Notice that we have just mentioned module and
not classifier to emphasize that each dichotomy can
be solved not only by a single expert, but also by an
ensemble of classifiers. However, to our knowledge,
the system dichotomizers typically adopt the former
approach, i.e. they are composed by one classifier
per specialized module. For example, for their exper-
imental assessments the authors used a a decision tree
and a multi layer perceptrons with one hidden layer
both in (Mayoraz and Moreira, 1997) and (Masulli
and Valentini, 2000), respectively. The same func-
tions were employed by Dietterich and Bakiri for the
evaluation of their proposal in (Dietterich and Bakiri,
1995), whereas Allwein et al. used a Support Vector
Machine (Allwein et al., 2001). A viable alternative to
using a single expert is the combination of classifiers
outputs solving the same recognition task. The idea is
that the classification performance attainable by their
combination should be improved by taking advan-
tage of the strength of the single classifiers. Classi-
fier selection and fusion are the two main combina-
tion strategies reported in the literature. The former
presumes that each classifier has expertise in some
local area of the feature space (Woods et al., 1997;
Kuncheva, 2002; Xu et al., 1992). For example, when
an unknown pattern is submitted for classification, the
more accurate classifier in the vicinity of the input is
selected to label it (Woods et al., 1997). The latter al-
gorithms assume that the classifiers are applied in par-
allel and their outputs are combined to attain some-
how a group of “consensus” (De Stefano et al., 2000;
Kuncheva et al., 2001; Kittler et al., 1998). Typi-
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cal fusion techniques include weighted mean, voting,
correlation, probability, etc..

It is worth noticing that the modules, besides la-
belling each pattern, may supply other information
typically related to the degree that the sample belongs
to that class. In this respect, the various classifica-
tion algorithms are divided into three categories, on
the basis of the output information that they are able
to provide (Xu et al., 1992). The classifiers of type
1 supply only the label of the presumed class and,
therefore, they are also known as experts that work
at the abstract level. Type 2 classifiers work at the
rank level, i.e. they rank all classes in a queue where
the class at the top is the first choice. Learning func-
tions of type 3 operate at the measurement level, i.e.
they attribute each class a value that measure the de-
gree that the input sample belongs to that class. If
a crisp label of the input pattern is needed, we can
use the maximum membership rule that assigns x to
the class for which the degree of support is maxi-
mum (ties are resolved arbitrarily). Although abstract
classifiers provide a n-bit string that can be compared
with the codewords, decision schemes that exploit in-
formation derived from the classifiers working at the
measurement level permit us to define reconstruction
rules that are potentially more effective. Furthermore,
if the module is constituted by a multi-experts system,
the information supplied by the single classifiers can
be used to compute a measure similar to that provided
by measurement classifiers.

Since measurement classifiers can provide more
information with respect to the other two types, we
assume that only measurement experts constitutes our
MDS. Therefore, the research focus becomes: “Given
the individual decision M1(x), · · · ,Mc(x) and the de-
grees of membership of x to the different classes, how
can we use such an information to set the final label?”.

2.2 The Reconstruction Method

The reconstruction method addresses the issues of de-
termining the final label of the input pattern x on the
basis of the modules’ decisions and, eventually, of
information directly derived from their outputs. To
present our method, let us introduce two auxiliaries
quantities. The first, named binary profile, represents
the state of the module outputs. It is a c-bit vector
defined by:

M(x) = [M1(x), · · · ,M j(x), · · · ,Mc(x)] (2)

whose entries are the crisp labels provided by each
module in the classification of sample x (see equa-
tion 1).

Since each block has a binary output, the 2c pos-
sible bit combinations of the binary profile can be

grouped into the following three categories:
(i) only one module classifies the sample in the class

in which it is specialized;

(ii) more modules classify the sample in its own
class;

(iii) none module classifies the sample in its own
class.

In the first case, only one entry of M(x) is one; in
the second more elements are one (at least two and no
more than c), whereas in the last situation all the el-
ements are zero. Such an observation naturally leads
to distinguish these three cases using the summation
over the binary profile. Indeed,

m =
c

∑
j=1

M j(x) =

 1, in case (i)
[2,c], in case (ii)
0, in case (iii)

(3)

where m therefore represents the number of modules
whose outputs are 1.

The second quantity that we introduce is referred
to as reliability profile and it is described by:

ψ(x) = [ψ1(x), · · · ,ψ j(x), · · · ,ψc(x)] (4)

where each element ψ j(x) measure the reliability of
the classification act on pattern x provided by the jth
module. Note that the reliability varies in the inter-
val [0,1], and a value near 1 indicates a very reliable
classification.

We deem that the estimation of the reliability of
each classification act is a viable method to employ
the information directly derived from the classifiers
output since it has demonstrated its convenience, in
other field also (De Stefano et al., 2000; Cordella
et al., 1999).

Assuming that we determined both the binary and
the reliability profiles, i.e. M(x) and ψ(x) respec-
tively, in the next section we will present the recon-
struction rule.

3 RELIABILITY BASED
RECONSTRUCTION

In this section we introduce the novel reconstruction
strategy we propose in the paper. It chooses an output
in any of the 2c combinations of the binary profile.
We deem that an accurate final decision can be taken
if the reconstruction rule looks at the quality of the
classification provided by the modules, i.e. at the re-
liability of their specific decisions. To our knowledge
the application of such a parameter can not be found
in the literature related to decomposition methods. In-
deed, the papers of this field that used the information
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directly derived from the outputs of the base classi-
fiers typically considered only the highest activation
among the experts, e.g. the maximum output from a
pool of neural networks. However, this measure can-
not be regarded as a reliability parameter, since it has
been demonstrated that it should be computed consid-
ering not only the winner output neurons but also the
losers (Cordella et al., 1999).

Therefore, differently from the past, we propose a
criterion that makes use of the reliability measure, i.e.
of the reliability profile, named as Reliability-based-
Reconstruction (RbR). Denoting by s the index of the
module that sets the final output O(x) ∈ Ω, referred
to as selected module for brevity in the following, the
final decision is given by:

O(x) = ωs (5)

with

s =
{

argmax j(M j(x) ·ψ j(x)), if m ∈ [1,c]
argmin j(M j(x) ·ψ j(x)), if m = 0

(6)

where M j(x) indicates the negate output of the jth
block.

The first row of this equation considers both cases
(i) and (ii). Indeed, since in the first case all the mod-
ules agree in their decision, as a final output is chosen
the class of the module whose output is 1. Conversely,
in cases (ii) and (iii) the final decision is performed
looking at the reliability of each modules’ classifica-
tions. In case (ii), m modules vote for their own class,
whereas the others (c−m) indicate that x does not
belong to their own class. To solve the dichotomy
between the m conflicting modules we look at the re-
liability of their classification and choose the class as-
sociated to the more reliable one. In case (iii) m = 0,
suggesting that all modules classify x as belonging to
another class than the one they are specialized. In this
case, the bigger is the reliability parameter ψ j(x), the
less is the probability that x belongs to ω j, and the
bigger is the probability that it belongs to the other
classes. These observations suggest finding out which
module has the minimum reliability and then choos-
ing the class associated to it as a final output.

Panel A of figure 1 shows the architecture of the
proposed recognition system. The decision M j(x) and
the reliability ψ j(x) supplied by each of the c mod-
ules are aggregated in the reconstruction module to
provide the final decision O(x). As observed in sec-
tion 2.1, the use of an ensemble of classifiers in each
module is a way to improve its discrimination capa-
bility. In this respect, the panel B of the same figure
depicts a typical configuration of a multi-experts sys-
tem. Notice that both the output of the kth classifier
and its reliability, denoted as Vk(x) and ξk(x), respec-

tively, can be given to the combination rule in order
to label the input sample.

4 EXPERIMENTAL EVALUATION

In this section we first describe the datasets used to
assess the performance of the reconstruction method
and, second, we briefly discuss the configuration of
the MDS modules. Third, we present a strategy to
evaluate the classification reliability when the mod-
ules are constituted both by a single classifier and by
an ensemble of experts, respectively. Finally, we re-
port the experimental results.

4.1 Datasets

For our tests we use four datasets, described in the
following and summerized in table 1.

Indirect Immunofluorescence Well Fluores-
cence Intensity. Connective tissue diseases are
autoimmune disorders characterized by a chronic
inflammatory process involving connective tissues.
When they are suspected in a patient, the Indirect Im-
munofluorescence (IIF) test based on HEp-2 substrate
is usually performed, since it is the recommended
method. The interested reader may find a wide expla-
nation of the IIF and its issues in (Kavanaugh et al.,
2000; Rigon et al., 2007). The dataset consists of 14
features extracted from 600 patients sera collected
at Università Campus Bio-Medico di Roma. The
samples are distributed over three classes, namely
positive (36.0%), negative (32.5%) and intermediate
(31.5%). Previous results are reported in (Soda
and Iannello, 2006) where the authors employed a
multiclass approach, achieving an accuracy of 76%
approximately.

Indirect Immunofluorescence HEp-2 cells stain-
ing pattern. This is a dataset with 573 instances
represented by 159 statistical and spectral features.
The samples are distributed in five classes that are
representative of the main staining patterns exhibited
by HEp-2 cells, namely homogeneous (23.9%),
peripheral nuclear (21.8%), speckled (37.0%), nu-
cleolar (8.2%) and artefact (9.1%). These patterns
are related to one of the different autoantibodies
that give rise to a connective tissue disease. For
the details on these classes see (Rigon et al., 2007).
On this dataset, we performed some tests adopting
a multiclass approach, which exhibits a hit rate of
63.6% approximately, evaluated using the eightfold
cross validation.
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Figure 1: The system architecture, which is based on the aggregation of binary modules (panel A), according to the one-per-
class approach. Note that each module can be constituted by a multi-experts system, as depicted in the panel B.

Lymphography. A database of lymph diseases
was obtained from the University Medical Centre,
Institute of Oncology, Ljubljana. It is composed by
148 instances described by 18 numeric attributes.
There are four classes, namely normal (1.4%),
metastases (54.7%), malign lymph (41.2%) and
fibrosis (2.7%). The data are available within the
UCI Machine Learning Repository1 (Asuncion and
Newman, 2007). Different approaches were used
in the literature to address the recognition task.
For instance, for Naive Bayes classifier and C4.5
decision tree the achieved performance was 79% and
77% respectively (Clark and Niblett, 1987), whereas
induction techniques correctly classified the 83% of
samples (Cheung, 2001).

Ecoli. The database is composed by 336 sam-
ples, described by a nine-dimensional vector and
distributed in eight classes. Each class represents a
localization site, which can be cytoplasm (42.5%),
inner membrane without signal sequence (22.9%),
periplasm (15.5%), inner membrane, uncleavable
signal sequence (10.4%), outer membrane (6.0%),
outer membrane lipoprotein (1.5%), inner membrane
lipoprotein (0.6%) and inner membrane, cleavable
signal sequence (0.6%). Again, the data are avail-
able within the UCI Machine Learning Repository
(Asuncion and Newman, 2007). In (Jelonek and
Stefanowski, 1998), the authors reported an accuracy
that ranges from 79.7% up to 83.0%, achieved
employing both a decision tree and a Multi Layer
Perceptrons, respectively. In (Allwein et al., 2001),
using many popular classification algorithms, such as
the support-vector machines, AdaBoost, regression

1For each dataset of this repository the users have access
to a description of the application domain, to the features
and to the ground truth.

and decision-tree algorithms, the hit rate varies from
78.5% up to 86.1%.

4.2 MDS Configuration

The modules of the MDS are essentially composed by
a single classifier or by an ensemble of classifiers. In
both cases, as single expert we use k-Nearest Neigh-
bour (kNN) or Multi-Layer Perceptron (MLP). For
each dichotomy, we first select a subset of features
that simplifies both the pattern representation and the
classifier complexity as well as the risk of the incur-
ring in the peaking phenomenon2. Then we carry out
some preliminary tests to determine the best config-
uration of experts parameters, e.g. the number of
neighbours for kNN classifier or the number of hidden
layers, neurons per layer, etc., for the MLP network.
Furthermore, when the module is constituted by an
ensemble of experts we adopt a fusion technique to
combine their outputs, namely the Weighted Voting
(WV). In such a method the opinion of each expert
about the class of the input pattern is weighted by
the reliability of its classification. Since each expert
deals with a binary learning task, to further present
this scheme we can simplify the notation as follows.
Denoting as Vk(x) and as ξk(x) the output and the clas-
sification reliability of kth classifier on sample x, the
weighted sum of the votes for each of the two classes
is given by:

Wh(x) = ∑
k:Vk(x)=h

ξk(x), with h = {0,1} (7)

2The peaking phenomenon is a paradoxical behaviour
in which the added features may actually degrade the per-
formance of a classifier if the number of training samples
that are used to design the classifier is small relative to the
number of features.
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Table 1: Summary of the datasets used.

Database Number Number Number Avalaibility
of Samples of Classes of features

IIF Well Fluorescence Intensity 600 3 14 Private
IIF HEp-2 cells staining pattern 573 5 159 Private

Lymphography 148 4 18 UCI
Ecoli 336 8 9 UCI

The output of the fusion of the jth module, M j(x), is
defined by3:

M j(x) =
{

1 if W1(x) > W0(x)
0 otherwise (8)

Turning our attention to the configuration of the
system in the experimental tests, notice that the mod-
ules that label the samples of the IIF Well Fluo-
rescence Intensity and of lymphography datasets are
composed by one classifiers. The modules that clas-
sify the samples of the HEp-2 cells and of the ecoli
databases are constituted by kNN and MLP classifiers
combined by the WV criterion.

4.3 Reliability Parameter

The approach described for deriving the final decision
according to the RbR rule requires the introduction
of a reliability parameter that evaluates the quality of
the classification performed by each module, which
can be composed by a single classifier or by an ag-
gregation of classifiers (figure 1). In the former case
its reliability ψ j coincides with the one of the single
classifier, i.e. ξ. In the latter case, each entry of the
reliability profile generally depends on the combina-
tion rule adopted in the module, on the number k of
composing experts and on their individual reliabilities
ξ. Formally,

ψ j(x) =
{

ξ(x), if k = 1
f (ξ1(x), · · · ,ξi(x), · · · ,ξk(x)), if k > 1

(9)
where all the reliabilities are reported as function of

the input pattern to emphasize that they are computed
for each classification act.

In the rest of this section we first present two tech-
niques to measure the reliability of kNN and MLP de-
cisions, and then we introduce a novel method that es-
timates such parameter in the case of the application
of the WV criterion.

A typical approach that measures the reliability of
the decision taken by the single expert, i.e. ξ, makes

3In case of tie, i.e. if W1(x) is equal to W0(x), the output
M j(x) is set arbitrarily to zero. Note that it never occurred
in all tests we performed.

use of the confusion matrix4 estimated on the learn-
ing set. The drawback of this method is that all the
patterns with the same label have equal reliability, re-
gardless of the quality of the sample. Indeed, the aver-
age performance on the learning set, although signifi-
cant, does not necessarily reflect the actual reliability
of each classification act. To overcome such limita-
tions we adopt an approach that relies upon the quality
of the current input. To this end, we refer to the work
presented in (Cordella et al., 1999), where the quality
of the sample is related to its position in the feature
space. In this respect, the low reliability of a recog-
nition act can be traced back to one of the following
situations: (a) in the feature space x is located in a re-
gion that is far from those associated with the various
classes, i.e. the sample is significantly different from
those present in the training set, (b) the point repre-
senting x lies in a region of the feature space where
two or more classes overlap. These observations lead
to introduce the parameters ξa and ξb that distinguish
between the two situations of unreliable classification.
Then, a comprehensive parameter ξ can be derived
adopting the following conservative choice:

ξ = min(ξa,ξb) (10)

Indeed, it implies that a low value for only one of
the parameters is sufficient to consider unreliable the
classification.

In the case of kNN classifiers, following (Cordella
et al., 1999), the two parameters are defined are given
by:

ξa = max(1−Dmin/Dmax,0) (11)
ξb = 1−Dmin/Dmin2 (12)

where Dmin is the smallest distance of x from a ref-
erence sample belonging to the same class of x, Dmax
is the highest among the values of Dmin obtained for
samples taken from the training-test set, i.e. a set that
is disjoint from both the reference and the test set,
Dmin2 is the distance between x and the reference sam-
ple with the second smallest distance from x among

4The confusion matrix reports for each entry (p,q) the
percentage of samples of the class Cp assigned to the class
Cq.
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all the reference set samples belonging to a class that
is different from that determining Dmin.

In the case of MLP classifier, the two quantities
are defined as follows:

ξa = Nwin (13)
ξb = Nwin−N2win (14)

where Nwin is the output of the winner neuron, N2win
is the output of the neuron with the highest value after
the winner. From this definition, it is straightforward
that ξ = ξb. For further details see (De Stefano et al.,
2000).

When the jth module is composed by more than
one classifier combined according to the WV rule,
the reliability estimator considers again the situations
which can give rise to an unreliable classification. In
this respect, we need to introduce the following two
auxiliary quantities:

π1(x) = max({ξk(x)|k : Vk(x) = M j(x)}) (15)
π2(x) = max({ξk(x)|k : Vk(x) 6= M j(x)}∪{0})

(16)

where π1(x) and π2(x) represent the maximum relia-
bilities of experts voting for the winning class and for
other classes (0 if all the experts agree on the winner
class), respectively. Given these definitions, the reli-
ability of the WV rule can be evaluated according to
the following conservative choice:

ψ(x) = min(π1(x),max(0,1−π2(x)/π1(x))) (17)

4.4 Results and Discussion

This section presents the experimental results that we
achieved using the system described so far. To evalu-
ate and then compare the results of this approach with
those reported in the literature we perform eightfold
and tenfold cross validation on the two IIF datasets,
i.e. well fluorescence intensity and HEp-2 cells stain-
ing pattern, and on the other two databases, i.e. lym-
phography and ecoli, respectively.

The third column of table 2 shows the testing ac-
curacies achieved on the four databases. To sim-
ply compare them with the past results, the second
column of the same table summarizes the perfor-
mance reported in literature. Turning our attention
to the tests carried out on the first and on the sec-
ond datasets, a relevant accuracy improvement can
be observed. Indeed, the hit rate increases of 18.4%
and of 12.3% in the case of the well fluorescence in-
tensity and HEp-2 cells staining pattern databases,
respectively. In our opinion, such an improvement
is twofold motivated. On the one hand, the set of
extracted features is more stable and more effective

when we adopt a decomposition approach rather than
a multiclass one. On the other hand, the reconstruc-
tion rule exhibits a very good capability of solving
the disagreements between the specialized modules.
Indeed, when the binary profile of the input sample
M(x) differs from one of the possible codewords (i.e.
m = 0 or 2 ≤ m ≤ c), the decision is taken looking
at the reliability profile ψ(x), as presented in the for-
mula 6. These considerations are strengthened by
the observation of the performance attained in the
classification of samples belonging to the two UCI
datasets. Indeed, since they are benchmark datasets,
any reported improvement is due to the recognition
approach rather than to the use of a different features
set. The tests on both the lymphography and ecoli
datasets exhibit an accuracy better than the one re-
ported to date. Indeed, for the former dataset the
improvement ranges both from 6.9% up to 12.9% ,
whereas for the latter one it varies from 1.8% up to
9.4%. Therefore, also in these cases the MDS in
combination with the RbR rule improves the recog-
nition performance. Furthermore, it is worth noting
that the approach seems independent of the modules’
arrangement. The rationale lies in observing that in
two of the four tests the MDS modules are consti-
tuted by a multi-experts system, whereas in the others
they are composed by a single classifier (see the be-
ginning of section 4). Consequently, the reliability ψ j
is measured according to a method that varies with the
module configuration, as previously presented (see
equations 10-17). Nevertheless, these variations do
not affect the effectiveness of the recognition system.
Therefore, we deem that the reconstruction rule is ro-
bust with respect to different reliability estimators.

5 CONCLUSIONS

In the framework of decomposition methods, we have
presented a classification approach that reconstructs
the final decision looking at the reliability of each
classification act provided by all dichotomizers. Fur-
thermore, the reconstruction rule does not depend on
the configuration of each module, i.e. on its archi-
tecture. Such an observation is strengthened by the
good performance achieved when both a single clas-
sifier and a fusion of experts constitute each module,
respectively.

For all the four tested databases, the experimental
results show that the proposed system outperforms the
performance reported in the literature.

Future works are directed towards two issues.
First, the test of the system on other public datasets
and, second, the definition of reliability parameter of
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Table 2: Testing accuracy achieved on the used datasets.

Database Past MDS using
Usage RbR

IIF Well Fluorescence Intensity 75.9% 94.3%
IIF HEp-2 cells staining pattern 63.6% 75.9%

Lymphography 77%−83.0% 89.9%
Ecoli 78.5%−86.1% 87.9%

each decision taken by the MDS.

ACKNOWLEDGEMENTS

The author would like to thank the DAS s.r.l (www.
dasitaly.com), which has funded this work.

REFERENCES

Allwein, E. L., Schapire, R. E., and Singer, Y. (2001). Re-
ducing multiclass to binary: a unifying approach for
margin classifiers. J. Mach. Learn. Res., 1:113–141.

Asuncion, A. and Newman, D. J. (2007). UCI machine
learning repository.

Cheung, N. (2001). Machine learning techniques for med-
ical analysis. Master’s thesis, University of Queens-
land.

Clark, P. and Niblett, T. (1987). Induction in noisy domains.
In Progress in Machine Learning–Proc. of EWSL 87,
pages 11–30.

Cordella, L., Foggia, P., and et. al. (1999). Reliability pa-
rameters to improve combination strategies in multi-
expert systems. Patt. An. & Appl., 2(3):205–214.

Crammer, K. and Singer, Y. (2002). On the algorithmic
implementation of multiclass kernel-based vector ma-
chines. J. Mach. Learn. Res., 2:265–292.

De Stefano, C., Sansone, C., and Vento, M. (2000). To
reject or not to reject: that is the question: an answer
in case of neural classifiers. IEEE Trans. on Systems,
Man, and Cybernetics–Part C, 30(1):84–93.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2:263.

Hastie, T. and Tibshirani, R. (1998). Classification by pair-
wise coupling. In NIPS ’97: Proc. of the 1997 Conf.
on Advances in neural information processing sys-
tems, pages 507–513. MIT Press.

Jelonek, J. and Stefanowski, J. (1998). Experiments on
solving multiclass learning problems by n2 classifier.
In 10th European Conference on Machine Learning,
pages 172–177. Springer-Verlag Lecture Notes in Ar-
tificial Intelligence.

Kavanaugh, A., Tomar, R., and et al. (2000). Guidelines for
clinical use of the antinuclear antibody test and tests
for specific autoantibodies to nuclear antigens. Am.
Col. of Pathologists, Archives of Pathology and Lab.
Medicine, 124(1):71–81.

Kittler, J., Hatef, M., and et. al. (1998). On combining clas-
sifiers. IEEE Trans. On Pattern Analysis and Machine
Intelligence, 20(3):226–239.

Kuncheva, L. I. (2002). Switching between selection and
fusion in combining classifiers: an experiment. IEEE
Trans. on Systems, Man and Cybernetics, Part B,
32(2):146–156.

Kuncheva, L. I. (2005). Using diversity measures for gen-
erating error-correcting output codes in classifier en-
sembles. Patt. Recogn. Lett., 26(1):83–90.

Kuncheva, L. I., Bezdek, J. C., and Duin, R. (2001). Deci-
sion template for multiple classifier fusion: an experi-
mental comparison. Patt. Recognition, 34:299–314.

Masulli, F. and Valentini, G. (2000). Comparing decompo-
sition methods for classication. In KES’2000, Fourth
Int. Conf. on Knowledge-Based Intell. Eng. Systems &
Allied Technologies, pages 788–791.

Mayoraz, E. and Moreira, M. (1997). On the decompo-
sition of polychotomies into dichotomies. In ICML
’97: Proc. of the 14th Int. Conf. on Machine Learning,
pages 219–226. Morgan Kaufmann Publishers Inc.

Rigon, A., Soda, P., Zennaro, D., Iannello, G., and Afeltra,
A. (2007). Indirect immunofluorescence (IIF) in au-
toimmune diseases: Assessment of digital images for
diagnostic purpose. Cytometry - Accepted for Publi-
cation, February.

Soda, P. and Iannello, G. (2006). A multi-expert system to
classify fluorescent intensity in antinuclear autoanti-
bodies testing. In Computer Based Medical Systems,
pages 219–224. IEEE Computer Society.

Woods, K., Kegelmeyer, W., and Bowyer, K. (1997). Com-
bination of multiple classifiers using local accuracy
estimates. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:405–410.

Xu, L., Krzyzak, A., and Suen, C. (1992). Method of
combining multiple classifiers and their application to
handwritten numeral recognition. IEEE Trans. on Sys-
tems, Man and Cybernetics, 22(3):418–435.

EXPERIMENTS ON SOLVING MULTICLASS RECOGNITION TASKS IN THE BIOLOGICAL AND MEDICAL
DOMAINS

71



IMAGE SEGMENTATION TO EVALUATE
ISLETS OF LANGHERANS

C. Grimaudo, D. Tegolo, C. Valenti
Dipartimento di Matematica e Applicazioni, Università diPalermo, via Archirafi 34, 90123, Italy
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Abstract: This contribution deals with an unsupervised system to process digital photomicrographs in order to locate
and analyze islets of Langherans in human pancreases. The experiment has been conducted on real data and,
though we are still going to complete the evaluation of the whole method, we expect to define a set of proper
features (e.g. area, perimeter, fractal dimension, shape complexity, texture and entropy) useful for a fast and
reliable counting of healthy cells. In particular, this research aims to measure the advisability of a possible
implantation in patients affected by type 1 diabetes mellitus.

1 INTRODUCTION

This paper introduces a new system for the auto-
matic analysis of high power magnification photomi-
crographs of the human islets of Langherans. The
cells that make these clusters can be divided into a
few classes which include theα cells, that secrete
glucagon, and theβ cells, responsible for the pro-
duction of insulin. This research field is of particular
interest because of the demand to evaluate the state
of these endocrine tissue for preoperative planning in
patients that suffer from severe type 1 diabetes melli-
tus, otherwise scarcely treatable by conventional ther-
apies (Ryan et al., 2005; Shapiro et al., 2006). It has
been verified that the probability of obtaining a fa-
vorable implantation increases when a large number
of viable and purified islets is transplanted in to the
patients (Bertuzzi and Ricordi, 2007). In a multivari-
ate analysis aimed to identify somein vitro parame-
ters for islet quality or function predictive ofin vivo
graft function of the same islets after their transplan-
tation in diabetic patients, islet morphology (in terms
of the maintenance of their round shape profile, sim-
ilar to what they showed in the native pancreas) was
demonstrated to be correlated with 1 month recipi-
ent c-peptide production (Ricordi et al., 2001); islet
morphology therefore should be considered an indi-
rect parameter of islet viability. These results call

for the identification of some standardized strategies
to characterize islet morphology and to quantify their
degree of maintenance of their native round morphol-
ogy (Nano et al., 2005).

At present, the analysis is also performed by im-
proving the appearance through image processing
softwares or ad hoc systems (Metamorph). A grid is
laid on the slide so to fix the islets and to let easily
count their different typologies (see Figure 1). This
process is done by hand to separate those cells useful
to the implantation and obviously it is slow, subjec-
tive and liable to errors; an environment to help the
expert analyst is therefore desirable both to enhance
the quality of the digital photos and to elaborate the
images in order to locate automatically the zones of
interest.

A variety of methods is already present in liter-
ature for both supervised and unsupervised segmen-
tation of photomicrographs depicting cells (Coelho
et al., 2002; Tripodo et al., 2006; Montseny et al.,
2004; Bak et al., 2004). Usually these techniques
are taken back to the elaboration of histograms, appli-
cation of mathematical morphology, texture analysis,
Fourier and wavelet transforms to extract the shapes
of the components that have been found. Often the
images have noise due to the presence of small arti-
facts, distortions and blurring introduced by the op-
tical system, inherent inaccuracies due to the lattice
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(e.g. the thickness of the sample that must be ana-
lyzed), imperfections of the coloring of the contrast
agent (e.g. due to variations of exposure time and to
the quantity of the marker itself).

Figure 1: Two slides that put in evidence the presence of a
grid to easily count the number of the islets.

We have realized a system that acts through a li-
brary of tools to preprocess the data; the segmenta-
tion of the various components in the images often re-
quires the intervention of an expert user who locates
the promising clusters of cells. This approach can be
applied not only to the islets of Langherans, but also
to analyze other vital cells (e.g. hepatocytes, bone
marrow cells). Finally it should be verified the pos-
sibility to apply this strategy also in fixed tissue after
different immunohystochemistry staining.

The following Section 2 describes the new en-
vironment to elaborate and classify the islets of
Langherans. Experimental results are presented in
Section 3, while remarks and possible future works
are introduced in Section 4.

2 SEGMENTATION OF THE
ISLETS

In this paper, we aimed to describe the system which
has been developed to provide an unsupervised anal-
ysis of the human islets of Langherans (see Figure 2).
Different techniques have been implemented to en-
hance the quality of the images, to segment all com-
ponents, to distinguish among the cells and to evalu-
ate their conditions in order to quantify the advisabil-
ity of the implantation.

The photos in our database have been acquired
through a digital tool; they suffer from artifacts due
to the equipment (e.g. only the center of the image is
correctly in focus and a few impurities can be present
on the lenses). Predetermined threshold values result
in a poor separation between the components of the
images, but we have experimentally verified that the
Otsu method (Otsu, 1979) is able to compute these

optimal values in order to locate the imperfections on
the red and green channels of the RGB color space.
We have carried out a statistical examination on both
the background and foreground to determine their
starting threshold values; should the input image be
very different from the database we have considered,
then, to better calibrate the values, the user can select
some regions of interest, representative of the differ-
ent parts of the islets. Figure 3 shows the previous
input image soon after the preprocessing step.

Figure 2: A sample photomicrograph of a cluster of the hu-
man islets of Langherans.

We have successfully applied the same adap-
tive self-tuning technique that has been introduced
in (Tripodo et al., 2006) to discriminate between the
pureβ cells, or the mixedβ and exocrine/ductal cells
that are highlighted by the marker as red and orange
zones respectively, while the yellow parts correspond
to dead cells or impurities or simply exocrine/ductal
cells. This usually leads to a rough representation of
the cells, but a simple median filter is sufficient to
remove all small objects (5×5 kernel) and pointlike
noise (3×3 kernel). The shape of the cells so far ob-
tained can be further enhanced by the use of a math-
ematical morphology opening with a structuring ele-
ment represented by discrete disk of radius 2 (Soille,
2003). In such a way the cells of the islets are bet-
ter separated and, moreover, we can safely delete all
components that are too small (the allowed number of
pixels has been pre-defined according to the present
magnification power of the microscope). Figure 4
shows the final result obtained on the reference im-
age; another example is reported in Figure 5. We have
highlighted the final contour just to easily check the
segmentation of the relevant islets.
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Figure 3: Some artifacts present in Figure 2 have been re-
moved. Due to the huge field of view, in the following we
will propose the results relative to the superimposed box.

Figure 4: Left: the remaining artifacts and dead cells have
been automatically removed from Figure 3. Right: the final
contour has been plotted on the input image of Figure 2.

3 EXPERIMENTAL RESULTS

Images have a size of 2088×1550 pixels and were ac-
quired at a sample dilution equal to 2500×, by a stere-
omicroscope Leica MZ12-5 with a 2× zoom magni-
fication and equipped with a digital camera, able of
a 4.34765µm/pixel picture calibration. The set of im-
ages we have studied has been obtained by isolating
the islets through the automated method from multi-
organ donors (Ricordi et al., 1989). After pancreas
digestion the islets from 3 preparations have been pu-
rified by COBE processor (Vargas et al., 1996) and
placed in a culture media for additional 48 hours at
24◦C. The islets have been finally stained with dithi-
zone (a vital stain that cross-reacts with zinc) and
therefore it has been used to recognize theα, exocrine
and ductal cells (in which zinc is absent) from theβ
cells (rich in zinc).

A set of parameters that describe each kind of
cluster of cells has been extracted from the segmented
images. The area, the perimeter, the compactness (i.e.
the normalized ratio between the area and the squared

perimeter) and the eccentricity of the ellipse which
approximates the shape of the islet and the measures
of convexity/concavity of its edges return a quanti-
tative esteem of its aspect. In particular, compactness
and eccentricity measure the roundness: healthy islets
should not have protrusions.

Figure 5: The edges of the islets within the box have been
marked in blue.

The amount of information directly deducible
from the luminosity of the pixels is another useful
characteristic: the more homogenous an islet is, the
smaller its local entropy is. We are still investigat-
ing on the ability of operators that return marks about
the value of local sharpness and textures (which are
closely connected to the presence of luminosity gra-
dients).

For each isletI i we compute the productgi be-
tween its average luminosityℓi and its entropyei .
If we indicate withµg andσg respectively the mean
and the standard deviation of allg = ℓ×e, then the
islets with a score|gi−µg| < 2σg can be considered
as promising candidate. A further important charac-
teristic is given by the compactnessκ (Rangayyan,
2005): with an analogous approach, the islets till now
accepted with a compactness valueκi < µκ+σκ are
definitely classified as reasonably good. For the sake
of clarity, an islet is classified as good if it passes the
test ong and then onκ. The final evaluation of the
whole input photo of Figure 5 is summarized in Ta-
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Table 1: The features of each islet (33 in this example) have been represented by two columns (top:g and bottom:κ). The
threshold values are represented by dashed lines and both tests have to be passed:κ reduces the number of candidates already
obtained byg (good islets have been marked with aH).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

µg+2σg

µg−2σg

27.2
32.5

33.1
49.2

64.5
67.1

70.4
70.5

70.8
72.0

73.7
74.6

74.7
76.9

79.6
80.6

81.5
81.8

82.7
82.8

82.8
84.0

85.3
86.9

87.0
87.5

89.8
90.9

91.6
93.0

97.6
99.2

120.8

H H H H H H H H H H H H H H H H H H H H H H H H H H

µκ+σκ

0.86
0.74

0.58
0.37

0.20
0.09

0.55
0.25

0.05
0.52

0.05
0.36

0.36
0.25

0.28
0.35

0.71
0.23

0.19
0.12

0.39
0.44

0.18
0.07

0.13
0.13

0.21
0.13

0.15
0.19

0.19
0.20

0.48

ble 1. Figure 6 shows how the system highlights a
single islet and proposes its features.

The percentage of the area of the yellow zones
(more precisely, the ratio between red and yellow)
indicates the purification of islet preparation and the
eventual presence of embedded islets, that means
islets surrounded by exocrine tissue (Ricordi et al.,
1995). The final ratio between the area of good islets
and the area of all islets summarizes the goodness of
the inspected photomicrograph. Several parameters
have been therefore available now by an automated
method of analysis for the characterization of an islet
preparation in terms of:
• islet number (the number of red clusters);
• islet dimension (the red area);
• islet purification (the ratio between yellow and red

areas in the whole preparation);
• percentage of embedded islets (the ratio between

red and yellow areas within an islet);
• islet morphology.

4 REMARKS AND FURTHER
WORKS

We have introduced an unsupervised system to locate
the human islets of Langherans in photomicrographs.
These clusters of cells have been characterized in or-
der to define some parameters representative of their
number and morphology. The predictive role of these
features towards theirin vivograft function should be
matter of further studies.

Figure 6: A screenshot of the graphical interface of the
system. Small green boxes automatically delimit bubbles
(present as artifacts in the photo). A selected islet is pointed
out by a white arrow and the values of the relevant features
are presented to the user.

From a computer science point of view, the effi-
ciency of the proposed method is still at the testing
stage (Altman, 1999) and our system should be con-
sidered as a tool to help the experts in obtaining a
quantitative esteem of the reliability of the islets in fa-
vorable implantation. The final results have been val-
idated by biologists involved in implantations to treat
patients affected by severe forms of type 1 diabetes
mellitus. It is interesting to note that the methodolo-
gies we have applied to segment the components of
the photos are quite standard and general enough and
that the extracted features can be extended to differ-
entiate between theα andβ cells which compose the
islets; this is to correlate their peculiarities with infor-
mation of the state of the patients. Moreover, though
preliminary results are encouraging, we are improv-
ing the segmentation procedure by including further
algorithms based on mathematical morphology and
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watershed/level sets.
To the best of our knowledge, our environment

is the first attempt to automatically analyze islets of
Langherans for implantations. Previous works rely
on manual segmentation of their photomicrographs or
are too general, thus to require to be adapted in or-
der to process images containing these kind of cells.
Therefore, a comparison of the results obtained by our
system is still desirable.

Additional projects should be thein vitro char-
acterization of the human islet preparations after the
staining with vital probes (i.e. propidium iodide, flu-
orescein diacetate (Barnett et al., 2004; Miyamoto
et al., 2000) and probes for apoptosis (Ichii et al.,
2005). This should allow the direct quantification of
vital, apoptotic and necrotic islets. Finally the auto-
mated system for imaging analysis should be applied
in fixed tissues after immunostaining for insulin and
glucagon thus allowing a complete characterization of
islet cell composition (Ichii et al., 2005; Street et al.,
2004).

ACKNOWLEDGEMENTS

The authors wish to thank Doctor Domenico Bosco
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R.C.Coelho, V.Gesù, G.Bosco, J.S.Tanaka, C.Valenti
(2002). Shape-based features for cat ganglion retinal
cells classification.Real-Time Imaging, Special Issue
on Imaging in Bioinformatics, 8:213–226.

H.Ichii, L.Inverardi, A.Pileggi, R.D.Molano, O.Cabrera,
A.Caicedo, S.Messinger, Y.Kuroda, P.O.Berggren,
C.Ricordi (2005). A novel method for the assess-
ment of cellular composition and beta-cell viability in
human islet preparations.Am J Transplant, 5:1635–
1645.

M.Miyamoto, Y.Morimoto, Y.Nozawa, A.N.Balamurugan,
B.Xu, (2000). Establishment of fluorescein diacetate
and ethidium bromide (fdaeb) assay for quality assess-
ment of isolated islets.Cell Transplant, 9:681–686.

E.Montseny, P.Sobrevilla, S.Romani (2004). A fuzzy ap-
proach to white blood cells segmentation in color bone
marrow images.Proceedings of the IEEE Interna-
tional Conference on Fuzzy Systems, 1:173–178.

R.Nano, B.Clissi, R.Melzi, G.Calori, P.Maffi,
B.Antonioli, S.Marzorati, L.Aldrighetti, M.Freschi,
T.Grochowiecki, C.Socci, A.Secchi, V.Carlo,
E.Bonifacio, F.Bertuzzi (2005). Islet isolation for
allotransplantation: variables associated with suc-
cessful islet yield and graft function.Diabetologia,
48:906–912.

N.Otsu (1979). A thresholding selection method from gray-
scale histogram.IEEE Trans. on System, Man, and
Cybernetics, 9:62–66.

R.M.Rangayyan (2005).Biomedical Image Analysis. CRC
Press.

C.Ricordi, P.E.Lacy, D.W.Scharp (1989). Automated islet
isolation from human pancreas diabetes.Diabetes,
38(1):140–142.

C.Ricordi, R.Alejandro, H.H.Rilo, P.B.Carroll, A.G.Tzakis,
T.E.Starzl, D.H.Mintz (1995). Long-term in vivo
function of human mantled islets obtained by incom-
plete pancreatic dissociation and purification.Trans-
plant Proc., 27(6):3382.

C.Ricordi, J.R.Lakey, B.J.Hering (2001). Challenges to-
ward standardization of islet isolation technology.
Transplant Proc., 33(1–2):1709.

E.A.Ryan, B.W.Paty, P.A.Senior, D.Bigam, E.Alfadhli,
N.M.Kneteman, J.R.Lakey, A.M.Shapiro (2005).
Five-year follow-up after clinical islet transplantation.
Diabetes, 54(7):2060–2069.

A.M.Shapiro, C.Ricordi, B.J.Hering (2006). International
trial of the edmonton protocol for islet transplan-
tation. The New England Journal of Medicine,
355(13):1318–1330.

P.Soille (2003).Morphological Image Analysis. Springer-
Verlag, New York, 2nd edition.

C.N.Street, J.R.Lakey, A.M.Shapiro, S.Imes, R.V.Rajotte,
E.A.Ryan, J.G.Lyon, T.Kin, J.Avila, T.Tsujimura,
G.S.Korbutt (2004). Islet graft assessment in the ed-
monton protocol: implications for predicting long-
term clinical outcome.Diabetes, 53:3107–3114.

The metamorph system, c© molecular devices and
universal imaging corporation,WWW.UNIVERSAL-
IMAGING .COM.

C.Tripodo, C.Valenti, B.Ballarò, Z.Rudzki, D.Tegolo,
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Abstract: We use signal and image theory based algorithms to produce estimations of the number of wolves emitting
howls or barks in a given field recording as an individuals counting alternative to the traditional trace collecting
methodologies. We proceed in two steps. Firstly, we clean and enhance the signal by using PDE based image
processing algorithms applied to the signal spectrogram. Secondly, assuming that the wolves chorus may be
modelled as an addition of nonlinear chirps, we use the quadratic energy distribution corresponding to the
Chirplet Transform of the signal to produce estimates of thecorresponding instantaneous frequencies, chirp-
rates and amplitudes at each instant of the recording. We finally establish suitable criteria to decide how such
estimates are connected in time.

1 INTRODUCTION

Wolf is a protected specie in many countries around
the world. Due to their predator character and to
their proximity to human settlements, wolves often
kill cattle interfering in this way in farmers’ econ-
omy. To smooth this interference, authorities reim-
burse the cost of these lost to farmers. Counting the
population of wolves inhabiting a region is, therefore,
not only a question of biological interest but also of
economic interest, since authorities are willing to es-
timate the budget devoted to costs produced by wolf
protection, see for instance (Skonhoft, 2006). How-
ever, estimating the population of wild species is not
an easy task. In particular, for mammals, few and not
very precise techniques are used, mainly based on the
recuperation of field traces, such as steps, excrements
and so on. Our investigation is centered in what it
seems to be a new technique, based on signal and
image theory methods, to estimate the population of
species which fulfill two conditions: living in groups,
for instance, packs of wolves, and emitting some char-
acteristic sounds, howls and barks, for wolves. The
basic initial idea is to produce, from a given record-
ing, some time-frequency distribution which allows to

identify the different howls corresponding to different
individuals by estimating the instantaneous frequency
(IF) lines of their howls.

Unfortunately, the real situation is somehow more
involved due mainly to the following two factors. On
one hand, since natural sounds, in particular wolf
howling, are composed by a fundamental pitch and
several harmonics, direct instantaneous frequency es-
timation of the multi-signal recording leads to an
over-counting of individuals since various IF lines
correspond to the same individual. Therefore, more
sophisticated methods are indicated for the analysis
of these signals, methods capable of extracting addi-
tional information such as the slope of the IF, which
allows to a better identification of the harmonics of a
given fundamental tone. The use of a Chirplet type
transform (S. Mann, 1995; L. Angrisani, 2002) is in-
vestigated in this article, although an equivalent for-
mulation in terms of the Fourier fractional transform
(H. M. Ozaktas, 2001) could be employed as well.
On the other hand, despite the quality of recording
devices, field recordings are affected for a variety of
undesirable signals which range from low amplitude
broad spectrum long duration signals, like wind, to
signals localized in time, like cattle bells, or localized
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in spectrum, like car engines. Clearly, the addition
of all these signals generates an unstructured noise
in the background of the wolves chorus which im-
pedes the above mentioned methods to work properly,
and which should be treated in advance. We accom-
plish this task by using PDE-based techniques which
transforms the image of the signal spectrogram into
a smoothed and enhanced approximation to the reas-
signed spectrogram introduced in (K. Kodera, 1978;
F. Auger, 1995) as a spectrogram readability improv-
ing method.

2 SIGNAL ENHANCEMENT

In previous works (B. Dugnol, 2007a; B. Dugnol,
2007d), we investigated the noise reduction and edge
(IF lines) enhancement on the spectrogram image by a
PDE-based image processing algorithm. For a clean
signal, the method allows to produce an approxima-
tion to the reassigned spectrogram through a pro-
cess referred to asdifferential reassignment, and for a
noisy signal this process is modified by the introduc-
tion of a nonlinear operator which induces isotropic
diffusion (noise smoothing) in regions with low gra-
dient values, and anisotropic diffusion (edge-IF en-
hancement) in regions with high gradient values.

Let x∈ L2(R) denote an audio signal and consider
the Short Time Fourier transform (STFT)

Gϕ(x; t,ω) =

∫

R

x(s)ϕ(s− t)e−iωsds, (1)

corresponding to the real, symmetric and normalized
windowϕ ∈ L2(R). The energy density function or
spectrogramof x corresponding to the windowϕ is
given by

Sϕ(x; t,ω) = |Gϕ(x; t,ω)|2, (2)

which may be expressed also as (Mallat, 1998)

Sϕ(x; t,ω) =

∫

R2
WV(ϕ; t̃, ω̃)WV(x; t− t̃,ω−ω̃)dt̃dω̃,

(3)
with WV(y; ·, ·) denoting the Wigner-Ville distribu-
tion of y∈ L2(R),

WV(y; t,ω) =

∫

R

y(t +
s
2
)y(t −

s
2
)e−iwsds.

The Wigner-Ville (WV) distribution has received
much attention for IF estimation due to its excel-
lent concentration and many other desirable math-
ematical properties, see (Mallat, 1998). However,
it is well known that it presents high amplitude
sign-varying cross-terms for multi-component signals
which makes its interpretation difficult. Expression

(3) represents the spectrogram as the convolution of
the WV distribution of the signal,x, with the smooth-
ing kernel defined by the WV distribution of the
window, ϕ, explaining the mechanism of attenuation
of the cross-terms interferences in the spectrogram.
However, an important drawback of the spectrogram
with respect to the WV distribution is the broadening
of the IF lines as a direct consequence of the smooth-
ing convolution. To override this inconvenient, it was
suggested in (K. Kodera, 1978) that instead of assign-
ing the averaged energy to the geometric center of the
smoothing kernel,(t,ω), as it is done for the spectro-
gram, one assigns it to thecenter of gravityof these
energy contributions,(t̂, ω̂), which is certainly more
representative of the local energy distribution of the
signal. As deduced in (F. Auger, 1995), the gravity
center may be computed by the following formulas

t̂(x; t,ω) = t −ℜ
{

GTϕ(x; t,ω)

Gϕ(x; t,ω)

}

,

ω̂(x; t,ω) = ω+ ℑ
{

GDϕ(x; t,ω)

Gϕ(x; t,ω)

}

,

where the STFT’s windows in the numerators are
Tϕ(t) = tϕ(t) and Dϕ(t) = ϕ′(t). The reassigned
spectrogram,RSϕ(x; t,ω), is then defined as the ag-
gregation of the reassigned energies to their cor-
responding locations in the time-frequency domain.
Observe that energy is conserved through the reas-
signment process. Other desirable properties, among
which non-negativity and perfect localization of lin-
ear chirps, are proven in (Auger, 1991). For our ap-
plication, it is of special interest the fact that the re-
allocation vector,r(t,ω) = (t̂(t,ω)− t, ω̂(t,ω)−ω),
may be expressed through a potential related to the
spectrogram (E. Chassandre-Mottin, 1997),

r(t,ω) =
1
2

∇ log(Sϕ(x; t,ω)), (4)

whenϕ is a Gaussian window of unit variance. Let
τ ≥ 0 denote an artificial time and consider the dy-
namical expression of the reassignment given by
Φ(t,ω,τ) = (t,ω)+τr(t,ω) which, forτ = 0 toτ = 1,
connects the initial point(t,ω) with its reassigned
point(t̂, ω̂). Rewriting this expression as

1
τ
(Φ(t,ω,τ)−Φ(0,ω,τ)) = r(t,ω),

and taking the limitτ → 0, we may identify the dis-
placement vectorr as the velocity field of the trans-
formation Φ. In close relation with this approach
is the process referred to asdifferential reassignment
(E. Chassandre-Mottin, 1997), defined as the transfor-
mation given by the dynamical system corresponding
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to such velocity field,
{ dχ

dτ
(t,ω,τ) = r(χ(t,ω,τ)),

χ(t,ω,0) = (t,ω),
(5)

for τ > 0. Observe that, in a first order approximation,
we still have thatχ connects(t,ω) with some point in
a neighborhood of(t̂, ω̂), since

χ(t,ω,1) ≈ χ(t,ω,0)+ r(χ(t,ω,0))

= (t,ω)+ r(t,ω) = (t̂, ω̂).

In addition, for τ → ∞, each particle(t,ω) con-
verges to some local extremum of the potential
log(Sϕ(x; ·, ·)), among them the maxima and ridges
of the original spectrogram. The conservative energy
reassignation for the differential reassignment is ob-
tained by solving the following problem foru(t,ω,τ)
andτ > 0,

∂u
∂τ

+div(ur) = 0, (6)

u(·, ·,0) = u0, (7)

where we introduced the notationu0 = Sϕ(x; ·, ·) and,
consequently,r = 1

2∇ log(u0). Since in applications
both signal and spectrogram are defined in bounded
domains, we assume (6)-(7) to hold in a bounded
time-frequency domain,Ω, in which we assume non
energy flow conditions on the solution and the data

∇u ·n = 0, r ·n = 0 on∂Ω×R+, (8)

beingn the unitary outwards normal to∂Ω. Finally,
observe that the positivity of the spectrogram (Mal-
lat, 1998) and the fact that it is obtained from a
convolution with aC∞ kernel implies the regularity
u0,r ∈ C∞ and, therefore, problem (6)-(8) admits a
unique smooth solution.

As noted in (E. Chassandre-Mottin, 1997), differ-
ential reassignment can be viewed as a PDE based
processing of the spectrogram image in which the en-
ergy tends to concentrate on the initial image ridges
(IF lines). As mentioned above, our aim is not only
to concentrate the diffused IF lines of the spectrogram
but also to attenuate the noise present in our record-
ings. It is clear that noise may distort the reassigned
spectrogram due to the change of the energy distribu-
tion and therefore of the gravity centers of each time-
frequency window. Although even a worse situation
may happen to the differential reassignment, due to
its convergence to spectrogram local extrema (noise
picks among them) an intuitive way to correct this ef-
fect comes from its image processing interpretation.
As shown in (B. Dugnol, 2007a; B. Dugnol, 2007d),
when a strong noise is added to a clean signal better
results are obtained for approximating the clean spec-
trogram if we use a noise reduction edge enhancement
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Figure 1: First row: Spectrogram and its transformation
with the PDE model. Subsequent plots: detail of the howl
contained within the range 300−750 Hz. We observe the IF
concentration and smoothing effect of the PDE algorithm.

PDE based algorithm than if we simply threshold the
image spectrogram. This is due to the local applica-
tion of gaussian filters in regions of small gradients
(noise, among them) while anisotropic diffusion (in
the orthogonal direction to the gradient) is applied in
regions of large gradients (edges-IF lines). Therefore,
a possible way to improve the image obtained by the
differential reassigned spectrogram is modifying (6)
by adding a diffusive term with the mentioned prop-
erties.

Let us make a final observation before writing the
model we work with. In the derivation of both the re-
assigned and the differential reassigned spectrogram
the property of energy conservation is imposed, im-
plying that energy values on ridges increase. Indeed,
let B be a neighborhood of a point of maximum for
u0, in which divr = ∆ logu0 < 0, and let(t0,ω0) ∈ B.
Let χ0(t,ω,τ) denote the characteristic defined by (5)
starting at(t0,ω0). Evaluating Eq. (6) alongχ0 we
obtain

d
dτ

u =
∂u
∂τ

+ r ·∇u= −udivr, (9)

implying thatu experiments exponential increase in
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B. For image processing, it is desirable the maximum
principle to hold, i.e., that the bounds minu0 ≤ u ≤
maxu0 hold for any(t,ω,τ) ∈ Ω×R+, ensuring that
the processed image lies within the range of image
definition ([0,255], usually). A simple way, which we
shall address, to ensure this property is by dropping
the right hand side term of Eq. (9), i.e., replacing Eq.
(6) by the transport equation

∂u
∂τ

+ r ·∇u= 0. (10)

However, no energy conservation law will apply any-
more (note thatu is constant along the character-
istics). The combination of the differential reas-
signment problem with the edge-detection image-
smoothing algorithm (L.́Alvarez, 1992) is written as

∂u
∂τ

+
ε
2

∇ log(u0) ·∇u−g(|Gs∗∇u|)A(u) = 0, (11)

in Ω×R+, together with the boundary data (8) and
the initial condition (7). Parameterε ≥ 0 allows us
to play with different balances between transport and
diffusion effects. The diffusion operator is given by

A(u)= (1−h(|∇u|))∆u+h(|∇u|) ∑
j=1,...,n

f j(
∇u
|∇u|

)
∂2u

∂x2
j

.

Let us briefly remind the properties and meaning of
the diffusive term components in equation (11):

• FunctionGs is a Gaussian of variances. The vari-
ance is ascale parameterwhich fixes the minimal
size of the details to be kept in the processed im-
age.

• Functiong is non-increasing withg(0) = 1 and
g(∞) = 0. It is acontrastfunction, which allows
to decide whether a detail is sharp enough to be
kept.

• The composition ofGs and g on ∇u rules the
speed of diffusion in the evolution of the image,
controlling theenhancementof the edges and the
noise smoothing.

• The diffusion operatorA combines isotropic and
anisotropic diffusion. The first smoothes the
image by local averaging while the second en-
forces the diffusion only on the orthogonal di-
rection to∇u (along the edges). More precisely,
for θ j = ( j − 1) ∗ π/n, j = 1, . . . ,n we definex j
as the orthogonal to the directionθ j , i.e., x j =
−t sinθ j + ωcosθ j . Then, smooth non-negative
functions f j (cosθ,sinθ) are designed to beac-
tive only whenθ is close toθ j . Therefore, the
anisotropic diffusion is taken in an approximated
direction to the orthogonal of∇u. The combina-
tion of isotropic and anisotropic diffusions is con-
trolled by functionh(s), which is nondecreasing

with

h(s) =

{

0 for s≤ h0,

1 for s≥ 2h0,
(12)

beingh0 theenhancementparameter.

In Fig. 1 we show an example of the outcome of our
algorithm for a signal composed by two howls. See
(B. Dugnol, 2007d; B. Dugnol, 2007c) for more de-
tails and other numerical experiments.

3 HOWL TRACKING AND
SEPARATION

A wolves chorus is composed, mainly, by howls and
barks which, from the analytical point of view, may
be regarded as chirp functions. The former has a long
time support and a small frequency range variation,
while the latter is almost punctually localized in time
but posses a large frequency spectrum. It is conve-
nient, therefore, adopting a parametric model to rep-
resent the wolves chorus as an addition of chirps given
by the functionf : [0,T] → C,

f (t) =
N

∑
n=1

an(t)exp[iφn(t)], (13)

with T the length of the chorus emission,an andφn
the chirps amplitude and phase, respectively, and with
N, the number of chirps contained in the chorus. We
notice thatN is not necessarily the number of wolves
since, for instance, harmonics of a given fundamental
tone are counted separately.

To identify the unknownsN, an andφn we pro-
ceed in two steps. Firstly, for a time discretization of
the time interval[0,T], sayt j , for j = 0, . . . ,J, we pro-
duce estimates of the amplitudean(t j) and the phase
φn(t j) of the chirps contained at such discrete times.
Secondly, we establish criteria which allow us decid-
ing if the computed estimates at adjacent times do be-
long to the same global chirp or do not.

For the first step we use the Chirplet transform de-
fined by

Ψ f (to,ξ,µ;λ) =

∫ ∞

−∞
f (t)ψto,ξ,µ,λ (t)dt, (14)

with the complex windowψto,ξ,µ,λ given by

ψto,ξ,µ,λ (t) = vλ(t − to)exp
[

i(ξt +
µ
2
(t − to)

2)
]

.

(15)
Here, v ∈ L2 (R) denotes a real window,vλ(·) =
v(·/λ), with λ > 0, and the parametersto,ξ,µ ∈ R,
stand for time, instantaneous frequency and chirp rate,
respectively. The quadratic energy distribution corre-
sponding to the chirplet transform (14) is given by

PΨ f (to,ξ,µ;λ) = |Ψ f (to,ξ,µ;λ) |2. (16)
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For a linear chirp of the form

f (t) = a(t)exp[i(
α
2

(t − to)
2 + β(t− to)+ γ)],

it is straightforward to prove that the energy dis-
tribution (16) has a global maximum at(α,β), al-
lowing us to determine the IF and chirp rate of a
given linear chirp by localizing the maxima of the en-
ergy distribution. For more general forms of mono-
component chirps we have the following localization
result (B. Dugnol, 2007b)

Theorem 1 Let f (t) = a(t)exp[iφ(t)], with a ∈
L2 (R) non-negative andφ ∈ C3 (R). For all ε > 0
andξ,µ∈ R there exists L> 0 such that ifλ < L then

PΨ f (to,ξ,µ;λ) 6 ε+PΨ f
(

to,φ′ (to) ,φ′′ (to) ;λ
)

.

(17)
In addition,

lim
λ→0

PΨ f
(

to,φ′ (to) ,φ′′ (to) ;λ
)

= a(to)
2
. (18)

In other words, for a general mono-component chirp
the energy distribution maximum provides an arbi-
trarily close approximation to the IF and chirp rate
of the signal. Moreover, its amplitude may also be es-
timated by shrinking the window time support at the
maximum point.

Finally, for a multi-component chirpf (t) =
∑N

n=1an (t)exp[iφn (t)] the situation is somehow more
involved since although the energy distribution still
has maxima at(φ′n (to) ,φ′′n (to)) for all n such that
an (to) 6= 0, these are now of local nature, and in fact,
spurious local maxima not corresponding to any chirp
may appear due to the energy interaction among the
actual chirps.

4 NUMERICAL EXPERIMENTS

According to the recording quality, we start our algo-
rithm enhancing the signal with the PDE algorithm
explained in Section 2 or directly with the separa-
tion algorithm introduced in Section 3. For details
about the implementation of the former, we refer the
reader to (B. Dugnol, 2007c). Following, we briefly
comment about the separation algorithm implementa-
tion. We start by computing the energy distribution,
PΨ f (τm,ξ,µ;λ) at a set of discrete timesτm = m∗ τ
of constant time step,τ, and for a fixed window width
λ. Next we compute the maxima of the energy at each
of these times. When the signal is mono-component
or the various components of the signal are far from
each other relative to the window width, the maxima
of PΨ correspond to some(φ′n (τm) ,φ′′n (τm)) which are
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Figure 2: Above: STFT of a field recorded signal. Be-
low: quadratic energy distribution of the chirplet transform
at t0 = 2. Maxima correspond to IF and chirp rate chirps
locations. We observe the different behavior in theξ andµ
directions at these maxima.

then identified as the IF and chirp-rate of a chirp can-
didate. However, when multi-component signals are
close to each other or are crossing, some spurious lo-
cal maxima are produced which do not correspond to
any actual chirp. Therefore, some criterium must be
used to select the correct local maxima at eachτm.
Although we lack of an analytical proof, there are ev-
idences suggesting that maxima produced by chirps,
i.e., at points of the type(φ′n (τm) ,φ′′n (τm)) , decrease
much faster in theξ direction than in theµ direction,
see Fig. 2, a phenomenon that does not occur at spuri-
ous maxima. We use this fact to choose the candidates
first by selectingξk, for k = 1, . . . ,K, which are max-
ima for

sup
µ

PΨ f (τm,ξ,µ;λ) ,

and, among them, selecting the maxima with re-
spect toµ of PΨ f (τm,ξk,µ;λ). We finally establish
a threshold parameter to filter out possible local max-
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ima located at points that do not correspond to any
φ′n (τm) but which are close to two of them. We set
this threshold such that the existence of two consecu-
tive maxima is avoided.

In this way we obtain, for eachτm, a set of points
(µim,ξim), for im = 1, . . . , Im, which correspond to the
IF’s and chirp-rates of chirps with time support in-
cludingτm.

The next step is the chirp separation. We note that
if the time stepτ = τm+1− τm is small enough, then

ξ jm+1 − τ
µjm+1

2
≈ ξim + τ

µim

2
.

Introducing a new parameter,ν, we test this property
by imposing the condition

1
v

<
2ξ jm+1 − τµjm+1

2ξim + τµim
< ν, (19)

for two points to be in the same chirp. In the experi-
ments we takeν = 21/13≈ 1.0548.

Finally, in the case in which test (19) is satisfied
by more than one point, i.e., when there exist points
(

ξ jm+1,µjm+1

)

and
(

ξkm+1,µkm+1

)

such that (19) holds
for the same(ξim,µim), we impose a regularity cri-
terium and choose the point with a closer chirp-rate
to that of(ξim,µim). This is a situation typically aris-
ing at chirps crossings points.

Summarizing, the chirp separation algorithm is
implemented as follows:

• Each point(ξi1,µi1), for i1 = 1, . . . , I1, is assumed
to belong to a distinct chirp.

• For k = 2,3, . . ., we use the described criteria to
decide if

(

ξik ,µik

)

, for : ik = 1, . . . , Ik, belongs to
an already detected chirp. On the contrary, it is
established as the starting point of a new chirp.

• When the above iteration is finished and to avoid
artifacts due to numerical errors, we disregard
chirps composed by a unique point.

Finally, once the chirps are separated, we use the fol-
lowing approximation, motivated by Theorem 1, to
estimate the amplitude

a(τm)2 ≈
1

λ [v̂(0)]2
PΨ f

(

to,φ′ (τm) ,φ′′ (τm) ;λ
)

.

Again, to avoid artifacts due to numerical discretiza-
tion, we neglect portions of signals with an amplitude
lower than certain relative threshold ,ε∈ (0,1), of the
maximum amplitude of the whole signal, considering
that in this case no chirp is present.

4.1 Experiment 1. A Synthetic Signal

In this first experiment we test our algorithm with a
synthetic signal,f , composed by the addition of three
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Figure 3: Spectrogram of the clean signal and results of
the chirp localization and separation algorithm for clean and
noisy signals, respectively.

nonlinear chirps (spectrogram shown in Fig. 3) and
with the same signal corrupted with an additive noise
of similar amplitude than that off , i.e., withSNR= 0.

We used the same time step,τ = 0.2 sec, and
window width, λ = 0.1 sec, to process both signals,
while we set the relative threshold amplitude level to
ε = 0.01 for the clean signal and toε = 0.1 for the
noisy signal. The results of our algorithm of denois-
ing, detection and separation is shown in Fig. 3. We
observe that for the clean signal all chirps are cap-
tured with a high degree of accuracy even at cross-
ing points. We also observe that the main effect of
noise corruption is the lose of information at chirps
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low amplitude range. However, the number of them
is correctly computed.

In Fig. 4 we show the amplitude, IF and chirp-
rate estimations of the chirp which is more affected by
the noise corruption, for both clean and noisy signals.
The main effect of noise corruption is observed in the
amplitude computation and in the lose of information
in the tails of the three quantities.
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Figure 4: Amplitude, IF and chirp rate for the clean signal
(left column) and noisy signal (right column). Solid lines
correspond to exact values and crosses to computed values.
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Figure 5: First row: spectrogram of the field recorded signal
utilized in Experiment 2. Second row: result of the chirp lo-
calization and separation algorithm. Third row: a zoom of
the previous plot showing six separated chirps correspond-
ing to five wolves howls.

4.2 Experiment 2. A Field Recorded
Wolves Chorus

In this experiment we analyze a rather complex signal
obtained from field recordings of wolves choruses in
wilderness, (L. Llaneza, ). Due to the noise present
in the recording, we first use the PDE algorithm to
enhance the signal and reduce the noise, see (B. Dug-
nol, 2007c) for details. For the separation algorithm,
we fixed the time step asτ = 0.03 sec, the relative am-
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plitude threshold asε = 0.01 and the window width as
λ = 0.0625 sec.

The algorithm output is composed by 32 chirps
which should correspond to the howls and barks (with
all their harmonics) emitted by the wolves along the
duration of the recording (about five sec). The result
is shown in Fig. 5. Since our aim is giving an estimate
of how many individuals are emitting in a recording,
we plot a zoom of the separating algorithm result for
the time interval(1,2.5). Here, the number of chirps
reduces to six. However, it seems that one couple of
them are harmonics, the couples formed by the chirp
around 1000 Hz and the highest IF chirp. Therefore,
we may conclude that at least five wolves are emitting
in this interval of time. A similar analysis is carried
out with other time subintervals until all the recorded
signal is analyzed.

5 CONCLUSIONS

A combined algorithm for signal enhancement and
voice separation is utilized for wolf population count-
ing. Although field recorded wolf chorus signals
posses a complex structure due to noise corruption
and nonlinear multi-component character, the out-
come of our algorithm provides us with accurate es-
timates of the number of individuals emitting in a
given recording. Thus, the algorithm seems to be a
good complement or, even, an alternative to existent
methodologies, mainly based in wolf traces collection
or in the intrusive attaching of electronic devices to
the animals. Clearly, our algorithm is not limited to
wolves emissions but to any signal which may reason-
ably be modelled as an addition of chirps, opening its
utilization to other applications. Drawbacks of the al-
gorithm are related to the expert dependent election of
some parameters, such as the amplitude threshold, or
to the execution time when denoising and separation
of long duration signals must be accomplished. We
are currently working in the improvement of these as-
pects as well as in the recognition of components cor-
responding to the same emissor, such as harmonics of
a fundamental chirp, pursuing the full automatization
of the counting algorithm.
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PATHOLOGY DETECTION ON SPEECH

Analysis of Performance and Theoretical Justification

Rubén Fraile, Juan Ignacio Godino-Llorente, Nicolás Sáenz-Lechón, Vı́ctor Osma-Ruiz
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Abstract: The majority of speech signal analysis procedures for automatic pathology detection mostly rely on parameters
extracted from time-domain processing. Moreover, calculation of these parameters often requires prior pitch
period estimation; therefore, their validity heavily depends on the robustness of pitch detection. Within this
paper, an alternative approach based on cepstral-domain processing is presented which has the advantage of
not requiring pitch estimation, thus providing a gain in both simplicity and robustness. While the proposed
scheme is similar to solutions based on Mel-frequency cepstral parameters, already present in literature, it has
an easier physical interpretation while achieving similarperformance standards.

1 INTRODUCTION

Analysis of recorded speech is an attractive method
for pathology detection since it is a low-cost non-
invasive diagnostic procedure (Boyanov and Had-
jitodorov, 1997). Although there is a wide range
of causes for pathological voice (functional, neural,
laryngeal, etc.) and a correspondingly wide range
of acoustic parameters has been proposed for its de-
tection (see (Jackson-Menaldi, 2002) for summaris-
ing tables and typical values), these intend to detect
speech signal features that may be roughly classified
in only three classes (Godino-Llorente et al., 2006b):

• Short-term frequency perturbations: both in fun-
damental frequency and in formants.

• Short-term amplitude perturbations.

• Noiseor, more specifically, speech-to-noise ratio.

Calculation of above-mentioned acoustic parame-
ters requires previous and reliable detection of speech
fundamental frequency (pitch) (Deliyski, 1993) (Boy-
anov and Hadjitodorov, 1997). Nevertheless, pitch
detection is not an easy task due to its sensitiveness to
noise, signal distorsion, speech formants, etc. (Boy-
anov et al., 1993).

An alternative approach to speech signal analy-
sis is doing it in cepstral domain, more specifically
in Mel-frequency cepstral domain. Such approach,
consisting in classifying patterns of so-called Mel-
frequency cepstral coefficients (MFCC), does not re-
quire prior pitch estimation and has proven to be
fairly robust against different kinds of speech distor-
tion (Bou-Ghazale and Hansen, 2000), including that
of telephone channel (Fraile et al., 2007), and reason-
ably independent of the particular way in which com-
putations may be implemented (Ganchev et al., 2005).
For these reasons, their application to automatic voice
pathology detection has been proposed during the
last years (Godino-Llorente and Gómez-Vilda, 2004).
Yet, to authors’ knowledge, up to now no physical ex-
planation exists on the meaning of MFCC and their
relevance on pathology detection.

Within this paper, a new scheme for automatic
voice pathology detection is proposed. This lies
half-way between usual cepstral domain and Mel-
frequency cepstral domain. Namely, it takes profit
from the conceptual interpretation of cepstral process-
ing of speech signals (Deller et al., 1993), the pat-
tern separation capability of cepstral distances (Ra-
biner and Juang, 1993) and the smoother spectrum es-
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timation provided by the filter banks in MFCC calcu-
lation (Rabiner and Juang, 1993). The mathematical
formulation of both cepstrum and MFCC parameters
is revised in section 2, while the newly proposed set
of parameters is introduced in section 3. The results
from the application of these features to the detection
of pathologies on voices belonging to a commercial
database are reported in section 4. Last, the conclu-
sions are presented in section 5.

2 MATHEMATICAL
FORMULATION

2.1 Short-time Fourier Transform

As stated in previous section, the variability of speech
signal is a key feature for pathology detection. The
need for detecting such variability leads to the conve-
nience of employing short-time techniques for speech
processing. For this reason, in the following lines the
mathematical framework for short-time processing of
speech provided in (Deller et al., 1993) is revised.

Let x[n] be a speech signal composed byN sam-
ples (n= 0· · ·N−1) obtained at a sampling frequency
equal tofs; then it can be segmented in frames defined
by:

f [n;m] = x[n] ·w[m−n] (1)

wherew[n] is the framing window:

w[n] = 0 i f n < 0 or n≥ L (2)

andL is the frame length. Consequently,f [n;m] has
non-zero values only forn ∈ [m− L + 1,m]. If con-
secutive speech frames are overlapped a number ofl0
samples, thenm may have the following values:

m= L+ p · (L− l0)−1 (3)

wherep is the frame index and it is an integer such
that:

0≤ p≤
N−L
L− l0

(4)

Considering the relation between the frame shift
m and the frame indexp, frames without time shift
reference may be renamed as:

gp [n] = f [n+m−L+1;m] =

= f [n+ p · (L− l0) ;m] = (5)

= x[n+ p · (L− l0)] ·w[(L−1)−n]

where n = 0· · ·L − 1. From these speech frames,
the short-term Discrete Fourier Transform (stDFT) is
computed as:

Sp(k) =
NDFT−1

∑
n=0

g̃p [n] ·e− j · 2π
NDFT

·kn (6)

whereNDFT is the number of points of the stDFT,k=
0· · ·NDFT −1 and:

g̃p [n] =

{

gp [n] i f 0≤ n < L
0 otherwise

(7)

thus, ifNDFT ≥ L then (6) is equal to:

Sp(k) =
L−1

∑
n=0

gp [n] ·e
− j · 2π

NDFT
·kn (8)

The frequency values that correspond to each stDFT

coefficient are:

fk =







fs · k
NDFT

i f k ≤ NDFT
2

fs ·
k−NDFT

NDFT
i f k >

NDFT
2

(9)

2.2 Short-time Cepstrum

In (Deller et al., 1993), an algorithm for computing
the short-time cepstrum from the stDFT is given, un-
der the assumption thatNDFT >> L:

cp [q] =
1

NDFT
·

NDFT−1

∑
k=0

log|Sp(k)| ·e
j · 2πk

NDFT
·q (10)

A physical interpretation of cepstrum can be de-
rived from the discrete-time model for speech pro-
duction that can also be found in (Deller et al., 1993).
This model may be written in frequency domain as:

S
(

ejΩ
)

= E
(

ejΩ
)

·G
(

ejΩ
)

·H
(

ejΩ
)

(11)

whereS
(

ejΩ) is the speech,E
(

ejΩ) is the impulse
train corresponding to the fundamental frequency and
its harmonics,G

(

ejΩ) is the glottal pulse wave-
form that modulates the impulse train andH

(

ejΩ) is,
herein, the combined effect of vocal tract and lip ra-
diation. These components can be appreciated in fig-
ure 1, which corresponds to the average modulus of
the short-term DFT calculated from one of the voice
records belonging to the database referred in section
4.1.

The quick impulse-like variations in figure 1 cor-
respond to the pitch harmonicsE

(

ejΩ) , and the evo-
lution of the impulse amplitude envelope is related
to the glottal waveformG

(

ejΩ) and the formants in-
duced by the vocal tractH

(

ejΩ). These formants cor-
respond to the three envelope peaks with a decreas-
ing level of energy that are centered at 750 Hz, 1375
Hz and 3000 Hz. In fact, these center frequencies
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Figure 2: Short term cepstrum averaged for all frames of
the same voice record as used for figure 1.

are coherent with the range of typical values given in
(Jackson-Menaldi, 2002).

The logarithm operation in (10) converts the prod-
ucts in (11) into sums. Consequently, it allows the
cepstrum to separate fast from slow signal variations
in frequency domain. This widely known fact is il-
lustrated in figure 2, where the peak around 5.7 ms
clearly identifies the fundamental frequency (175 Hz)
and the values below 2 ms correspond to the spectrum
envelope.

2.3 Short-time MFCC

Once the stDFT of a speech signal is available, an-
other option for further processing, as mentioned in
section 1, is the calculation of short-time MFCC (stM-
FCC) parameters. For stMFCC computation, only the
positive part of the frequency axis is considered (Ra-
biner and Juang, 1993), that is,fk ≥ 0 and, therefore,
k ≤ NDFT/2. In order to calculate stMFCC coeffi-
cients, a transformation is applied to the frequencies
so as to convert them to Mel-frequenciesf m

k (Godino-
Llorente and Gómez-Vilda, 2004):

f m
k = 2595· log10

(

1+
fk

700

)

(12)

and the stDFT is further processed through band-pass
integration alongM equally long Mel-frequency in-
tervals, beingM = ⌊3 · log10 fs⌋ ( ⌊·⌋ means round-
ing to the previous integer). Namely, theith interval
(i = 1· · ·M) in Mel-domain is defined by:

Im
i =

[

Fm ·
i −1

M +1
,Fm ·

i +1
M +1

]

(13)

whereFm is the maximum Mel-frecuency:

Fm = max
k

f m
k = 2595· log10

(

1+
fs/2
700

)

(14)

and the interval length in Mel-domain is given by:

L(Im
i ) =

2
M +1

·Fm (15)

According to previous equations, theNDFT stDFT
coefficients are transformed toM frequency compo-
nents as follows:

˜Sp(i) = ∑
fk∈Ii

(

1−

∣

∣ f m
k −Fm · i

M+1

∣

∣

L(Im
i )/2

)

· |Sp(k)| (16)

Last, the qth (q = 1· · ·Q) stMFCC of the pth

speech frame, whereQ is the desired length of the
Mel-cepstrum, is given by cosine transform of the
logarithm of the smoothed “Mel-spectrum” (Rabiner
and Juang, 1993):

c̃p [q] =
M

∑
i=1

log
∣

∣

∣

˜Sp(i)
∣

∣

∣
·cos

[

q ·

(

i −
1
2

)

·
π
M

]

(17)

3 CEPSTRAL COEFFICIENTS
BASED ON SMOOTHED
SPECTRUM

3.1 Justification

As stated in section 1, while MFCC parameters ex-
hibit both good performance and robustness in feature
extraction from speech, they lack a clear physical in-
terpretation. On the opposite, cepstrum has a physical
meaning (recall section 2.2), yet raw cepstrum coef-
ficients are not as useful for speech parametrisation.
In the next paragraphs, the reasons for these facts are
exposed.

Cepstrum calculation, as formulated in (10), is
based on the spectrum estimate provided by the ab-
solute value of the stDFT. Due to the logarithm,
this gives a result that is proportional to the case of
periodogram-based spectrum estimation. However,
such estimation is very dependent on the specific val-
ues of the original speech frame. A more robust spec-
trum estimate can be obtained by smoothing of the
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periodogram (Blackman and Tukey method, (Proakis
and Manolakis, 1996)). In fact, this is what (16) ex-
presses in the calculation of MFCC. Therefore, filter-
ing of the stDFT may be assumed to be one of the
sources of MFCC robustness.

In contrast, an explanation for the lack of clear
interpretation of MFCC also lies in the meaning of
(16). According to that equation, stDFT smoothing
for MFCC computation is carried out with a variable-
length filter, that is, a Bartlett window whose length
decreases for lower frequency bands. Moreover, the
smoothed stDFT is downsampled to obtain onlyM
samples in the interval[0, fs/2] that are not uniformly
spaced (Rabiner and Juang, 1993). While the down-
sampling is positive in the sense that it reduces the di-
mensionality of the problem, its non-uniformness, to-
gether with the previous variable-length filtering, ob-
scures the interpretation of the output of the cosine
transform in (17).

From the previous reasoning, if stDFT is
smoothed with a fixed-length filter and its output is
uniformly decimated prior to the logarithm compu-
tation, the cepstral coefficients in (10) can be trans-
formed to a more robust parameter set. Moreover, this
is achieved while keeping the physical meaning of
cepstrum, since the output of the first operation gives
an improved spectrum estimate and the second only
limits the length of cepstrum in quefrency domain.

3.2 Formulation

Starting from (8), if the stDFT modulus is smoothed
with a Bartlett window of constant length equal to∆ f
then the following output is obtained:

S′p(i) = ∑
fk∈Ii

(

1−

∣

∣ f m
k − i ·∆ f/2

∣

∣

∆ f/2

)

· |Sp(k)| (18)

where Ii = [∆ f · (i −1)/2,∆ f · (i +1)/2] and the
Bartlett window has been chosen for similarity with
(16). Herein, only the positive part of the frequency
axis has been considered, as in section 2.3.

If the filtered stDFT is decimated so as to keep
only the outputs of consecutive windows with a 50%
overlap, this is equivalent to decimation by a fac-
tor D = ⌊∆ f ·NDFT/(2 · fs)⌋. The modified cepstrum
then becomes:

c′p [q] =
D

NDFT
·

NDFT
2·D

∑
k=0

log
∣

∣S′p(k ·D)
∣

∣ · (19)

· cos

(

(k−1) ·
2πD
NDFT

·q

)

where only the positive frequencies have been con-
sidered, hence computing the inverse DFT as a cosine
transform as in (17).c′p [q] has the twofold advantage
overcp [q] of being based on a smoother spectrum es-
timateS′p(i) and having a period length that has been
reduced by a factorD, thus providing some dimen-
sionality reduction.

3.3 Cepstral Distances

Differences in cepstrum can be used for speech signal
classification. An example of such usage is the defi-
nition of the cepstral distance in (Rabiner and Juang,
1993) as the norm of the vector resulting form sub-
straction of the two cepstra to be compared. This,
if directly applied to pathology detection, would re-
sult in comparing the cepstrum of consecutive speech
frames so as to assess the variability of the signal.
Mathematically:

d2
p =

NDFT
D −1

∑
q=0

∣

∣c′p+1 [q]−c′p [q]
∣

∣

2
(20)

However, bearing in mind the physical interpreta-
tion of cepstrum, this definition has the drawback of
mixing pitch variations with formant and glottal pulse
variations. To overcome this problem an individual
frame-to-frame cepstral parameter variation analysis
is proposed:

dp [q] =
∣

∣c′p+1 [q]−c′p [q]
∣

∣ (21)

This way, analysis of the distribution ofdp [q] re-
lated to speech formant and glottal pulse variability
(low values ofq) can be isolated from pitch changes
associated to values ofq around the pitch period.

4 APPLICATION AND RESULTS

For the purpose of performance analysis, the modi-
fied cepstral parameters presented in previous section
have been applied to the problem of automatic pathol-
ogy detection on recorded voice. The results have
been compared to those produced by MFCC. Within
this section, first the voice database is presented, sec-
ond the used parameter set is specified, third the clas-
sifier is described and, last, the results are shown and
commented.

4.1 Database

The voice records used in this investigation are the
same as in (Godino-Llorente et al., 2006a). They be-
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long to a database distributed by the company Kay El-
emetrics (Kay Elemetrics Corp., 1994). The recorded
sounds correspond to sustained phonations (1-3 s
long) of the vowel /ah/ from patients with either nor-
mal or disordered voice. Such voice disorders belong
to a wide variety of organic, neurological, traumatic
and psychogenic classes. Sampling rate of speech
records has been made uniform for all of them and
equal to 25 kHz, while the coding has a resolution
of 16 bits. The subset taken from the database con-
tains 53 normal and 173 pathological speakers which
are uniformly distributed in age and gender (Godino-
Llorente et al., 2006a).

4.2 Parameter Sets

For each speech record, cepstrum-based coefficients,
as defined in (19), have been calculated. Namely, a
filter length∆ f = 200Hzhas been chosen for sfDFT
smoothing. As a consequence, a cepstrum length
of ( fs−∆ f/2)/(∆ f/2) = 124 samples results. The
choice of∆ f is consistent to the approximate length
of the low-band filters used for MFCC calculation (re-
call (16)). At first sight, however, it has the draw-
back of loosing pitch information of the signal spec-
trum. This is illustrated in figure 1 where the filtered
DFT has been plotted with a dashed line. Neverthe-
less, such filtered spectrum contains information on
both harmonic-to-noise ratio (HNR) and glottal pulse
waveform (Murphy and Akande, 2005) and HNR is
a useful parameter for pathology detection that is
closely related to both frequency and amplitude per-
turbations of pitch (Jackson-Menaldi, 2002).

Since cepstrum contains information on total sig-
nal energy and its distribution among formants, the
whole sequence is used as part of the parameter set.
As well as the cepstrum, information on its variability
is used as an input for the pathology detector. More
specifically, the mean and variance ofdp [q] for each
value ofq are used as descriptors of the cepstrum vari-
ability. Therefore, on the whole, a parameter vector of
124×3 elements is produced.

For the sake of comparison, another classifier
based on a parameter vector consisting ofM =
⌊3 · log10 fs⌋ = 13 MFCC coeficients averaged for all
signal frames has also been tested.

4.3 Classifier Description

For both classification schemes, a Multilayer Percep-
tron (MLP) with two hidden layers, each consisting of
4 neurons, and a single-neuron output layer has been
used as a classifier. All neurons have logistic activa-
tion functions. An MLP with a single hidden layer
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Figure 3: DET plot for MFCC based and modified cepstrum
based classifiers.

having 50 neurons was utilised in (Godino-Llorente
and Gómez-Vilda, 2004). The structure herein pro-
posed, in contrast, has less free parameters, thus al-
lowing a faster learning, and the reduced number of
neurons is compensanted by the introduction of an
additional hidden layer that permits learning of more
complex relations (Haykin, 1994).

4.4 Results

The MLP classifier has been trained with 70% of
available speech records in such a way that its out-
put is expected to be “1” for pathological voices and
“0” for normal voices. The remaining 30% of records
have been used for testing. The experiment has been
repeated 20 times, each of them with different, ran-
domly chosen, training sets. The average results for
both MFCC and herein presented cepstrum-based pa-
rameters are drawn in the DET plot (Martin et al.,
1997) of figure 3.

Plotted results indicate that the performance of the
classifier based on the newly proposed set of param-
eters is in the same order of magnitude than that of
MFCC parameters. To be specific, in terms of equal
error rate (EER), that is, for false alarm rate equal
to miss rate, the MFCC-based classification yields
an experimental error probability of 15% while the
cepstrum-based classification error probability for the
same conditions is 14%. Considering that within this
experiment the task of fine-tuning the classifier has
not been carried out and that the MLP has been cho-
sen as a standard for comparison, the difference in the
results is not significant.

In order to acquire a deeper understanding of the
reasons for these results, an analysis of the relevance
of cepstrum-based parameters for speech classifica-
tion as either pathological or not has been realised.
Such analysis is based on the evaluation of the Fisher
criterion (Duda et al., 2001) for each individual pa-
rameter. The results, differentiated for the three sub-
sets of parameters (modified cepstrum, variance of
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Figure 4: Value of Fisher criterion for each cepstral param-
eter.

differences and average of absolute differences) are
plotted in figure 4.

According to this plot, the most relevant cepstral
parameters for pathology detection maybe roughly
classified into two groups:

• The modified cepstrum values with lowest indices
(plot at the bottom of figure 4): these are related
to the slowest components of the spectrum enve-
lope in figure 1, which, on their side, are asso-
ciated to spectral noise levels and HNR (Murphy
and Akande, 2005).

• The frame-to-frame variations in cepstrum-based
coefficients whose quefrecies are within the inter-
val [0.5,1.5] miliseconds approximately: coeffi-
cients within that interval correspond to the short
frequency range components of the spectrum en-
velope. These components, as justified in section
2.2, are related to glottal waveform and speech
formants. However, this information itself does
not help to discriminate the presence of pathology,
as indicated by the low values of the Fisher crite-
rion in the bottom plot of figure 4. Instead, frame-
to-frame variations of these factors are much more
relevant, as depicted in the other two plots of the
same figure.

To be more specific, since the voice records of the
database used for this experiment correspond to sus-
tained vowel phonations, it can be assumed that the
vocal tract has very little variations, hence formants
do not change and the second group of parameters
should be more closely related to changes in the glot-
tal waveform. As for the limits of the quefrency in-
terval in which parameters from the second group are
relevant, the lower limit of 0.5 ms corresponds to the
quefrency band that separates slow components of the
spectrum envelope (first group of parameters) from
faster components (associated to the second set); on
the other hand, the upper limit of 1.5 ms corresponds
to the highest quefrency range at which the modified
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Figure 5: 124 modified cepstral parameters from one of the
database’s voice records.

cepstrumc′p [q] has significant values. This is shown
in figure 5, where a plot of the frame-averaged modi-
fied cepstrum of one voice record is depicted.

5 CONCLUSIONS

Speech parametrisation in cepstral domain is a useful
technique for automatic pathology detection. Specifi-
cally, MFCC have been successfully used for this pur-
pose. While the computation of these parameters has
an intrinsic robustness due to its independency from
pitch extraction and the spectrum filtering, their phys-
ical interpretation is obscure because of the non-linear
Mel-frequency transformation.

Within this paper an alternative set of cepstrum-
based parameters has been proposed. Such param-
eters share the robustness of MFCC since they do
not require pitch estimation and filtering of the es-
timated speech spectrum is also performed. In con-
trast to MFCC, the calculation of these newly pro-
posed parameters does not involve any non-linear fre-
quency transformation and, consequently, their phys-
ical interpretation remains clear. Namely, their val-
ues have been shown to be related to the amount of
noise energy present in speech and the glottal wave-
form variability. Both factors are directly associated
to laringeal pathologies.

Finally, the performance of the proposed cepstral
parameters for pathology detection has been tested
using a MLP classifier and results have been com-
pared to those of MFCC. The obtained misclassifica-
tion rates indicate that the performances of both sets
of parameters are similar. Moreover, a deeper analy-
sis on the individual impact of each parameter on the
classification task has revealed that the most relevant
parameters are those more closely linked to the above-
mentioned two factors: noise energy and glottal wave
variations.
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Abstract: Extraction of the mid-sagittal plane (MSP) is an important step for brain image registration and asymmetry
analysis. We present a fast MSP extraction method for 3D MR images, which is based on automatic segmen-
tation of the brain and on heuristic maximization of cerebro-spinal fluid within the MSP. The method is shown
to be robust to severe anatomical asymmetries between the hemispheres, caused by surgical procedures and
lesions. The experiments used 64 MR images (36 pathological, 20 healthy, 8 synthetic) and the method found
an acceptable approximation of the MSP in all images with a mean time of 60.0 seconds per image.

1 INTRODUCTION

The human brain is not perfectly symmetric (David-
son and Hugdahl, 1996; Crow, 1993; Geschwind
and Levitsky, 1968). However, for the purpose
of analysis, it is paramount to define and distin-
guish astandard of asymmetry, considered as normal
for any given measurement, from abnormal asym-
metry, which may be related to neurological dis-
eases, cerebral malformations, surgical procedures
or trauma. Several works sustain this claim. For
example, accentuated asymmetries between left and
right hippocampi have been found in patients with
Schizophrenia (Wang et al., 2001; Csernansky et al.,
1998; Styner and Gerig, 2000; Mackay et al., 2003;
Highley et al., 2003; Barrick et al., 2005), Epilepsy
(Hogan et al., 2000; Wu et al., 2005) and Alzheimer
Disease (Csernansky et al., 2000; Liu et al., 2007).

The brain can be divided in two hemispheres, and
the structures of one side should have their counter-
part in the other side with similar shapes and approxi-
mate locations (Davidson and Hugdahl, 1996). These
hemispheres have their boundaries limited by the lon-
gitudinal (median) fissure, being the corpus callosum
their only interconnection.

The ideal separation surface between the hemis-
feres is not perfectly planar, but the mid-sagittal plane
(MSP) can be used as a reference for asymmetry anal-
ysis, without significant loss in the relative compar-
ison between normal and abnormal subjects. The
MSP location is also important for image registration.
Some works have used this operation as a first step for

intra-subject registration, as it reduces the number of
degrees of freedom (Ardekani et al., 1997; Kapouleas
et al., 1991), and to bring different images into a same
coordinate system (Liu et al., 2001), such as in the Ta-
lairach (Talairach and Tournoux, 1988) model.

However, there is no exact definition of the MSP
and its determination by manual delineation is sen-
sitive to different experts. Given that, a reasonable
approach for evaluation seems to be visual inspection
with error quantification, when we increase the asym-
metry artificially and/or linearly transform the image.

The longitudinal fissure forms a gap between the
hemispheres filled with cerebro-spinal fluid (CSF).
We define the MSP as a large intersection between
a plane and anenvelope of the brain (a binary vol-
ume whose surface approximates the convex hull of
the brain) that maximizes the amount of CSF. This
definition leads to an automatic, robust and fast algo-
rithm for MSP extraction.

The paper is organized as follows. In Section 2,
we review existing works on automatic location of the
mid-sagittal plane. In section 3, we present the pro-
posed method. In section 4, we show experimental
results and validation with simulated and real MR-T1
images. Section 5 states our conclusions.

2 RELATED WORKS

MSP extraction methods can be divided in two
groups: (i) methods that define the MSP as a
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plane that maximizes a symmetry measure, extracted
from both sides of the image (Junck et al., 1990;
Minoshima et al., 1992; Sun and Sherrah, 1997;
Ardekani et al., 1997; Smith and Jenkinson, 1999; Liu
et al., 2001; Prima et al., 2002; Tuzikov et al., 2003;
Teverovskiy and Liu, 2006), and (ii) methods that de-
tect the longitudinal fissure to estimate the location of
the MSP (Brummer, 1991; Guillemaud et al., 1996;
Hu and Nowinski, 2003; Volkau et al., 2006). Table
1 summarizes these works, and extensive reviews can
be found in (Hu and Nowinski, 2003), (Volkau et al.,
2006), (Prima et al., 2002) and (Liu et al., 2001).

Methods in the first group address the problem by
exploiting the hough symmetry of the brain. Basi-
cally, they consist in defining a symmetry measure
and searching for the plane that maximizes this score.
Methods in the second group find the MSP by detect-
ing the longitudinal fissure. Even though the longitu-
dinal fissure is not visible in some modalities, such
as PET and SPECT, it clearly appears in MR im-
ages. Particularly, we prefer these methods because
patients may have very asymmetric brains and we be-
lieve this would affect the symmetry measure and,
consequently, the MSP detection.

The aforementioned approaches based on longitu-
dinal fissure detection present some limitations that
we are circumventing in the proposed method. In
(Guillemaud et al., 1996), the MSP is found by using
snakes and orthogonal regression for a set of points
manually placed on each slice along the longitudi-
nal fissure, thus requiring human intervention. Other
method (Brummer, 1991) uses the Hough Trans-
form to automatically detect straight lines on each
slice (Brummer, 1991), but it does not perform well
on pathological images. The method in (Hu and
Nowinski, 2003) assumes local symmetry near the
plane, which is not verified in many cases (see Fig-
ures 2, 5 and 8). Volkau et al. (Volkau et al., 2006)
propose a method based on the Kullback and Leibler’s
measure for intensity histograms in consecutive can-
didate planes (image slices). The method presents ex-
cellent results under a few limitations related to ro-
tation, search region of the plane, and pathological
images.

3 METHODS

Our method is based on detection of the longitudinal
fissure, which is clearly visible in MR images. Un-
like some previous works, our approach is fully 3D,
automatic, and applicable to images of patients with
severe asymmetries.

We assume that the mid-sagittal plane is a plane

that contains a maximal area of cerebro-spinal fluid
(CSF), excluding ventricles and lesions. In MR T1
images, CSF appears as low intensity pixels, so the
task is reduced to the search of a sagittal plane that
minimizes the mean voxel intensity within a mask that
disregards voxels from large CSF structures and vox-
els outside the brain.

The method is divided in two stages. First, we
automatically segment the brain and morphologically
remove thick CSF structures from it, obtaining a brain
mask. The second stage is the location of the plane it-
self, searching for a plane that minimizes the mean
voxel intensity within its intersection with the brain
mask. Our method uses some morphological opera-
tions whose structuring elements are defined based on
the image resolution. To keep the method description
independent of image resolution, we use the notation
Sr to denote a spherical structuring element of radius
r mm.

3.1 Segmentation Stage

We use the tree pruning approach to segment the
brain. Tree pruning (Falcão et al., 2004a; Miranda
et al., 2006) is a segmentation method based on the
Image Foresting Transform (Falcão et al., 2004b),
which is a general tool for the design of fast im-
age processing operators based on connectivity. In
tree pruning, we interpret the image as a graph, and
compute an optimum path forest from a set of seed
voxels inside the object. A gradient-like image with
high pixel intensities along object borders must be
computed to provide the edge weights of the implicit
graph. A combinatorial property of the forest is ex-
ploited to prune tree paths at the object’s border, lim-
iting the forest to the object being segmented.

To segment the brain (white matter (WM), gray
matter (GM) and ventricles), we compute a suitable
gradient image, a set of seed voxels inside the brain
and apply the tree pruning algorithm. A more detailed
description of this procedure is given in (Bergo et al.,
2007). Note that any other brain segmentation method
could be used for this purpose.

Gradient Computation. MR-T1 images of the
brain contain two large clusters: the first with air,
bone and CSF (lower intensities), and the second,
with higher intensities, consists of GM, WM, skin, fat
and muscles. Otsu’s optimal threshold (Otsu, 1979)
can separate these clusters (Figs. 1a and 1b), such
that the GM/CSF border becomes part of the border
between them. To enhance the GM/CSF border, we
multiply each voxel intensityI(p) by a weightw(p)
as follows:
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Table 1: Summary of existing MSP methods.

Method Based on 2D/3D Application Measure
(Brummer, 1991) fissure 2D MR Edge Hough Transform
(Guillemaud et al., 1996) fissure 2D MR Active contours
(Hu and Nowinski, 2003) fissure 2D MR, CT Local symmetry of fissure
(Volkau et al., 2006) fissure 3D MR, CT Kullback-Leibler’s measure
(Junck et al., 1990) symmetry 2D PET, SPECT Intensity cross correlation
(Minoshima et al., 1992) symmetry 3D PET Stochastic sign change
(Ardekani et al., 1997) symmetry 3D MR, PET Intensity cross correlation
(Sun and Sherrah, 1997) symmetry 3D MR, CT Extended Gaussianimage
(Smith and Jenkinson, 1999) symmetry 3D MR, CT, PET, SPECT Ratio of intensity profiles
(Liu et al., 2001) symmetry 2D MR, CT Edge cross correlation
(Prima et al., 2002) symmetry 3D MR, CT, PET, SPECT Intensitycross correlation
(Tuzikov et al., 2003) symmetry 3D MR, CT, SPECT Intensity cross correlation
(Teverovskiy and Liu, 2006) symmetry 3D MR Edge cross correlation

w(p) =























0 I(p) ≤ m1

2
(

I(p)−m1
m2−m1

)2
m1 < I(p) ≤ τ

1−2
(

I(p)−m2
m2−m1

)2
τ < I(p) ≤ m2

2 I(p) > m2

(1)

whereτ is the Otsu’s threshold, andm1 andm2 are the
mean intensities of each cluster. We compute a 3D
gradient at each voxel as the sum of its projections
along 26 directions around the voxel, and then use its
magnitude for tree pruning (Figure 1c).

Seed Selection. The brighter cluster contains many
voxels outside the brain (Figure 1b). To obtain a set of
seeds inside the brain, we apply a morphological ero-
sion byS5 on the binary image of the brighter clus-
ter. This operation disconnects the brain from adja-
cent structures. We then select the largest connected
component as the seed set (Figure 1d).

Morphological Closing. The brain object obtained
by tree pruning (Figure 1e) might not include the en-
tire longitudinal fissure, especially when the fissure is
too thick. To ensure its inclusion, we apply a mor-
phological closing byS20 to the binary brain image
(Figure 1f).

Thick CSF Structure Removal. The last step of
this phase is the removal of thick CSF structures (such
as the ventricles, lesions and post-surgery cavities)
from the brain object, to avoid the MSP from snap-
ping to a dark structure other than the longitudinal
fissure. We achieve this with a sequence of mor-
phological operations: we start from a binary image
obtained by thresholding at Otsu’s optimal threshold
(Figure 1b). We apply a morphological opening by

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Sample slice of the intermediary steps in stage
1: (a) original coronal MR slice; (b) binary cluster mask
obtained by thresholding; (c) gradient-like image used for
tree pruning; (d) seed set used for tree pruning (white); (e)
border of the brain object obtained by tree pruning (white);
(f) border of the brain object after morphological closing;
(g) CSF mask after opening; (h) CSF mask after dilation;
(h) brain mask (intersection of (f) and (h)).

S5 to connect the thick (> 5 mm) CSF structures
(Figure 1g), and then dilate the result byS2 to include
a thin (2mm) wall of the CSF structures (Figure 1h).
This dilation ensures the reinclusion of the longitudi-
nal fissure, in case it is removed by the opening. The
binary intersection of this image with the brain ob-
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ject is then used as brain mask (Figure 1i) by the next
stage of our method. Only voxels within this mask are
considered by stage 2. Figures 2a and 2b show how
the computed brain mask excludes the large cavity in
a post-surgery image, and figures 2c and 2d show how
the mask excludes most of the ventricles in patients
with large ventricles.

3.2 Plane Location Stage

To obtain the CSF score of a plane, we compute the
mean voxel intensity in the intersection between the
plane and the brain mask (Figures 3a and 3b). The
lower the score, the more likely the plane is to contain
more CSF than white matter and gray matter. The
plane with a sufficiently large brain mask intersection
and minimal score is the most likely to be the mid-
sagittal plane.

To find a starting candidate plane, we compute the
score of all sagittal planes in 1mm intervals (which
leads to 140–180 planes in usual MR datasets), and
select the plane with minimum score. Planes with in-
tersection area lower than 10 000mm2 are not consid-
ered to avoid selecting planes tangent to the surface
of the brain. Planes with small intersection areas may
lead to low scores due to alignment with sulci and also
due to partial volume effect between gray matter and
CSF (Figures 3c and 3d).

(a) (b)

(c) (d)

Figure 2: Examples of thick CSF structure removal: (a)
coronal MR slice of a patient with post-surgical cavity; (b)
brain mask of (a); (c) axial MR slice of a patient with large
ventricles; (d) brain mask of (c).

Once the best candidate plane is found, we com-
pute the CSF score for small transformations of the
plane by a set of rotations and translations. If none

of the transformations lead to a plane with lower CSF
score, the current plane is the mid-sagittal plane and
the algorithm stops. Otherwise, the transformed plane
with lower CSF score is considered the current candi-
date, and the algorithm is repeated. The algorithm
is finite, since each iteration reduces the CSF score,
and the CSF score is limited by the voxel intensity
domain.

We use a set of 42 candidate transforms at each
iteration: translations on both directions of the X, Y
and Z axes by 10mm, 5 mm and 1mm (18 transla-
tions) and rotations on both directions around the X,
Y and Z axes by 10o, 5o, 1o and 0.5o (24 rotations).
All rotations are about the central point of the initial
candidate plane. There is no point in attempting ro-
tations by less than 0.5o, as this is close to the limit
where planes fall over the same voxels for typical MR
datasets, as discussed in Section 4.1.

(a) (b)

(c) (d)

Figure 3: Plane intersection: (a–b) sample plane, brain
mask and their intersection (white outline). (c–d) exam-
ple of a plane tangent to the brain’s surface and its small
intersection area with the brain mask (delineated in white),
overlaid on the original MR image.

4 EVALUATION AND
DISCUSSION

4.1 Error Measurement

The discretization ofR3 makes planes that differ by
small angles to fall over the same voxels. Consider
two planesA and B that differ by an angleΘ (Fig-
ure 4). The minimum angle that makesA andB differ
by at least 1 voxel at a distancer from the rotation
center is given by Equation 2.

FAST AND ROBUST MID-SAGITTAL PLANE LOCATION IN 3D MR IMAGES OF THE BRAIN

95



Θ = arctan

(

1
r

)

(2)

An MR dataset with 1mm3 voxels has a typi-
cal maximum dimension of 256mm. For rotations
about the center of the volume, the minimum angle
that makes planesA andB differ by at least one voxel
within the volume (pointpi in Figure 4) is approxi-
mately arctan

(

1
128

)

= 0.45o. For most MSP applica-
tions, we are only concerned about plane differences
within the brain. The largest length within the brain is
usually longitudinal, reaching up to 200 mm in adult
brains. The minimum angle that makes planesA and
B differ by at least one voxel within the brain (point
pb in Figure 4) is approximately arctan

(

1
100

)

= 0.57o.

Figure 4: Error measurement in discrete space: points and
angles.

Therefore, we can consider errors around 1o ex-
cellent and equivalent results.

4.2 Experiments

We evaluated the method on 64 MR datasets di-
vided in 3 groups: A control group with 20 datasets
from subjects with no anomalies, a surgery group
with 36 datasets from patients with significant struc-
tural variations due to brain surgery, and a phantom
group with 8 synthetic datasets with varying levels
of noise and inomogeneity, taken from the BrainWeb
project (Collins et al., 1998).

All datasets in the control group and most datasets
in the surgery group were acquired with a voxel size
of 0.98× 0.98× 1.00 mm3. Some images in the
surgery group were acquired with a voxel size of
0.98×0.98×1.50mm3. The images in the phantom
group were generated with an isotropic voxel size of
1.00 mm3. All volumes in the control and surgery
groups were interpolated to an isotropic voxel size of
0.98mm3 before applying the method.

For each of the 64 datasets, we generated 10 vari-
ations (tilted datasets) by applying 10 random trans-
forms composed of translations and rotations of up to
12 mm and 12o in all axes. The method was applied
to the 704 datasets (64 untilted, 640 tilted), and visual
inspection showed that the method correctly found ac-
ceptable approximations of the MSP in all of them.
Figure 5 shows sample slices of some datasets and
the computed MSPs.

For each tilted dataset, we applied the inverse
transform to the computed mid-sagittal plane to
project it on its respective untilted dataset space.
Thus, for each untilted dataset we obtained 11 planes
which should be similar. We measured the angle be-
tween all

(11
2

)

= 55 distinct plane pairs. Table 2 shows
the mean and standard deviation (σ) of these angles
within each group. The low mean angles (column
3) and low standard deviations (column 4) show that
the method is robust with regard to linear transfor-
mations of the input. The similar values obtained
for the 3 groups indicate that the method performs
equally well on healthy, pathological and synthetic
data. The majority (94.9%) of the angles were less
than 3o, as shown in the histogram of Figure 6. Of
64×55= 3520 computed angles, only 5 (0.1%) were
above 6o. The maximum measured angle was 6.9o.
Even in this case (Figure 7), both planes are accept-
able in visual inspection, and the large angle between
different two computations of the MSP can be related
to the non-planarity of the fissure, which allows dif-
ferent planes to match with similar optimal scores.
The lower mean angle in the phantom group (column
3, line 3 of Table 2) can be related to the absence
of curved fissures in the synthetic datasets. Figure 8
shows some examples of non-planar fissures.

Table 2: Angles between computed MSPs.

Group Datasets Angles
Mean σ

Control 20 1.33o 0.85o

Surgery 36 1.32o 1.03o

Phantom 8 0.85o 0.69o

Overall 64 1.26o 0.95o

All experiments were performed on a 2.0 GHz
Athlon64 PC running Linux. The method took from
41 to 78 seconds to compute the MSP on each MR
dataset (mean: 60.0 seconds). Most of the time was
consumed computing the brain mask (stage 1). Stage
1 required from 39 to 69 seconds per dataset (mean:
54.8 seconds), while stage 2 required from 1.4 to 20
seconds (mean: 5.3 seconds). The number of itera-
tions in stage 2 ranged from 0 to 30 (mean: 7.16 iter-
ations).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Examples of planes computed by the method: (a–d): sample slices from a control dataset; (e–f) sample slices from
a surgery dataset; (g–h) sample slices from another surgerydataset; (i–j): sample slices from a phantom dataset; (k–l): sample
slices from a tilted dataset obtained from the one in (i–j).

Figure 6: Distribution of the angles between computed mid-
sagittal planes.

5 CONCLUSIONS AND FUTURE
WORK

We presented a fast and robust method for extrac-
tion of the mid-sagittal plane from MR images of the
brain. It is based on automatic segmentation of the
brain and on a heuristic search based on maximization
of CSF within the MSP. We evaluated the method on

(a) (b)

Figure 7: A coronal slice (a) and an axial slice (b) from
the case with maximum angular error (6.9o), with planes
in white: The fissure was thick at the top of the head, and
curved in the longitudinal direction, allowing the MSP to
snap either to the frontal or posterior segments of the fissure,
with some degree of freedom.

64 MR datasets, including images from patients with
large surgical cavities (Figure 2a and Figures 5e–h).
The method succeeded on all datasets and performed
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(a) (b) (c)

(d) (e) (f)

Figure 8: Non-planar fissures: (a) irregular fissure, (b) ex-
pert fissure delineation of (a) and (c) MSP computed by our
method. (d) Curved fissure, (e) expert fissure delineation of
(d) and (f) MSP computed by our method.

equally well on healthy and pathological cases. Ro-
tations and translations of the datasets led to mean
MSP variations around 1o, which is not a significant
error considering the discrete space of MR datasets.
MSP variations over 3o occurred only in cases where
the longitudinal fissure was not planar, and multiple
planes fitted different segments of the fissure with
similar scores. The method required a mean time of
60 seconds to extract the MSP from each MR dataset
on a common PC.

Previous fissure-based works were either evalu-
ated on images of healthy patients, on images with
small lesions (Volkau et al., 2006), or relied on local
symmetry measurements (Hu and Nowinski, 2003).
As future work, we intend to implement some of
the previous works and compare their accuracy and
performance with our method on the same datasets.
Brain mask computation is responsible for most of
the computing time. We also plan to evaluate how the
computation of the brain mask on lower resolutions
affect the accuracy and efficiency of the method.
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Abstract: Our society demands ubiquitous mobile devices that offer seamless interaction with everybody, everything, 
everywhere, at any given time. However, the effectiveness of these devices is limited due to their lack of 
situational awareness and sense for the users’ needs. To overcome this problem we develop intelligent 
transparent human-centered systems that sense, analyze, and interpret the user’s needs. We implemented 
learning approaches that derive the current task demand from the user’s brain activity by measuring the 
electroencephalogram.  Using Support Vector Machines we can discriminate high versus low task demand 
with an accuracy of 92.2% in session dependent experiments, 87.1% in session independent experiments, 
and 80.0% in subject independent experiments. To make brain activity measurements less cumbersome, we 
built a comfortable headband with which we achieve 69% classification accuracy on the same task.  

1 INTRODUCTION 

Our modern information society increasingly 
demands ubiquitous mobile computing systems that 
offer its users seamless interaction with everybody, 
everything, everywhere, at any time. Although the 
number and accessibility of mobile devices such as 
laptop computers, cell phones, and personal digital 
assistants grows rapidly, the effectiveness in 
supporting the users to fulfilling their tasks proves to 
be much smaller than expected. This mainly results 
from the fact that such devices lack situational 
awareness and sense for the users’ needs. As a 
consequence users waste their time with manually 
configuring inflexible devices rather than obtaining 
relevant information and efficient automatic support 
to solve their problems and tasks at hand.   

It is our believe that the solution lies in intelligent 
transparent human-centered systems that sense, 
analyze, and interpret the needs of their users, then 
adapt themselves accordingly, provide the optimal 
support to given problems, and finally present the 
relevant results in an appropriate way. The goal of 
the work presented here is to solve the analytical 
part of human-centered systems, i.e. sensing, 
analyzing, and interpreting the users’ needs. 

For this purpose we develop learning approaches 
that derive the users’ condition from their brain 
activity. We are interested in conditions that are 

important in the context of human-computer 
interaction and human-human communication. In 
this particular study we focus on the (mental) task 
demand as a user condition in the context of lecture 
presentations and meetings.   
The term task demand defines the amount of mental 
resources required to execute a current activity. 
Although we are using the general term task de-
mand, we are exclusively concerned about the men-
tal not the physical task demand. Task demand infor-
mation can be helpful in various situations, e.g. 
while driving a car, operating machines, or perform-
ing other critical tasks. Depending on the level of 
demand and cognitive load, any distraction arising 
from electronic devices such as text messages, in-
coming phone calls, traffic or navigation informa-
tion, etc. should be suppressed or delayed. Also, the 
analysis of task demand during computer interaction 
allows to asses usability. In a lecture scenario, a 
speaker may use task demand information to tailor 
the presentation toward the audience.  
 
In this paper we investigate the potential of detecting 
task demand by measuring the brain activity using 
scalp electrodes. Although we focus on the system 
evaluation in the lecture and meeting scenario, the 
described methods are applicable to any other real-
life situation. To make electrode-based recordings 
acceptable, the following issues must be addressed: 
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• Robustness: The system needs to be robust against 
artefacts introduced by speech or body movement 

• Usability: EEG sensors and recording device need 
to be user friendly and comfortable to wear 

• Applicability: Measuring brain activity must be 
feasible in realistic scenarios in real-time. 

In this work we are addressing these three goals by 
relaxing the inconveniences of clinical brain activity 
recording and make it applicable to real human-
computer interaction and human-human communi-
cation scenarios. 

2 ELECTROENCEPHALOGRAM 

The source of the Electroencephalogram (EEG) is 
neural activity in the cortex, the outmost part of the 
human brain. This neural activity causes electrical 
potential differences, which can be measured using 
scalp electrodes. Information between neurons is 
transferred via the synapses where chemical 
reactions take place causing ion movements. These 
movements result in excitatory or inhibitory 
electrical potentials in the post-synaptic neurons. 
The electrical fields emerging from the ion 
movements are called cortical field potentials and 
have a dipole structure. If the electrical activity of a 
huge number of neurons is synchronized, the 
corresponding dipoles point all in the same 
direction. Their sum becomes large enough such that 
potential differences between particular scalp 
positions and a constant reference point can be 
measured. EEG characteristics like frequency, 
amplitude, temporal and topographic relations of 
certain patterns can then be used to make inferences 
about underlying neural activities (Zschocke, 1995).  

In the EEG which can be measured at the scalp, 
amplitudes between 1μV and 100μV and fre-
quencies between 0Hz and 80Hz can be observed. 
These EEG signals show specific characteristics at 
different scalp positions, depending on the current 
mental condition. When the human brain is not 
absorbed by external sensory stimuli or other mental 
processes, we usually observe the α-activity across 
the cortex, i.e. rhythmic signals between 8Hz and 
13Hz with large amplitudes. When performing 
higher mental processes the α-activity is attenuated 
and other activity patterns occur in those cortex 
regions, where the processes happen. In many cases 
these patterns are identified by γ-activity, which 
typically show frequencies around 40Hz and have a 
lower amplitude than α-activity (Schmidt and 
Thews, 1997). In this work we assume that the de-
gree of α-activity attenuation and activity at higher 
frequencies is correlated with task demand. This is 

justified by the fact that the amplitude of non-α-
activity is correlated with the degree of vigilance, a 
physiological continuum between sleepiness and 
active alertness (Zschocke, 1995). Furthermore, it is 
known that people are more alert when the task 
demand is high. The frequency analysis of our 
recorded data confirms this assumption. During most 
activity types several cortex regions are involved 
and task demand is characterized by the amplitude 
of non-α-activity in all regions involved in the 
current task. This suggests that the activity of the 
whole cortex must be taken into account to achieve 
optimal results for task demand estimation. 

3 TASK DEMAND & VIGILANCE 

A large body of research work concerns the 
computational analysis of brain activity, applying 
EEG, functional magnetic resonance imaging, and 
functional near infrared spectroscopy to areas such 
as estimation of mental task demand. Several groups 
reported research on the computational assessment 
of task demand based on EEG data recorded while 
varying the task difficulty (Smith, 2001), (Pleydell-
Pearce, 2003), (Berka, 2004). These studies focused 
on the design of intelligent user interfaces that 
optimize operator performance by adjusting to the 
predicted task demand level. Regression models 
were trained to predict task demand from the 
recorded EEG data. These models used the task 
difficulty or the rate of errors as references during 
task execution. The features extracted from the EEG 
data represented mostly the frequency content of the 
signals. Positive correlations between predictions 
and references or predictions and self-estimates of 
task demand (Smith, 2001) are reported throughout 
these studies. Pleydell-Pearce (2003) achieved a 
classification accuracy of 72% for the discrimination 
of low versus high task demand in subject and 
session dependent experiments and 71% in subject 
independent experiments. Task demand assessment 
has also been done on data from other modalities, 
including muscular activity (Pleydell-Pearce, 2003), 
blood hemodynamics (Izzetoglu, 2004), and pupil 
diameter (Iqbal, 2004). Reasonable results could be 
achieved with all three modalities. However, 
correlations between pupil diameter and task 
demand could only be shown for one interactive task 
out of a group of various cognitive tasks. 

Other work focused on the EEG-based estima-
tion of operator’s vigilance during sustained atten-
tion tasks (e.g. car driving or operating a power 
plant). Jung (1997) asked subjects to respond to 
auditory stimuli which simulate sonar target 
detection, while EEG was recorded from five 
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electrodes over the parietal, central and occipital 
cortex. The error rate in terms of failures to respond 
to stimuli was then used as reference for a Multi-
Layer ANN which was trained with a frequency 
representation of the EEG signals to predict a 
vigilance index between 0 and 1. On unknown data a 
root mean square error (RMS-error) of 0.156 
between predictions and references is reported for a 
subject dependent experimental setup. Duta et al. 
(Duta, 2004) recorded EEG from the mastoids while 
subjects had to perform visual attention tasks. 
Vigilance was labelled by experts who visually 
inspected the recorded data. Three vigilance 
categories “alertness”, “intermediate” and “drowsi-
ness” were distinguished. Using the coefficients of 
an AR model as features for Multi-Layer ANNs 
39% to 62% predictions matched the references in 
subject independent experiments. 

4 DATA & METHODS 

4.1 Data Capturing 

Two different devices were used for data 
acquisition: an EEG-cap from ElectroCap™ and a 
self-made EEG-headband (see Figure 1). The majo-
rity of data were recorded with the ElectroCap™ 
using 16 electrodes placed at positions fp1, fp2, f3, 
f4, f7, f8, fz, t3, t4, t5, t6, p3, p4, pz, o1, and o2 ac-
cording to the international 10-20 system (Jasper, 
1958). Reference electrodes were attached to the ear 
lobes and linked together before amplification. 
Although we are aware of the relationship between 
facial expressions and level of task demand, we 
decided to exclude the motor cortex from our mea-
surement for two reasons: firstly, the facial muscular 
activity is partly captured by the frontal EEG 
electrodes, and secondly we assume that motor 
activity is of rather minor importance for the 
assessment of our classification task.  

Some data were recorded with a headband, in 
which we sewed in four electrodes at the forehead 
positions fp1, fp2, f7, and f8. Reference electrodes 
were attached to the mastoids and linked together 
before amplification, the ground electrode was 
placed at the back of the neck. The headband has 
three major advantages over the ElectroCap™ which 
are crucial to real-life applications: the headband is 
(1) more comfortable to wear, (2) much easier to 
attach, and (3) better to maintain and clean, also no 
electrode gel gets in contact with the subject’s hair. 
The drawback is the limited positioning and number 
of electrodes compared to the ElectroCap™.  

 

Figure 1: Headband, build-in electrodes at fp1, fp2, f7, f8. 

In contrast to recordings for clinical purposes, 
subjects were allowed to move freely during the 
recordings to keep the situation as natural as 
possible, i.e. the subject's head was not fixated. 
Consequently we had to deal with data artefacts 
introduced by muscular activity (some recordings 
required speaking as well). Strategies to remove 
those artefacts will be described in section 4.2. 

Amplification and A/D-conversion was done 
with a 16 channel VarioPort™ physiological data 
recorder (Becker, 2005). Each channel had an 
amplification factor of 2775 and a frequency range 
from 0.9Hz to 60Hz. After amplification, A/D 
conversion was performed using 4096 A/D-steps 
and a sampling rate of 256 Hz. The data was 
transferred instantaneously from the amplifier to a 
computer via an RS232 port for online processing. 
The port capacity is limited to 115200 Bits per 
second which corresponds to 28 electrode channels 
at a sampling of 256Hz. Although sampling with a 
lower frequency should be sufficient to avoid 
aliasing when considering the amplifier’s upper 
cutoff-frequency of 60Hz, we decided to go with 
256Hz since for technical reasons the slope of the 
band pass filter is very small. 

4.2 Data Preprocessing 

Figure 2 summarizes the signal processing steps of 
our task demand estimation system. After EEG 
recording, artefacts are removed applying inde-
pendent component analysis (ICA). A short time 
Fourier transform (STFT) is used for feature 
extraction. After feature normalization and 
averaging over temporally adjacent features, 
different methods for reducing the dimensionality 
are used. Finally, Support Vector Machines (SVMs) 
or Artificial Neural Networks (ANNs) for 
classification or regression are applied to obtain task 
demand predictions. We also applied Self-
Organizing-Maps (SOMs) to determine which levels 
of task demand can be reliably discriminated. 
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Figure 2: Task Demand Estimation System. 

4.2.1 Artefact Removal 

Artefacts such as muscular activity and especially 
eye movements contaminate the EEG signal, since 
the corresponding electrical potentials are an order 
of magnitude larger than the EEG sources. This 
causes in particular problems in the EEG that is 
measured over the frontal cortex. ICA has shown to 
be very efficient for artefact removal in EEG data 
(Jung et al., 2000).   

Original data ICA components

Back projected data

Removal of component 2

 
Figure 3: Artefact removal applying ICA: (1) independent 
components are computed from the original data (top left), 
(2) the second component (eye blinking artefact) is identi-
fied and rejected (top right), and (3) the data is projected 
back to the original space (bottom left). 

To apply ICA to EEG data it is assumed that the 
signal measured at one electrode can be described by 
a linear combination of signals emerging from 
independent processes (i.e. cortical field potentials, 
muscular artefacts, 60Hz AC noise): Let x(t) be the 
vector of signals measured at all electrodes at time t 
and s(t) be the independent components. Then x(t) 
can be expressed by x(t) = A · s(t), where A is called 
mixing matrix. ICA computes the matrix A, or its 
inverse the de-mixing matrix W, such that 
independent components can be estimated from the 
measured signals (Hyväarinen et al., 2000). Artefact 
components can then be identified either by visual 

inspection of the training data or by using cross-
validation and be rejected from the data. The re-
maining components are projected back into the 
original coordinate system (see Figure 3). For ICA 
computation we used the open source Matlab tool-
box EEGLAB (Delorme et al., 2004), which applies 
the Informax algorithm to the matrix estimation.  

4.2.2 Feature Extraction, Averaging and 
Normalization 

After artefact removal we computed the power 
spectrum of the time signal applying STFT. For two-
second long segments overlapping by one second, 
features were computed representing the content of 
frequency bands with 0.5Hz width. This results in 
one feature vector per second. The dimensionality of 
one feature vector for 16 electrode channels and 
frequencies ranging from 0 to 45Hz is 16·90=1440. 
To reduce the influence of outliers final feature 
vectors for each time point were obtained by 
averaging over k previous features. To compensate 
for different ranges in the frequency bands, we 
normalized each feature using the following two 
normalization approaches: 
• GlobalNorm: Feature means and variances are 

calculated based on the complete training set. 
Calculated values are used globally for mean 
subtraction and variance normalization on all data 
(training, validation, and test data). 

• UserNorm: Feature means and variances are 
calculated on training, validation, and test data 
separately for each user. Then, user-specific mean 
subtraction and variance normalization is applied. 

4.2.3 Feature Reduction 

Since the dimensionality of the feature vector may 
be large compared to the amount of training data, we 
investigated various feature reduction methods. A 
straightforward approach is to average over adjacent 
frequency bands, another approach is the Linear 
Discriminant Analysis (LDA), which selects features 
according to their discriminative power (Fukunaga, 
1972). For sparse data and large dimensionalities, 
LDA estimation may become ill-conditioned. 
Therefore, we also applied a correlation-based 
feature reduction method, which selects those 
features that correlate best with the variable to be 
predicted. This method proved to be particular use-
ful for the assessment of task demand, since – in 
contrast to LDA – it takes into account the 
continuous nature of the predicted variable.  
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4.3 Data Analysis 

To learn more about the data structure and to gain 
insights into the granularity and distinctness of task 
demand levels, we generated self-organizing maps 
(SOMs) (Kohonen, 1995) for the training data. After 
obtaining the Best Matching Unit (BMU) for each 
training example, a map was calculated which 
visualizes colour-coded clusters corresponding to 
different task demand levels. Thus the spatial 
relation between the feature vectors belonging to the 
different task demand levels can be visualized 
concisely on a two dimensional grid. Although the 
SOM-based analysis may indicate which task 
demand levels are easy to discriminate, the 
hypotheses have to be verified experimentally on 
test data. SOM training and visualization were 
performed with the MATLAB™ based SOM-
Toolbox (Vesanto et al., 2000). 

4.4 Learning Methods 

We investigated two types of classifiers: Multilayer 
ANNs and SVMs. ANN classifiers were trained with 
standard back-propagation, based on feed-forward 
networks with a tanh activation function and one 
hidden layer. For all ANNs early stopping 
regularization was performed and the number of 
neurons in the hidden layer was determined on the 
validation data. For SVM-based classification we 
used an implementation of SVMlight (Joachims, 
1999), which directly addresses the multi-class 
problem (Tsochantaridis, 2004). SVMs were 
restricted to linear kernels to limit computational 
costs and avoid extensive parameter tuning. By 
treating the task demand levels as class labels (e.g. 
“low”, “medium”, “high”), both classification 
methods can be applied to the problem of task 
demand estimation. To exploit the information 
contained in the ordinal scaling of the different class 
labels, we investigated the regression versions of 
ANNs and SVMs as well.  

Since ANN predictions fluctuate due to random 
weight initializations, predictions from five 
networks trained on the same data were combined 
using majority decisions (in case of classification) or 
averaging (in case of regression). 

4.5 Evaluation Methods 

The system performance for task demand 
assessment is evaluated in terms of classification 
accuracy. When regression methods are used, class 
labels are assigned numeric values and each 
prediction is assigned to the label with the closest 
value. Although confusion matrices could lead to a 

deeper understanding of pros and cons of the 
prediction methods, we decided to use the more 
concise classification accuracies. Results presented 
here are averages over all test sets and all class 
accuracies. The latter gives more reliable results in 
the presence of unbalanced test sets. 
We use the normalized expected loss to compare 
accuracies that were calculated based on different 
numbers of classes. Comparing accuracies directly 
would not be appropriate since the chance accuracy 
A(c) varies with the number of classes. The 
normalized expected loss relates the observed error 
to the chance error and thus makes it independent 
from the number of classes. The value of the 
normalized expected loss is bound by 1/ A(c) and 
ranges between 0 and 1. 

5 EXPERIMENTS 

We conducted various experiments to evaluate task 
demand assessment and collected EEG data for this 
purpose, using both the headband and the 
ElectroCap™. In offline experiments we analyzed 
and optimized the processing steps of the system. 

5.1 Data Collection 

Task demand data was collected from subjects 
perceiving an audio-visual slide presentation. The 
presentations were tailored to the subjects’ 
educational background and designed to provoke 
each task demand level with equal amount of time. 
The presentations were video-taped so that each of 
the subjects could evaluate their task demand 
afterwards by watching the tape. We defined the 
following task demand levels: 
• Low: All details of the presentation are well 

understood with low mental effort. 
• Medium: Some mental effort is required to 

follow the presentation, not all details may be 
understood. 

• High: All available mental resources are required 
to understand at least the essence of the topic. 
Most of the details are not understood.  

• Overload: The presentation topic is not 
understood. The subject is overwhelmed, 
disengaged and makes no more effort to 
understand the presentation. 

In total 7690 seconds of data were recorded with the 
ElectroCap™ from six students (three male, three 
female) between 23 and 26 years old. One subject 
was recorded twice. 1918 seconds of data were 
recorded with the headband from two students (one 
male, one female) between 21 and 28 years old. 
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5.2 Experimental Setup 

One major goal of our experiments was to 
investigate the impact of user and session 
dependencies on the system performance. The other 
goal was to examine the efficiency and performance 
of the headband compared to the ElectroCap™. We 
therefore conducted user/session dependent and 
independent experiments on ElectroCap™ and 
headband recordings using the following setup: 
UD: User and session dependent setup: Different 

subsets of the same session were used for training 
(80%), validation (10%), and testing (10%). Four 
sessions were recorded with the ElectroCap™ and 
two with the headband.  

UI: User and session independent setup: The system 
was trained on three of the four ElectroCap™ 
recording sessions and tested on the fourth session 
in a round-robin fashion. For better comparability 
the same test sets as for setup UD were used. 
Validation was performed on two held-out 
ElectroCap™ recording sessions.  

SI: Session independent but user dependent setup: 
One subject was recorded twice in two separate 
sessions using the ElectroCap™. The system was 
trained on one session and tested on the other, 
without validation set.  

5.3 Results – Data Analysis 

Figure 4 compares for one subject the SOM trained 
on all task demand levels (left-hand side) to the 
SOM trained on high and low task demand level 
(right-hand side). The grey-scaled dots represent the 
best matching units (BMUs) on the grid belonging to 
the feature vectors of different task demand levels. 
The size of the dots is proportional to the amount of 
feature vectors that share the same BMU. Obviously 
we see a large overlap between the BMUs when all 
four task demand levels are considered, while the 
BMUs for low and high task demand seem to be 
well separable. Same observations were made for 
the SOMs trained on other subjects. 

Baseline results on the UD setup (no averaging, 
GlobalNorm normalization, no feature reduction, 
linear classification SVMs) confirmed our 
expectation that the four task demand levels are 
difficult to discriminate (classification accuracy 
40%, normalized expected loss 0.81). When 
distinguishing low versus high task demand we 
achieved a classification accuracy of 78% and a 
normalized expected loss of 0.43. The major reason 
for the poor results on discriminating all four levels 
is that subjects had difficulties to identify the 
boundaries between adjacent demand levels. To 
investigate this we asked some subjects to re-

evaluate their task demand at a later time. We found 
a low intracoder agreement among adjacent task 
demand levels, while high versus low task demands 
were rarely confused. In the remainder of this 
section we will therefore focus on the discrimination 
between low and high task demand.   

 
Figure 4: SOM trained on all four task demand levels (left-
hand side) and on low vs. high task demand (right-hand 
side). Grey scale intensity indicates task demand level, 
ranging from low (light) to overload (dark). 

Table 1 shows the average amount of data per 
subject after removing the medium and overload 
task demand recordings.  

Table 1: Data per subject (in seconds) for all setups. 

Setup Training Validation Test 
UD 247 31 64 
UI 740 229 64 
SI 257 - 48 

5.4 Results – Learning Method 

Table 2 compares the regression and classification 
versions of ANNs and SVMs for the baseline system 
(no averaging, GlobalNorm normalization, no 
feature reduction). For all three experimental setups 
SVMs perform better than ANNs. For setup SI the 
regression SVMs significantly outperform the 
classification SVMs. For the other setups the 
differences between the two SVM variants are rather 
small. Since at least theoretically the regression 
SVMs should be able to better exploit the ordinal 
scaled information given in the task demand levels, 
we decided to use these in the remainder of our 
experiments.  
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Table 2: Baseline system performance for all setups; 
classification (c) and regression methods (r); In 
parentheses: standard deviation for five ANN experiments. 

Setup UD UI SI 
SVM c 81%  72% 66% 
SVM r 79%  74% 73% 
ANN c 78% (7%) 70% (3%) 53% (5%) 
ANN r 71% (3%) 69% (3%) 66% (5%) 

5.5 Results – Normalization and 
Feature Reduction 

In the following experiments we optimized the 
processing steps of our system in a greedy fashion 
on the validation set. Table 3 shows the 
classification accuracies for all experimental setups 
with the optimal parameters (given in parentheses).  

Averaging over k=2 feature vectors improved the 
results for the UD and UI setup. The use of 
normalization method UserNorm instead of the 
baseline method GlobalNorm improved results for 
setups UI and SI. This matches our expectation, 
since this method reduces the variability across 
sessions (UI and SI) as well as across subjects (UI). 
Normalization is not relevant for the user dependent 
setup (UD) since it only applies when data of 
different subjects are used for training and test.  

Table 3: Results for the optimized task demand system. 

Setup UD UI SI 
Baseline 78% 74% 73% 
Averaging (k=2) 82%  79% 73% 
Normalizing 
(UserNorm) 

N/A 80% 87% 

Feature Reduction 
(Corr-based) 

92% 77% 66% 

 
Feature reduction was only successful for UD, 

where a correlation based reduction from 1440 to 80 
features yielded considerable improvements. For the 
other setups feature reduction did not help, probably 
since despite normalization the data variability was 
too large. Consequently, features which were well 
correlated with task demand on the training data 
exhibited poor correlations with task demand on the 
test data.  Comparing the results of feature reduction 
among the different setups is difficult since the 
optimal number of 80 features for the UD setup was 
determined on the validation set, while we set this 
number manually to 240 for the SI and UI setup as 
the validation method did not give any reasonable 
optimum. 

 Averaging over adjacent frequency bands for 
feature reduction corresponds to putting features into 
bins of size b. We observed that even for large 

numbers of b the results did not drop much for any 
of the setups. For b=45 (two features per electrode, 
i.e. lower and the upper frequencies) results are in 
the same range as without feature reduction. For 
b=90 (one feature per electrode, 8 features in total) 
results dropped significantly. This suggests that it is 
sufficient to consider for task demand estimation the 
content of two broad frequency bands: the lower 
frequencies (around the α-band) and the higher 
frequencies (around the γ-band). Experiments to 
investigate this hypothesis are planned. The feature 
reduction would benefit from more reliable model 
estimation and reduced computational costs. 

5.6 ElectroCap™ versus Headband 

After optimizing the system parameters, experiments 
using the UD setup were conducted on the headband 
data. A classification accuracy of 69% could be 
achieved. This compares to 69% using the four 
ElectroCap™ recordings with 4 electrodes and 82% 
with 16 electrodes. These results were achieved 
without correlation based feature reduction. For the 
reduced number of electrodes, the classification 
accuracies for half of the subjects are at least 86% or 
better, while for the other half they are around 
chance. This implies that the feasibility of task 
demand estimation based on four electrodes might 
depend on the subject or even on the presentation 
itself. As described above the presentations and 
topics were tailored towards the educational 
background of the subjects. 

6 CONCLUSIONS  

In this paper we described our efforts in building 
human-centered systems that sense, analyze, and 
interpret the users’ needs. We implemented several 
learning approaches that derive the task demand 
from the user’s brain activity. Our system was built 
and evaluated in the domain of meeting and lecture 
scenarios. For the prediction of low versus high task 
demand during a presentation we obtained 
accuracies of 92% in session dependent experiments, 
87% in subject dependent but session independent 
experiments, and 80% in subject independent 
experiments. To make brain activity measurements 
less cumbersome, we built a comfortable headband 
with which we achieved 69% classification accuracy 
for low versus high task demand discrimination. 
Based on our findings we developed an online 
system that derives user states from brain activity 
using the headband (Honal et al., 2005). A 
screenshot of our prototype is shown in Figure 5. 
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Figure 5: Screenshot of our prototype online brain activity 
system. The upper left monitor area displays the EEG 
signal; the hypothesized current user state is shown in the 
upper right corner. Spectrograms for the headband 
electrodes fp1, fp2 f7 and f8 are shown at the bottom. 
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Abstract: This paper introduces a new methodology to aid the tracing and measurement of lines in digital images.  
The techniques in this paper have specifically been applied to the labour intensive process of measuring 
roots in digital images.  Current manual methods can be slow and error prone, and so we propose a semi-
automatic way to trace the root image and measure the corresponding length in the image plane.  This is 
achieved using a particle filter tracker, normally applied to object tracking though time, to trace along a root 
in an image.  The samples the particle filter generates are used to build a probabilistic graph across the root 
location in the image, and this is traversed to produce a final estimate of length.  The software is compared 
to real-world and artificial length data.  Extensions of the algorithm are noted, including the automatic 
detection of the end of the root, and the detection of multiple growth modes using a mixed state particle 
filter. 

1 INTRODUCTION 

Within biological science experiments it is common 
for measurements of samples of interest to be made 
from digital images. This paper is concerned in 
particular with the length measurement of roots of 
Arabidopsis thaliana from images of plates of roots 
taken with a digital camera. This process is largely 
carried out manually, by measuring the roots by 
hand in an image processing package such as the 
public domain ImageJ (Abramoff et al., 2004).  For 
each root, the user must manually mark a line along 
its length, and the software then calculates the 
length. Other methods measure mouse travel 
distance as the user traces an image of a root (Pateña 
& Ingram, 2000). Clearly, it would be useful to 
automate as much of this process as possible, 
particularly the laborious and error-prone manual 
tracing step. 

Some tools already exist to aid with root 
measurement, but each has its drawbacks or specific 
mode of operation.  RootLM (Qi et al., 2007), for 
example, is capable of measuring growth rates over 
daily intervals, but requires root growth to be 

marked up on the petri dish in marker pen, and the 
removal of the actual roots, prior to scanning. MR-
RIPL 2.0 (Smucker, 2007) estimates the lengths and 
widths of roots by applying global thresholding and 
thinning processes to identify roots on an opposing 
intenisty background, an approach which can be 
hampered by clutter on the image plane.  Other tools 
similarly use thresholding and thinning to isolate the 
roots (Bauhus & Messier, 1999), and  can also be 
sensitive to noise  and clutter. 

In this paper, a robust probabilistic method of 
root length measurement is presented.  This 
approach uses a particle filter to track along the root 
image, building a probabilistic graph using the 
sample locations and observed likelihoods at those 
locations.  The graph is then pruned, removing low 
probabilty vertices, and a shortest path algorithm is 
applied to describe the line down the centre of the 
root.  This line can then be used to provide a 
measurement of root length. The approach is found 
to work well, handling images with clutter and 
lighting variations obscuring parts of the root. 

Section 2, describes how the shape of the root is 
traced and how from this a measurement of length is 
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calculated. Results are presented in Section 3 which 
compare this new algorithm to manual methods on 
real-life and synthetic images.  The discussion in 
Section 4 then examines the results, and an appraisal 
of the algorithm is presented, including the 
possiblity of wider applications. 

2 METHOD 

2.1  Root Tracing  

Before a quantification of root length can take place, 
an accurate tracing of the root image is required.  
The approach adopted here is based on a particle 
filter tracking technique. Particle filtering, first 
developed as a method of tracking moving objects 
through an image sequence, is a way of representing 
system states that might not be definable with 
closed-form functions. States are represented using 
probability density functions (PDFs), or rather 
discrete estimates of them modelled by particle sets.  
A particle set can represent a function by sampling 
the distribution and weighting particles 
corresponding to these samples.  Contained within a 
particle is all the information about the state of the 
system at that time, for example, for target tracking 
across the image plane a particle might contain (x, y) 
coordinates and velocity information. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Representing a continuous PDF using a particle 
set of 7 particles. The particles are randomly distributed, 
and the weight of a particle (represented by the size of the 
circle) corresponds to the value of the function at that 
point. 

As shown in Figure 1, a continuous function can be 
approximated by a finite number of particles and 
their weights. The more particles that are used, the 
more accurate the representation. Normally, when 
tracking a moving object, the PDF is a measure of 
the probability of the target actually being at a 
position, and is measured using an observation 
model which reports high probabilities when it is 

over an area of image that matches the target 
appearance model. So, in Figure 1 above, the first, 
lower peak might represent the location of some 
background clutter, and the second, higher peak the 
actual target. 

When tracking a target over time, the predicted 
position of the object depends on both where the 
object was at the last timestep, and on a motion 
element determined by a dynamic model of the 
target. Propagating the continuous PDF estimate of 
position forward in time with this motion model 
tends to shift the curve in the direction of the 
prediction. Adding an additional random diffusion 
term, simulating noise in the tracking, has the effect 
of smoothing the PDF, and after the motion phase, 
the PDF is reinforced with measurements using the 
observation model. 

In the discrete case, where a finite set of particles 
represents the distribution, a set of particles are 
selected and have the motion model applied to their 
state. These particles are selected with a probability  
in proportion to their weight, and are replaced after 
selection, ready for re-selection.  This has the effect 
of generating a new particle set in which the 
particles tend to cluster mainly around the higher 
probability peaks, with fewer particles representing 
the lower probability valleys.  As the peaks are what 
we are interested in (they suggest where our target 
actually is), this importance sampling improves 
tracking performance. 

This process is known as factored sampling. 
Every time we select a particle we process its state 
parameters forward in time using the motion model, 
and then weight this particle based on the 
observation model at this new position. This gives us 
our new set of weighted particles, ready for another 
iteration of the algorithm. One of the attractions of 
particle filtering methods is that the sample set size 
remains constant, so the algorithm runs in a 
predictable time, and the quality of the 
representation of the PDF can be increased by 
increasing N, the number of particles in the set. A 
classic example of a computer vision tracking 
algorithm which uses an algorithm like this is the 
Condensation algorithm (Blake & Isard, 1998). 

We have adapted this tracking model so that 
instead of being used over time, it is used over 
space, to trace along a root in a digital image. It is 
assumed that the root lies approximately parallel to 
one of the major image axes, so we know 
approximately which way to trace the image. We 
shall assume here that the root lies approximately 
parallel to the y-axis. 

The algorithm proceeds as follows: 
 

P(
x)

 

A PROBABILISTIC TRACKING APPROACH TO ROOT MEASUREMENT IN IMAGES - Particle Filter Tracking is
used to Measure Roots, via a Probabilistic Graph

109



 

1. The user selects, in the image plane, the starting 
point of the root to be traced. Around this an 
initial distribution of N particles is built. This 
distribution is normally a Gaussian distribution 
along the x-axis, centred on the user’s click 
point. The y-locations are fixed to the user’s set 
y-coordinate for reasons which will become 
clear. Initially all these particles are given equal 
probability weights. 

2. Particles are selected with replacement in 
proportion to their probability weighting. As 
each particle is selected, its y-coordinate is 
incremented by exactly 1 pixel, and the x-
coordinate is processed forward using its 
predictive ‘motion’ model plus a small level of 
random Gaussian noise. 

3. The new particles are weighted by comparing 
the image at their current location with the 
observation model of a root cross section.  

4. The probabilities associated with each particle, 
and the locations of the particles are stored as 
nodes in a graph – this will be used later on. All 
the nodes at time t are connected to all the nodes 
at time t-1, therefore each iteration N new nodes 
and N*N new edges are added to the graph. 

5. The algorithm repeats to step 2, until the root is 
fully traced and the user stops the process at 
iteration I. 

 
Fixing the y-coordinate to proceed at an increment 
of 1 pixel per iteration provides an external force to 
the tracing algorithm to move the trace down the 
root by exactly one pixel at a time. This is analogous 
to tracing a line by hand using a pencil, starting at 
one end and moving smoothly to the other. This 
external force along the y axis, combined with the 
motion model to cope with curvature along the root 
in the x axis, replaces the motion model used when 
tracking moving objects, and allows an 
uninterrupted and unrepeated line to trace along the 
root. 

At the completion of the algorithm, there exists a 
graph G with N*I nodes and N*N*I edges. Each 
node represents a weighted sample from the particle 
filter, and has a corresponding weight (probability), 
and coordinate within the image plane. An example 
visualization of how the graph relates to the particles 
and image is presented in Figure 2. 

It should be noted that currently the tracing is 
ended manually by the user when the trace is seen to 
reach the end of the root. Detecting when tracking 
should cease is a hard problem as tracking 
algorithms assume the target to exist at the next 
timestep.  The authors are working on a robust 

method to detect the end of the root automatically, 
which is mentioned further in Section 4.1. 
 

 

Figure 2: Illustration of the relationship between the 
images, observation model output (curves), particle 
weights (circles), and graph connections between two 
steps in the algorithm, t and t-1. Note some of the lines 
connecting the curves to particle weights at t-1 have been 
omitted for clarity. Grey arrows indicate the edges from 
one particle when it is mapped to a node in the graph– in 
fact every node at each layer has edges connecting to all 
nodes generated at the next step of the algorithm. 

2.2  Probabilistic Graph 

Graph G can be thought of as a 3D surface map 
which represents probabilities associated with each 
possible root location. Using this we aim to produce 
an accurate measure of root length. This is done by 
removing low probability nodes from the graph and 
then finding the minimum distance route through the 
remaining graph, from the start position to an end 
node. 

Low probability nodes are removed as they 
represent areas of the image space explored by the 
particles which are not centred over the root. During 
the root tracking procedure, at each iteration 
particles are spread around the root width, to 
increase the chances of finding the root at each step. 
The aim of our graph pruning procedure is to 
remove those nodes from the graph that represent 
locations in the image which are so far from the 
ideal observation model result that they cannot 
represent a root location.  This information is useful 
during the online tracking, but is not needed for the 
offline graph traversal. 

To do this pruning, we simply remove 
probabilities whose measurements fall below a 
certain number of standard deviations from the mean 
measurement across the set, although any heuristic-
based method could be employed here to remove 
low quality nodes from the graph. This has the effect 
of producing a leaner graph which only covers the 
space occupied by the root. 

To actually find the shortest path through the 
graph, Dijkstra’s method for determining shortest 

t-1

t

t

t-1
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paths was implemented. This method involves a 
greedy algorithm which determines the shortest 
distance to each node as it traverses the graph, in our 
case along the length of the root, therefore giving the 
shortest path along the length of the root, through 
the remaining high-quality nodes. 

3 RESULTS 

The proposed method was tested by comparing 
measurements of roots obtained using standard 
manual techniques and using the new software.  The 
particle filter used 25 particles in all the tests. 

3.1  Software versus Non-expert User 

The software was tested with an image of plated 
roots (Figure 3). The aim was to measure the length 
of the roots from the black line to the root tip. The 
image had been taken with an off the shelf digital 
camera, and was stored in a compressed JPEG 
format, at a resolution of 783x576 for the close-up in 
Figure 3. The roots were measured manually, by an 
inexperienced user, using the measure tool in ImageJ 
(Abramoff et al., 2004).  This measurement was 
repeated 5 times. The particle-filter software was 
also run five times. An example output is presented 
in Figure 3, while numerical results are given in 
Table 1. 
 

 
Figure 3: Image of growing roots with the software output 
overlaid. The root numbers refer to the results in Table 1. 

Table 1: Results of a comparison between the new 
software and manual measurements made by a non-expert. 

Root Error between 
means, pixels 

Relative error 
(Mean-mean error as % of 

manual measure) 
1 -0.1 0.18 
2 1.26 1.65 
3 3.16 1.52 
4 1.3 1.02 
5 2.14 1.84 
6 2.12 1.29 
7 3.86 4.1 
8 4.36 2.23 
9 1.58 1.05 

10 1.98 2.96 
11 1.84 1.35 

The mean length for these roots is 126.4 pixels, from 
the ground truth. The average standard deviation for 
the manual measures was 1.97 pixels, and 1.71 
pixels for the proposed software. 

The average time taken to measure manually the 
roots on the plate in Figure 3 once each was 112 
seconds. The new software, including the time for 
user interactions clicking on the image and stopping 
the tracing, took 70 seconds. 

The average relative error from Table 1 is 1.7%. 
Root 7 produces the most ambiguous measures from 
the new software, but on inspection its root tip is 
blurry and ambiguous in the image itself, which may 
explain the error. This situation might produce 
measurements with high variability when different 
subjects are asked to perform the measurement 
manually. 

3.2  Software versus Expert User  

The software was also tested against manual 
measurements made by an expert user. The root 
images used in this section are more complex, with 
the roots showing many lateral roots. There are also 
significant reflections from the rear of the plate, and 
the images are of low resolution (640x480), all of 
which makes this scenario a challenge for the 
software. 

For this experiment, five roots in Figure 4 were 
manually measured in ImageJ by a trained biologist  
familiar with making such measurements. This 
measurement was compared with the average results 
of five runs of the new software approach.  The data 
is presented in millimetres; using the ruler in Figure 
3 a conversion was calculated between pixels and 
millimetres. The results are presented in Table 2. 
The test image is presented in Figure 4. 

 

1      2      3      4    5    6    7      8     9      10   11
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Figure 4: Image of growing roots. Note the large numbers 
of lateral roots and reflections which clutter the image. 
The root numbers refer to the results in Table 2. 

Table 2: Results of a comparison between the new 
software and manual measurements made by an expert 
user. 

Root Error 
between 

means, mm 

Relative error 
(Mean-mean error as % of 

manual measure) 
1 0.78 1.67 
2 -1.95 4.54 
3 1.32 2.89 
4 0.86 1.81 
5 0.02 0.05 

The average root length from the manual measures 
was 46.8mm.  The proposed software measures had 
an average standard deviation of 0.23mm.  The 
average relative error from Table 2 is 2.2%. 

The automatic tracing of roots 1 and 2 suffered 
the most due to interference from the lateral roots. 
Examples of such error cases are presented in Figure 
5. 

 
Figure 5: Example output, with error cases marked. 

Figure 5 illustrates two of the most common error 
cases. For case (a), the lateral root is followed rather 
than the main root about 50% of the time. This is 
because when tracing the line, the tracking algorithm 
reaches a junction, and as the motion model predicts 
the line to continue roughly half way between the 
two actual lines, and both lines produce very similar 
measurement models, half the time the algorithm 
will take one route, and the other half of the time the 
other route will be followed. 

 The particle filtering trackers can cope with this 
kind of ambiguity over short distances, but over 
longer distances the samples tend to all migrate to 
the hypothesis which is producing the slightly better 
observation measures at the time.  This fading of a 
hypothesis is a common practical problem with 
particle filter tracking (King & Forsyth, 2000). 

In error case (b) in Figure 5, the error is caused 
by the lateral root consistently having a better 
measurement model. This error will therefore be 
present on every run of the algorithm. On inspection, 
the better measurement appears to be caused by a 
misrepresentation of the main root in the image. The 
root here appears very thin. This may be an artefact 
introduced by the low resolution of the image. 
However it is caused, the result is that the lateral 
root provides a higher response to the measurement 
model and hence the root is traced along this 
erroneous path.  

3.3  Artificial Scenarios  

The software was also tested against artificial 
images. These images were produced using straight 
lines of a similar colour to the roots. Gaussian noise 
was applied to the image. 

 
Figure 6: An artificial image with lines of length 200, 400 
and 141.4 pixels respectively. Overlaid are example 
measurements produced by the new software. 

a 

b 
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The purpose of this experiment was to test the 
software against a known ground truth measurement. 
Figure 6 shows one result out of 5 repeats which 
aimed to test the measuring software against a 
simple artificial ground truth. The results for the 3 
lines measured are presented in Table 3. 

Table 3: Results of running the algorithm on artificial data. 

Line True 
length 

(pixels) 

Average measured 
by new algorithm 

(pixels) 

Average 
error 

(pixels) 
1 200 199.9 -0.1 
2 400 400.2 0.2 
3 141.4 140.3 -1.1 

4 SYSTEM EXTENSIONS 

The basic system described and tested above has 
been extended in two ways. First, a method is being 
developed to automatically detect when the end of 
the root has been reached. Second, a mixed state 
particle filter (Isard & Blake 1998) has been 
incorporated into the framework to allow the 
labelling of different possible growth modes for the 
root, such as a gravitropic response. These will be 
described below. 

4.1  Automatic Root Tip Detection 

One of the major time consuming and error prone 
aspects of the root measurement system detailed 
above is the manual intervention required to stop the 
line tracing when the end of the root is reached.  
This was necessary because the premise of the line 
tracker is that at each iteration the next point on the 
line definitely does exist somewhere in the image – 
this assumption is broken when the end of the root is 
reached. In the absence of a tip detection capability 
or manual input the tracker will trace whatever 
produces the best measurement from the image, e.g. 
see Figure 7 (left). 

  
 
 
 

The developed method proceeds as follows. During 
the line tracing phase of the software, the user 
allows the system to track beyond the end of the 
root. The graph traversal then proceeds as before, 
and a final path representing the trace of the root is 
produced. Now the new step: the measurement 
probabilities along this path are examined.  Figure 8 
below shows the trace of log probabilities along a 
root: 
 

 
Figure 8: Graph depicting how log of measurement 
observation probabilities varies along the root. The dashed 
line marks the approximate end of the root. 

Summary statistics of the log probabilities are 
calculated along the chosen path, and the end of the 
root is marked as where the current measurement 
falls below a set number of standard deviations from 
the mean. This was seen to work well on 7 of the 11 
roots in Figure 3 – see figure 7 (right) for an 
example output. 

4.2  Labelling of Growth Modes 

It is possible to build into the existing particle 
filtering framework more than one predictive model 
to process the particles forward along the root 
image. This is achieved using a form of mixed state 
particle filter (Isard & Blake, 1998).  Essentially, it 
is possible to define multiple models for the driving 
force behind the tracing of the root, and the most 
appropriate of these will generate higher quality 
particles at each step. For example, to model 
gravitropic growth, one model might aim to trace the 
root left to right across the image, and the second 
model would aim to trace the root top to bottom.  
Whichever model prospered the most is naturally 
selected to label the image – see Figure 9. 

Distance along root 

0               Log (p)                         -8    

Figure 7: Left: A particle filter tracker will always try and hunt a
target even if one does not exist, as the spread of particles past the
root tip (indicated by arrow) shows. Right: An example result of 
the same root image with the new root termination criteria. 

A PROBABILISTIC TRACKING APPROACH TO ROOT MEASUREMENT IN IMAGES - Particle Filter Tracking is
used to Measure Roots, via a Probabilistic Graph

113



 

 
Figure 9: Example root trace using a mixed state model 
consisting of two states, normal growth (white) and 
gravitropic (black). 

5 CONCLUSIONS 

5.1  Discussion of Results 

The results comparing the software root length 
measures to the manual measurements show the new 
technique to produce results to about 2% of the 
actual measures most of the time.  There was a 
larger error when comparing the new software with 
the expert user (2.2%) compared to the non-expert 
(1.7%), however the images in Section 3.2 are more 
challenging than those in Section 3.1, which may 
account for some of the increased error also. 

Something to be wary of with these kinds of 
comparisons is using manually marked-up ground 
truths to compare with the automated measurements. 
There is an inherent subjectivity in determining the 
length of the roots, dependant on, for example, the 
accuracy with which the curves in the roots are 
traced. The more finely the shape of the root is 
followed, the longer the measurement. There is 
similarity here with the coastline measuring 
problem. Some structures can be thought of as 
fractal in composition, such as a coastline 
(Mandelbrot, 1967) or complete root systems (Eshel, 
1998).  When trying to measure such systems, the 
scale (or accuracy) with which the waves and 
perturbations are traced has a bearing on the overall 
length calculated. This software can be thought of as 
producing the finest scale estimate of length 
available at the image resolution, and so is likely to 
overestimate length compared to a manual 
measurement.  This may be reflected in the results 
reported in Section 3, with most errors indicating an 
overestimate of line length. 

Even if a user and the new software were to use 
the same scales of measurement, there is still human 
error present in the measuring process, which can be 
quantified by the standard deviation of the manually 
measured data. The manual measurements in section 
3.1 give an average standard deviation of ~2 pixels. 
Therefore most (99%) of the manually measured 
lengths can be expected to fall within about 6 pixels 
(three standard deviations) of the true value for roots 
of around the length seen in section 3.1. The new 

software used on these roots has an average relative 
error of 1.7% which translates to a error of 2.1 pixels 
on average for these roots, and therefore this 
software error falls within the expected error bounds 
of manually entered data.  

The time to use the new software was less than 
the time to take the measurements manually. This 
should be improved upon still when implementation 
of the root tip finding algorithm is completed. The 
system should be less fatiguing to the user as less 
high-accuracy input is required. This will help to 
lower the number of mistakes made over the course 
of measuring many roots. 

Labelling of the different growth modes of the 
root as illustrated in Section 4.2 is also ongoing 
work, but early results indicate the system can be 
used for identifying different ways in which a root 
trace line is produced, as long as trace motion 
models exist to sufficiently differentiate the modes 
of production of the line. 

5.2  Improving the Reliability 

As it stands, the software is still in trial stages and 
reliability is still being improved. There are a 
number of possible ways to decrease the number of 
errors that can occur. One problem is as the particle 
filter tracks the root towards the tip, it is liable to 
trace lateral roots if they are long enough and 
provide a high enough quality measurement, as 
shown in Figure 5. A simple way to remove this 
problem is to simply trace the root from the end tip 
upwards. Due to the geometry of the lateral roots the 
tracing algorithm is then not presented with viable 
alternative routes until the lateral roots join and 
terminate. Therefore, the only way they can be 
followed is if they lie parallel to the main root for 
long enough, and are close enough for the particles 
on the tracing algorithm to ‘jump’ across to the other 
track. The difficulty with this approach, however, is 
that the tracker would have to be started on the 
thinnest, least visible section of the root, which may 
be hard to detect, and automatic termination of the 
tracking becomes harder as the delineation at the top 
of the root is less clear. 

Other general improvements include increasing 
the resolution of the images, as during testing at 
least some of the mis-tracing of the roots was due to 
poor representation of the roots in the image.  
Improving the measurement model may lead to less 
problems with the system tracking lateral roots.  
Finally, increasing the number of samples may be 
beneficial, especially in combination with greater 
image resolution.  However, in such a case speed of 
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traversal of the graph, which currently is near 
instantaneous, might become a limiting factor. 

5.3  Future Potential of the System 

The particle filter approach, with or without mixed 
state extensions, provides a general framework for 
matching models of elongated structures to images 
of those structures. By changing the models used it 
may be possible to extract descriptions of and 
measure a wide variety of roots and other plant 
components. In particular, given higher resolution 
(e.g. confocal) images showing the cellular structure 
of the plant, it may be possible to predict (using the 
motion model) and detect (using the appearance 
model) higher level structures such as files of cells 
of similar type. 

The ability to recognise state changes by using a 
mixed state, rather than pure particle filter, also 
raises the possibility of recognising a wide variety of 
events during plant growth, of which the onset of 
gravitropic response may be just the first. 
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Abstract: In this paper we present a fully-automated method for the detection of tumor areas in immunohistochemical 
confocal images. The image segmentation provided by the proposed technique allows quantitative protein 
activity evaluation on the target tumoral tissue disregarding tissue areas that are not affected by the pathol-
ogy, such as connective tissue. The automated method, that is based on an innovative unsupervised cluster-
ing approach, enables more accurate tissue segmentation compared to traditional supervised methods that 
can be found in literature, such as Support Vector Machine (SVM). Experimental results conducted on a 
large set of heterogeneous immunohistochemical lung cancer tissue images demonstrate that the proposed 
approach overcomes the performance of SVM by 8%, achieving on average an accuracy of 90%. 

1 INTRODUCTION 

Detecting tumor areas in cancer tissue images and 
disregarding non pathological portions such as con-
nective tissue are critical tasks for the analysis of 
disease state and dynamics. In fact, by monitoring 
the activity of proteins involved in the genesis and 
the development of multi-factorial genetic patholo-
gies we can obtain a useful diagnostic tool. It leads 
to classify the pathology in a more accurate way 
through its particular genetic alterations, and to cre-
ate new opportunities for early diagnosis and per-
sonalized predictive therapies (Taneja et al., 2004). 

An approach for monitoring and quantifying the 
protein activity in pathological tissues is to analyze, 
for example, images of the tissue where the localiza-
tion of proteins is highlighted by fluorescent marked 
antibodies that can detect and link the target pro-
teins. The antibodies are marked with particular 
stains whose intensity is related to protein activity 
intensity. This procedure is called immunohisto-
chemistry (IHC).  

The increased use of immunohistochemistry 
(IHC) in both clinical and basic research settings has 
led to the development of techniques for acquiring 
quantitative information from immunostains and 

automated imaging methods have been developed in 
an attempt to standardize IHC analysis. 

Tissue segmentation for tumor areas detection is 
the first fundamental step of automated IHC image 
processing and protein activity evaluation. In fact 
the quantification of a target protein activity should 
be performed on tumor portions of the tissue without 
taking into account the non pathological areas even-
tually present in the same IHC images. In Figure 1 
are reported examples of IHC tissue images where 
connective tissue (i.e. non tumoral tissue) is outlined 
in black (for details about these images see Section 
2).  

Several methods have been proposed in the last 
few years to perform automated segmentation of 
tissue images (Demandolx et al., 1997; Nedzved et 
al., 2000;  Malpica et al., 1997; Dybowzki, 2000; 
Nattkemper 2004). However the most accurate ap-
proaches are those that provide a well-suited frame-
work for incorporating primary expert knowledge 
into the adaptation of algorithms, such as supervised 
learning algorithm (e.g. Neural Networks, Machine 
Learning, kernel-based) (Nattkemper 2004). The 
most prominent algorithm among these is the sup-
port vector machine (SVM) proposed by V.Vapnik 
(V.Vapnik, 1998) for binary classification. SVM is a 
theoretically superior machine learning method 
which has often been shown to achieve great  classi-
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fication performance compared to other learning 
algorithms across most application fields and tasks, 
including image processing and tissue image proc-
essing in particular (Angelini et al., 2006; Osuna, 
1997). Moreover, the SVM method is more able to 
handle very high dimensional feature spaces than 
traditional learning approaches (Muller et al., 2001; 
Cai, 2003). This is in fact the case of the images 
targeted by our work. 

However, the IHC tissue images we considered 
in our study present an intrinsic complexity, such as 
very different characteristics of staining, intensity 
distribution, considerable variation of tissue shape 
and/or size and/or orientation and, finally, consider-
able variation of the signal intensity within the same 
tissue areas due for example to superimposed stain-
ing. 

 Because of the heterogeneity of the representa-
tive features related to each tissue, it is very difficult 
for the supervised methods to obtain a satisfying 
fixed classifier able to distinguish between tumor 
areas (i.e. epithelial tissue) and non cancerous tissue 
portions (such as connective tissue).  

For this reason we designed a fully-automated 
unsupervised approach that is based only on the 
characteristics of the input image rather than on a 
fixed model of the ground truth.  

In this paper we present our fully-automated un-
supervised method and we compare its performance 
to that provided by a SVM approach applied on the 
same IHC tissue image target. We demonstrate that 
our method enables more accurate tissue segmenta-
tion compared with traditional SVM. Experimental 
results conducted on a large set of heterogeneous 
immunohistochemical lung cancer images are re-
ported and discussed in Section 4.  In Section 2 we 
detail our fully-automated unsupervised method and 
we briefly introduce the SVM method. The imple-
mentation and the set-up are discussed in Section 3. 
Finally, the Conclusions are reported in Section 5. 

2 METHOD 

The images we analyzed in this work were acquired 
through high-resolution confocal microscopy and 
show lung cancer tissue cells stained with marked 
antibodies (see Figure 1). They are characterized by 
a blue hematoxylin stain as a background colour and 
a brown DAB stain in cellular regions where a re-
ceptor of the EGF-R/erb-B or TGF-alpha family is 
detected (i.e. membranes or cytoplasm, respec-
tively). Cellular nuclei are blue-coloured and show a 
staining intensity darker than background. 

In all the images a remarkable portion of connec-
tive or other no cancer tissue components is present, 
which appears as a blue-coloured mass (since brown 
DAB-stained cells are only in cancerous tissue) with 
quite well-defined borders. Connective tissue is usu-
ally characterized by shorter inter-cellular distances 
and smaller nuclei than epithelial component; how-
ever, a generalization of this remark is impossible 
because shape and dimensions distributions of can-
cer cells are often not predictable. As we outlined in 
the Introduction, in order to perform accurate and 
robust cell segmentation and protein activity quanti-
fication (Ficarra, 2006) these non cancerous tissue 
portions have to be identified and isolated from the 
representative epithelial tissue. Here we present two 
different segmentation approaches to perform this 
critical task: i) an unsupervised procedure based on a 
K-means clustering of brown intensities followed by 
some morphological and edge-based refinement 
steps (see Figure 3); ii) a supervised classification of 
RGB features through Support Vector Machine (see 
Figure 5).     

Experimental results obtained with each approach 
on the same real-life datasets are presented and 
compared in Section 4. 

Figure 1: IHC tissue images with connective tissue manually outlined in black (from the left, x400 image with EGF-R posi-
tive reactions; x400 image with EGF-R positive reactions; x200 image with TGF-alpha positive reactions).  
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2.1 Unsupervised Procedure 

Since non cancerous cells do not show positive reac-
tions at the EGF-R/TGF-alpha receptors, the mono-
chromatic pure-DAB component instead of the 
original RGB image can be analyzed to perform 
tissue segmentation: in fact in this simpler color 
space connective components can be easily identi-
fied as wide bright regions with a quite homogene-
ous appearance (see Figure 2(b)).  

An unsupervised learning algorithm (K-means, 
in our work) can be efficaciously applied to isolate 
bright regions; then areas which show morphologi-
cal and edge characteristics which are typical of 
connective tissue can be selected to refine tissue 
segmentation.  

DAB-COMPONENT
SEPARATION PREPROCESSING K-MEANS

CLUSTERING

REFINEMENT BY
SIZE AND

CIRCULARITY
ANALYSIS

REFINEMENT BY
GRADIENT

MAGNITUDE
ANALYSIS

DAB-COMPONENT
SEPARATION PREPROCESSING K-MEANS

CLUSTERING

REFINEMENT BY
SIZE AND

CIRCULARITY
ANALYSIS

REFINEMENT BY
GRADIENT

MAGNITUDE
ANALYSIS  

Figure 3: Unsupervised procedure based on K-means clus-
tering 

Main steps of the proposed procedure are (see 
Figure 3): 

1) DAB-Component Separation. To separate pure-
DAB from pure-hematoxylin component a color 
deconvolution algorithm based on stain-specific 
RGB absorption is applied on the original RGB im-
age (Ruifrok 2001, 2004); differently from classical 
color segmentation approaches based on transforma-
tion of RGB information to HSI or to another spe-
cific color representation (Brey, 2003), this method 
has been demonstrated to perform a good color sepa-
ration even with colocalized stains. This critical 
condition, due to chemical reactions of stains linking 
the target proteins and to the tissue superposition 
during the slicing of samples before image acquisi-
tion, is very common in the images targeted by our 
method.    

For this step, the free color deconvolution plugin 
developed by G. Landini was integrated to our algo-
rithm. 

2) Preprocessing. In pure-DAB images, connective 
tissue can be differentiated from epithelial tissue 
through its higher intensity (see Figure 2(b)); any-
way some preprocessing is needed in order to ho-
mogenize and separate the intensity distributions of 
the two tissues, thus improving K-means’ perform-
ance. 

First of all, a mean filter is performed: this opera-
tion replaces each pixel value with the average value 
in its neighbourhood, thus smoothing intensity peaks 
and decreasing the influence of single non-
representative pixels. Then a minimum filter is ap-
plied. The filter replaces pixels values with the 
minimum intensity values in their neighbourhood: 
this transformation reduces the intensity dynamic 
and performs a further separation of connective and 
epithelial intensity distributions, since the former 
shows minimum values higher than the latter. 

3) K-Means Clustering. To isolate bright pixels 
belonging to connective tissue a K-means clustering, 
the well-known unsupervised learning algorithm 
(Jain, 1988) which iteratively partitions a given 
dataset into a fixed number of clusters, is applied; 
this iterative partitioning minimizes the sum, over all 
clusters, of the within-cluster sums of point-to-
cluster-centroid distances. Thus the procedure 
minimizes the so-called objective function, J in 
Equation 1, where k is the number of clusters, n is 
the number of data points and the quadratic expres-
sion is the distance measure between a data point xi

(j) 
and the current cluster centroid cj. 

 
(1) 

The cluster with the highest centroid value is se-
lected as representative of the connective tissue (see 
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Figure 2: Unsupervised procedure: (a) original IHC image with connective regions manually outlined (in black); (b) pure-
DAB image (c) results after K-means clustering (pixels belonging to different clusters are mapped with grey intensity pro-
portional to the cluster centroid); (d) cluster with highest centroid value (in black); as outlined in section 2.1 point 4, some
small and round-shaped epithelial particles still have to be removed. 

(a) (b) (c) (d)
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Figure 2(c)). The number of clusters k was empiri-
cally set to four (see Section 3.1 for details about the 
parameter set-up). 

4) Refinement by Size and Circularity Analysis. 
Bright epithelial regions with low EGF-R/TGF-
alpha activity have to be removed from the connec-
tive cluster to refine tissue segmentation. As shown 
in Figure 2(d), a large number of these regions are 
approximately round-shaped and are considerably 
smaller than connective mass: then a selective re-
moval of particles with a low area and a high circu-
larity compared to threshold values TS and TC  is 
performed (parameters set-up in Section 3.1).  

Equation 2 shows the proposed index for circu-
larity evaluation (a value of 1 indicates a perfect 
circle, a value approaching 0 an increasingly elon-
gated polygon). 

 
(2) 

5) Refinement by Gradient Magnitude Analysis. 
Other bright epithelial regions can be removed from 
the connective cluster through their edge characteris-
tics, since connective tissue usually shows a well-
defined boundary w.r.t. epithelial background in 
terms of intensity gradient variation. On the base of 
this remark, in this step areas which show along 
their boundary a percentage of edge pixels (i.e. pix-
els with high gradient intensity variation w.r.t. back-
ground) lower than a threshold value TE are selec-
tively removed from connective cluster (parameter 
set-up in Section 3.1). Edge detection is performed 
through a Sobel detector followed by automated 
intensity global thresholding.  

2.2 Supervised Procedure 

An alternate approach for tissue segmentation is 
supervised learning; for this purpose a Support Vec-
tor Machine (SVM) classification is proposed. 

The SVM (Vapnik, 1998) is a theoretically supe-
rior machine learning method which has often been 
shown to achieve great  classification performance 
compared to other learning algorithms across most 
application fields and tasks including image process-
ing (Statnikov, 2005).  

Here we propose a procedure based on binary 
SVM classification, in which the input elements (in 
this work, small tissue regions) are associated to one 
of two different classes, connective or epithelial, on 
the base of a set of representative characteristics, the 
features vector. To perform a reliable classification, 
the SVM is previously trained with a set of elements 

whose class is well-known, the so-called training 
instances.  

The classification is based on the implicit map-
ping of data to a higher dimensional space via a ker-
nel function and on the consequent solving of an 
optimization problem to identify the maximum-
margin hyperplane that separates the given training 
instances (see Figure 4).  

Optimal margin

CLASS 1

CLASS 2

Optimal hyperplane

Support vector

Optimal margin

CLASS 1

CLASS 2

Optimal hyperplane

Support vector

 
Figure 4: Maximum-margin hyperplane in SVMs (linearly 
separable case). The boundary training instances (support 
vectors) are indicated by an extra circle. 

This hyperplane is calculated on the base of 
boundary training instances (i.e. elements with char-
acteristics which are border-line between the two 
classes), the so-called support vectors; new instances 
are then classified according to the side of the hy-
perplane they fall into.  

In order to handle linearly nonseparable data, the 
optimization cost function includes an error minimi-
zation term to penalize the wrongly classified train-
ing instances.  

See the references provided in the text for a 
technical description of SVMs. 

TRAINING
FEATURES

EXTRACTION
TRAINING CLASSIFICATION

TRAINING
FEATURES

EXTRACTION
TRAINING CLASSIFICATION

 
Figure 5: Supervised procedure based on SVM. 

Our proposed supervised procedure for tissue 
segmentation consists in three main steps (see Figure 
5): 

1) Training Features Extraction.  In order to ob-
tain a good generalization of the SVM, a skilled op-
erator was asked to select from a large number of 
real-life tissue images small rectangular regions 
wherein both connective and epithelial tissue were 
present. The images showed various staining levels 
and very different characteristics of tissue shape and 
intensity distribution. 

In each representative sample the operator manu-
ally traced the boundaries of connective and epithe-
lial tissue. Then a NxN square sliding window was 
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horizontally and vertically shifted over the samples 
(shift value s), thus covering the entire surface of the 
image; for each shifted window, a features vector 
was generated with the RGB values of 256 equally-
spaced pixels (see Figure 6, parameters set-up in 
Section 3.2).  

In this way, a features vector of 3x256 variables 
was created for each single shift.  

A +1 label was assigned to windows with a 
prevalence of epithelial tissue pixels, a -1 label to 
windows with a prevalence of connective tissue pix-
els.  

2) Training.  The labelled features vectors were fed 
into the SVM for the training; for details about the 
parameters set-up see Section 3.2.  

3) Classification.  The optimized SVM obtained in 
the training step is used to perform tissue classifica-
tion for new images.  

For this purpose, the input images are processed 
to generate features vectors as in step 1 which are 
fed into the trained SVM. At the end of the classifi-
cation, the SVM automatically associates positive 
labels to epithelial patterns and negative labels to 
connective patterns. The output is then processed to 
reconstruct a two-dimensional result as in Figure 8.  

3 IMPLEMENTATION 

The algorithm was implemented in Java as a plugin 
for ImageJ, a public domain image analysis and 
processing software which runs on all the standard 
operating systems (Windows, Mac OS, Mac OS X 
and Linux): therefore it is totally hardware-
independent, flexible and upgradeable. We inherited 
the whole class hierarchy of the open-source ImageJ 
1.37 API and the free plugins for color deconvolu-
tion (Landini) and K-means clustering (Sacha) and 
we implemented our own functions and classes. A 

user-friendly interface enables the user to set differ-
ent parameters values without modifying the source 
code.  

For the supervised procedure we used the cSVM 
tool for binary classification (Anguita, 2005), since 
it uses the state-of-art optimization method SMO, 
i.e. Sequential Minimal Optimization (Platt, 1999). 
This cSVM tool implements the algorithm described 
in (Wang, 2004), which was successfully used to 
solve different real world problems. Our ImageJ 
plugins for features vectors generation and output 
reconstruction were integrated to the SVM tool.  

The parameters of the proposed algorithms were 
empirically tuned by a skilled operator after running 
several experiments on a large dataset of real tissue 
images which showed very different characteristics 
of staining intensity, resolution, EGF-R/TGF-alpha 
activity level, tissue shape. In the following subsec-
tions, we report some details about the implementa-
tion of both the unsupervised and the supervised 
classification procedures and we outline the experi-
mental set-up of the main parameters.  

3.1 Unsupervised Procedure 

The number of clusters k (see Section 2.1 point 3) 
was set to 4 after running the algorithm with values 
varying from 2 to 5 and evaluating each time K-
means performance in terms of sensibility (power to 
detect connective components) and selectivity 
(power to avoid misclassification of epithelial com-
ponents). For values lower than 4 we often experi-
enced a very good sensibility but a not sufficient 
selectivity; for higher values the sensibility was fre-
quently poor. A k value equal to 4 assured a good 
performance of K-means in all the tested images. 

The size threshold TS (see Section 2.1 point 4) 
was varied from 1000 to 5000 pixels with a step of 
1000 and was finally set to 3000. Increasing values 
led to a progressive improvement of selectivity in 
the connective tissue selection; with values higher 

Figure 6: Generation of the features vectors for SVM training. A NxN square window is horizontally and vertically shifted
on the sample, thus covering the entire surface of the image. For each shift a features vector is generated with RGB values of
256 equally spaced pixels, as for Window A and Window B. Epithelial instances are labelled with a +1, connective instances
with a -1. 

 
 
 

Features vector : [r1 g1 b1 r2 g2 b2 … r256 g256 b256] 
Label : -1 (CONNECTIVE TISSUE) 

Features vector : [r1 g1 b1 r2 g2 b2 … r256 g256 b256] 
Label : +1 (EPITHELIAL TISSUE) 
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than 3000 the lack in sensibility was often not ac-
ceptable. Similarly, the circularity threshold TC 
(see Section 2.1 point 4) was decreased from 0,9 to 
0,3. A value of 0,7 assured a good selectivity en-
hancement without altering sensibility in any of the 
images.       

The edge threshold TE (see Section 2.1 point 5) 
was increased from 20% to 35% with a step of 5%, 
evaluating each time the parameter performance in 
terms of selectivity enhancement and sensibility  
preservation. A value of 25% assured the best im-
provement in selectivity without altering sensibility 
in any of the tested images.  

3.2 Supervised Procedure 

The window size N for features vectors generation  
(see Section 2.2 point 1) should grant a visible 
differentiation between connective and epithelial 
tissue; since nuclei are blue-colored and quite 
similar in both the tissues, the window has to be 
large enough to contain a whole nucleus and some 
surrounding tissue. On the other hand, lower-sized 
windows allows a better selectivity.  

After running several experiments with values 
varying from 16 to 72 pixels, N was set to 32 for 
x200 images and to 64 for x400 images.  

Since the optimal window size depends on image 
resolution, x200 and x400 images were respectively 
classified with SVM trained with x200 and x400 
samples.  

The shift value s (see Section 2.2 point 1) was 
set to N/4, which granted the best compromise 
between selectivity of classification and 
computational time. 

After running experiments with linear, gaussian 
and polynomial kernels, we finally chose the 
normalized polynomial kernel shown in Equation 3, 
where x1 and x2 are feature vectors, n=768 is the 

input space dimension and p=2 is the kernel 
hyperparameter; see (Wang, 2004) for technical 
details). 

 

(3) 

4 EXPERIMENTAL RESULTS 

We tested the performance of both the algorithms on 
a large dataset extracted from real tissue images 
which presented positive reactions at the EGF-R or 
at the TGF-alpha receptor activation (see Figure 1 
for examples); reactions are localized in cellular 
membranes for EGF-R and in cytoplasm for TGF-
alpha. Images were acquired from different samples 
with two different enlargements, x200 or x400.  

A skilled operator was asked to manually draw 
the boundaries of connective tissue in each of the 
testing datasets. The manual segmentations per-
formed by the operator were pixel-by-pixel com-
pared to those obtained by both the unsupervised 
and the supervised algorithms. Connective tissue 
selection was evaluated in terms of sensibility (i.e. 
power to detect connective tissue) and selectivity 
(power to avoid misclassification of non-connective 
tissue): for this purpose, the percentage of respec-
tively connective and non-connective pixels which 
were equally classified by manual and automated 
segmentation was calculated. The segmentation ac-
curacy was then calculated as weighted average of 
sensibility and selectivity, as in Equation 4. 

 

 
(4) 

Different weights were used because sensibility 
is more critical for automated measures of protein 
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Table 1: Experimental results of unsupervised and supervised classifications. As outlined in Section 3.2, in supervised 
classification two different SVMs trained respectively with x200 and x400 samples were used (the number of training 
instances extracted from each dataset and the total number of training instances are reported for both x200 and x400 classi-
fiers). Training instances were removed from the validation dataset, which was considerably larger. 

 UNSUPERVISED ALGORITHM SUPERVISED ALGORITHM 

Dataset Sensibility 
(%) 

Selectivity 
(%) 

Accuracy 
(%)  Number of  

training instances 
Number of 

validation  instances 
Sensibility 

(%) 
Selectivity 

(%) 
Accuracy 

(%) 
1 81,89 90,54 84,77  1692 28308 57,91 91,38 69,07 
2 94,64 84,94 91,41  912 20263 94,05 79,20 89,10 
3 95,21 97,99 96,14  220 20192 91,09 94,75 92,31 
4 86,60 87,32 86,84  408 19142 84,41 91,18 86,66 x2

00
 

    tot 3232 91137    
5 91,77 86,20 89,91  558 6942 67,48 82,35 72,43 
6 91,30 78,56 87,05  640 6860 66,48 90,02 74,32 
7 99,67 93,33 97,56  252 7248 93,53 87,46 91,51 x4

00
 

8 89,21 86,28 88,23  300 5888 87,29 85,39 86,66 
     tot 1750 28688    
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activity, which is the principal application targeted 
by our method: in fact, in order to obtain a reliable 
measure, it is fundamental to eliminate as much as 
possible non representative tissues from the range of 
interest; on the contrary, erroneous removal of some 
epithelial regions is more tolerable, since it has a 
lower influence on the final measure.   

Results obtained for both the automated algo-
rithms are reported in Table 1. The number of train-
ing instances extracted from each dataset and the 
total number of training instances are reported  too 
for both x200 and x400 SVMs. The classification 
performance was evaluated on a large validation 
dataset which did not include the patterns used for 
training.  

Some examples of tissue segmentation are shown 
in Figure 8. 

Accuracy of tissue segmentation
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Figure 7: Accuracy of tissue segmentation; comparison 
between unsupervised and supervised procedure. 

As shown in Table 1 and Figure 7, our unsuper-
vised procedure achieved the best results: this 
method performed tissue segmentations highly com-
parable with those provided by the skilled operator 
in all the testing datasets; mean accuracy was 
90,24%, with values generally around 90% and al-
ways above approximately 85%. SVM performed 
worse in all the tested datasets; mean accuracy was 
about 7,5% lower than our unsupervised method.  

As we previously outlined, SVM is a theoreti-
cally superior machine learning method which has 
often been shown to achieve great  classification 

performance compared to other learning algorithms 
across most application fields and tasks including 
image processing (Angelini et al., 2006; Cai, 2003; 
Muller et al., 2001; Osuna, 1997). However, in this 
case its classification performance was poor because 
of the intrinsic complexity of the images targeted by 
our method: in fact, these images showed very dif-
ferent characteristics of staining, tissue shape and 
intensity distribution. Because of the heterogeneity 
of the representative features of each class, it was 
impossible for the supervised method to obtain a  
satisfying separability of connective and epithelial 
tissue.   

Images heterogeneity was less critical for the un-
supervised approach, since differently from SVMs it 
is based only on the characteristics of the input im-
age and not on a fixed model of the ground truth.  

On the other hand, our unsupervised method’s 
selectivity is influenced by tissue composition: in 
fact, since the number of clusters is a-priori fixed, 
some epithelial regions with low brown staining are 
often misclassified in images without any connective 
tissue.  

Despite this eventuality is unlikely, since pure-
epithelial tissue samples are very uncommon (and 
we reasonably suppose that the operator would es-
cape the automated tissue segmentation in this case), 
we are working on the solution of the problem: in 
particular, the introduction of an adaptive number of 
clusters is in development. 

As regards the supervised approach, other learn-
ing methods such as neural networks and artificial 
neural networks (ANN) will be tested in the future.  

5 CONCLUSIONS 

We presented a fully-automated unsupervised tissue 
image segmentation method that allows to distin-
guish tumor areas in immunohistochemical images 
and disregard non pathological areas such as connec-
tive tissue. This procedure is critical for automated 
protein activity quantification in tumor tissues in 

Figure 8: Examples of tissue segmentation performed by the unsupervised (a) and the supervised (b) algorithm (manual 
segmentation in red, automated segmentation in black).   

(1-a) (2-a) (2-b)(1-b)
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order to analyze the pathology dynamics and devel-
opment.  

We described the original processing steps we 
designed. Finally, we carried out an extensive ex-
perimental evaluation on a large set of heterogene-
ous images that demonstrated the high accuracy 
achievable by the proposed technique (90% on aver-
age) compared to a more traditional approach based 
on Support Vector Machines (SVM).  
As future work, we will compare the proposed ap-
proach to artificial neural networks (ANN), and we 
will eventually study the possibility of their integra-
tion. 
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Abstract: This paper investigates the potential of physiological signals as a reliable channel for automatic recognition
of user’s emotial state. For the emotion recognition, little attention has been paid so far to physiological
signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages
of automatic recognition system using biosignals are discussed, from recording physiological dataset up to
feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electro-
cardiogram, skin conductivity and respiration changes. A wide range of physiological features from various
analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy,
etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional
states. The best features extracted are specified in detail and their effectiveness is proven by emotion recogni-
tion results.

1 INTRODUCTION

In human communication, expression and under-
standing of emotions facilitate to complete the mutual
sympathy. To approach it in human-machine interac-
tion, we need to equip machines with the means to
interpret and understand human emotions without in-
put of user’s translated intention. Hence, one of the
most important prerequisites to realize such an ad-
vanced user interface is a reliable emotion recogni-
tion system which guarantees acceptable recognition
accuracy, robustness against any artifacts, and adapt-
ability to practical applications. It is about to model,
analyze, process, train, and classify emotional fea-
tures measured from the implicit emotion channels of
human communication, such as speech, facial expres-
sion, gesture, pose, physiological responses, etc. In
this paper we concentrate on finding emotional cues
from various physiological measures.

Recently many works on engineering approaches
to automatic emotion recognition have been reported.
For an overview we refer to (Cowie et al., 2001). Par-
ticularly, most efforts have been taken to recognize
human emotions using audiovisual channels of emo-
tion expression, facial expression, speech, and ges-
ture. Relatively little attention, however, has been
paid so far to using physiological measures. Rea-

sons are some significant limitations resulting from
the use of physiological signals for emotion recogni-
tion. The main difficulty lies in the fact that it is a
very hard task to uniquely map subtle physiological
patterns onto specific emotional states. As an emo-
tion is a function of time, context, space, culture, and
person, physiological patterns may also widely differ
from user to user and from situation to situation.

In this paper, we treat all essential stages of auto-
matic emotion recognition system using physiological
measures, from data collection up to classification of
four typical emotions (joy, anger, sadness, pleasure)
using four-channel biosignals. The work in this pa-
per is novel in trying to recognize naturally induced
musical emotions using physiological changes, in ac-
quiring the physiological dataset through everyday
life recording over many weeks from multiple sub-
jects, in finding emotion-relevant ANS (autonomic
nervous system) specificity through various feature
contents, and in designing an emotion-specific classi-
fication method. After the calculation of a great num-
ber of features (a total of 110 features) from various
feature domains, we try to identify emotion-relevant
features using the backward feature selection method
combined with a linear classifier. These features can
be directly used to design affective human-machine
interfaces for practical applications.
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2 RELATED RESEARCH

A significant amount of work has been conducted by
Picard and colleagues at MIT Lab who showed that
certain affective states may be recognized by using
physiological data including heart rate, skin conduc-
tivity, temperature, muscle activity and respiration ve-
locity (Healey and Picard, 1998). They used person-
alized imagery to elicit target emotions from a sin-
gle subject who had two years’ experience in act-
ing, and achieved overall 81% recognition accuracy
in eight emotions by using hybrid linear discrimi-
nant classification (Picard et al., 2001). Nasoz et
al. (Nasoz et al., 2003) used movie clips based on
the study by Gross and Levenson (Gross and Leven-
son, 1995) for eliciting target emotions from 29 sub-
jects and achieved best emotion classification accu-
racy of 83% through the Marquardt Backpropagation
algorithm (MBP). More recently, interesting user-
independent emotion recognition system is reported
by Kim et al. (Kim et al., 2004). They developed
a set of recording protocols using multimodal stimuli
(audio, visual, and cognitive) to evoke targeted emo-
tions (sadness, stress, anger, and surprise) from the
175 children aged from five to eight years. Classi-
fication ratio of 78.43% for three emotions (sadness,
stress, and anger) and 61.76% for four emotions (sad-
ness, stress, anger, and surprise) has been achieved by
adopting support vector machine as pattern classifier.

Note that the recognition rates in the privious
works should be strongly dependent on the datasets
they used and context of subjects. Moreover, the
physiological datasets used in most of the previous
works are gathered by using visual elicitation mate-
rials in a lab setting. The subjects then “tried and
felt” or “acted out” the target emotions while look-
ing at selected photos or watching movie clips that
are carefully prearranged to the emotions. It means,
extremely speaking, that the recognition results were
achieved for specific users in specific contexts with
the “forced” emotional states.

3 MUSICAL EMOTION
INDUCTION

A well established mechanism of emotion induction
would be either to imagine or to recall from individ-
ual memory. Emotional reaction can be triggered by
a specific cue and be evoked by an experimental in-
struction to imagine certain events. On the other hand,
it can spontaneously be resurged in memory. Mu-
sic is a pervasive element accompanying many highly
significant events in human social life and particular

pieces of music are often connected to significant per-
sonal memories. This claims that certain music can
be a powerful cue in bringing emotional experiences
from memory back into awareness. Since music lis-
tening is often done by an individual in isolation, the
possible artifacts by social masking and social inter-
action may be minimized in the experiment. Further-
more, like odors, music may be treated at lower lev-
els of the brain that are particularly resistant to mod-
ifications by later input, contrary to cortically based
episodic memory (LeDoux, 1992).

anger joy

sadness pleasure

high arousal

low arousal

negative positive

energetic

calm

anxious happy
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simple
complex

(song1)(song2)

(song3) (song4)
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fast

slow
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laud

high pitch

staccato

legato
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Figure 1: Reference emotional cues in music based on
the 2D emotion model. Metaphoric cues for song selec-
tion: song1 (enjoyable, harmonic, dynamic, moving), song2
(noisy, loud, irritating, discord), song3 (melancholic, sad
memory), song4 (blissful, pleasurable, slumberous, tender).

To collect a database of physiological signals in
which the targeted emotions (joy, anger, sadness,
pleasure)1 can benaturally reflected without any de-
liberate expression, we decided to use musical induc-
tion method, recording physiological signals while
the subjects are listening to different music songs.
The subjects were three males (two students and an
academic employee) between 25-38 years old and
enjoyed listening to music everyday. The subjects
individually handpicked four music songs by them-
selves that should spontaneously evoke their emo-
tional memories and certain moods corresponding to
the four target emotions. Figure 1 shows the mu-
sical emotion model referred to for the selection of
their songs. Generally, emotional responses to music
would vary greatly from individual to individual de-
pending on their unique past experiences. Moreover,

1We note that these four expression words are used to
cover each quadrant in the 2D emotion model, i.e. joy
should representall emotions with high arousal and positive
valence, anger with high arousal and negative, sadness with
low arousal and negative, and pleasure with low arousal and
positive valence.
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cross-cultural comparisons in literature suggest that
the emotional responses can be quite differentially
emphasized by different musical cultures and train-
ing. This is why we advised the subjects to choose
themselves the songs that recall their individual spe-
cial memories with respect to the target emotions.

For the experiment, we prepared a quiet listening
room in our institute in order to ensure the subjects
to unaffectedly feel the emotions from the music. For
the recording, the subject needs to position himself
the sensors by instruction posters in the room, to ap-
ply the headphones, and to select a song from his song
list saved in the computer. When he does mouse-click
just at the start of recording, the recording and music
systems are automatically setting up by preset values
for each song. Recording schedule was determined
by the subjects themselves too, at any time when they
will listen to music and which song they choose. It
means, different from methods used in other studies,
that the subjects were not forced to participate in a
lab setting scenario and to use prespecified stimula-
tion materials. We believe that this voluntary partic-
ipation of the subjects during our experiment might
be a help to obtain a high-quality dataset with natural
emotions. The physiological signals are acquired us-

Position Typical Waveform

(a)

(b)

(c)

(d)

Figure 2: Position and typical waveforms of the biosensors:
(a) ECG, (b) EMG, (c) RSP, (d) SC.

ing the Procomp InfinitiTM (www.mindmedia.nl) with
four biosensors, electromyogram (EMG), skin con-
ductivity (SC), electrocardiogram (ECG), and respi-
ration (RSP). The sampling rates are 32 Hz for EMG,
SC, and RSP, and 256 Hz for ECG. The positions
and typical waveforms of the biosensors we used
are illustrated in Fig. 2. We used pre-gelled single
Ag/AgCl electrodes for ECG and EMG sensors and
standard single Ag/AgCl electrodes fixed with two
finger bands for SC sensor. A stretch sensor using
latex rubber band fixed with velcro respiration belt is
used to capture breathing activity of the subjects. It
can be worn either thoracically or abdominally, over
clothing.

During the three months, a total of 360 samples
(90 samples for each emotion) from three subjects is
collected. Signal length of each sample is between
3-5 minutes depending on the duration of the songs.

4 METHODOLOGY

Overall structure of our recognition system is illus-
trated in Figure 3.
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Figure 3: Block diagram of supervised statistical classifica-
tion system for emotion recognition.

4.1 Preprocessing

Different types of artifacts were observed in all the
four channel signals, such as transient noise due
to movement of the subjects during the recording,
mostly at the begin and end of the each recording.
Thus, uniformly for all subjects and channels, we seg-
mented the signals into final samples with fixed length
of 160 seconds by cutting out from the middle part
of each signal. Particularly to the EMG signal, we
needed to pay closer attention because the signal con-
tains artifacts generated by respiration and heart beat
(Fig. 4). It was due to the position of EMG sensor at
the nape of the neck. For other signals we used per-
tinent lowpass filters to remove the artifacts without
loss of information.
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Figure 4: Example of EMG signal with heart beat artifacts
and denoised signal.

4.2 Measured Features

From the four channel signals we calculated a total of
110 features from various analysis domains includ-
ing conventional statistics in time series, frequency

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

126



domain, geometric analysis, multiscale sample en-
tropy, subband spectra, etc. For the signals with non-
periodic characteristics, such as EMG and SC, we fo-
cused on capturing the amplitude variance and local-
izing the occurrences (number of transient changes)
in the signals.

4.2.1 Electrocardiogram (ECG)

To obtain subband spectrum of the ECG signal we
used the typical 1024 points fast Fourier transform
(FFT) and partitioned the coefficients within the fre-
quency range 0-10 Hz into eight non-overlappingsub-
bands with equal bandwidth. First, as features, power
mean values of each subband and fundamental fre-
quency (F0) are calculated by finding maximum mag-
nitude in the spectrum within the range 0-3 Hz. To
capture peaks and their locations in subbands, sub-
band spectral entropy (SSE) is computed for each sub-
band. To compute the SSE, it is necessary to convert
each spectrum into a probability mass function (PMF)
like form. Eq. 1 is used for the normalization of the
spectrum.

xi =
Xi

∑N
i=1 Xi

, for i = 1. . .N (1)

whereXi is the energy ofith frequency component of
the spectrum and̃x = {x1 . . .xN} is to be considered
as the PMF of the spectrum. In each subband the SSE
is computed from̃x by

Hsub=−
N

∑
i=1

xi · log2 xi (2)

By packing the eight subbands into two bands, i.e.,
subbands 1-3 as low frequency (LF) band and sub-
bands 4-8 as high frequency (HF) band, the ratios of
LF/HF bands are calculated from the power mean val-
ues and the SSEs.

To obtain the HRV (heart rate variability) from
the continuous ECG signal, each QRS complex is de-
tected and the RR intervals (all intervals between ad-
jacent R waves) or the normal-to-normal (NN) inter-
vals (all intervals between adjacent QRS complexes
resulting from sinus node depolarization) are deter-
mined. We used the QRS detection algorithm of Pan
and Tompkins (Pan and Tompkins, 1985) in order to
obtain the HRV time series. Figure 5 shows example
of R wave detection and interpolated HRV time series,
referring to the increases and decreases over time in
the NN intervals.

In time-domain of the HRV, we calculated statis-
tical features including mean value, standard devia-
tion of all NN intervals (SDNN), standard deviation
of first difference of the HRV, the number of pairs

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 sample

sample

sample

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0

0

2K

-2K

0

2K

-2K

0

2K

-2K

0 2 4 6 8 1 0 sec

sec

0.65

0 .7

RR Interval_n

R
R

 I
n

te
rv

a
l_

n
+

1

SD2
SD1

SD1 = 4.7 ms

SD2 = 15.8 ms

(b)

(c)

(a) (d)

(e)

µ
V

µ
V

µ
V

Figure 5: Example of ECG Analysis: (a) raw ECG sig-
nal with respiration artifacts, (b) detrended signal, (c) de-
tected RR interbeats, (d) interpolated HRV time series, (e)
Poincaré plot of the HRV time series.

of successive NN intervals differing by greater than
50 ms (NN50), the proportion derived by dividing
NN50 by the total number of NN intervals. By cal-
culating the standard deviations in different distances
of RR interbeats, we also added Poincaré geometry
in the feature set to capture the nature of interbeat
(RR) interval fluctuations. Poincaré plot geometry is
a graph of each RR interval plotted against the next
interval and provides quantitative information of the
heart activity by calculating the standard deviations
of the distances of theR−R(i) to the linesy = x and
y =−x +2∗R−Rm, whereR−Rm is the mean of all
R−R(i), (Kamen et al., 1996). Figure 5.(e) shows an
example plot of the Poincaré geometry. The standard
deviations SD1 and SD2 refer to the fast beat-to-beat
variability and longer-term variability ofR−R(i) re-
spectively.

Entropy-based features from the HRV time se-
ries are also considered. Based on the so-calledap-
proximate entropy and sample entropy proposed in
(Richmann and Moorman, 2000), a multiscale sam-
ple entropy (MSE) has been introduced (Costa et al.,
2005) and successfully applied to physiological data,
especially for analysis of short and noisy biosig-
nal. Given a time series{Xi} = {x1,x2, ...,xN} of

lengthN, the number (n(m)
i ) of similar m-dimensional

vectorsy(m)( j) for each sequence vectorsy(m)(i) =
{xi,xi+1, ...,xi+m−1} is determined by measuring their
respective distances. The relative frequency to find
the vectory(m)( j) within a tolerance levelδ is defined
by

C(m)
i (δ) =

n(m)
i

N−m+1
(3)

The approximate entropy,hA(δ,m), and the sample
entropy,hS(δ,m) are defined as
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hA(δ,m) = lim
N→∞

[H(m]
N (δ)−H(m+1)

N (δ)], (4)

hS(δ,m) = lim
N→∞
− ln

C(m+1)(δ)

C(m)(δ)
, (5)

where

H(m)
N (δ) =

1
N−m+1

N−m+1

∑
i=1

lnC(m)
i (δ), (6)

Because of advantage of being less dependent on time
series lengthN, we applied the sample entropyhS

to coarse-grained versions (y(τ)
j ) of the original HRV

time series{Xi},

y j(τ)=
1
τ

jτ

∑
i=( j−1)τ+1

xi, 1≤ j≤N/τ, τ = 1,2,3, ...

(7)
The time series{Xi} is first divided intoN/τ seg-
ments by non-overlapped windowing with length of
scale factorτ and then the mean value of each seg-
ment is calculated. Note that for scale oney j(1) = x j.
From the scaled time seriesy j(τ) we obtain them-
dimensional sequence vectorsy(m)(i,τ). Finally, we
calculate the sample entropyhS for each sequence
vectory j(τ). In our analysis we usedm = 2 and fixed
δ = 0.2σ for all scales, whereσ is the standard de-
viation of the original time seriesxi. Note that using
the fixed tolerance levelδ as a percentage of the stan-
dard deviation corresponds to initial normalizing of
the time series and it thus enables thathS does not de-
pend on the variance of the original time series, but
only on their sequential ordering.

In frequency-domainof the HRV time series, three
frequency bands are of interest in general; very-
low frequency (VLF) band (0.003-0.04 Hz), low fre-
quency (LF) band (0.04-0.15 Hz), and high frequency
(HF) band (0.15-0.4 Hz). From these subband spec-
tra, we computed dominant frequency and power of
each band by integrating the power spectral densi-
ties (PSD) obtained by using Welch’s algorithm, and
ratio of power within the low-frequency and high-
frequency band (LF/HF). Since the parasympathetic
activity dominates at high frequency, the ratio of
LF/HF is generally thought to distinguish sympathetic
effects from parasympathetic effects (Malliani, 1999).

4.2.2 Respiration (RSP)

Including the typical statistics of the raw RSP signal
we calculated similar types of features like the ECG
features, power mean values of three subbands (ob-
tained by dividing the Fourier coefficients within the
range 0-0.8 Hz into non-overlapped three subbands
with equal bandwidth), and the set of subband spec-
tral entropies (SSE).

In order to investigate inherent correlation be-
tween respiration rate and heart rate, we considered
a novel feature content for the RSP signal. Since
RSP signal exhibits quasi periodic waveform with si-
nusoidal property, it is not unreasonable to process
HRV like analysis for the RSP signal, i.e. to esti-
mate breathing rate variability (BRV). After detrend-
ing with mean value of the entire signal and low-
pass filtering, we calculated the BRV by detecting the
peaks in the signal using the maxima ranks within
each zero-crossing. From the BRV time series, simi-
lar to the ECG signal, we calculated mean value, SD,
SD of first difference, MSE, Poincaré analysis, etc.
In the spectrum of the BRV, peak frequency, power
of two subbands, low-frequency band (0-0.03Hz) and
high-frequency band (0.03-0.15 Hz), and the ratio of
power within the two bands (LF/HF) are calculated.

4.2.3 Skin Conductivity (SC)

The mean value, standard deviation, and mean of first
and second derivations are extracted as features from
the normalized SC signal and the low-passed SC sig-
nal using 0.2 Hz of cutoff frequency. To obtain a de-
trended SCR (skin conductance response) waveform
without DC-level components, we removed continu-
ous, piecewise linear trend in the two low-passed sig-
nals, i.e., very low-passed (VLP) with 0.08 Hz and
low-passed (LP) signal with 0.2 Hz of cutoff fre-
quency, respectively (see Fig. 6 (a)-(e)).

The baseline of the SC signal was calculated and
subtracted to consider only relative amplitudes. By
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Figure 6: Analysis Examples of SC and EMG signals.

finding two consecutive zero-crossings and the maxi-
mum value between them, we calculated the number
of SCR occurrences within 100 seconds from each LP
and VLP signal, mean of the amplitudes of all occur-
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rences, and ratio of the SCR occurrences within the
low-passed signals (VLP/LP).

4.2.4 Electromyography (EMG)

For the EMG signal we calculated similar types of
features as in the case of the SC signal. From normal-
ized and low-passed signals, the mean value of entire
signal, the mean of first and second derivations, and
the standard deviation are extracted as features. The
occurrence number of myo-responses and ratio of that
within VLP and LP signals are also added in feature
set by similar manner used for detecting the SCR oc-
currence but with 0.08 Hz (VLP) and 0.3 Hz (LP) of
cutoff frequency (see Fig. 6.(f)-(j)).

Finally we obtained a total of 110 features from
the 4-channel biosignals; 53 (ECG) + 37 (RSP) + 10
(SC) + 10 (EMG).

5 CLASSIFICATION RESULT

For classification we used the pseudoinverse linear
discriminant analysis (pLDA) (Ye and Li, 2005),
combined with the sequential backward selection
(SBS) (Kittler, 1986) to select significant feature sub-
set. The pLDA is a natural extension of classical
LDA by applying eigenvalue decomposition to the
scatter matrices, in order to deal with the sigular-
ity problem of LDA. Table 1 with confusion ma-
trix presents the correct classification ratio (C C R ) of
subject-dependent (Subject A, B, and C) and subject-
independent (All) classification where the features of
all the subjects are simply merged and normalized.
We used leave-one-out cross-validation where a sin-
gle observation taken from the entire samples is used
as the test data and the remaining observations are
used for training the classifier. This is repeated such
that each observation in the samples is used once as
the test data. In the Table, it turned out that theC C R
is depending on subject to subject. For example, best
accuracy was 91% from subject B and lowest was
81% from subject A. Not only the overall accuracy but
theC C R of the single emotions differs from subject
to subject. On the other side, it is very meaningful that
relatively robust recognition accuracy is achieved for
the classification between emotions that are recipro-
cal with each other regarding the diagonal quadrants
in the 2D emotion model, i.e., joy vs. sadness and
anger vs. pleasure. Moreover, the accuracy is much
better than that of arousal classification.

The C C R of subject-independent classification
was not comparable to that obtained for subject-
dependent classification. As shown in Figure 7, merg-

Table 1: Recognition results in rates (error 0.00 = C C R
100%) achieved by using pLDA with SBS and leave-one-
out cross validation.
# of samples: 120 for each subject and 360 for All.

Subject A (CCR % = 81%)

joy anger sadness pleasure total* error

joy 22 4 1 3 30 0.27

anger 3 26 1 0 30 0.13

sadness 1 2 23 4 30 0.23

pleasure 3 0 1 26 30 0.13

Subject B (CCR % = 91%)

joy anger sadness pleasure total* error

joy 27 3 0 0 30 0.10

anger 3 25 1 1 30 0.17

sadness 0 2 28 0 30 0.07

pleasure 0 1 0 29 30 0.03

Subject C (CCR % = 89%)

joy anger sadness pleasure total* error

joy 28 0 2 0 30 0.07

anger 0 30 0 0 30 0.00

sadness 0 0 24 6 30 0.20

pleasure 0 0 5 25 30 0.17

All: Subject-independent (CCR % = 65%)

joy anger sadness pleasure total* error

joy 62 9 8 11 90 0.31

anger 15 57 13 5 90 0.37

sadness 9 6 58 17 90 0.36

pleasure 8 5 21 56 90 0.38

*: Actual total # of samples

ing the features of all subjects does not refine the dis-
criminating information related to the emotions, but
rather leads to scattered class boundaries.

We also tried to differentiate the emotions based
on the two axes, arousal and valence, in the 2D emo-
tion model. The samples of four emotions are di-
vided into groups of negative valence (anger/sadness)
and positive valence (joy/pleasure) and into groups
of high arousal (joy/anger) and low arousal (sad-
ness/pleasure). By using the same methods, we then
performed two-class classification of the divided sam-
ples for arousal and valence separately. Finally, it
turned out that emotion-relevant ANS specificity can
be observed more conspicuously in the arousal axis
regardless of subject-dependent or independent case.
Classification of arousal achieved an acceptableC C R
of 97-99% for the subject-dependent recognition and
89% for the subject-independent recognition, while
the results for valence were 88-94% and 77%, respec-
tively.
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Table 2: Best emotion-relevant features extracted from four channel physiological signals. Arousal classes:
joy+anger/sadness+pleasure, Valence classes: joy+pleasure/anger+sadness, Four classes: joy/anger/sadness/pleasure.

Classes Best Emotion-relevant Features (Ch value domain, C : ECG,R : RSP,S : SC,M : EMG)

Arousal C std(diff) HRVtime, C sd2 PoincareHRV, C powerLow HRVspec, R meanEnergy SubSpectra, R sd2 PoincareBRV

R mean MSE, S mean RawLowpassed, S std RawLowpassed, M #occurrenceRatio RawLowpassed

M mean RawNormed

Valence C sd2 PoincareHRV, C meanEnergy SubSpectra, C ratioLH HRVspec, C mean MSE, C mean(diff) MSE

R meanEnergy SubSpectra, R mean(diff) SubSpectra, R sd1 PoincareBRV, R sd2 PoincareBRV, R mean MSE

S mean(diff) RawNormed, M mean(diff) RawNormed

Four Emotions C mean HRVtime, C std HRVtime, C std(diff) HRVtime, C mean(diff) MSE, C mean MSE, C mean SSE

C sd2 PoincareHRV, C mean SubSpectra, R meanEnergy SubSpectra, R mean SSE, R mean BRVtime

R sd1 PoincareBRV, R sd2 PoincareBRV, R mean MSE, R power BRVspec, S std RawLowpassed

S mean(diff) RawNormed, S mean(diff(diff)) RawLowpassed, S mean RawNormed, S #occurrence RawLowpassed

M mean(diff) RawNormed

: overall selected features are printed in bold
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Figure 7: Comparison of feature distributions of subject-
dependent and subject-independent case. (a) Subject A, (b)
Subject B, (c) Subject C, (d) Subject-independent.

6 BEST EMOTION-RELEVANT
ANS FEATURES

In Table 2, the best emotion-relevant features, that
we determined by ranking the features selected for
all subjects (including Subject All) in each classi-
fication problem, are listed in detail by specifying
their values and domains. One interesting result is
that each classification problem respectively links to-
gether with certain feature domain. The features ob-
tained from time/frequency analysis of HRV time se-
ries are decisive for arousal and four emotions clas-
sification, while the features from MSE domain of

ECG signals are a predominant factor for correct va-
lence differentiation. Particularly, mutually sympa-
thizing correlate between HRV and BRV which is
firstly proposed in this paper has been clearly ob-
served in all the classification problems by the fea-
tures from their time/frequency analysis and Poincaré
domain, PoincareHRV and PoincareBRV. This re-
veals a manifest cross-correlation between respiration
and cardiac activity with respect to emotional state.
Furthermore, the correlation between heart rate and
respiration is obviously captured by the features from
HRV power spectrum (HRVspec), the fast/long-term
HRV/BRV analysis using Poincaré method, and the
multiscale variance analysis of HRV/BRV (MSE),
and that the peaks of high frequency range in HR
subband spectrum (SubSpectra) provide information
about how the sinoatrial node responds to vagal activ-
ity at certain respiration frequency.

In addtion, we analyzed the number of selected
features for the three classification problems, arousal,
valence, and four emotion states. For the arousal
classification, relatively few features are used but
achieved higher recognition accuracy compared to
the other class problems. After the ratio of num-
ber of selected features to the total feature number
of each channel, it was obvious that the SC and
EMG activities reflected in bothRawLowpassed and

RawNormed domains (see Table 2) are more signif-
icant for arousal classification than the other chan-
nels. This supports also the experimental elucidation
in previous works that the SCR is linearly correlated
with the intensity of arousal. On the other side, we
could observe a remarkable increase of number of the
ECG and RSP features for the case of valence classi-
fication.
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7 CONCLUSIONS

In this paper, we treated all essential stages of auto-
matic emotion recognition system using multichannel
physiological measures, from data collection up to
classification process, and analyzed the results from
each stage of the system. For four emotional states of
three subjects, we achieved average recognition accu-
racy of 91% which connotes more than a prima fa-
cie evidence that there exist some ANS differences
among emotions.

A wide range of physiological features from var-
ious analysis domains including time, frequency, en-
tropy, geometric analysis, subband spectra, multiscale
entropy, and HRV/BRV has been proposed to search
the best emotion-relevant features and to correlate
them with emotional states. The selected best fea-
tures are specified in detail and their effectiveness is
proven by classification results. We found that SC
and EMG are linearly correlated with arousal change
in emotional ANS activities, and that the features in
ECG and RSP are dominant for valence differentia-
tion. Particularly, the HRV/BRV analysis revealed the
cross-correlation between heart rate and respiration.

As we humans use several modalities jointly to in-
terpret emotional states since emotion affects almost
all modes, one most challenging issue in near future
work is to explore multimodal analysis for emotion
recognition. Toward the human-like analysis and finer
resolution of recognizable emotion classes, an essen-
tial step would be therefore to find innate priority
among the modalities to be preferred for each emo-
tional state. In this sense, physiological channel can
be considered as a “baseline channel” in designing
a multimodal fashion of emotion recognition system,
since it provides several advantages over other exter-
nal channels and acceptable recognition accuracy, as
we presented in this work.
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Abstract: In this paper we describe an adaptive approach for the classification of multichannel electrocorticogram 
(ECoG) recordings for a Brain Computer Interface. In particular the proposed approach implements a time-
frequency plane feature extraction strategy from multichannel ECoG signals by using a dual-tree 
undecimated wavelet packet transform. The dual-tree undecimated wavelet packet transform generates a 
redundant feature dictionary with different time-frequency resolutions. Rather than evaluating the individual 
discrimination performance of each electrode or candidate feature, the proposed approach implements a 
wrapper strategy to select a subset of features from the redundant structured dictionary by evaluating the 
classification performance of their combination. This enables the algorithm to optimally select the most 
informative features coming from different cortical areas and/or time frequency locations. We show 
experimental classification results on the ECoG data set of BCI competition 2005. The proposed approach 
achieved a classification accuracy of 93% by using only three features. 

1 INTRODUCTION 

Brain-computer interfaces (BCIs) use the electrical 
activity of the brain for communication and control. 
Since the muscles are bypassed, a BCI can be used 
by people with motor disabilities to interact with 
their environment. Electroencephalogram (EEG) is 
widely used in BCIs due to its non-invasiveness. 
However, the low signal to noise ratio (SNR) and 
spatial resolution of EEG limit its effectiveness in 
BCIs. On the other hand invasive methods such as 
single neuron recordings have higher spatial 
resolution and SNR.  However, they have clinical 
risks. Furthermore, maintaining long term reliable 
recording with implantable electrodes is difficult.  
On the other hand, an electrocorticogram (ECoG) 
has the ability to provide long term recordings from 
the surface of brain.  Furthermore, ECoG signals 
also provide information about oscillatory activities 
in the brain with a much higher bandwidth than EEG 
(Leuthardt 2004). Therefore, existing algorithms for 
EEG classification are readily applicable to ECoG 
processing. 
Various events in brain signals such as slow cortical 
potentials, motor imagery (MI) related sensorimotor 
rhythms, and visual evoked potentials were used in 
construction of ECoG based BCIs (Wolpaw 2000, 

Pfurtscheller 2001). In MI based BCIs, the subjects 
are asked to perform an imagined rehearsal of either 
hand/finger or foot movement without any muscular 
output. Related events in sensorimotor rhythms such 
as alpha (7-13Hz) and beta (16-32Hz) bands are 
processed to recognize the executed task using only 
brain waves. Several methods have been proposed to 
extract relevant features for BCI classification from 
rhythmic activities. Methods such as autoregressive 
modeling and sub band energies in predefined 
windows are widely used in single trial ECoG 
classification (Schlogl 1997, Prezenger 1999).  
When used with multi channel recordings, all of 
these methods need to deal with the high 
dimensionality of the data. Selecting the most 
informative electrodes and adapting to subject 
specific oscillatory patterns is critical for accurate 
classification. However, due to the lack of prior 
knowledge, selection of the most informative 
electrode locations can be difficult. Furthermore, it 
is well known that there exists a great deal of inter 
subject variability of EEG and ECoG patterns in 
spatial, temporal, and frequency domains (Ince 
2006, Ince 2007, Leuthardt 2004, Prutscheller 2001 
and Schlogl 1999). In (Ramoser 2000), the common 
spatial patterns (CSP) method was proposed to 
classify multichannel EEG recordings. The CSP 
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Figure 1: The block diagram of the proposed feature extraction and feature subset selection technique. 

method weighs each electrode location for 
classification and uses the correlation between 
channels to increase the SNR of the extracted 
features. Although the performance is increased with 
CSP, it has been shown that this method requires a 
number of electrodes to improve classification 
accuracy and that it is very sensitive to electrode 
montage. Furthermore, since it uses the variance of 
each channel, this method does not account for the 
spatiotemporal differences in distinct frequency 
subbands. Recently, time-frequency methods have 
been proposed as an alternative strategy for the 
extraction of MI related patterns in BCI’s (Wang 
2004, Ince2006 and Ince 2007). These methods 
utilized the entire time-frequency plane of each 
channel and integrate components with different 
temporal and spectral characteristics. Promising 
results were reported on well known data sets while 
classifying multichannel EEG. One of the main 
difficulties with these methods is once again dealing 
with the high dimensionality of the data collected. 
Furthermore, the adaptation to important patterns is 
implemented either by only accounting for the 
discrimination power of individual electrode 
locations or simultaneous processing of a large 
number of electrodes. 
In this paper we tackle these problems by 
implementing a spatially adapted time-frequency 
plane feature extraction and classification strategy. 
To our knowledge this is the first time that an 
approach implements a joint processing of ECoG 
features with different time and frequency resolution 
coming from distinct cortical areas for classification 
purposes. The algorithm proposed in this paper 
requires no prior knowledge of relevant time-
frequency indices and related cortical areas. In 
particular, as a first step, the proposed approach 
implements a time-frequency plane feature 

extraction strategy on each channel from 
multichannel ECoG signals by using a dual-tree 
undecimated wavelet packet transform (UDWT). 
The dual-tree undecimated wavelet packet transform 
forms a redundant, structured feature dictionary with 
different t-f resolutions. In the next step, this 
redundant dictionary is used for classification. 
Rather than evaluating the individual discrimination 
performance of each electrode or candidate feature, 
the proposed approach selects a subset of features 
from the redundant structured dictionary by 
evaluating the classification performance of their 
combination using a wrapper strategy. This enables 
the algorithm to optimally select the most 
discriminative features coming from different 
cortical areas and/or time-frequency locations. A 
block diagram summarizing the technical concept is 
given in Figure 1. In order to evaluate the efficiency 
of the proposed method we test it on the ECoG 
dataset of BCI competition 2005.  

The paper is organized as follows. In the next 
section we describe the extraction of structural time-
frequency features with dual-tree undecimated 
wavelet transform. In the following section we 
discuss available feature selection procedures and 
details of our proposed solutions. We describe the 
multichannel ECoG data in section 4. Finally we 
provide experimental results in section 5 and discuss 
our findings in section 6. 

2 FEATURE EXTRACTION 

Let us describe our feature dictionary and explain 
how it is computed from the wavelet-based dual-tree 
structure. A schematic diagram of the dual tree is 
shown in Figure 2. As indicated in the previous 
sections, the ECoG can be divided into several 
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Figure 2: This dual tree uses 1-level in both planes. Each 
node of the horizontal tree is a frequency subbands. Node 
{1,1} represents unfiltered original signal, node{2,1} 
represents low pass filtered signal and node {3,1} high 
pass filtered. Each of these subbands is segmented in time 
into 3 segments, as shown in the vertical tree. Segment 
{1,1},{2,1} and {3,1} covers the whole subband, segment. 
{1,2},{2,2} and {3,2} covers the first and segments with 
time indices three the second half of it. 
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Figure 3: The pyramidal undecimated wavelet tree. 

frequency subbands with distinct and subject 
depended characteristic. In order to extract 
information from these rhythms, we examine 
subbands of the ECoG signal by using an 
undecimated wavelet transform. In each subband, a 
second pyramidal tree is utilized to extract the time 
varying characteristics of the subband.  

2.1 Undecimated Wavelet Transform  

Discrete Wavelet Transform (DWT) and its variants 
have been extensively used in 1D and 2D signal 
analysis (Vetterli 2001). However, the 
downsampling operator at the outputs of each filter 
produces a shift variant decomposition. In practice, a 
shift in the signal is reflected by abrupt changes in 
the extracted expansion coefficients or related 
features. In (Unser 1995) the undecimated wavelet 
transform is proposed to extract subband energy 
features which are shift invariant. This is achieved 
by removing the downsampling operation. The 
output at any level of pyramidal filter bank is 
computed by using an appropriate filter which is 
derived by upsampling the basic filter.  
A filter g(n) with a z-transform G(z) that satisfies the 
quadrature mirror filter condition  

          1 1( ) ( ) ( ) ( ) 1G z G z G z G z− −+ − − =              (1) 

is used to construct the pyramidal filter bank (Figure 
3). The high-pass filter h(n) is obtained by shifting 

and modulating g(n). Specifically, the z transform of 
h(n) is chosen as 

                       1( ) ( ).H z zG z−= −                       (2) 

The subsequent filters in the filter bank are then 
generated by increasing the width of f(n) and g(n) at 
every step, e.g., 
 
              2

1( ) ( )
i

iG z G z+ =  

             2
1( ) ( )

i

iH z H z+ = , (i=0,1,. . . . ., N).       (3) 
 
In the signal domain, the filter generation can be 
expressed as 
 

1 2
( ) [ ] iig k g+ ↑

=  

                           1 2
( ) [ ] iih k h+ ↑

=                             (4) 

where the notation m↑[]  denotes the up-sampling 
operation by a factor of m. 
 The horizontal pyramidal tree of Fig.2 provides 
subband decomposition of the ECoG signal.  Next, 
we segment the signal in each subband with 
rectangular time windows. Such an approach will 
extract the temporal information in each subband. 
As in the frequency decomposition tree, every node 
of the frequency tree is segmented into time 
segments with a pyramidal tree structure. Each 
parent time window covers a space as the union of 
its children windows. In a given level, the length of 
a window is equal to L/2t where L is the length of 
signal and t denotes the level. The time segmentation 
explained above forms the second branch (vertical) 
of the double tree. After segmenting the signal in 
time and frequency, we retain the energy of each 
node of the dual-tree as a feature. By using a dual 
tree structure we could calculate a rich library of 
features describing the ECoG activities with several 
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spectro-temporal resolutions. From now on we keep 
the index information of the dual tree structure to be 
used in the later stage for dimension reduction via 
pruning. 

To summarize this section the reader is referred to 
the double tree structure in Fig. 2. Note that the dual 
tree structure satisfies two conditions: 
- For a given node in the frequency tree, the mother 
band covers the same frequency band width (BW) as 
the union of its children  

1 2( )Mother Child ChildBW BW BW⊃ ∪   (5) 

- This same condition is also satisfied along the time 
axis. For a given node, the number of time samples 
(TS) of the mother window is equal to that of the 
union of its children.  

1 2( )Mother Child ChildTS TS TS⊃ ∪   (6) 

These two properties allow us to prune the tree 
structure. When a particular feature index is 
selected, one can remove those indices from the dual 
tree structure that overlap in time and frequency 
with the selected index. Let T be the number of 
levels use to decompose the signal in time and F be 
the number levels use to decompose the signal in the 
frequency domain, there will be 2(F+1)-1 subbands 
(including the original signal) and 2(T+1)-1 time 
segments for each subband. This will make the total 
number of potential features NF=(2(F+1)-1)(2(T+1)-1). 

3 SUBSET SELECTION 

Calculating the dual-tree features for each electrode 
location forms a redundant feature dictionary. The 
redundancy comes from the dual tree structure. As 
explained in the previous section the dual tree has 
total NF=(2(F+1)-1)(2(T+1)-1) features for each signal 
where F is the total number of frequency levels and 
T the total number of time levels.  In a typical case, 
T=3, F=4 and over 64 electrodes are used resulting 
in a dictionary with around thirty thousand features. 
In such a high dimensional space (NF=29760) the 
classifier may easily go into over-learning and 
provide a lower generalization capability.  

Here, we incorporate the structural relationship 
between features in the dictionary and use several 
feature subset selection strategies to reduce the 
dimensionality of the feature set. Since the features 
are calculated in a tree structure, efficient algorithms 
were proposed in the past for dimensionality 
reduction. In (Saito 1996) a pruning approach was 
proposed which utilizes the relationship between the 
mother and children subspaces to decrease the 

dimensionality of the feature set. In particular, each 
tree is individually pruned from bottom to top by 
maximizing a distance function. The resulting 
features are sorted according to their discrimination 
power and the top subset is used for classification. 
Although such a filtering strategy with pruning will 
provide significant dimension reduction by keeping 
the most predictive features, it does not account for 
the interrelations between features in the final 
classification stage. Here, we reshape and combine 
the pruning procedure for feature selection with a 
wrapper strategy. In particular, we quantify the 
efficiency of each feature subset by evaluating its 
classification accuracy with a cost measure and we 
use this cost to reformulate our dictionary via 
pruning.  

Four different types of methods are considered 
for feature selection in this study. The structure in 
Figure 1 is general representation of each of the four 
methods. The left most box in Figure 1 is the rich 
time-frequency feature dictionary. On the right end a 
linear discriminant (LDA) is used both for 
classification and extracting the relationship among 
combinations of features. This output is fed to a cost 
function to measure the discrimination power for 
that combination of features. This measure will be 
used to select the best among all other feature 
combinations. Furthermore, depending on the 
selected feature index, a pruning operation will be 
implemented to reduce the dimensionality in the rich 
feature dictionary.  

In this particular study, the Fisher Discrimination 
(FD) criterion is used as a cost function.  

( )2

1 2
2 2
1 2

FD
μ μ
σ σ

−
=

+
.                    (7) 

The four different strategies mentioned above are: 
Sequential forward feature selection (SFFS), SFFS 
with pruning (SFFS-P), Cost function based pruning 
and feature Selection (CFS), and CFS with principal 
component analysis (PCA) post processing. 

3.1 Sequential Forward Feature 
Selection: SFFS 

The SFFS is a wrapper strategy which selects a 
subset of features one by one. A cost function is 
used on classifier output to measure the efficiency of 
each feature. By using LDA, the feature vectors are 
projected on a one dimensional space. Then the FD 
criterion was used to estimate the efficiency of the 
projection. After this search is done over all feature 
vectors, the best feature index is selected by 
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Figure 4: The 8x8 electrode grid was placed on the right 
hemisphere over the motor cortex (Modified from Lal
2005). For surface Laplacian derivation only marked 
electrodes are used. (b) The timing diagram of the 
experimental paradigm. The go cue for motor imagery is 
given at second one. A three second time window starting 
after 500ms of go cue is used to classify ECoG data. 

comparing the cost values of each feature vector. In 
the next step the feature vector which will do the 
best in combination with the first selected ones is 
identified by searching over the remaining feature 
vectors. This procedure is run until a desired number 
of features is reached. Note that SFFS uses all the 
boxes and connections in Figure 1 except for the 
feedback from the cost function to the dictionary. 
Since no dimension reduction is implemented on the 
entire feature space, this approach has high 
computational complexity. 

3.2 SFFS with Pruning: SFFS-P 

The SFFS-P is also a wrapper strategy with an 
additional pruning module for dimension reduction. 
Once a feature index is selected, the corresponding 
frequency tree and time tree indexes are calculated 
on the dual-tree. Then the nodes that overlap with 
the selected feature index in time and frequency are 
removed. Next, the feature which will do best in 
combination with the first selected feature is 
identified by searching the pruned dictionary.  In 
other words, the dictionary is pruned based on the 
last selected feature. This procedure is run until the 
desired number of features is reached. Therefore, the 
only difference between SFFS and SFFS-P is that 
pruning is done on the dictionary based on the 
selected features. This provides a fast decrease in the 
number of candidate features and complexity is 
much smaller than SFFS. 

3.3 Cost Function based Pruning and 
Feature Selection (CFS) 

The CFS is a filtering approach that uses the 
structure in the feature dictionary for pruning. After 
finalizing the pruning procedure for each electrode 
location, it uses a cost function to rank the features.  
In particular, it uses the FD criterion to rank the 
features. It does not use either the LDA or the 
feedback path in Figure 1. Instead, using the FD 
measure, a cost value is computed for each node on 
the double tree individually. Then a pruning 
algorithm is run on the double tree by keeping the 
nodes with maximum discrimination. Once a node is 
selected all nodes overlapping with the selected one 
are removed. This procedure is iterated until no 
pruning can be implemented. After pruning the dual-
trees for each electrode location, the resulting 
feature set is sorted according to their corresponding 
discrimination power and input to the classifier. In 
this way the most predictive features were entered to 
the classification module. Since no feedback is used 
from the classifier, the CFS has lower computational 
complexity than the other two methods.  

The CFS method works as a filter on the electrodes 
by only keeping those indices with maximum 
discrimination power. However, since features are 
evaluated according to their discrimination power 
individually, such a method does not account for the 
correlations between features. In (Ince 2006 and 
Ince 2007) PCA analysis is performed on a subset of 
top sorted features to obtain a decorrelated feature 
set. The PCA post processed features are sorted 
according to their corresponding eigenvalues in 
decreasing order and used in classification. Here we 
will also use the PCA as a post processing step with 
the CFS to obtain a deccorelated feature set. We will 
refer this method as CFS-PCA. 

4 MULTICHANNEL ECoG DATA 

In order to evaluate the performance of the proposed 
method we used the multichannel ECoG (Lal 2005) 
dataset of BCI competition 2005 
(ida.first.fraunhofer.de/projects/bci/competition_iii/) 
During the BCI experiment, a subject had to perform 
imagined movements of either the left small finger 
or the tongue. The ECoG data was recorded using an 
8x8 ECoG platinum electrode grid which was placed 
on the contralateral (right) motor cortex as shown in 
Figure 4. All recordings were performed with a 
sampling rate of 1000Hz. Every trial consisted of 
either an imagined tongue or an imagined finger 
movement and was recorded for 3 seconds duration. 
To avoid visually evoked potentials being reflected 
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Figure 6: Discriminant cortical areas (a) Laplacian (b) 
Monopolar. The number of selected features from 
different electrode locations in Laplacian derivation for 
SFFS-P (c) and for CSF(d) are given. The darker areas 
indicate a higher number of features are selected from 
these regions. Note that SFFS-P provides a balanced 
feature distribution. The CSF selected most of 27 features 
from the same region. 

 
Figure 5: The cross validation error curves for the 
different methods in the training data. 

by the data, the recording intervals started 0.5 
seconds after the visual cue had ended. Each channel 
was filtered with a low pass filter in 0-120Hz band. 
The filtered data was down sampled by a factor 4 to 
250Hz. Each trial was expanded from 750 samples 
into 768 samples by symmetric extension on the 
right side to enable segmentation in a pyramidal tree 
structure. Besides monopolar data, we also consider 
ECoG data that is processed using a surface 
Laplacian derivation. More specifically, each 
electrode data is subtracted from the weighted 
average of the surrounding 6 electrodes. The 
electrodes on the border are eliminated from the 
analysis resulting in a total of 36 electrodes (See 
Figure 4). For monopolar data all 64 electrodes were 
used for analysis. We used 278 trials for training and 
100 trials for testing. The training and test data were 
recorded from the same subject and with the same 
task, but on two different days with about 1 week in 
between. 

5 RESULTS 

To extract the dual tree features we select T=3 and 
F=4. For a 125 Hz bandwidth, the frequency tree 
provided around 8Hz resolution at the finest level.  
Along the time axis, the time resolution was 375ms. 
The 12 tap Daubechies filter (db6) was used in 
constructing the frequency tree of the UDWT. In 
order to learn the most discriminant time-frequency 
indices and the corresponding cortical areas we 
utilized a 10 times 10 fold cross validation in the 
training dataset. The optimal feature number at 
which the classification error is minimal is selected 
from the averaged cross validation error curves. 
Then, the learned feature indices are used in testing 
the classifier on the test set. The results obtained 
with the different methods are presented in Table.1. 

We note that the SFFS and SFFS-P provided the 
highest classification accuracy with only three 
features on the test set using the Laplacian 
derivation. Although a lower error rate was achieved 
by CFS with the training data, interestingly, the 
testing error rate of the CFS was higher than those of 
the other methods. We also note that a large number 
of features were used by CFS to achieve 9.9% error 
rate in the training set. In contrast, the SFFS and 
SFFS-P algorithms used only 3 features to achieve 
the minimum 10.2% error rate. The cross validation 
error curves versus the number of features are given 
in Figure 5. Since the results using Laplacian 
derivation outperformed those obtained with 

monopolar data, only the results corresponding to 
the former are provided. 
As can be seen clearly from these curves, SFFS and 
SFFS-P select the best combination of features and 
achieve the minimal error with only three features. 
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Table 1: The cross validation (CV) and test error rates of different methods and related number of features (NoF) used for 
final classification. 

  Training Test 
Method CV Error (%) NoF Error (%) 
SFFS 10.2 3 7 
SFFS-P 10.2 3 7 
CSF 9.9 27 18 

 
 
Laplacian 

CSF-PCA 9.6 11 8 
SFFS 12.6 3 20 
SFFS-P 10.3 4 9 
CSF 11.7 22 12 

 
Monopolar 

CSF-PCA 11.2 14 8 
 

Furthermore, using the structure of the feature 
dictionary, SFFS-P achieves this result with reduced 
complexity due to pruning. The pruning process 
provides a dimension reduction and feature 
decorrelation. CFS, on the other hand, achieves the 
minimal error using a large number of features. The 
interactions among the selected features cannot be 
taken into account with this approach. In addition 
the correlated neighbor areas may result in a 
duplication of information in the sorted features. In 
order to decorrelate the features a Principal 
Component Analysis (PCA) was employed on the 
CFS ordered features. This post processing step 
provided lower error rates than those achieved by 
CFS alone. The test error rate was 8% for the PCA 
post processed features. It should be noted here that 
CFS-PCA produced comparable results with those 
of SFFS and SFFS-P. However one should note that 
PCA induces an additional complexity.  This method 
requires all 32 features to be extracted from ECoG 
which leads to a much higher computational 
complexity compared to three features selected by 
SFFS and SFFS-P. 
Since the testing data was recorded on another date, 
the variability in the ECoG signal is expected. The 
results obtained indicate that the CFS algorithm is 
very sensitive to this type of variability. Although 
the cross validation error in the training set was low, 
the testing error rate was much higher compared to 
other methods. We believe that the correlated 
activity across cortical areas is an important reason 
why CFS selects the same information repeatedly. 
Since the SFFS and SFFS-P have the advantage of 
examining the interactions between different cortical 
areas and t-f locations, these subset selection 
algorithms can form a more effective subset of 
features for classification. In order to support our 
hypothesis we show the discriminatory cortical maps 
of monopolar and Laplacian derivations in Figure 6. 
In order to generate these images we used the most 

discriminant feature of each electrode location and 
produced an image over the 8x8 grid to present the 
distribution of the most discriminative locations. 
Furthermore, we mark the electrode locations 
selected by SFFS, SFFS-P, and CFS for 
classification. After inspecting Figure 6 (a) and (b) 
we noticed that a large number of neighbor electrode 
locations carry discriminant information. The CFS 
method used a large number of electrodes from this 
region for classification. In contrast, the SFFS and 
SFFS-P methods selected another cortical area from 
upper side of the grid. Even though this electrode 
location does not seem to be very discriminative, it 
played a key role in achieving a lower classification 
rate on the validation data. 

Since only three features are used by SFFS and 
SFFS-P, they are more robust to intra-subject 
variability of ECoG signals. Note also that the error 
rate in monopolar derivation is much higher than 
that of the Laplacian derivation. We observed large 
DC changes in ECoG signals in the test data set. 
Since the Laplacian derivation provides a 
differential operator, large baseline wanders 
affecting many electrodes are eliminated in this 
setup. However, for the monopolar recordings the 
features are very sensitive to this type of changes. 

Note also that the validation accuracy of SFFS 
and SFFS-P in the test set is higher than the cross 
validation accuracy. One of the underlying reasons 
could be that the subject can control his/her brain 
patterns with a higher accuracy with the increasing 
number of trials. In addition the SNR of the signals 
might have improved over time due to tissue 
electrode interaction. 

Finally, we compared our proposed method’s 
test result with those of achieved at the BCI 
competition in 2005 using the same ECoG data. The 
classification accuracies and methods used in each 
method are presented in Table 2. Our method 
achieved the best result of 7% error with both SFFS 
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Table 2: The comparison of the proposed method with the 
best three methods from the BCI 2005 competition. 

Features Used Classifier Error (%) 
UDWT based 
subband energies 

LDA 7 

Common Spatial 
Subspace 
Decomposition 

Linear SVM 9 

ICA combined with 
spectral power and 
AR coefficients 

Regularized 
logistic 

regression 

13 

Spectral power of 
manually selected 
channels 

Logistic 
regression 

14 

and SFFS-P methods. We note that our proposed 
approach has outperformed both CSP and AR model 
based techniques.  

6 CONCLUSIONS 

In this paper we proposed a new feature extraction 
and classification strategy for multi-channel ECoG 
recordings in a BCI task. Rather than using 
predefined frequency indices or manually selecting 
cortical areas, the algorithm implemented an 
automatic feature extraction and subset selection 
procedure over a redundant time-frequency feature 
dictionary. This feature dictionary was obtained by 
decomposing the ECoG signals into subbands with 
an undecimated wavelet transform and then 
segmenting each subbband in time successively. By 
combining a wrapper strategy with dictionary 
pruning, the method achieved 93% classification 
accuracy using only three features. The results we 
obtained show that the proposed method is a good 
candidate for the construction of an ECoG based 
invasive BCI system with very low computational 
complexity and high classification accuracy. 
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Abstract: One of the most important tasks in automatic annotation of the ECG is the detection of the R spike. The
wavelet transform is a widely used tool for R spike detection. The time-frequency decomposition is indeed
a powerful tool to analyze non-stationary signals. Still, current methods use consecutive wavelet scales in
an a priori restricted range and may therefore lack adaptivity. This paper introduces a supervised learning
algorithm which learns the optimal scales for each dataset using the annotations provided by physicians on a
small training set. For each record, this method allows a specific set of non consecutive scales to be selected,
based on the record characteristics. The selected scales are then used on the original long-term ECG signal
recording and a hard thresholding rule is applied on the derivative of the wavelet coefficients to label the R
spikes. This algorithm has been tested on the MIT-BIH arrhythmia database and obtains an average sensitivity
rate of 99.7% and average positive predictivity rate of 99.7%.

1 INTRODUCTION

In the framework of biomedical engineering, the anal-
ysis of the electrocardiogram (ECG) is one of the
most widely studied topics. The easy recording and
visual interpretation of the non-invasive electrocar-
diogram signal is a powerful way for medical pro-
fessionals to extract important information about the
clinical condition of their patients.

The ECG is a measure of the electrical activity as-
sociated with the heart. It is characterized by a time-
variant cyclic occurrence of patterns with different
frequency content (QRS complexes, P and T waves).
The P wave corresponds to the contraction of the atria,
the QRS complex to the contraction of the ventricles
and the T wave to their repolarization. Because the
ventricles contain more muscle mass than the atria,
the QRS complex is more intensive than the P wave.
The QRS wave is therefore the most representative
feature of the ECG. Furthermore, once the QRS com-
plex has been identified, other features of interest can
be more easily detected.

Analyzing ECGs for a long time can lead to errors
and misinterpretations. This is the reason why au-

tomatic feature extraction of the ECG signal can help
physicians in their diagnosis for early detection of car-
diac troubles. The feature extraction mainly consists
in the automatic annotation of the different waves in
the recording, the most important of them being the
QRS. One of the main application of the QRS detec-
tion is the heart rate variability (HRV) analysis (Task
Force of the European Society of Cardiology and The
North American Society of Pacing and Electrophysi-
ology, 1996). HRV measures have been proven suc-
cessful in diagnosing cardiac abnormalities and neu-
ropathies or evaluating the actions of the autonomic
nervous system on the heart (Acharya et al., 2006).
However, HRV measures heavily rely on the accuracy
of the QRS feature detection on the digitalized ECG
signal.

Automatic feature extraction and especially R
spike detection is thus a milestone for ECG analy-
sis. However, it is a difficult task in real situations:
(1) The physiological variations due to the patient and
its disease make the ECG a non-stationary signal. (2)
Other ECG components such as the P or T wave look-
ing like QRS complexes often lead to wrong detec-
tions. (3) There are many sources of noise that pol-
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lute the ECG signal such as power line interferences,
muscular artifacts, poor electrode contacts and base-
line wanderings due to respiration. These three prob-
lems highly compromise the detection of R spikes.

The detection of QRS complexes in the ECG has
been conducted by many researchers in the past years.
However, none of the current algorithms are able to
automatically learn their parameters using pre-labeled
beats provided by physicians. The aim of this paper
is to introduce a new algorithm for R peak detection
that does not blindly detect beats but learns and prop-
agates the annotations provided by physicians on a
small portion of the signal, which is often wanted in
real situations. Our contribution consists in the de-
sign and experiment of a supervised learning algo-
rithm for an optimal and automatic signal decompo-
sition for further optimal R spike detection. The as-
sociated detection method by hard thresholding rule
is also presented. The algorithm does not require any
pre-processing of the signal and can also be adapted
for the detection of other features such as the P or T
wave.

The following of this paper is structured as fol-
lows. After this introduction, section 2 gives a brief
literature review about the state of the art on ECG
feature detection and especially the QRS detection.
Section 3 provides a summary of the theory about the
continuous wavelet transform used in this paper. Sec-
tion 4 introduces the methodology followed by the al-
gorithm and section 5 shows the experiments and re-
sults obtained on a real public database.

2 STATE OF THE ART

Due to the non-stationarity of the ECG signal, the
physiological conditions and the presence of many
artifacts, finding a robust and general algorithm for
ECG feature detection is a tough task. A lot of work
has been published in the literature about the detec-
tion of various interesting ECG features such as P
waves, QRS waves, T waves, QT intervals or abnor-
mal beats by numerous techniques (Addison, 2005;
Sahambi et al., 2000; Senhadji et al., 1995). This pa-
per focuses on R spike detection only.

For this purpose, several approaches using dif-
ferent signal processing methods have been reported
previously: template matching (Dobbs et al., 1984),
mathematical models (Pahlm and Sornmo, 1984), sig-
nal envelop (Nygards and Sornmo, 1983), matched
filters (Koeleman et al., 1985), ECG slope crite-
rion (Algra and Zeelenberg, 1987), dynamic time
warping (Vullings et al., 1998), syntactic methods
(Kohler et al., 2002), hidden Markov models (Clavier

et al., 2002), beat detection by neural networks
(Xue et al., 1992; Shyuand et al., 2004), adapta-
tive thresholding (Madeiro et al., 2007; Christov,
2004), time-frequency decompositions by wavelet
transforms (Addison, 2005), and geometrical ap-
proach (Surez et al., 2007).

Among all these methods, the time-frequency de-
compositions by wavelet transform (WT) seem the
most intuitive tool for ECG analysis. The WT is natu-
rally appropriate for analyzing non-stationary signals
because it allows precise time-frequency representa-
tion of the signal with a low computational complex-
ity. A lot of work has been published in past years
on the use of the WT for QRS detection. In 1995,
(Li et al., 1995) used an algorithm based on finding
the maxima larger than a threshold obtained from the
pre-processed initial beats. Later, (Kadambe et al.,
1999) produced a method allocating a R peak at a
point being the local maxima of several consecutive
dyadic wavelet scales. In both these methods, a post-
processing allowed to eliminate false R detections.
Based on these two publications, a lot of other re-
searches were published on the beat detection based
on the WT (Shyuand et al., 2004; Fard et al., 2007;
Martinez et al., 2004; Addison, 2005; Chen et al.,
2005; Chen et al., 2006).

The main problem of the WT is that one has to
choose the mother wavelet and the scales used to an-
alyze the signal on an empirical basis. While the
mother wavelet can easily be chosen based on its char-
acteristics and ressemblance with a QRS wave, the
ideal scale(s) at which the QRS are matched is harder
to guess a priori. Current algorithms blindly search
for QRS complexes in a limited number of consecu-
tive scales selected in a range of a priori fixed scales.
However, the shape of the QRS pattern can be varying
between patients but also with time. One or several
consecutive fixed wavelet scales may not be enough
to match all complexes at once in a dataset. In this
paper, we propose a new supervised learning algo-
rithm based on the continuous wavelet transform that
overcomes these issues. It only relies on the anno-
tations provided by physicians on a small portion of
the signal in order to select the optimal subset of non-
consecutive scales for each dataset.

3 THEORY OF THE
CONTINUOUS WAVELET
TRANSFORM

The continous wavelet transform (CWT) is a tool
which produces a time-frequency decomposition of a
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signal x(t) by the convolution of this signal with a so-
called wavelet function.

A wavelet function ψ(t) is a function with several
properties. It must be a function of finite energy, that
is

E =
∫ +∞

−∞

|ψ(t)|2dt < ∞, (1)

and it must have a zero mean.
From a wavelet function, one can obtain a family

of time-scale waveforms by translation and scaling

ψa,b(t) =
1√
a

ψ

( t−b
a

)
(2)

where a > 0 represents the scale factor, b the transla-
tion and a,b ∈ R. When a = 1 and b = 0, the wavelet
is called the mother wavelet.

The wavelet transform of a function x(t) ∈ L2(R)
is a projection of this function on the wavelet basis
{ψa,b} :

T (a,b) =
∫ +∞

−∞

x(t)ψa,b(t)dt. (3)

For each a, the wavelet coefficients T (a,b) are signals
(that depend on b) which represent the matching de-
gree between wavelet ψa,b(t) and the analyzed func-
tion x(t).

The signal energy at a specific scale and position
can be calculated as

E(a,b) = |T (a,b)|2. (4)
The two-dimensional wavelet energy density function
is called the scalogram.

The CWT is a suitable tool for ECG analysis be-
cause of this time-frequency representation of the sig-
nal. With the multiscale feature of WTs, the QRS
complex can be distinguished from high P or T waves,
noise, baseline drift, and artifacts. The important
time aspect of the non-stationary ECG signal is kept.
Moreover, very efficient implementations of the al-
gorithm exist and a low computational complexity is
required, allowing real-time analysis. With the aim of
a QRS detection, an appropriate mother wavelet must
be chosen. It must match nicely with a QRS complex,
in order to emphasizes these complexes and to filter
the useless noise. For more details on the wavelet
transform and on the standard wavelet functions avail-
able, the interested reader can consult (Mallat, 1999;
Addison, 2005; Daubechies, 1992).

4 METHOD DESCRIPTION

4.1 General Description

The detection of R spikes is a tough task due to the
complexity of the ECG signal. The aim of the algo-

rithm introduced here is to automatically find the best
subset of wavelet scales for optimal R detection. For
each dataset, this subset is selected on a short train-
ing sample by a supervised learning procedure. The
CWT at the selected scales is then computed on the
complete dataset. Finally, R spikes are detected by a
hard thresholding rule on the selected wavelet coeffi-
cients.

4.2 Training

The algorithm uses a supervised learning approach: it
will use the labeled information that is provided and
learn the best way to adapt to the problem. Here, the
labeled information that is provided is the location of
the R peaks in a training dataset.

Each dataset consists in a long-term ECG signal
recording (for example 24 hours). With such long
recording, the problem is that a manual extraction of
the R peaks cannot be performed, as detailed in the In-
troduction. However, asking a specialist to annotate a
small part of the signal by indicating the R peaks is
perfectly feasible; this annotated part will consist in
labeled segments of one minute each, taken at ran-
dom locations over the entire dataset. Choosing ran-
dom locations along the signal is a way to obtain a
representative training set maximizing the probability
to include all types of beats contained in the record-
ings. The CWT is then computed on the training set
in a wide (therefore non restrictive) range of 50 fixed
scales defined as {si}, 1≤ i≤ 50. The mother wavelet
ψ(t) that was used in our experiments is the mexican
hat wavelet, for its similarity with the regular mor-
phology of the QRS complex. It is defined as the
second derivative of the gaussian probability density
function:

ψ(t) = (1− t2)e
t2
2 . (5)

In order to select the appropriate scales among the
wide range of wavelet scales, one needs a criterion. A
natural criterion is the percentage of correct R peaks
detection on the annotated parts of the signal using the
coefficients of the wavelet transform at the trial scales
in the set {si}. A stepwise forward method automat-
ically selects the best subset {ak} ⊂ {si} of scales on
the basis of the detection rate. It involves starting with
an empty subset, trying out at each step the trial scales
one by one and including them to the model if the de-
tection rate is improved. The procedure stops when
no scale left in {si} can improve the detection rate. In
addition, at each step, the scales previously selected
in {ak} are individually challenged: if their removal
does not decrease the detection rate, the scale is now
useless and therefore removed from the model.
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The set {ak} of scales coming from the selection
is thus made of the scales giving the best R detection
when combined together. The selected set of scales is
then used for R spike detection on the complete orig-
inal long-term recording. Figure 1 shows an original
ECG segment and the coefficients of the first selected
wavelet scale.

4.3 R Detection

The learning procedure extracted {ak} ⊂ {si}, the
best subset of scales on the training set. Note that
the scales in the subset are not necessarily consecu-
tive, which means that different QRS shapes can be
matched at different scale levels. The CWT is com-
puted on the whole signal at the scales {ak}.

Because of the non-stationarity of the signal, a
moving window of 5 seconds length with an over-
lap of one second is used to cut T (ak,b) into J parts,
1 ≤ j ≤ J. For each ak and b j, the R spikes are de-
tected on T (ak,b j) by a hard thresholding rule, where
index b j scans the jth window. Let us define

D(ak,b j) =
(d|T (ak,b j)|2

db j

)2
. (6)

A threshold th(ak, j) is estimated as the mean of
D(ak,b j). As D(ak,b j) has sharp peaks in the slopes
of the QRS complexes, the intervals I(ak, j) satisfying

D(ak,b j) > th(ak, j) (7)

belong to QRS complexes. The R spikes are then
defined as the maxima of |T (ak,b j)|2 in each of the
I(ak, j) intervals. All the R spikes obtained at each
scale k are then merged together.

4.4 Post-processing

A last step of post-processing makes sure that T waves
or Q and S spikes have not been wrongly labeled as a
R. If two or more R spikes were detected in a window
smaller than 250ms (two heartbeats cannot physiolog-
ically happen in less than 250ms (Christov, 2004)),
the algorithm keeps only the peak which has the high-
est value on the original ECG.

5 RESULTS AND VALIDATION

The learning of the model on the training set and the
assessment of performances must be done using an
annotated database. The public standard MIT-BIH ar-
rhythmia database (Goldberger et al., 2000) was used
in this work. It contains 48 half-hour recordings of

annotated ECG with a sampling rate of 360Hz and
11-bit resolution over a 10-mV range. The recorded
signals contain different wave types and only a ro-
bust algorithm can perform well on all datasets to-
gether. Some datasets include very few artifacts and
clear R peaks, but others make the detection of the
R spike more difficult because of (1) abnormal QRS
shapes or P and T waves, (2) low signal-to-noise ra-
tio, (3) heavy baseline drifts, (4) lots of non normal
beats such as premature ventricular contraction, left
bundle branch block beat, atrial premature contraction
etc... Among the 48 available datasets, the four ones
including paced beats were a priori rejected because
they consist in a special case. After visual inspection
of the data, datasets 207 and 208 were also rejected.
The reason is that a representative training set of five
times one minute would be hard to extract randomly
as several minutes of these two datasets contain only
non-labeled parts looking like a sinus wave.

The performances were assessed by evaluating
two parameters as suggested in (Kohler et al., 2002).
The sensitivity is measured as

T P
T P+FN

(8)

and the positive predictivity as

T P
T P+FP

, (9)

where TP is the number of true positive detections,
FN the number of false negatives and FP the number
of false positives. The error rate is also reported. It is
computed by

FN +FP
nQRS

, (10)

where nQRS is the total number of QRS labeled in a
dataset. On the database, the algorithm obtains an av-
erage sensitivity rate of 99.7% and average positive
predictivity rate of 99.7%. The average error rate is
below one percent. To our knowledge, only three R

Figure 1: Example of an original ECG segment (upper plot),
the first selected wavelet scale (middle plot) and its squared
derivative (lower plot).
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spike detectors based on WT reported in the literature
obtained comparable results with a sensitivity and a
positive predictivity of around 99.8% (Martinez et al.,
2004; Li et al., 1995; Chen et al., 1997). Our algo-
rithm achieves comparable performances without the
need for a more advanced post-processing stage such
as those used in these articles.

6 CONCLUSIONS

In this paper, a supervised learning algorithm for
the automatic detection of R peaks in ECG is in-
troduced. It uses the multiscale feature of the con-
tinuous wavelet transform (CWT) to emphasize the
QRS complex over high P or T waves, noise, base-
line drift and artifacts. The CWT keeps the important
time aspect of the non-stationary ECG signal. More-
over, very efficient implementations of the CWT exist
and a low computational complexity is required, al-
lowing real-time analysis. This algorithm learns and
propagates the annotations provided by a physician
on a small annotated segment. For this purpose, the
method selects the best subset of wavelet scales on a
representative training set by a stepwise forward pro-
cedure. The forward procedure allows to select scales
that are not necessarily consecutive and it does not
a priori restrict the range of computed scales on an
empirical basis. It allows a complete different set
of scales to be selected for each ECG signal, based
on its characteristics. The selected scales are then
used on the original long-term ECG signal recording
and a hard thresholding rule is applied on the deriva-
tive of the wavelet coefficients to label the R spikes.
The method is robust and does not require any pre-
processing stage. The selection procedure can be gen-
eralized in order to detect other ECG features such as
the P and T wave.

Experiments on the public annotated MIT-BIH
database lead to a sensitivity of 99.7% and a posi-
tive predictivity of 99.7% without the need of an ad-
vanced post-processing stage on the detected peaks.
To our knowledge, only three R spike detectors based
on WT reported in the literature obtained comparable
results, while requiring a more complex post process-
ing stage.

Further works will include: (1) The development
of a more advanced thresholding rule that takes the
peaks detected so far into account; (2) the use of
a more advanced post-processing stage to eliminate
wrong detections; (3) the design of an automatic se-
lection of the best mother wavelet by the same learn-
ing methodology; (4) the generalization of the method
for the detection of other ECG features such as P or T
wave.
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Abstract: This work aims at proposing a set of methods to describe, register and retrieve images of elongated struc-
tures from a database based on their shape content. We propose a registration algorithm that jointly takes
into account the gross shape of the structure and the shape of its boundary, resulting in anatomically consis-
tent deformations. The method determines a medial axis that represents the full extent of the structure with
no branches. Registration follows the linear elasticity model and is implemented through dynamic program-
ming. Discriminative anatomic features are computed from the results of registration and used as variables in a
content-based image retrieval system. A case study on the morphology of the corpus callosum in the chromo-
some 22q11.2 deletion syndrome illustrates the effectiveness of the method and corroborates the hypothesis
that retrieval systems may also act as knowledge discovery tools.

1 INTRODUCTION

Elongated structures such as vessels, bones and brain
ventricles are of interest in many problems and ap-
plications (Toledo et al., 2000; Staal, 2004). Those
structures have in common the fact that their gross
shape can be efficiently represented by centerlines or
medial axes. Contour may present important anatom-
ical features, but the overall shape is, if not more, as
important as the shape of the boundary.

This work aims at proposing a set of methods to
describe, register and ultimately retrieve images of
elongated structures from a database based on their
shape content. Image registration techniques have
been widely used in morphometry, as it provides de-
tailed description of the anatomy, taking a reference
image as a basis for comparison. Registration algo-
rithms are nevertheless computationally costly and,
when applied to the whole image or to the boundary
of elongated structures, may yield unsatisfactory re-
sults. A contribution of this work is a registration al-
gorithm that takes into account both the gross shape
of the structure and the shape of its boundary, with
emphasis to the former aspect.

Figure 1 shows a schematic of a content-based
image retrieval (CBIR) system that follows this ap-
proach. A set of images depicting elongated struc-
tures is segmented and the structures represented by

their boundaries and medial axes. Another image,
taken as a common reference, is deformed through
elastic registration so as to align its anatomy with the
anatomy of the images in the dataset. The result of
registration is a mapping function from each point in
the reference to a point in the target image that en-
able detailed shape description. After the structures
have been described, e.g. based on the curvature of
their boundaries and medial axes, they are stored in
the database for future searching. The querying phase
follows the same steps used to convert the images into
descriptive features. The query image converted to
the corresponding feature vector is compared with the
database, the most similar images are retrieved and
presented to the user. The user may rank the results
according to their relevance, choose one of the re-
trieved images as a new query or redefine a region
of interest that should be given greater priority in the
next retrieving iteration. The query vector is therefore
updated taking into account the user’s feedback.

The characterization of the gross shape is criti-
cal to the registration and retrieval of elongated struc-
tures. We also present a semi-automatic solution to
the extraction of a medial axis that represents the full
extent of the structure with no branches. Finally, dis-
criminative anatomic features are computed from the
results of registration and used as variables in a CBIR
system. A case study on the morphology of the corpus
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Figure 1: Schematic of a CBIR system based on registra-
tion. The left part of the scheme shows the steps performed
off-line for each image in the database. The on-line part of
the retrieval process is shown in the right. The link between
the on-line and off-line phases is the reference image that
is registered to the query and to the database, establishing a
basis for shape comparison.

callosum in the chromosome 22q11.2 deletion syn-
drome illustrates the effectiveness of the method and
corroborates the hypothesis that CBIR systems may
also act as knowledge discovery tools.

2 RELATED WORKS

The representation of elongated structures through
single sequences of connected points that describe
their intrinsic geometry has been extensively stud-
ied. Pioneered by Blum and Nagel (Blum and Nagel,
1978), the use of medial axes to describe 2D shapes
is based on the removal of points in the boundary un-
til the gross shape is minimally represented. Many
skeleton and thinning algorithms can be found in the
literature, revealing the difficulty on determining a
standard definition for medial axis (Dvies and Plum-
mer, 1981). Other more complex models include the
medial representations (Pizer et al., 2003; Yushkevich
et al., 2003), in which the medial axis and a radial
scalar field are parametrically described such that the
boundary can be further reconstructed, and the medial
profiles (Hamarneh et al., 2004), that provide a shape
representation and deformation operators that can be
used to derive shape distributions.

Registration is considered one of the most im-
portant approaches to provide detailed description of
shape. Automatic registration algorithms (McInerney

and Terzopoulos, 1996; Toga, 1999) may be applied
to the contour (Cootes et al., 1994; Davatzikos and
Prince, 1995) or medial axis (Pizer et al., 1996; Gol-
land et al., 1999) of specific structures. Registration is
also used together with the medial axis transform (Xie
and Heng, 2005) to align the anatomy of structures
based on their skeletons.

Retrieval of images based on their content is still
in its infancy. Smeulders (Smeulders et al., 2000) and
Lew (Lew et al., 2006) present comprehensive dis-
cussions on the main aspects and challenges of im-
age retrieval. Muller (Muller et al., 2004) shows how
CBIR systems can be used to retrieve images in gen-
eral medical databases. In the next section, we dis-
cuss the specific issues related to the registration and
retrieval of images depicting elongated structures and
propose a registration algorithm that jointly considers
the axis and boundaries of such structures.

3 METHODS

The proposed image retrieval method can be divided
into four steps: midline extraction, registration, de-
scription and retrieval.

3.1 Midline Extraction

A midline can be defined as a curve that splits the
structure into dorsal and ventral regions, such that,
at any point, the perpendicular line segments con-
necting the midline to dorsal and ventral parts of the
boundary have roughly the same length (properties
of perpendicularity and congruency). Midline extrac-
tion starts by determining a skeleton based on a vari-
ation of the thinning algorithm described by Gonza-
lez and Woods (Gonzalez and Woods, 2002), for 8-
connected objects. Object points are labeled as 1 and
the background is set to 0. In order for the curve to
fully extend from one extremity to the other, two ob-
ject points are manually chosen and forced to be re-
spectively the starting and ending points of the skele-
ton.Additionally, the thinning algorithm is modified
so as to prune any other branches of the structure’s
skeleton. The final curve is, therefore, a single se-
quence of pixels, each one connected to two neigh-
bors, with the exception of the starting and ending
points.

The following algorithm summarizes skeleton ex-
traction, where p1 and p2 are the endpoints; the neigh-
bors of p are denoted as ni, numbered counterclock-
wise from 0 (east) to 7 (southeast); function N re-
turns the number of neighbors of p that belong to the
object, i.e., N(p) = ∑i ni; and function S returns the
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number of connected sequences of object points in
the neighborhood of p, i.e., read as an 8-bit string,
the neighbors of p must match the regular expres-
sion 0+1+0∗

⋃
1+0+1∗. It can be shown that only 42

neighborhood configurations satisfy the condition to
mark a point, so that the algorithm can be efficiently
implemented using look-up tables:

Repeat
For each point p of the object, p /∈ {p1, p2}, do

If N(p) < 7 and S(p) = 1 and n0n6(n2 +n4) = 0
Mark p to be removed;

Remove marked points;
For each point p of the object, p /∈ {p1, p2}, do

If N(p) < 7 and S(p) = 1 and n2n4(n0 +n6) = 0
Mark p to be removed;

Remove marked points;
until no more points can be removed.

The linear length of the skeleton is computed con-
sidering the distances between each pair of consecu-
tive pixels: pixels connected by a face with distance
equals to 1 and the ones connected by a vertex with
distance equals to

√
2. The coordinates of the pix-

els are smoothed and interpolated so as to yield an
isotropic rotation-invariant representation of the mid-
line. The derivative of this curve, taken at equidis-
tant points, guides the computation of perpendicu-
lar segments that link the dorsal and ventral bound-
aries of the structure. Problems may occur in regions
where the midline presents increased curvature. In
this case, it may be impossible to satisfy the require-
ments of perpendicularity and congruency for the seg-
ments. Figure 2 shows an example where two con-
secutive segments intersect each other as the result of
increased midline curvature. A solution for this prob-
lem is to violate the property of perpendicularity so
that points with increasing coordinates at the midline
will be connected to points of non-decreasing coordi-
nates at both boundaries. It is however expected that
elongated structures will not frequently incur in this
problem.

The curvature (second derivative) of the midline
can be determined based on the k-curvature metric,
that is defined in each point pi = (xi,yi) as the differ-
ence between the average of the derivatives at the k
next points and the average of the derivatives at the k
previous points (including pi):

kcurv(pi) =
1
k
(

i+k

∑
j=i+1

d(p j)−
i

∑
j=i−k+1

d(p j)), (1)

d(p j) = tan−1(x j− x j−1,y j− y j−1).

Parameter k should be empirically chosen so as to pro-
vide enough smoothness. The midline curve should
be extrapolated at the extremities (e.g. based on au-
toregression), so that the curvatures will be computed

over all the midline extension. Analogously, the cur-
vature at the dorsal and ventral boundaries should be
computed at the intersection of the segments. The cur-
vatures at the midline and boundaries will play a fun-
damental role as a measure of similarity during regis-
tration.

Figure 2: Example where consecutive segments intersect
each other as the result of increased midline curvature (a)
and the solution to the problem (b).

3.2 Image Registration

The images in the database should be registered to
a reference in order to establish a common basis
for comparison. Image registration can be stated as
the process of determining a correspondence between
each point p in the midline of the reference image
to a point u(p) in the midline of the subject image.
Let CM(p) = kcurv(p)− kcurv(u(p)) be the differ-
ence between the k-curvature taken at point p in the
reference midline and the k-curvature taken at point
u(p) in the subject midline. Analogously, let CD and
CV be the same difference function computed respec-
tively at the intersection points of the perpendicular
segments emanating from the midline with the dorsal
and ventral boundaries.

The cost function to be minimized is given as

cost = D−S, (2)

where D is the deformation penalty and S is the sim-
ilarity between the curvatures of registered points of
the midline, dorsal and ventral boundaries, given as

D = α

∫ 1

0
(

du(p)
d p

)2d p+β

∫ 1

0
(

d2u(p)
d p2 )2d p,

S = ∑
i∈{M,D,V}

γi

∫ 1

0
Ci(p)2d p (3)

Parameters α and β weight the amount and
smoothness of deformation, respectively. Parameters
γM , γD and γV are negative and weight the importance
of the similarity terms computed respectively for the
midline, dorsal and ventral boundaries.

Registration is performed through dynamic pro-
gramming, in which equidistant points in the refer-
ence midline are mapped to points in the midlines
of the database by minimizing the cost function in
(2). After registering the midlines and corresponding
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boundaries, thin plate splines (Barrodale et al., 1993)
are used to interpolate the warping applied to these
curves to the whole structure, so that each pixel in the
reference image is assigned a displacement vector.

An advantage of the proposed registration algo-
rithm is that it will always map a segment perpendic-
ular to the reference midline to a segment perpendic-
ular to the midline of the subject image. This is a
very important constraint to be observed when deal-
ing with elongated structures. Fig 3 shows two ex-
amples where an image registration algorithm based
only on the boundary or only on the midline would
fail to provide satisfactory deformations. The struc-
ture in (a) is the reference, whose boundary points
A and B must be found correspondence in the other
structures. A registration algorithm that takes into ac-
count only the boundaries would map point A to C
(correctly), but B to E instead of D, since the bound-
ary curvature in B is more similar to the curvature in
E than it is in D. If, on the other hand, the algorithm
is based only on the curvature of the midline, the reg-
istration of the reference to the structure in (c) would
probably map the segment AB to HI instead of FG,
ignoring the similarity between the curvatures at the
boundaries. The similarity function proposed in (3)
avoid both mistakes, since the curvatures at the mid-
line, dorsal and ventral boundaries are jointly taken
into account.

Figure 3: Examples of unsatisfactory registration of the seg-
ment AB in the reference structure (a) to segment CE in (b)
and to segment HI in (c). An algorithm based on both the
boundary and midline would correctly map AB to CD and
FG.

Evaluating the effectiveness of registration meth-
ods is always a difficult task, as ground truth data
is usually inexistent, particularly when the structure
being registered does not present well-defined land-
marks. Alternatively, landmarks may be chosen by
experts, but in this case human subjectivity and lack
of repeatability should be considered in the analysis.
In this work, we designed an interactive interface in
which an expert chooses a set of landmarks in the ref-
erence structure and the corresponding loci in the sub-
jects. The procedure is repeated after 2 weeks, in or-
der to evaluate repeatability. The results achieved by
automatic registration are compared to the mapping
provided by the expert: if the result falls within the
interval of values provided by the expert, it is consid-
ered satisfactory, otherwise the distance in millime-

ters to nearest value is stored and averaged.

3.3 Description

The output of registration is a displacement field that
maps each pixel of the reference image to a point in
the subject. From this set of vectors, it is possible
to obtain diverse measurements that describe the im-
aged objects, such as point-wise area and length varia-
tion, curvature of axes and contours, relationships be-
tween axes of orientation, moments and other shape
descriptors. Feature selection is a fundamental step
in image retrieval systems, as it determines the effec-
tiveness and efficiency of many algorithms. The set
of features that will represent the objects should be
concise and discriminative, as distinguishing features
facilitates the retrieval of relevant images, while non-
relevant characteristics are confounders. Feature se-
lection and information retrieval are synergetic steps:
while the choice of distinguishing features increases
the relevance of retrieval results, retrieval itself act as
a ”mining” tool, selecting the features that discrim-
inate between classes of images. This is the funda-
mental relationship that characterizes image retrieval
as a potential knowledge discovery methodology. In
this work, objects were described as vectors of k-
curvatures (1) taken at each matched point of the sub-
jects, after being registered to the reference.

3.4 Image Retrieval

In a CBIR system, the user presents an image as a
query, which is registered to the reference image. The
features obtained from the resulting mapping func-
tion are compared to the features of the images in the
database, which have been previously processed and
registered to the same reference. Following a measure
of similarity, the most similar images are retrieved and
presented to the user.

The model used to determine the similar-
ity between two images was the Euclidean dis-
tance (Del Bimbo, 1999). If q is the feature vector
representing the query and vk is the feature vector rep-
resentation of image k in the database, the similarity
between them can be computed as

sim(vk,q) = ((vk−q)T (vk−q))1/2

The performance of an image retrieval system can
be evaluated by computing two metrics (Del Bimbo,
1999): The recall of the system is the ability to re-
trieve relevant images. It is defined as the ratio be-
tween the number of retrieved images considered rel-
evant and the total number of relevant images in the
database. The precision reflects the ability of the sys-
tem to retrieve only relevant images. It is defined as
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the ratio between the number of retrieved images con-
sidered relevant and the total number of retrieved im-
ages. The plot of recall × precision gives an estimate
of the overall effectiveness of a CBIR system, as a
compromise between both performance metrics is ex-
pected.

4 EXPERIMENTS

We illustrate the proposed registration-based retrieval
system with a case study on the morphology of the
corpus callosum in the chromosome 22q11.2 dele-
tion syndrome (DS22q11.2). The DS22q11.2 is an
example of genetic abnormality for which many hy-
potheses on anatomical differences have been re-
cently stated (Machado et al., 2007). This syndrome
is the result of a 1.5 - 3Mb microdeletion on the
long arm of chromosome 22 and is characterized by
a range of medical manifestations that include car-
diac, palatal and immune disorders, as well as par-
ticular problems in cognitive domains associated with
the orienting and executive attention systems and with
numerically related processing. Recent studies have
drawn particular attention to changes in the corpus
callosum — the largest bundle of axons connecting
the two hemispheres of the brain, as differences in the
shape of this structure may indicate changes in brain
connectivity that may be related to the observed cog-
nitive impairments (Simon et al., 2005). We hypothe-
sized that an image retrieval system would be able to
retrieve images of subjects sharing the same diagno-
sis, based on a shape representation of the corpus cal-
losum, if the features used to index the images could
be considered discriminative for the syndrome. In this
sense, the system would reveal the most distinguish-
ing features associated with the disease.

Participants in this study were 18 children with
chromosome 22q11.2 deletion syndrome, ranging in
age from 7.3 to 14.0 years (mean,S.D.=9.9,1.4 years)
and 18 typically developing control children, ranging
in age from 7.5 to 14.2 years (mean,S.D.=10.4,2.0
years) (Simon et al., 2005). Magnetic resonance
imaging was performed on a 1.5 Tesla Siemens MAG-
NETOM Vision scanner (Siemens Medical Solutions,
Erlangen, Germany). For each subject, a high-
resolution three-dimensional structural MRI was ob-
tained using a T1-weighted magnetization prepared
rapid gradient echo (MP-RAGE) sequence with the
following parameters: repetition time (TR) = 9.7 ms,
echo time (TE) = 4 ms, flip angle = 12(, number of
excitations = 1, matrix size = 256x256, slice thick-
ness = 1.0 mm, 160 sagittal slices, in-plane resolution
= 1x1 mm. The midsagittal slice of each brain im-

(a) (b)

(c)

(d)

(e)
Figure 4: An example of registration. The midline and
boundary of the reference (a) is registered to the subject (b)
and the result interpolated to the whole structure (c). The
original plot of the boundary curvatures (d) and result of
registration (e) are also shown, where the curvatures of the
template and subject are represented by thick and thin lines,
respectively. The 7 landmarks used for registration evalu-
ation, numbered from left to right, are depicted in (a) with
thick lines.

age volume was manually extracted as the best plane
spanning the interhemispheric fissure, and on which
the anterior and posterior commissures and the cere-
bral aqueduct were visible.

The callosa in the midsagittal images were seg-
mented by manual thresholding and delineation. The
boundaries of the callosa were automatically deter-
mined using the Rosenfeld algorithm for 8-connected
contours (Gonzalez and Woods, 2002). The midlines
of the callosa were also extracted based on the algo-
rithm proposed in Section 3.1 and interpolated so as
to yield an isotropic rotation-invariant representation,
in which any two consecutive sampled points were 1
mm apart. The pointwise curvature of the callosum
midline was computed for each subject, using the k-
curvature metric (1), where k was empirically chosen
to be 10% of the length of the midline, so as to pro-
vide enough smoothness.

Shape measurement was performed, by aligning
a reference image of the callosum to subject callosa.
One of the control subjects was arbitrarily chosen as
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the reference. The midline of the reference, sampled
at 87 equidistant points, was registered to the sub-
jects’ midlines based on the cost function described in
(2) with parameters α=0.001, β=1000.0 and γi=-1.0
mm2/degree2 for i ∈ {M,D,V}, which were empiri-
cally determined. The midline curves of the subject
callosa were interpolated to provide sub-pixel preci-
sion (0.5 mm). The result of registration was a map-
ping from each of the 87 points in the reference to cor-
responding points in the subjects. Registration took
7.78 seconds to compute. All methods were imple-
mented in IDL language (Research Systems) and run
in a 1.1 GHz Intel Celeron processor computer with
256 MB of RAM, under Windows XP operating sys-
tem.

Figure 4 shows an example of registration where
the reference image described through its midline and
perpendicular segments (a) is deformed to match the
subject (b). The resulting deformation is shown as a
warped grid (c). A plot of the original k-curvatures
(in degrees/mm) at the boundaries of both images
(in mm), taken counterclockwise from the leftmost
endpoint of the midline, is given in (d) and the re-
sulting registration is depicted in (e). The effective-
ness of registration was evaluated based on 2 sets
of landmarks provided by an expert, taken in an in-
terval of 2 weeks. Seven landmarks were defined
at the reference, from anterior to posterior callosum
(Figure 4a), and the expert was asked to determine
their corresponding loci at each of the 36 subjects.
The set of 504 landmarks were compared to the re-
sults of registration. Table 1 summarizes the results,
where it is possible to compare the average error of
the method with the variability of measures provided
by the expert, for each landmark. The average error
of the method for the whole set of landmarks was 1.7
mm, a satisfactory result considering that the aver-
age variability of the expert’s measures was 1.2 mm.
Larger errors were observed at landmarks 3 and 4
(callosal body) where the subjects present larger vari-
ability with respect to curvature. The best results were
achieved at landmarks 5 and 6 (posterior callosum)
where the errors obtained with automatic registration
were smaller than the average variability observed in
manual registration.

The results of image retrieval were evaluated with
the aid of a simple retrieval environment. Initially,
the user browses the database and chooses an image
that will represent the query. The system ranks the
remaining images, showing the n most relevant to the
user appraisal. In this study, we considered as rele-
vant the images that shared the same diagnosis of the
query (with or without the deletion). Following the
recent findings on anatomic differences in the callo-

sum of these populations (Machado et al., 2007)(see
Figure 5), an effective CBIR should be able to re-
trieve images sharing the same diagnosis, unless out-
liers would be present in the database.

(a) (b)
Figure 5: Mean callosal shape for the typically developing
children (a) and children with the deletion (b). Controls
have shorter, more curved anterior callosum (rostrum and
genu) and less curved midbody. Children with the deletion
present more arched callosum (larger height/length ratio).

Table 1: Average error (mm) for each landmark, consider-
ing manual and automatic registration.

Landmark 0 1 2 3 4 5 6
Manual 0.6 0.4 0.7 1.7 1.3 2.6 1.0

Automatic 1.0 0.9 0.8 3.7 2.4 1.6 0.9

An example of the results of image retrieval is
shown in Figure 6. The query image presented by
the user (a) is registered to the same reference used in
the registration of the images stored in the database.
The 10 images that yield greater similarity with re-
spect to the curvature of the midline and boundary are
retrieved and displayed (b). Images of controls are
shown in gray and images of children with the dele-
tion are shown in black. A plot of the recall × pre-
cision computed after the retrieval of each of the 17
relevant images in the database is presented in (d). In
this case, the query is a typical control, yielding high
precision.

An example in which an outlier is retrieved is
given in Figure 7. The third retrieved image is a con-
trol with arched callosum, whereas the query is a child
with the deletion. In this case, the precision is af-
fected. Worse result occurs when the query itself is
an outlier, as exampled in Figure 8. In this case, the
query is a control with longer, less curved rostrum
(left-most end of the midline) that is more common
in children with the deletion. As a consequence, the
precision is drastically affected, staying bellow 50%
from the second retrieved image, a level that would
be expected by pure chance.

5 CONCLUSIONS

We have addressed the problem of registering and re-
trieving images of elongated structures. Traditional
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(a)

(b)

(c)
Figure 6: Example of a query image (a) and the result of
retrieval (b). The plot of recall × precision is shown in (c).

(a)

(b)

(c)
Figure 7: Example of a query image (a) and the result of
retrieval (b). In this case, the third best-ranked image is an
outlier. The plot of recall × precision is shown in (c).

registration methods may yield anatomically incon-
sistent results while applying warping models only to
the structure’s contour or medial axis. The method
proposed in this paper jointly registers the medial
axis, dorsal and ventral boundaries, avoiding distor-
tions that may impact substantially in the results of
further morphometric analyses, hypothesis testing or
image retrieval.

The method deserves more systematic evaluation
procedures, as visual inspection is subjective and dif-
ficult to quantify. A case study on the morphology of
the corpus callosum in the 22q11.2 deletion syndrome
was used to illustrate the ability of registration to pro-
vide effective image retrieval. In the experiments, di-
agnosis was considered as the ground truth to evalu-

(a)

(b)

(c)
Figure 8: Example of a query image (a) and the result of
retrieval (b). In this case, the query is an outlier, yielding
poor performance (c).

ate the performance of the retrieval system. Although
evidences of shape differences between controls and
children with the deletion exist, outliers make eval-
uation a difficult task. A deficiency of the method
is the requirement for manual choice of the midline
endpoints, so a fully automated algorithm is already
being designed. Another well-known disadvantage of
registration-driven retrieval methods is its inadequacy
to indexing, limiting the application of these systems
to small datasets. Furthermore, the vector model that
exhibits excellent performance in text retrieval is not
a consensus when dealing with images.

Relevance feedback is an important step that de-
serves attention. Different similarity functions and
query updating models may enhance the effectiveness
of image retrieval, as the user’s preferences are more
rapidly met. Experiments have shown that when the
set of features is restricted to specific regions of in-
terest, the precision is enhanced. In the case of the
study on the corpus callosum morphometry, restrict-
ing the computation of similarity to the anterior-most
part of the structure, where the differences between
groups are more evident, has increased the number of
retrieved images that share the same diagnosis. This
ability to cluster images of the same group may qual-
ify image retrieval as a potential knowledge discovery
tool. It implements new levels of supporting environ-
ments and opens new perspectives to exploratory re-
search in image databases.
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Abstract: Determination of the sub-cellular localization and dynamics of any proteins is an important step towards
the understanding of multi-molecular complexes in a cellular context. Green Fluorescent Protein (GFP)-
tagging and time-lapse fluorescence microscopy allows to acquire multidimensional data on rapid cellular
activities, and then make possible the analysis of proteinsof interest. Consequently, novel techniques of
image analysis are needed to quantify dynamics of biological processes observed in such image sequences.
In biological trafficking analysis, the previous tracking methods do not manage when many small and poorly
distinguishable objects interact. Nevertheless, an another way of tracking that usually consists in determining
the full trajectories of all the objects, can be more relevant. General information about the traffic like the
regions of origin and destination of the moving objects represent interesting features for analysis. In this
paper, we propose to estimate the paths (regions of origin and destination) used by the objects of interest, and
the proportions of moving objects for each path. This can be accomplished by exploiting the recent advances
in Network Tomography (NT) commonly used in network communications. This idea is demonstrated on
real image sequences for the Rab6 protein, a GTPase involvedin the regulation of intracellular membrane
trafficking.

1 INTRODUCTION

Small GTPases play a key role in many aspects of
cell biology: control of cell growth and differentia-
tion, regulation of cell adhesion and cell movement,
organization of the actin cytoskeleton, and regulation
of intracellular vesicular transport. The small GT-
Pases Rab proteins are important regulators of traf-
ficking within the membrane. Each member of this
family (60 described in human cells) exists under dif-
ferent dynamic states in the cell:i) diffusion in the
cytosol; ii ) exchanges between the cytosol and the
membranes;iii ) vesicular transport. The Rab protein
family plays an essential role in the dynamics of the
transport vesicles and their targeting/anchoring with
the acceptor membranes. Studying the role of Rab
proteins inside multiprotein complexes is then fun-
damental to deeply understand the molecular mecha-
nisms responsible for membrane transport and for the
maintenance of the integrity and global architecture
of the cell, in space and time.

Rab6 is located on the Golgi Apparatus mem-
branes and the trans-Golgi network membranes. It is

involved in a retrograde transport from the Golgi Ap-
paratus to the Endoplasmic Reticulum. When Rab6
proteins embedded into vesicles are marked with GFP
(Green Fluorescence Protein), they appear on the im-
age sequence as blobs heterogeneously moving along
the microtubule network. The study of the membrane
trafficking by measuring the activity of small trans-
port vesicles from donor to acceptor compartments
within the cell thanks to image analysis techniques is
challenging.

Rab6 trafficking is really hard to analyse as it is
composed of several hundreds similar objects that are
moving with variable velocities. The most commonly
used tracking concept is the connexionist approach
(Anderson et al., 1992; Sbalzarini and Koumout-
sakos, 2005; Racine et al., 2006) consisting in de-
tecting particles independently in each frame in a
first time, and then linking the detected objects over
time. But, measurements from clutter and multiple
objects make the data association problem very hard
to compute. From now, data association even com-
bined with sophisticated particle filtering techniques
(Smal et al., 2007) or graph-theory based methods
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(Thomann et al., 2003) are problematic to track sev-
eral hundreds of similar objects with a high reliability.

Deterministic approaches have also been ex-
plored. (Sibarita et al., 2006) exploits the fact that
vesicles are moving along the microtubule network,
and thus follow the same paths. Kymograms are used
for analysing the time intensity profile of the given
paths. The main limitation of the kymogram-based
method is that each path is independently supervised.
Another line of work consists in detecting changes in
the temporal signal for a set of pixels (Bechar and
Trubuil, 2006). By grouping similar temporal pro-
files, dynamics of vesicles can be better described.

In this paper, we propose to get around the diffi-
cult problem of data association by using an original
statistical approach. The aim is to apply the Network
Tomography (NT) concept to real image sequences,
which is challenging for several reasons described be-
low. Accordingly, we need to construct a graph and
to propose a method to measure the activity on edges,
according to the NT approach (Vardi, 1996). This is
the main contribution of this paper. The NT-based ap-
proach, already applied in video surveillance (Santini,
2000; Boyd et al., 1999), allows us to track objects
but only requires the detection of the objects when
they move from one region to another. The estimated
variables give only a general aspect of the whole traf-
fic, but the data association, usually complex, is not
needed. In this paper, we propose to adapt this NT
concept to the estimation of trajectories of vesicles
since it can be motivated by biological analyses. The
number of vesicles that pass through each transition of
the graph is estimated by solving an underconstrained
optimization problem. We will demonstrate that this
method is suited for understanding membrane trans-
port. The paper is organized as follows: in Section
2, we propose to partition the image into regions of
interest, and we estimate the number of moving vesi-
cles on edges at each time step. Then, this estimation
is tested on simulations. In Section 3, we estimate the
regions of origin and destination for the vesicles, and
these estimations are tested on a real image sequence
in Section 4. Finally, we present a conclusion and the
perspectives in Section 5.

2 MEASUREMENTS ON EDGES

In (Pécot et al., 2007), the idea was to extract the mi-
crotubule network, and to determine the origin and
destination regions for the vesicles, and the cross-
ings of different microtubules, all labeled as vertices
in the graph. Vertices and edges (links between ver-
tices) define the graphG = {E,V}, and the activ-

Figure 1: Images extracted from a microscopic sequence
using a fast 4D deconvolution (wide-field) process at two
time steps.

ity measurements on edges correspond to the ob-
servations required to apply the NT-based approach,
which amounts to estimating the origin-destination
(OD) pairs for the vesicles. In other words, our goal
is to determine the different paths used by the vesicles
from the donor compartment to the acceptor compart-
ment, and the proportions of vesicles for each path.
However, the extraction of the microtubule network is
really hard to compute, since very complex with lim-
ited spatial resolution. So we prefer to partition the
image into regions and to represent the relationships
between regions using a graph.

2.1 Image Partitionning

The Maximum Intensity Projection (MIP) map in the
direction of time axis is a precious key for the par-
titionning of a cell compartment. Indeed, the likely
regions of origin or destination appear as brighter
spots in the MIP map because vesicles are temporally
stocked in these areas. For illustration, the MIP map
extracted from the image sequence shown in Fig. 1 is
given in Fig. 2. It is established that the Golgi Appa-
ratus is the main origin region for Rab6 protein. This
region appears as a very bright region in the MIP map
as shown in Fig. 2. A possible image partitionning
consists in dividing the image into Voronoi cells as
in (Boyd et al., 1999). The Voronoi cells are further
assumed to be the OD regions observed in the MIP
map. It is also possible to compute a Voronoi dia-
gram at a finest spatial resolution including crossings
as relevant features for traffic analysis.
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Figure 2: MIP map extracted from the image sequence
shown in Fig. 1.

In order to partition the regions of interest within
the cell, the expert can also manually define the cen-
ters of the Voronoi diagram if required. This diagram
is then computed using theqhull library (Barber et al.,
1996). A segmentation for the cell observed in the im-
age sequence of Fig. 1 is typically illustrated in Fig. 3
where the centers appear in green and the different re-
gions appear in red, while the MIP map is depicted in
the background. In this figure, the centers were fixed
to represent the Golgi Apparatus, and the three possi-
ble end-points of the cell.

The Voronoi diagram is also described by an adja-
cency graph (Fig. 3, right) and then consistent with
the NT concept used for tracking. The different
Voronoi cells represent the set of verticesV while
the boundaries between the cells represent the set of
edgesE. We introduce two edges between two neigh-
bouring cells in order to analyse trafficking in both
directions.

Given the graphG , the next step consists in ex-
tracting the data to apply the NT approach, i.e. es-
timating the number of vesicles that move from one
Voronoi cell to another one during the whole image
sequence.

2.2 Temporal Estimation of the Number
of Moving Vesicles

We want to know exactly how many vesicles are mov-
ing from one Voronoi cell to another one at each time
step. Our idea is to compute the difference of the
number of vesicles observed at two consecutive time

1

2

3

2

3

4

6

4

1

5

7

8

Figure 3: Left: partition of the compartment and surround-
ings observed in the image sequence shown in Fig. 1 by us-
ing a Voronoi decomposition. The different regions appear
in red, their centers are labeled in green, and the MIP map
is in the background; right: the corresponding graph; the
vertex numbers are labeled in blue, while the edge numbers
are labeled in red.

steps in each neighbouring region, and then to infer
the exact number of vesicles that crosses each com-
mon boundary. Nevertheless, computing the differ-
ence of vesicles in each region involves image seg-
mentation, a hard task since many similar objects
overlap. By applying NT, we circumvent the problem
since a crude partition of the image is only needed.
In what follows, we assume that the level of fluores-
cence is proportional to the number of Rab6 proteins
at each pixel. So the difference of image intensity at
two time steps represents the difference of the number
of Rab6 proteins in each region. In practice, the back-
ground corresponding to the Golgi apparatus and to
the cytosol diffusion is first removed during a prepro-
cessing step (Boulanger et al., 2006) for better perfor-
mance. We illustrate this concept on a simple example
explained below.

We consider the fluorescence exchanges at the ver-
tex 1 in the graph shown in Fig. 3. LetZv,t be the total
amount of fluorescence in the complete Voronoi re-
gion corresponding to the vertexv at timet, and let
Ye,t be the level of fluorescence to be determined on
edgee at timet:

Z1,t+1−Z1,t = Y1,t+1−Y2,t+1 +Y4,t+1−Y3,t+1

+Y6,t+1−Y5,t+1.

This equation can be extended to all vertices: let∆Z
be then× t matrix corresponding to the difference of
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Table 1: Definition of the matrixM corresponding to the
graph shown in Fig. 3.

vertices
edges 1 2 3 4

1 1 -1 0 0
2 -1 1 0 0
3 -1 0 0 1
4 1 0 0 -1
5 -1 0 1 0
6 1 0 -1 0

fluorescence in each region between two consecutive
time steps, withn the number of regions andt the
number of images in the sequence. LetY be ther × t
matrix representing the level of fluorescence that fluc-
tuates from one region to another at each time, with
r denoting the number of edges. We defineM as the
so-called “neighbourhoodn× r matrix” composed of
ternary elementsm= {−1,0,1} that links the regions
according to the neighbourhood relationships. For ex-
ample, in Fig. 3,M is defined as shown in Tab. 1.
Then, we have:

∆Z = MY (1)

Our aim is to estimateY with r > n given ∆Z,
so to solve an under-constrained problem. Additional
constraints are necessary for solving (1). First, we as-
sume that all the components ofY are positive since
the edges are unidirectional. In addition, the∆Z rows
are assumed to be i.i.d., and we naturally choose the
L

2 distance. Finally, we propose to solve the follow-
ing optimization problem:

̂Y = min
Y

‖ ∆Z −MY ‖2 subject toY ≥ 0.

This optimization problem leads to an estimation of
Y. To improve the solution, we also introduce an ad-
ditional constraint based on the idea ofparsimony(see
(Tibshirani, 1996; Candes and Tao, 2007)). Actually,
each row of̂Y corresponds to fluorescence exchanges
on edges during the whole image sequence. In what
follows, we want to check if the estimation ofY is
improved when the traffic on some edges is removed,
especially on edges for which a very low traffic is ob-
served. Accordingly,Y is split into positive rowsY l
and rows with zero valuesYn−l . The minimization
can be then modified as follows:

(l̂ , ̂Y) = min
l ,Y l

‖ ∆Z−M l Y l ‖
2 +ρl ,subject toY ≥ 0,

where the second term encourages the selection of
few edges withl denoting the number of non-zero
rows inY, ρ a balance term,Y l the(r − l)× t matrix

corresponding toY restricted to rows with significant
measurements (non zero),M l the neighbourhood ma-
trix that matchesY l , and∆Z denoting the difference
of fluorescence in each region between two consecu-
tive time steps.

In practice, we propose the followinggreedy al-
gorithmfor minimization:

1. computêY l = minYl≥0 ‖ ∆Z −M lY l ‖
2,

2. computee=‖ ∆Z −M l ̂Y l ‖
2 +ρl ,

3. remove the rowl ′ in ̂Y l that contains the higher
number of 0 values,

4. update the matricesY′ andM ′ with (l −1) com-
ponents,

5. computêY′ = minY′≥0 ‖ ∆Z −M ′Y′ ‖2,

6. computee′ =‖ ∆Z −M ′
̂Y′ ‖2 +ρ(l −1),

7. accept̂Y = ̂Y′ if e′ < e,

8. if all rows were considered, stop the procedure,
else go back to step 2.

Finally, depending on the microtubule network
topology and the related Voronoi diagram, the expert
can also forbid the fluorescence transfer between sev-
eral regions if required. This option is explained in
the next section.

2.3 Traffic Partially Known

Biological motivations, confirmed by the MIP map,
can be exploited to prevent the displacements of vesi-
cles from one region to another one. This can be
performed by modifying the neighbourhood matrix
M . For instance, in Fig. 3, we assume that the ex-
pert knows that no vesicle is moving between region
1 and region 2. The matrix is therefore modified ac-
cordingly as

M(:,1) = 0, and

M(:,2) = 0,

with M(:,1) = {M(1,1);M(2,1); . . . ;M(n,1)}. For
the expert, this flexibility can be appropriate for real
applications where interactions with the image is re-
quired, as demonstrated in our experiments.

2.4 Experiments

In this section, we propose a first set of experiments
to evaluate the performance of the estimation proce-
dure, to be exploited in the NT approach described in
Section 3. In this experiment, the vesicles at the ori-
gin and destination regions are stocked, to take into
account the difference of fluorescence.
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Figure 4: Network used for the first simulation. The mi-
crotubule network appears in white, the Voronoi cells are in
red, the origin regions are labeled in green, and the destina-
tion regions are labeled in blue.

Figure 5: Network used for the second simulation. The mi-
crotubule network appears in white, the Voronoi cells are in
red, the origin regions are labeled in green, and the destina-
tion regions are labeled in blue.

Table 2: Evaluation of the estimation of the traffic from the
simulated network shown in Fig. 4.

Temporal tolerances 0 1 2 3
without greedy algorithm

PFA 36% 9% 5% 4%
PFN 36% 9% 5% 4%
PGD 64% 91% 95% 96%

with greedy algorithm
PFA 34% 6% 2% 1%
PFN 34% 6% 2% 2%
PGD 65% 94% 98% 99%

Table 3: Evaluation of the estimation of the traffic from the
simulated network shown in Fig. 5.

Temporal tolerances 0 1 2 3
without greedy algorithm

PFA 39% 9% 5% 5%
PFN 39% 11% 7% 7%
PGD 61% 89% 93% 93%

with greedy algorithm
PFA 35% 5% 1% 1%
PFN 37% 8% 4% 4%
PGD 63% 92% 96% 96%

Two sequences are simulated based on the net-
works shown in Figs. 4 and 5, where the network
appears in white, the Voronoi cells in red, the origin
regions in green and the destination regions in blue.
The simulations correspond to sequences of 1000 im-
ages, showing 2000 moving vesicles.
The performance of our estimation procedure de-
scribed in Section 2.2 are measured using three cri-
teria:

PFA =
number of false detections

total real number of detections
,

PFN =
number of true detections not effected

total real number of detections
,

PGD =
number of good detections

total real number of detections
,

where PFA denotes the Probability of False
Alarms, PFN the Probability of False Negatives, and
PGD the Probability of Good Detections.

A slight temporal shifting between the estimation
results and the “ground truth” is observed. That is
why the results are presented with different temporal
tolerances. For instance, a temporal tolerance equal
to δt means that the estimation results are compared
with a shifting in[−δt, . . . ,δt] to the ground truth. The
temporal estimations of the number of moving vesi-
cles in the simulations based on the networks shown
in Figs. 4 and 5 are given in Tabs. 2 and 3. In these ta-
bles, the results obtainedare shown with and without
using thegreedy algorithm.

Clearly, with a slight temporal tolerance, the es-
timated results are very close to the ”ground truth”.
In addition, it worth noting that we only use temporal
averages for NT, so the shifting will not be crucial for
OD pairs estimation. Moreover, it is also confirmed
that thegreedy algorithmsignificantly improves the
estimation results.
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3 NETWORK TOMOGRAPHY

As explained in Section 2.1 and illustrated in Fig. 3,
a region within the cell (e.g. compartment) can be
represented by a graph corresponding to a Voronoi
diagram, where the centers of the Voronoi cells cor-
respond to regions of interest. The graphG (E,V) is
defined byn vertices andr edges, whereE denotes the
set of edges, andV the set of vertices. A connection
between two vertices is also called a path, and each
path consists of one or more edges. In the NT-based
approach, the data is the number of objects detected as
going from one vertex to another vertex in the graph.
Based on these measurements, the new goal is to esti-
mate how many vesicles coming from an origin vertex
go to a destination vertex along a path, in the set of all
possible OD pairs in the graph, that isc = n(n− 1)
OD pairs. This problem is then similar to determine
the source-destination traffick based on link measure-
ments in computer networks (Vardi, 1996). In this ap-
proach, it is not necessary to track an object through
a dynamic scene, but just to determine when an ob-
ject reaches a vertex, which is generally easier than
estimating a continuous trajectory.

3.1 Problem Solving

More formally, letXj ,t , j = 1, · · · ,c, be the quantity of
“transmitted” fluorescence on the OD pairj at timet.
The measurementsYt = (Y1,t , . . . ,Yr,t)

T are computed
as explained in Section 2. The inherent randomness
of the measurements motivates the adoption of a sta-
tistical approach. Now, we reasonably assume that
the whole traffic is temporally distributed as a Pois-
son process,Xj ,t ∼ Poisson(λ j). In this traffic flow
problem, we then assume the following model:

Yt = AX t , (2)

where Xt = (X1,t , . . . ,Xc,t)
T , and A denotes a

r ×c routing matrix which binary elementsAi j = 1 if
edgei is in the path for the OD pairj, and 0 otherwise.

For illustration, if we consider the simple example
shown in Fig. 3, some rows of the matrixA are pre-
sented in Tab. 4. Typically, the numberc is greater
than r, and the problem is then under-constrained.
Additional constraints are necessary for solving this
inverse problem. First, (Vardi, 1996) proposed to
introduce constraints related to the assumption that
the traffic is temporally Poisson distributed. The
NT method amounts then to estimating the valuesλ j
given the additional set of equations corresponding to
temporal averages:

Table 4: Part of the matrixA corresponding to the graph
shown in Fig. 3.

edges
OD pairs 1 2 3 4 5 6

1→ 2 0 1 0 0 0 0
1→ 3 0 0 0 0 1 0
1→ 4 0 0 1 0 0 0
2→ 1 1 0 0 0 0 0
2→ 3 1 0 0 0 1 0
2→ 4 1 0 1 0 0 0

. . . . . .















Yi =
c

∑
k=1

Ai,kλk, i = 1, . . . , r,

cov(Yi ,Yi′) =
c

∑
k=1

Ai,kAi′,kλk, 1≤ i ≤ i′ ≤ r.

This set of equations gives a system ofr (r +3)/2 lin-
ear equations that forms an over-constrained problem
that can be better solved with the conditionsλi ≥ 0.
Moreover, in this application, the aim is not to ob-
tain the number of vesicles that utilize each path, but
to estimate the proportions of vesicles on each path.
Hence, unlike previous methods (Vardi, 1996; San-
tini, 2000; Boyd et al., 1999), we impose the condi-
tion ∑c

i=1 λi = 1 as an additional constraint. The pre-
vious system can be written more compactly as:

(

Y
S

)

=

(

A
B

)

Λ, (3)

whereΛ = (λ1, . . . ,λc)
T contains the temporal mean

of the traffic flow, S = {cov(Yi,Yi′)} is the sample
covariance matrix rewritten as a vector of length
r (r +1)/2, andB is an(r (r +1)/2) ×c matrix with
the (i, i′)th row of B being the element-wise product
of row i and rowi′ of the matrixA.

The system can be solved using the estimation-
maximization (EM) method (Vardi, 1996; Santini,
2000) or the convex-projection algorithms (Boyd
et al., 1999). In our case, we adapt a non negative
mean square estimation which also provides a simple
and reliable way to estimate the OD traffiĉΛ. For the
implementation, our method is based on thelsqnonlin
function from the Matlab Optimization toolbox. Note
that a review of existing methods is also proposed in
(Medina et al., 2002).

3.2 Origin-destination Regions Partially
Known

When the expert specifies the origin or destination re-
gions, the problem is better constrained and the solu-
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tion is expected to be more relevant.
Typically, if we assume that the origins or destina-

tions for the regions are known, this can be casted into
additional hard constraints. If the Voronoi cellr is the
single origin region, then all the OD pairs that have
another Voronoi cell thanr as origin have no longer
meaning. So all that OD pairs can be ignored. Hence,
let R be all the OD pairs that haver for origin. Then,
if O denotes the set of all OD pairs,A can be modified
as

A(:,O rA ) = 0,

with A(:,O r A ) = {A(1,O r A );A(2,O r

A ); . . . ;A(r,O r A )}. The same modeling can
be applied for imposing additional origin or destina-
tion regions.

4 EXPERIMENTAL RESULTS

In this section, we propose three experiments to
demonstrate the ability and the limits of the NT-based
approach applied to a real image sequence. All these
experiments are tested by considering the sequence
shown in Fig. 1. This sequence is composed of 900
images coming from a fast 4D deconvolution mi-
croscopy (wide-field) process (Sibarita et al., 2006).
In this sequence, the background was removed during
a preprocessing step. The estimated results are re-
ported in Figs. 6 and 7. In these figures, the Voronoi
cells are represented in red, while the MIP map is
shown in the background by transparency. The differ-
ent estimated OD pairs appear as colored arrows, and
the corresponding colored numbers at the right top of
the figures are the estimated proportions of moving
vesicles for each OD pair.

A first experience was carried out with a crude
segmentation, without imposing origin or destination
regions. The results are shown in Fig. 6 (left). Ac-
cording to the expert-biologists, the vesicles are mov-
ing from the Golgi Apparatus (the central region) to
end-points located at the periphery of the cell (cor-
responding to the three other regions). But, in this
experience, the traffic is estimated going from end-
points to end-points, which is not consistent with prior
knowledge. That is why we impose, in a second ex-
periment, (Fig. 6, right image), the central region to be
the origin Voronoi cell. The results obtained with this
additional constraint correspond to trafficking from
the Golgi Apparatus to the end-points. In that case,
the traffic tends to be quite uniform for all the end-
points.

In another experiment corresponding to another
partition of the image shown in Fig. 7 (left), the pre-
vious central Voronoi cell is divided into several cells,

Figure 6: Results obtained by applying the NT-based ap-
proach on the sequence of the Fig. 1. The arrows repre-
sent the estimated OD pairs, and the corresponding colored
numbers at the top right represent traffic proportions. Left:
no origin region is imposed; right: the central region is im-
posed to be an origin region.

and they are all constrained to be origin regions. The
estimated traffic from these origin regions to the end-
points corresponds to proportions similar to propor-
tions estimated in the previous experiment. In addi-
tion, the estimated traffic seems to be isotropic, i.e.
there is no particular directions for traffic.

Finally, an experience is conducted with the same
constrained origin region than the first experiment,
but with one more end-point at the top of the image,
and with intermediate Voronoi cells between the ori-
gin and the destinations (Fig. 7, right). Although the
destination cells are not labeled, the whole traffick-
ing is estimated from the Golgi Apparatus to the end-
points. In addition, the sum of estimated proportions
of the traffic towards the two regions at the top of the
image is quite similar to the estimated proportions of
the traffic towards the region at the top of the image
in the first experiment. However, the estimated pro-
portions of traffic towards the regions located at the
bottom of the image are different from the estimated
proportions of traffic towards the same regions in the
first experience.

5 CONCLUSIONS

In this paper, we propose several contributions:i) def-
inition of a graph by partitionning the image using a
Voronoi diagram;ii ) temporal estimation of moving
vesicles;iii ) application of the NT concept to real im-
age sequences. The results obtained on the real image
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Figure 7: Results obtained by applying the NT-based ap-
proach on the sequence of Fig. 1. The arrows represent the
estimated OD pairs, and the corresponding colored num-
bers at the top right represent traffic proportions. Left: all
the central regions are imposed to be origin regions; right:
the central region is imposed to be an origin region.

sequence suits the biological knowledge about the OD
regions for the Rab6 trafficking. In our experiments,
the proportions of vesicles for the OD pairs given by
the NT procedure represent new tools for biologists.
It can be applied to understand other trafficking prob-
lems where many objects are moving. Actually, the
main limit is related to image partition yet, which can
be arbitrary. Indeed, although the expert defines the
centers of Voronoi cells with biological knowledge,
the segmentation remains very crude for representing
the regions of interest. Actually, the MIP map is the
only tool available to define these regions, but is not
enough accurate. For future work, it will be necessary
to apply the NT-based approach on more relevant re-
gions. A possible way is to extract the microtubule
network and consider it as a graph for applying the
NT procedure. Moreover, it is established that the flu-
orescence decreases with time, which is neglected in
our modeling since we exploit the difference of fluo-
rescence between two time steps. However, it is well
known that the vesicles diffuse also in the cytosol.
This could be considered in future work by introduc-
ing this phenomenon in the estimation process of the
data to improve the results.
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Abstract: Gene regulatory networks (GRNs) form naturally predefined and optimised computational units envisioned
to act as biohardware able to solve hard computational problems efficiently. This interplay of GRNs via sig-
nalling pathways allows the consideration as well as implementation of interconnection-free and fault tolerant
programmable computing agents. It has been quantitativelyshown in anin vivo study that a reporter gene
encoding the green fluorescent protein (gfp) can be switched between high and low expression states, thus
mimicking a NAND gate and a RS flip-flop. This was accomplishedby incorporating the N-acyl homoserine
lactone (AHL) sensing lux operon fromVibrio fischerialong with a toggle switch inEscherichia coli. gfp
expression was quantified using flow cytometry. The computational capacity of this approach is extendable
by coupling several logic gates and flip-flops. We demonstrate its feasibility by designing a finite automaton
capable of solving a knapsack problem instance.

1 INTRODUCTION

Molecular biosignals of GRNs are suited for comput-
ing purposes. Beyond error-prone molecular comput-
ers in vitro, the idea of computingin vivo becomes
more and more attractive (Kobayashi et al., 2004;
Weiss et al., 1999). Motivated by the presence of nat-
urally predefined functional units found in microor-
ganisms, their exploration towards computing agents
seems promising. GRNs can be viewed as computa-
tional devices of pro- and eukaryotic cells, triggering
and directing responses to external inputs influenced
by genetically stored information. Emerged from an
evolutionary optimisation, they form reliable modu-
larised systems with obvious advantages in carrying
out massively parallel calculations.

Recently, more than 6,000 transcription factors
acting as signal inducers or transmitters in GRNs
have been listed in the public Transpath and Trans-
fac database. Selection of GRN candidates in con-
cert with their ability for composition via specific
receptor-controlled interfaces is of particular interest
for creating computing agents. Following the pio-
neering implementation of a bistable toggle switch

in vivo (Gardner et al., 2000), we could confirm
its practicability in a previous study (Hayat et al.,
2006). Two extensions in the experimental setup
were investigated: Firstly, the effects of isopropyl-β-
D-thiogalactopyranoside (IPTG) and AHL as appro-
priate intercellular inducers for flip-flop setting were
shown. Secondly, flow cytometry was used to quan-
titatively measure protein concentrations within the
flip-flop implementation. Section 3 briefly explains
underlying methods and materials, while section 4
describes the experiment. Based on these experi-
mental results, we identify GRNs able to function
as NAND gates and RS flip-flops (section 5). For
these computational units, we present a homogeneous
dynamical model using Hill kinetics (Mestl et al.,
1995). Unit composition is exemplified by design of
a finite automaton for a knapsack problem instance
(section 6). We transfer this automaton into a min-
imised logic circuit consisting of interacting NAND
gates. A subsequent simulation of the correspond-
ing computing agent on the GRN level demonstrates a
constructive approach towards programmablein vivo
computers encouraged by the Turing completeness of
(bio)chemical reaction networks (Magnasco, 1997).
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2 RELATED WORK

First ideas about principles of interconnection-free
biomolecular computation were introduced in (Aoki
et al., 1992; Thomas, 1991). Along with the growing
knowledge in genetics and proteomics, the imagina-
tion of computingin vivocame into the focus of scien-
tific research (Weiss et al., 1999). Several approaches
address engineering of GRNs using predefined net-
work motifs (Guido et al., 2006; Kaern et al., 2003;
Kobayashi et al., 2004). Inspired by advantageous
properties of specific GRNs for computational tasks,
construction and implementation of genetic circuits
has been successfully explored (Gardner et al., 2000;
Sprinzak and Elowitz, 2005; Yokobayashi et al.,
2004). Recently, these circuits have been used to form
logic gates, clocks (oscillators), switches, or sensors.
As a next step, their combination to achieve higher
integrated problem-specific designs will be investi-
gated. A DNA-based solution to the knapsack prob-
lem in vitro was introduced in (Hinze et al., 2002).
An alternative approachin vivo generates a variety
of encoding plasmids that are translated into proteins
(Henkel et al., 2007).

3 BIOLOGICAL PRINCIPLES
AND PREREQUISITES

3.1 Quorum Sensing and Autoinduction
via AHL

In quorum sensing, bacterial species regulate gene ex-
pression based on cell-population density (Miller and
Bassler, 2001). An alteration in gene expression oc-
curs when an intercellular signalling molecule termed
autoinducer, produced and released by the bacterial
cells reaches a critical concentration. Termed as quo-
rum sensing or autoinduction, this fluctuation in au-
toinducer concentration is a function of bacterial cell-
population density. Vibrio fischeri, a well studied
bacterium, colonises the light organs of a variety of
marine fishes and squids, where it occurs at very
high densities (1010cells

ml ) and produces light. The two
genes essential for cell density regulation of lumines-
cence are: luxI, which codes for an autoinducer syn-
thase (Schaefer et al., 1996); and luxR, which codes
for an autoinducer-dependent activator of the lumi-
nescence genes. The luxR and luxI genes are adjacent
and divergently transcribed, and luxI is the first of
seven genes in the luminescence or lux operon. LuxI-
type proteins direct AHL synthesis while LuxR-type
proteins function as transcriptional regulators that are

capable of binding AHL signal molecules. Once
formed, LuxR-AHL complexes bind to target pro-
moters of quorum-regulated genes. Quorum sensing
is now known to be widespread among both Gram-
positive and Gram-negative bacteria.

3.2 Bioluminescence in Vibrio fischeri

Bioluminescence in general is defined as an enzyme
catalysed chemical reaction in which the energy re-
leased is used to produce an intermediate or product
in an electronically excited state, which then emits
a photon. It differs from fluorescence or phospho-
rescence as it is not depended on light absorbed.
The mechanism for gene expression and the struc-
ture of the polycistronic message of the lux structural
genes inVibrio fischerihave been thoroughly charac-
terised (Hastings and Nealson, 1977). Briefly, there
are two substrates, luciferin, which is a reduced flavin
mononucleotide (FMNH2), and a long chain (7− 16
carbons) fatty aldehyde (RCHO). An external re-
ductant acts via flavin mono-oxygenase oxidoreduc-
tase to catalyse the reduction of FMN to FMNH2,
which binds to the enzyme and reacts with O2 to
form a 4a-peroxy-flavin intermediate. This com-
plex oxidises the aldehyde to form the correspond-
ing acid (RCOOH) and a highly stable luciferase-
hydroxyflavin intermediate in its excited state, which
decays slowly to its ground state emitting blue-green
light hν with a maximum intensity at about 490nm:

FMNH2 +RCHO+O2
lucif.
−→

FMN+H2O+RCOOH+hν
(1)

3.3 Transcription Control by LacR and
λCI Repressor Proteins

Escherichia colicells repress the expression of the
lac operon when glucose is abundant in the growth
medium. Only when the glucose level is low and the
lactose level is high, the operon is fully expressed.
The Lac repressor LacR is a 360 residue long pro-
tein that associates into a homotetramer. It contains
a helix-turn-helix (HTH) motif through which it in-
teracts with DNA. This interaction represses tran-
scription by hindering association with RNA poly-
merase and represents an example of “combinatorial
control” widely seen in prokaryotes and eukaryotes
(Buchler et al., 2003). The CI repressor of bacterio-
phage lambda is the key regulator in lambda’s genetic
switch, a bistable switch that underlies the phage’s
ability to efficiently use its two modes of development
(Ptashne, 1992).
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3.4 Flow Cytometry

Flow cytometry refers to the technique where micro-
scopic particles are counted and examined as they
pass in a hydro-dynamically focused fluid stream
through a measuring point surrounded by an array of
detectors. Previously, flow cytometry analyses were
performed by us using a BD LSRII flow cytome-
ter equipped with 405nm, 488nm and 633nm lasers.
488nm laser was used forgfp and yellow fluorescent
protein (yfp) quantification.

4 IMPLEMENTATION OF A
COMPUTATIONAL UNIT IN
VIVO

4.1 Experimental Setup

We have shown that anin vivo system (Hayat et al.,
2006) can potentially be used to mimic a RS flip-flop
(Huffman, 1954; Morris Mano, 1991) and have quan-
tified its performance using flow cytometry. The pres-
ence or absence of the inducers IPTG or AHL in com-
bination with temperature shift acts as an input sig-
nal. The toggle switch comprising of structural genes
for reporter/output proteins fused to promoter regions
that are regulated by input signals is visualised as a
RS flip-flop, see figure 1. The functional modularity
of the input and output circuits is maintained so that
the artificial GRN used can be easily extended for fu-
ture studies.

Figure 1: A schematic diagram of an AHL biosensor mod-
ule interfaced with the genetic toggle switch adapted from
(Hayat et al., 2006). The transgenic artificial GRN consists
of a bistable genetic toggle switch (Gardner et al., 2000)
which is interfaced with genes from the lux operon (En-
gebrecht and Silverman, 1984) of the quorum sensing sig-
nalling pathway ofVibrio fischeri(Schaefer et al., 1996).

This design endows cells with two distinct pheno-
typic states: where theλCI activity is high and the ex-
pression of lacI is low (referred to as high or 1 state),
or where the activity of LacR is high and the expres-
sion ofλCI is low (referred to as low or 0 state).gfp is

expressed only in the highλCI/low LacR state. Fig-
ure 2 shows the experimental results obtained by flow
cytometry.

4.2 Results and Discussion

For co-relational purposes, all experiments were con-
ducted with both BL21 and Top10 strains ofEs-
cherichia coli. The concentration of IPTG used in all
the experiments was 2mM and that of AHL was 1µM.
Experiments conducted without the use of inducers,
lead to an unreliable shifting of the states, signify-
ing the use if inducers in a tightly, mutually regulated
circuit. Further experiments conducted to understand
the switching dynamics of the circuit revealed that in
the current scenario, it was easier to switch from a
high to a low state than vice versa. This discrepancy
in switching behaviour is attributed to the differing
modes of elimination of LacR andλCI repressor pro-
teins. While switching from low to high state, the re-
pression due to IPTG-bound Lac repressor needs to be
overcome by cell growth. Switching from high to low
state is effected by immediate thermal degradation of
the temperature-sensitiveλCI. Experiments were also
conducted to test the sustainability of states. The plug
and play property of the circuit was examined by em-
ploying yfp as the reporter gene instead ofgfp. As
shown in figure 2, the circuit could reliably mimic a
RS flip-flop. The massive parallelism permissible by
the use of large quantities of cells can compensate for
the slow speed of switching. Further tests are to be
performed to confirm this hypothesis.

5 DEFINITION OF
COMPUTATIONAL UNITS

Artificial GRNs have been instrumental in elucidating
basic principles that govern the dynamics and conse-
quences of stochasticity in the gene expression of nat-
urally occurring GRNs. The realisation as computa-
tional circuits infers inherent evolutionary fault toler-
ance and robustness to these modular units.

In a more abstract view, generalised building
blocks adopted from previousin vivo studies can be
identified. In terms of predefined GRN modules, they
form computational units. We introduce two artifi-
cial GRNs for logic gates and describe their dynam-
ical behaviour quantitatively by an ordinary differen-
tial equation model using Hill kinetics (Mestl et al.,
1995). A variety of specific signalling proteins (tran-
scription factors) given by their concentration over
the time course enables communication between as
well as coupling of computational units. Thus, circuit
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Figure 2: Inducer-dependent switching. Repeated activation and deactivation of the toggle switch based on inducers and
temperature. Temperature was switched every 24 hours. Cells were incubated with inducers for 12 hours, followed by growth
for 12 hours without inducers, initially kept at 30◦C (A) and 42◦C (B). The cells successfully switched states thrice.

engineering becomes feasible. Resulting computing
agents can serve as templates for experimental setups.
We distinguish computational units within a circuit by
indexi.

Hill kinetics represents a homogeneous approach
to model cooperative and competitive aspects of inter-
acting biochemical reaction networks. It formulates
the relative intensity of gene regulations by sigmoid-
shaped threshold functions h of degreem and thresh-
old Θ > 0 such thatx≥ 0 specifies the concentration
level of a transcription factor that activates resp. in-
hibits gene expression. Function value h then returns
the normalised change in concentration level of the
corresponding gene product. It reaches a concentra-
tion level of 50% iffx = Θ.

Activation (upregulation)→:

h+(x,Θ,m) =
xm

xm+ Θm (2)

Inhibition (downregulation)⊥:

h−(x,Θ,m) = 1−h+(x,Θ,m) (3)

5.1 NAND Gate

Input: concentration levels of transcription factors
xi ,yi

Output: concentration level of gene productzi

The dynamical system behaviour is defined by ordi-
nary differential equations 4, 5, and 6.

ȧi = h+(xi ,Θi1,mi1)−ai (4)

ḃi = h+(yi ,Θi2,mi2)−bi (5)

żi = 1−h+(ai ,Θi3,mi3) ·h+(bi ,Θi4,mi4)

−zi (6)
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5.2 RS Flip-Flop

Input: concentration levels of transcription factors
Si,Ri

Output: concentration level of gene productQi

The dynamical system behaviour is defined by ordi-
nary differential equations 7, 8, and 9.

ȧi = 1−h+(bi ,Θi1,mi1) ·h−(Si ,Θi2,mi2)

−ai (7)

ḃi = 1−h+(ai ,Θi3,mi3) ·h−(Ri ,Θi4,mi4)

−bi (8)

Q̇i = h+(bi ,Θi1,mi1) ·h
−(Si ,Θi2,mi2)

−Qi (9)
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A homologous model of a bistable toggle switch was
introduced in (Gardner et al., 2000). In case of the for-
bidden input signallingSi = 1, Ri = 1, the normalised
concentrations of both proteinsai andbi converge to
0.5. By setting or resetting input signalling, the flip-
flop restores.

6 AN ARTIFICIAL GRN FOR
KNAPSACK PROBLEM
SOLUTION

We demonstrate the feasibility of unit composition
for solution of more complex problems, exemplified
by the integer knapsack problem. It is known to be
NP complete, defined byn natural numbersa1, . . . ,an
representing weights of corresponding objects 1, . . . ,n
and a reference weightb given by a natural number.
Is there a subsetI ⊆ {1, . . . ,n} such that∑i∈I ai = b ?
Brute force approaches enumerating the whole search
space consider up to 2n solution candidates.

Regarding a reaction network-based algorithm,
the dynamic programming approach introduced in
(Baum and Boneh, 1999) provides an appropriate
framework to be adapted for our purpose. Here, the
problem parameters are encoded into a directed graph
G = (V,E) with a (b + 1)× (n + 1) grid of nodes
V = {v(i,k) | ∀i = 0, . . . ,b∀k = 0, . . . ,n} and edges
E ⊂ V ×V as follows: E = {

(

v(i,k),v(i,k+1)

)

| ∀i =

0, . . . ,b ∀k= 0, . . . ,n−1}∪{
(

v(i,k),v(i+ai ,k+1)

)

| ∀i =
0, . . . ,b : i + ai ≤ b∀k = 0, . . . ,n− 1}. The answer
to the knapsack problem is yes iff there exists a path
throughG from v(0,0) to v(b,n).

As an example for GRN network composition,
we choose the problem instancen = 3,a1 = 3,a2 =
1,a3 = 2,b = 3. Upper part of figure 5 illustrates
graphG in this case. Having in mind the presence
of a separate signal generator module, we can in-
terpretG as a finite automaton. Assume that the
generator module continually disseminates transmit-
ter substances representing binary strings. Computing
agents are able to receive these substances in parallel.
So, one agent randomly obtains one binary string for
subsequent processing in terms of input data. Act-
ing as a (finite) automaton, the agent can reach a final
state which is coupled to the expression ofgfp.

In this example, the agent checks whether or not
the binary string as a candidate solution meets the an-
swer “yes”. Therefore, the first three input bits are
interpreted as presence (1) or absence (0) of an object
corresponding to the bit position. Accordingly, binary
strings 011 and 100 lead to the positive answer. In or-
der to construct the finite automaton from gridG , we
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Figure 5: Construction of a deterministic finite automaton
(lower part) from the dynamic programming approach (up-
per part).

transform the nodes into states whereasv(0,0) is the
initial andv(b,n) the final state. Unreachable states are
removed, and all four states that yield the answer “no”
are subsumed into one, see lower part of figure 5. Fi-
nally, we obtain seven states. For preparation of the
NAND-based network as template for GRN composi-
tion, we term each state by a three bit binary number
b1b2b3. With regard to a minimal number of NAND
gates in the final circuit, the Gray code schema is used
for state numbering. So, each transition flips at most
one bit. Additionally, one state may carry a one-bit
don’t-care term marked by∗ that arbitrarily embod-
ies 1 or 0. Using Karnaugh optimisation, the binary
numberb′1b′2b′3 for the new state based on the previ-
ous stateb1b2b3 and the input bitx is defined by:

b′1 = (b1∧b2∧b3)∨ (b1∧b2∧x)

∨(b2∧b3∧x)∨ (b1∧b2∧x) (10)

b′2 = (b1∧b2∧b3)∨ (b1∧b2∧x)

∨(b1∧b3∧x)∨ (b1∧b2∧x) (11)

b′3 = b3∨ (b2∧x)∨ (b1∧x) (12)

The resulting NAND-based network shown in the
upper part of figure 6 was directly derived from these
transition rules. After backtransformation of this net-
work into the description level of coupled GRNs, we
obtain an artificial biosignalling system consisting of
115 interacting activation resp. repression pathways.
The lower part of figure 6 depicts the normalised con-
centrations of the signalling substances encoding state
bitsb1 andb3 over the time course for three state tran-
sitions. Effects of signal weakening, also observed in
laboratory studiesin vivo (see figure 2), are reflected
by the model based on Hill kinetics.

7 CONCLUSIONS

This paper addresses three strongly interconnected as-
pects of biomolecular computing based on biosignals
processed by GRNs: wetlab implementation of com-
putational units (NAND gate, low active RS flip-flop)
in vivo, homogeneous dynamical modelling of these
units (Hill kinetics), and their composition to comput-
ing agents able to solve real world problems, initially
shown in a conceptual studyin silico. We incorpo-
rated AHL as an additional intercellular transcription
factor suitable to switch logic gates. Despite being
rather slow, they convince by their reliability as a re-
quirement for scalability. Flow cytometry provides
a promising method to visualise amounts of output
proteins resulting from computing processesin vivo.
Further studies will consider parallel interactions of
GRNs.
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Abstract: Capillary Non-Perfusion (CNP) is a condition in diabetic retinopathy where blood ceases to flow to certain
parts of the retina, potentially leading to blindness. Thispaper presents a solution for automatically detecting
and segmenting CNP regions from fundus fluorescein angiograms (FFAs). CNPs are modelled as valleys, and
a novel multiresolution technique for trough-based valleydetection is presented. The proposed algorithm has
been tested on 40 images and validated against expert-marked ground truth. Obtained results are presented as
a receiver operating characteristic (ROC) curve. The area under this curve is 0.842 and the distance of ROC
from the ideal point(0,1) is 0.31.

1 INTRODUCTION

Diabetes is occurring in an ever increasing percent-
age in the world. Diabetes mellitus affects many or-
gans of the body, and the eye is one of the organs
that is affected relatively early (compared to the kid-
ney). While diabetes affects all parts of the eye, the
retina (retinopathy) is most commonly affected. Dia-
betic retinopathy progresses in phases. It starts with
microaneurysms and superficial retinal hemorrhages
(non-proliferative diabetic retinopathy; NPDR), pro-
gresses to accumulation of hard exudates in the pos-
terior pole (diabetic maculopathy), and finally ends
with new vessels in the surface of the retina and/or the
optic disc (proliferative diabetic retinopathy; PDR).
The underlying cause of the terminal event, the reti-
nal new vessels, is retinal ischemia which manifests
as areas of CNP that is most clearly seen in an FFA.
These lesions appear as dark regions in the FFA im-
ages as shown in Fig. 1. If not treated in time, the
CNP areas grow and spread across the entire retina.
Large areas of non-perfusion lead to new vessel for-
mation and bleeding into the vitreous cavity. These
complications are responsible for severe visual loss in
most patients with PDR (Kohner, 1993). FFA guides

the choice and extent of laser treatment in diabetic
maculopathy and PDR.

An automatic identification of important events
in FFA is objective and very useful both for referral
and treatment. Automated analyses of FFA images
for the purpose of extracting important structures as
well as lesions have received some attention. Im-
age conditioning solutions that have been proposed
include illumination correction using a parametric
bi-cubic model for the illumination function (Cree
et al., 1999) and noise suppression for a sequence of
angiogram images based on bilateral filtering (Guo
et al., 2005b). In FFA segmentation, stochastic
models have been proposed to segment the fovea,
arteries and veins from the central (macular) view
of FFAs (Simó and de Ves, 2001) and among le-
sions, microaneurysms have received much attention.
Several techniques ranging from morphological to
model-based have been proposed for microaneurysm
segmentation (Fleming et al., 2006), (Hafez, 2002)
and (A. M. Mendonça, 1999). An automated tech-
nique for measurement of blood flow in capillaries
has been attempted from angiograms, for determining
the effect of cardio-pulmonary bypass surgery (Jagoe
et al., 1992). The foveal region of the retinal image
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is processed to enhance the vascular structure and ex-
tract linear segments. The processed results from im-
ages taken before and after the bypass surgery are then
compared (via a logical AND operation) to identify
the differences. However, to our knowledge, there are
no reports in the literature of any technique to detect
the cause of PDR namely the presence of the CNP re-
gions anywhere in the retina. Detecting and segment-
ing CNPs is the focus of this paper.

The clinical procedure to detect CNPs is a visual
scan of an FFA image. In order to estimate the amount
of area damaged, the scan is generally done on the
composite image of the retina obtained after suitable
mosaicing of several retinal segments. Such a pro-
cedure suffers from several drawbacks: the variable
skills and subjectivity of the observer, which also de-
pend on the quality of the images; a lack of precise un-
derstanding of the area of retina affected which helps
in deciding the nature and extent of laser treatment.
Automated image analysis techniques can be used to
address these issues but there are several challenges in
devising solutions for CNP segmentation. FFAs suf-
fer from non-uniform illumination due to the eye ge-
ometry, imaging conditions and presence of other me-
dia opacity such as cataract. Inter-patient and intra-
patient variablility is also possible. The former is due
to different pupil dilations and the latter is due to the
time of image capture after injection of fluorescein
dye. Another compounding factor is that the mean
grey level of CNPs as well as their shape and size are
variable, with the size ranging from very small to very
large (from 100 to 55000 pixels). Often, the bound-
aries of CNPs are not well defined because of an in-
homogeneous textured background. Thus, the only
visually distinguishing characteristic of a CNP is that
it is relatively darker than its surround.

In this paper, we propose a novel method to ex-
tract and quantify regions of CNP based on modeling
CNPs as valleys in the image surface. The algorithm
for CNP segmentation is developed and its details are
presented in the next section. Section 3 provides im-
plementation details and illustrative test results of the
algorithm. Finally, some discussions and conclusions
are presented in the last section.

2 VALLEY BASED CNP
SEGMENTATION

2.1 Modelling CNP Regions

As discussed earlier, CNP occurs when the capillary
network in a region of the human retina stops func-

tioning and does not supply blood to the correspond-
ing areas. In FFAs, regions receiving normal blood
supply appear as bright white regions since they carry
a fluorescent dye and regions lacking in blood (due
to abnormal supply of blood) appear as dark regions.
Hence, regions of CNP appear as dull/dark lesions
bounded by healthy vasculature.

A sample FFA image and an enlarged view of a
CNP region and its surroundings is shown in Fig. 1.
Also, included in this figure is the surface plot of the
corresponding CNP region from which we can ob-
serve that the prominent vessels, the healthy capillary
network and the CNP have very different topographic
charactersitics: While the major vessel appears as a
ridge, the CNP appears as a valley with the healthy
capillary network appearing as a plateau in the image.
Hence, one can conclude that CNPs can be modelled
as valleys. Watershed-based solution to valley detec-
tion (for example, (Gauch, 1999)) is possible, how-
ever, these result in oversegmentation or in the case
of marker-based versions, require additional informa-
tion. In the case of CNP detection, since the size of a
CNP and the nature of its surround can be highly vari-
able, obtaining such markers can be quite challenging.
A better alternative is to identify the trough (lowest
point on a curve) and use it to segment a CNP. Hence,
we have taken a different approach to the problem
and propose a technique that detects trough points and
collates them across scales. We next present the de-
tails of our proposed algorithm for CNP segmentation
comprising several steps.

2.2 CNP Detection Algorithm

The proposed CNP detection algorithm consists of
these stages: Firstly, illumination correction (IC) is
done to minimise the background intensity variation
followed by denoising to eliminate noise that is fre-
quently found in FFAs. Next, valley detection is per-
formed to locate the seed points in the CNP regions
which are used to extract the candidate CNP regions
using a region growing algorithm. Finally, threshold-
ing is done to reject false positives among the detected
candidates. The processing in each of these stages are
described next.

2.2.1 Illumination Correction

Nonuniform illumination is a problem in retinal
colour images as well as angiograms. A camera-
model based solution for illumination correction in
angiograms, obtained with non-confocal imaging, is
given in (Cree et al., 1999) which assumes a macula-
centric view of the retina. Our images are not neces-
sarily macula-centric and are obtained from a laser-
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(a) (b) (c)

Figure 1: (a) A sample FFA image with CNP. (b) Enlarged view and (c) surface plot of the CNP region in (a).

based confocal imaging system. We modified a quo-
tient based approach proposed for face images (Wang
et al., 2004) and model the non-uniform illumination
as a multiplicative degradation function which is es-
timated by blurring the corrupted image. LetI(x,y),
Is(x,y) and I0(x,y) denote the given, smoothed and
corrected images, respectively andl0 be the desired
level of illumination. The corrected intensity value at
location(x,y) is found as

I0(x,y) =

{

I(x,y)× l0
Is(x,y)

if Is(x,y) < l0
I(x,y) if Is(x,y)≥ l0

(1)

As can be observed from Eq. 1, a pixel where the
estimated illumination is greater than the ideal illumi-
nation value is not corrected. This is to ensure that
the regions which are inherently bright, like the optic-
disk, haemorrhages, etc., are not wrongly classified
as regions of excessive illumination and corrected ac-
cordingly. When the estimated illumination value is
less than the ideal illumination value, multiplication
by the fraction l0

Is(x,y)
ensures that regions with illumi-

nation less than thel0 are elevated to the ideal illu-
mination value. Moreover, contrast at such a pixel is
improved by a factor of l0

Is(x,y)
thereby removing the

need for subsequent brightness and contrast opera-
tions, as required in the case of quotient-image based
technique. A sample FFA image and corresponding
illumination corrected image is shown in Fig. 2.

2.2.2 Noise Removal

The laser-based imaging produces fine-grain speckle
type of noise in the angiograms as can be seen in
Fig. 2. A bilateral filter-based approach proposed
for color and gray scale images in (Tomasi and Man-
duchi, 1998) has been successfully applied to denoise
images in an angiogram sequence (Guo et al., 2005a).
The strength of bilateral filter based denoising is its
ability to denoise without compromising edge qual-
ity. This is due to the filter’s nonlinear characteristic

Figure 2: A sample FFA image and Illumination corrected
image.

which permits one to take into account the spatial dis-
tance as well the photometric similarity of a pixel to
its neighbors. The spatial context is provided by a
domain filter while the photometric similarity is con-
trolled by a range filter. We use a version of the bilater
filter for our noise removal task which is described
next. Given an input pixelI(P), the output pixelI0(P)
is found as

I0(P) =
∑w I(Q)Wd(P,Q)Wr(P,Q)

∑wWd(P,Q)Wr(P,Q)
(2)

whereP andQ are position vectors,w is the current
neighbourhood andWd, Wr are Gaussian kernels of
the domain and range filters respectively. The edge
preservation feature of the bilateral filter can be seen
in the results of preprocessing (illumination correc-
tion + denoising) in Fig.6 (b).

2.2.3 CNP Segmentation

Now we turn to the main task of detecting and seg-
menting CNP regions. Since we have modelled CNPs
as valleys, a valley detection algorithm is needed to
detect seed points in the CNP regions. As the CNPs
vary widely in size, the valleys can be extended.
Hence, a multiresolution approach is appropriate. The
strategy we have adopted is to reduce the valleys to
a single trough point via a pyramidal decomposition
and then detect them using a trough detector at each
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Figure 3: An FFA image at levels 3, 4, 5 in the (a) conventionaland (b) proposed pyramidal decomposition.
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Figure 4: Intensity profile of a CNP and its surround, at levels (a) 1, (b) 3 and (c) 5 of the image pyramid.

Figure 5: Example demonstrating Equation 3.

level and collating them. Each of these steps are de-
scribed next.

Extrema pyramid decomposition- A conventional
pyramidal decomposition based on averaging and
subsampling is inadequate for the problem at hand.

This can be illustrated with an example shown in Fig.
3. It can be seen that the averaging process dulls the
entire image and will therefore adversely affect CNP
detection based on troughs. Another drawback with
the averaging process is the difficulty in localising of
the trough points in the full resolution image when
performing the upsampling process after trough de-
tection. In the problem at hand, the CNP regions are
generally bigger and darker relative to the brighter re-
gions which are thin. Averaging and down-sampling
will result in the bright regions to disappear faster
than the CNP regions, whereas for locating troughs,
it would help to more or less retain the bright regions
across several levels while accepting some loss in the
CNP area. Hence, to preserve the relation between
a CNP and its surround, and maintain the depth of
the valley across levels, we need a method for pyra-
midal decomposition that will minimise the CNP re-
gions at a much faster rate compared to the brighter
surrounding regions. This calls for a controlled multi-
resolution technique. One option is to generate a
pyramid by retaining intensity maxima which will en-
sure the thinner bright regions are largely preserved
during downsampling. However, this is detrimental
to the relative contrast between a CNP and its sur-
round as it elevates the average intensity of the CNP
regions. The end result is a lowering of the depth of
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the troughs, which is undesiarbale. A better alterna-
tive is to generate the pyramid through an adaptive
selection of pixels. The solution we propose is a tech-
nique for decomposition which is based on intensity
extrema. Specifically, given an imageI1 of sizeM×N
a L-level decomposition is found as follows:

Il (m,n) =

{

min{gi, j(m,n)} if gi, j(m,n)≤ t
max{gi, j(m,n)} otherwise.

}

(3)

∀ i, j = 0,1

wheregi, j(m,n) = Il−1(2m+ i,2n+ j), with l = 2, ...L
and t is a suitable threshold, taken to be the global
mean in our experiments. An illustration of the equa-
tion is given in Fig. 5 fort = 100.

In an extrema pyramidal decomposition of an an-
giogram, the CNP regions diminish in size at a much
faster rate than non-CNP regions across the levels.
This is illustrated in Fig. 3 (b) where the thickness of
vessels are more or less preserved but the CNPs are
reduced to near-dots in the lowest level image. This
effect is also seen from the intensity profiles shown
in Fig. 4, along a horizontal line passing through a
CNP region at different levels. The width of the val-
ley reduces from 50 pixels at the first level, to about
1 pixel in the fifth level whereas the image has been
downsampled by 16 between these levels. The rel-
ative brightness value (130) of the ridge and valley
regions is preserved as a result of not performing a
smoothing operation.

Trough detection- A trough is defined as the low-
est point on a curve. Alternatively, the brightness at a
trough is a local minimum. Since the context in which
CNPs, and hence troughs, occur is variable in an an-
giogram, two parameters can be used to characterise
a trough:µ, the mean brightness of the surround and
P, the peak factor which represents the depth of the
trough. These two parameters are used to develop the
following trough detection algorithm in which the im-
age is denoted byI(x,y).

For every pixel(x,y) do the following:

1. Initialize a Boolean variable isTrough = False.

2. Check if I(x,y) is a local minimum in a M×M
neighborhood.

3. If yes, then calculate the mean (µ) of a N×N
neighborhood, with N> M. Else, do nothing.

4. Let T = µ*P and check if I(x,y) < T.

5. If yes, then isTrough = True.

6. If isTrough = True, then mark I(x,y) as a trough
pixel. Else, do nothing.

The thresholdT represents the depth of the val-
ley from the meanµ. Since the image pyramid re-
tains extrema, this threshold value has to be carefully
chosen to ensure that enough seed pixels are captured
in a valley while minimising the possibility of false
alarms. A region with lowµ is likely to be a CNP
region and hence the required depth for that region
is less whereas the same may not be true ifµ is high
and hence, a stricter condition is required in the latter
case. Thus, choosingT proportional toµ is appro-
priate. Furthermore, since trough detection is carried
out at multiple levels a peak factor has to be chosen
for each level. A guiding factor in this choice is that
due to retention of extremas, the likelihood of the lo-
cal minima being a CNP region will be higher at upper
levels. Hence, the peak factor should be progressively
increased with the levels in the pyramid.

After performing trough detection at all levels, the
results are combined with a simple logicalOR oper-
ation. For locating the seed pixels in the original im-
age, the fact that the extrema of four pixels is selected
at every level is used iteratively.

CNP region extraction- The detected trough
points can serve as seed points for region based ap-
proach to segmenting the CNP regions. Although
geometric methods can potentially yield better re-
sults, as an initial experiment we chose to use a sim-
ple region growing technique for extracting the CNP
regions as it was computationally simpler. Given
the variability of the appearance of the CNP re-
gions within and across images, the traditionally
used intensity-based homogeneity criterion for region
growing is not suitable. Instead, by noting that CNP
regions are smooth, the better alternative is to perform
the pixel aggregation in the variance space.

In our experiments, the range for the variance was
taken to be±4. In order to reject false candidates, a
final thresholding operation was performed. A thresh-
old based on the global mean intensity was applied
since the global mean is always lowered with the pres-
ence of CNPs.

3 IMPLEMENTATION AND
RESULTS

The proposed algorithm was implemented as follows.
In the illumination correction stage, the ideal illumi-
nation l0 in (1) was set to be roughly half the maxi-
mum grey value in the image or 120. The smoothed
image was obtained with a 30× 30 Gaussian mask
on a subsampled (by 4) version of the original image
for faster processing. The resulting image was up-
sampled, one level at a time, while blurring the image
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Figure 6: Results: (a) Sample images, (b) preprocessed image, (c) corresponding ground truths and (c) segmented results with
CNP regions shown in black.

using a 5×5 Gaussian mask at each upsampled level.
For denoising, a filter kernel size of 9× 9 was used
andσ for the domain and range filters were fixed at
3 and 10 respectively. For valley detection, a 5-level
pyramid was generated; M, N were fixed at 5 and 7

respectively and the peak factor was incremented by
0.02 at each level in the pyramid. In region growing,
the variance was calculated over a 5× 5 neighbour-
hood.

The proposed CNP segmentation algorithm was

AUTOMATIC SEGMENTATION OF CAPILLARY NON-PERFUSION IN RETINAL ANGIOGRAMS

175



tested on 40 images which contained many CNPs.
These were acquired from the digital confocal scan-
ning laser ophthalmoscope of Heidelberg Retina An-
giograph. The images were of retinal segments for
which the ground truth, in the form of boundaries of
CNPs, were prepared manually by a retina expert (a
co-author). Some sample test images along with cor-
responding ground truth and results of our CNP seg-
mentation algorithm, with a peak factor of 0.41, are
shown in Fig. 6 (a), (b) and (c) respectively. CNP
regions are shown in black in both ground truth and
segmented results. The five sample test images indi-
cate the variability in images in terms of quality, size
of CNPs and presence of other structures such as op-
tic disk, macula and microaneurysms. A quantitative
assessment of the algorithm was done using a ROC
curve and not a FROC curve since the area of CNP
is of clinical interest. A comparison between com-
puted and marked CNP segments was done on a pixel
by pixel basis. By using the peak factor as a control
parameter, the obtained ROC curve, shown in Fig. 7,
was found to have an area under the curve (AUC) of
0.842 and a distance (Di) to the ideal point (1,0) of
0.35. The ideal values for AUC andDi are 1 and 0
respectively.

4 CONCLUDING REMARKS

An unsupervised algorithm for automatically seg-
menting CNPs from FFA images has been presented.
Its overall performance is quite good as indicated by
the ROC curve and the AUC,Di metrics. Since there
is no reported work on this problem it is not possible
to do any benchmarking. A visual inspection of seg-
mented results indicates that the algorithm success-
fully detects CNPs of all sizes, however, it tends to
undersegment large CNPs because the IC stage inten-
sifies the variability within CNPs. A failure analysis
indicates that the macula region gets mislabled as a
CNP (as seen in the bottom row of Fig. 6) since the
two have similar characteristics, and CNPs in the im-
age periphery tend to be missed since the valley model
is weak in this region.

The main focus of the presented work was on de-
tection of CNPs. Hence, while the performance our
current implementation is quite good, there is scope
for improvement of the algorithm’s performance: ge-
ometric techniques such as fast marching method in
(Malladi and Sethian, 2006) can be used to more
accurately extract the CNP region boundaries while
a pixel-based classifier will help improve the rejec-
tion of the false alarms. Likewise, incorporation of a
macula detection stage will help the algorithm from

falsely classifying macula as a CNP region.
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Figure 7: ROC plot.

Finally, it should be noted that the ground truth
generation process for CNPs is a laborious one.
Retina experts found it challenging to draw precise
boundaries because they often appear to be intricate
or ill-defined. This points to the need for the use of
multiple expert-markings for a fuller evaluation of the
algorithm. Such an exercise might also shed light on
the degree of observer bias in CNP segmentation.
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Abstract: Vessel diameter is an important factor for indicating retinal microvascular signs. In automated retinal image
analysis, the measurement of vascular width is a complicated process as most of the vessels are few pixels
wide. In this paper, we propose a new technique to measure theretinal blood vessel diameter which can be
used to detect arteriolar narrowing, arteriovenous (AV) nicking, branching coefficients, etc. to diagnose related
diseases. First, we apply the Adaptive Region Growing (ARG)segmentation technique to obtain the edges
of the blood vessels. Following that we apply the unsupervised texture classification method to segment the
blood vessels from where we obtain the vessel centreline. Then we utilize the edge image and vessel centreline
image to obtain the potential pixels pairs which pass through a centreline pixel. We apply a rotational invariant
mask to search the pixel pairs from the edge image. From thosepixels we calculate the shortest distance pair
which will be the vessel width for that cross-section. We evaluate our technique with manually measured
width for different vessels’ cross-sectional area and achieve an average accuracy of 95.8%.

1 INTRODUCTION

Accurate measurement of retinal vessel diameter is
an important part in the diagnosis of many diseases.
A variety of morphological changes occur to retinal
vessels in different disease conditions. The change
in width of retinal vessels within the fundus image is
believed to be indicative of the risk level of diabetic
retinopathy; venous beading (unusual variations in di-
ameter along a vein) is one of the most powerful pre-
dictor of proliferate diabetic retinopathy. Generalized
and focal retinal arteriolar narrowing and arteriove-
nous nicking have been shown to be strongly associ-
ated with current and past hypertension reflecting the
transient and persistent structural effects of elevated
blood pressure on the retinal vascular network. In
addition, retinal arteriolar bifurcation diameter expo-
nents have been shown to change significantly in pa-
tients with peripheral vascular disease and arterioscle-
rosis and a variety of retinal microvascular abnormal-
ities have been shown to relate to the risk of stroke
(Lowell et al., 2004). Therefore, an accurate measure-
ment of vessel diameter and geometry is necessary for
effective diagnosis of such diseases.

The measurement of the vascular diameter is crit-

ical and a challenging task whose accuracy depends
on the accuracy of the segmentation method. A re-
view for the blood vessel segmentation is provided in
the literature (Bhuiyan et al., 2007a). The study of
vessel diameter measurement is still an open area for
improvement. Zhou et al. (Zhou et al., 1994) have
applied a model-based approach for tracking and to
estimating widths of retinal vessels. Their model as-
sumes that image intensity as a function of distance
across the vessel displays a single Gaussian form.
However, high resolution fundus photographs often
display a central light reflex (Brinchman-hansan and
Heier, 1986). Intensity distribution curves is not al-
ways of single Gaussian form, so that using a sin-
gle Gaussian model for simulating intensity profile
of vessel could produce poor fits and subsequently
provide inaccurate diameter estimations (Gao et al.,
2001). Gao et al. (Gao et al., 2001) model the in-
tensity profiles over vessel cross section using twin
Gaussian functions to acquire vessel width. This tech-
nique may produce poor results in case of minor ves-
sels where the contrast is less. Lowell et al. (Low-
ell et al., 2004) have proposed an algorithm based on
fitting a local 2D vessel model, which can measure
vascular width to an accuracy of about one third of
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a pixel. However, the technique is biased on smooth
data (image) and suffers from measuring the width of
minor vessels where the contrast is very less.

In this paper, we introduce a new algorithm, based
on vessel centreline and edges information. We ap-
ply the adaptive region growing technique to segment
the vessels edges (Bhuiyan et al., 2007a) and the un-
supervised texture classification method to segment
the vessels and detect the centreline (Bhuiyan et al.,
2007b). For each selected centerline pixel we map the
edge image of the retinal vessels edge pixels and find
all the potential line end points or pairing pixels on
opposite edge passing through this centreline pixels.
From these potential lines we find the line that has the
minimum length and consider this as the vessel width
for that cross-sectional area. In this way, we can mea-
sure the width of the blood vessel continuing through
the centreline of all the vessels. A specific feature of
our technique is that it can calculate the vessel width
when it is one pixel wide.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the proposed method of blood ves-
sel width measurement. Edge based blood vessel seg-
mentation technique is described in section 3. Section
4 illustrates the vessel centreline detection procedure.
The vessel width measurement method is described
in section 5. The experimental results are provided
in section 6 and finally the conclusion and future re-
search directions are drawn in section 7

2 PROPOSED METHOD

We propose the blood vessels’ width measurement al-
gorithm based on the vessel edge and centreline. The
major advantage of our technique is that it is less sen-
sitive to noise and work equally for the low contrast
vessels (particularly for minor vessels). We adopt two
segmented images that are produced from the original
RGB image. At first, we apply the ARG segmenta-
tion technique to obtain the vessel edges, then we ap-
ply the unsupervised texture classification method to
segment the blood vessels from where we obtain the
vessel centreline. We map the vessel centreline image
and pick any of the vessel centreline pixel. For that
particular pixel we apply a rotational invariant mask
whose centre is that pixels position and searches the
potential pixels from the edge image using a contin-
uous increment of lower to higher distance and ori-
entation. For each case, if the gray scale value of that
pixel position is 255 or white it finds the mirror of this
pixel by searching through a fixed angle (exactly in-
crementing 180 degree) but in variable distance. This
is to give the flexibility and consistency to our method

as the centreline pixels may not be in the exact posi-
tion of vessel centre. In this way, we can obtain all the
potential pairs (line end points) which pass through
that centreline pixel. From those pairs we calculate
the minimum distance/length pair which is the width
of that cross-section of the blood vessel. Figure 1 de-
picts the overall technique of our proposed method.

Figure 1: The overall system for measuring blood vessel
width.

3 VESSEL EDGE DETECTION

We implemented the vessel segmentation technique
based on vessel edges. In the following subsections
we provide a brief illustration of this method.

3.1 Preprocessing of Retinal Image

Adaptive Histogram Equalization (AHE) method is
implemented, using MATLAB, to enhance the con-
trast of the image intensity by transforming the val-
ues using contrast-limited adaptive histogram equal-
ization (Figure 2).

3.2 Image Conversion

The enhanced retinal image is converted into gradient
image (Figure 2) using first order partial differential
operator. The gradient of an imagef (x,y) at location
(x,y) is defined as the two dimensional vector (Gon-
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zalez and Wintz 1987)

G[ f (x,y)] = [Gx,Gy] =

[

∂ f
∂x

,
∂ f
∂y

]

(1)

For edge detection, we are interested in the magni-
tudeG[ f (x,y)] and directionα(x,y)of the vector, gen-
erally referred to simply as the gradient and denoted
and commonly takes the value of

G[ f (x,y)] ≈ |Gx|+ |Gy|
α(x,y) = tan−1(Gy/Gx)

(2)

where the angle is measured with respect to the x axis.

Figure 2: Original retinal image, its Adaptive Histogram
Equalized image (top; left to right), the Gradient Image and
final ARG output image (bottom; left to right).

3.3 Adaptive Region Growing
Technique

The edges of vessels are segmented using region
growing procedure (Gonzalez et al., 2004) that groups
pixels or sub regions into larger regions based on gra-
dient magnitude. As the gradient magnitude is not
constant for the whole vessel we need to consider an
adaptive gradient value that gradually increases or de-
creases to append the pixel to a region. We call it an
adaptive procedure, as the difference of neighboring
pixels intensity value is always adapted for the region
growing process. The region growing process starts
with appending the pixels that pass certain threshold
value. For region growing we find the intensity dif-
ference between a pixel belonging to a region and
its neighboring potential region growing pixels. The
pixel is considered for appending in that region if the
difference is less than a threshold value. The thresh-
old value is calculated by considering the maximum

differential gradient magnitude for any neighboring
pixels with equal (approximately) gradient direction.
Region growing should stop when no more pixels sat-
isfy the criteria for inclusion in that region. In the
region growing process each region is labeled with a
unique number. For that purpose we construct a cell
array with region number and its pixel position. The
image is scanned in a row-wise manner until its end,
and each pixel that satisfies our criteria is taken into
account for growing a region with its 8-neighborhood
connectivity.

3.4 Parallel Region Detection

We calculate the parallel edges (regions) by consid-
ering pixel orientation belonging to each region. At
first, we pick the region number and belonging pixel
coordinates from the constructed cell array. Then we
grouped the region/regions parallel to each region,
which is calculated by mapping the pixels gradient
direction. For each region every pixel is searched
from its potential parallel region and once a maximum
number of pixels match with the other region we con-
sider it as parallel to that region. We consider all re-
gions and once a region is considered we assigned a
flag value to that region so that it will not be consid-
ered again. In this way we can only filter the vessels
from the region and discard all other regions, which
are background noise or other objects like haemor-
rhage, macula, etc in the retinal image.

3.5 Experimental Results

We considered DRIVE database (DRIVE-database,
2004) and applied our technique on five images for
initial assessment. For performance evaluation we
employed an expert to find the number of vessels in
the original image and detected output image (Figure
2). We achieved an overall 94.98% detection accu-
racy.

4 VESSEL CENTRELINE
DETECTION

We implemented the unsupervised texture classifica-
tion based vessel segmentation method from which
we detect the vessel centreline. We consider Gaus-
sian andL∗a∗b∗ perceptually uniform color spaces
with the original RGB image for texture feature ex-
traction. To extract features, a bank of Gabor energy
filters with three wavelengths and twenty-four orien-
tations is applied in each selected color channel. Then
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a texture image is constructed from the maximum re-
sponse of all orientations for a particular wavelength
in each color channel. From the texture images, a fea-
ture vector is constructed for each pixel. These fea-
ture vectors are classified using the Fuzzy C-Means
(FCM) clustering algorithm. Finally, we segment the
image based on the cluster centroid value.

4.1 Color Space Transformation and
Preprocessing

Generally image data is given in RGB space (because
of the availability of data produced by the camera
apparatus). The definition ofL∗a∗b∗ is based on an
intermediate system, known as the CIE XYZ space
(ITU-Rec 709). This space is derived from RGB as
below (Wyszecki and Stiles, 1982)

X = 0.412453R+0.357580G+0.180423B
Y = 0.212671R+0.715160G+0.072169B
Z = 0.019334R+0.119193G+0.950227B

(3)
L∗a∗b∗ color space is defined as follows:

L∗ = 116f (Y/Yn)−16
a∗ = 500[ f (X/Xn)− f (Y/Yn)]
b∗ = 200[ f (Y/Yn)]− f (Z/Zn)

(4)

where f (q) = q1/3 if q < 0.008856 and is constant
7.87+16/116 otherwise.Xn, Yn and Zn represent a
reference white as defined by a CIE standard illumi-
nant, D65 in this case. This is obtained by setting
R= G = B = 100 in (1),q∈ {X/Xn,Y/Yn,Z/Zn}.

Gaussian color model can also be well approxi-
mated by the RGB values. The first three components
Ê, Êλ and Êλλ of the Gaussian color model (Taylor
expansion of the Gaussian weighted spectral energy
distribution at Gaussian central wavelength and scale)
can be approximated from the CIE 1964 XYZ ba-
sis when takingλ0 = 520nm(Gaussian central wave-
length) andσλ = 55nm (scale) as follows (Geuse-
broek et al., 2001)





Ê
Êλ
Êλλ



 =





−0.48 1.2 0.28
0.48 −0.4 −0.4
1.18 −1.3 0









X
Y
Z



 (5)

The product of (3) and (5) gives the desired imple-
mentation of the Gaussian color model in RGB terms
(Figure 3). The Adaptive Histogram Equalization
method was implemented, using MATLAB, to en-
hance the contrast of the image intensity.

4.2 Texture Feature Extraction

Texture generally describes second order property of
surfaces and scenes, measured over image intensities.

Figure 3: Original RGB and its Green channel image (top;
left to right), Gaussian transformed first and second compo-
nent image (bottom; left to right).

A Gabor filter has weak responses along all orien-
tations on the smooth (background) surface. On the
other hand, when it positioned on a linear pattern ob-
ject (like a vessel) the Gabor filter produces relatively
large differences in its responses when the orientation
parameter changes (Wu et al., 2006). Hence, the use
of Gabor filters to analyze the texture of the retinal
images is very promising. In the following two sub-
sections we illustrate the Gabor filter based texture
analysis method.

4.2.1 Gabor Filter

An input imageI(x,y), (x,y)∈Ω whereΩ is the set of
image points, is convolved with a 2D Gabor function
g(x,y), (x,y) ∈ ω, to obtain a Gabor feature image
r(x,y) (Gabor filter response) as follows (Kruizinga
and Petkov, 1999)

r(x,y) =

∫∫

Ω

I(ξ,η)g(x− ξ,y−η)dξdη (6)

We use the following family of 2D Gabor functions to
model the spatial summation properties of an image
(Kruizinga and Petkov, 1999)

gξ,η,λ,Θ,φ(x,y) = exp(− x′2+γ2y′2

2σ2 )cos(2π x′

λ + φ)

x′ = (x− ξ)cosΘ− (y−η)sinΘ
y′ = (x− ξ)cosΘ− (y−η)sinΘ

(7)
where the argumentsx andy specify the position of
a light impulse in the visual field andξ,η,σ,γ,λ,Θ,φ
are parameters. The pair(ξ,η) specifies the center of
a receptive field in image coordinates. The standard
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deviationσ of the Gaussian factor determines the size
of the receptive filed. Its eccentricity is determined by
the parameterγ called the spatial aspect ratio. The pa-
rameterλ is the wavelength of the cosine factor which
determines the preferred spatial frequency1

λ of the
receptive field functiongξ,η,λ,Θ,φ(x,y). The parame-
ter Θ specifies the orientation of the normal to the
parallel excitatory and inhibitory stripe zones - this
normal is the axisx′ in (5). Finally, the parameter
φ ∈ (−π,π), which is a phase offset argument of the
harmonic factor cos(2π x′

λ + φ), determines the sym-
metry of the functiongξ,η,λ,Θ,φ(x,y).

4.2.2 Gabor Energy Features

A set of textures was obtained based on the use of
Gabor filters (6) according to a multichannel filter-
ing scheme. For this purpose, each image was filtered
with a set of Gabor filters with different preferred ori-
entation, spatial frequencies and phases. The filter re-
sults of the phase pairs were combined, yielding the
Gabor energy quantity (Kruizinga and Petkov, 1999):

Eξ,η,Θ,λ =
√

r2
ξ,η,Θ,λ,0 + r2

ξ,η,Θ,λ,π/2 (8)

wherer2
ξ,η,Θ,λ,0 andr2

ξ,η,Θ,λ,π/2 are the outputs of the
symmetric and antisymmetric filters. We used Gabor
energy filters with twenty-four equidistant preferred
orientations(Θ = 0,15,30, ..,345) and three preferred
spatial frequencies(λ = 6,7,8). In this way an ap-
propriate coverage was performed of the spatial fre-
quency domain.

We considered the maximum response value per
pixel on each color channel to reduce the feature vec-
tor length and complexity of training on data for the
classifier. In addition, we constructed an image (Fig-
ure 4) on each color channel which was used for
histogram analysis to determine the cluster number.
From these images we constructed twelve element
length feature vector for each pixel in each retinal im-
age to classify them into vessel and non-vessel using
the FCM clustering algorithm.

Figure 4: Texture analyzed image with the orientations of
15, 45 degrees and maximum response of all twenty-four
orientations (left to right).

4.3 Texture Classification and Image
Segmentation

The FCM is a data clustering technique where in each
data point belongs to a cluster to some degree that is
specified by a membership grade. LetX = x1,x2, ,xN
wherex∈ RN present a given set of feature data. The
objective of the FCM clustering algorithm is to mini-
mize the Fuzzy C-Means cost function formulated as
(Bezdek, 1981)

J(U,V) =
C

∑
j=1

N

∑
i=1

(µi j )
m||xi −v j ||

2 (9)

V = {v1,v2, ,vC} are the cluster centers.U = (µi j )N×C
is fuzzy partition matrix, in which each member is be-
tween the data vectorxi and the clusterj. The values
of matrixU should satisfy the following conditions:

µi j ∈ [0,1], i = 1, ..,N, j = 1, ..,C (10)

µi j = 1, i = 1, ..,N (11)

The exponentm∈ [1,∞] is the weighting exponent,
which determines the fuzziness of the clusters. The
most commonly used distance norm is the Euclidean
distancedi j = ||xi −v j ||.

We used the Matlab Fuzzy Logic Toolbox for clus-
tering 253440 vectors (the size of the retinal image is
512x495) in length twelve for each retinal image. In
each retinal image clustering procedure, the number
of clusters was assigned after analyzing the histogram
of the texture image. The parameter values used for
the FCM clustering were as follows. The exponent
value of 2 for the partition matrix, maximum number
of iterations was set to 1000 for the stopping crite-
rion and the minimum amount of improvement be-
ing 0.00001. We received the membership values on
each cluster for every vector, from which we picked
the cluster number that belonged to the highest mem-
bership value for each vector and converted it into a
2D matrix. From this matrix we produced the binary
image considering the cluster central intensity value
which identifies the blood vessels only.

4.4 Experimental Results

Using the DRIVE database (DRIVE-database, 2004)
we applied our method on five images for vessel seg-
mentation. For performance evaluation, we detected
the vessel centerline in our output segmented im-
ages and hand-labeled ground truth segmented (GT)
images applying the morphological thinning opera-
tion (Figure 5). We achieved an overall 84.37%
sensitivity (TP/(TP+ FN)) and 99.61% specificity
(TN/(TN+ FP)) where TP, TN, FP and FN are true
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positive, true negative, false positive and false nega-
tive respectively. Hoover et al. (Hoover et al., 2000)
method on the same five segmented images provided
in 68.23% sensitivity and 98.06% specificity. Clearly,
our method produces superior results.

Figure 5: Original RGB image, vessel segmented image,
and its centreline image (from left to right).

5 VESSEL WIDTH
MEASUREMENT

After obtaining the vessels edge image and centre-
line image, we mapped these images to find the vessel
width for a particular vessel centreline pixel position.
To do this we first pick a pixel from the vessel cen-
treline image, then we apply a mask considering this
centreline pixel as its centre. The purpose of this mask
is to find the potential edge pixels (which may fall in
width or cross section of the vessels) in any side of
that centreline pixel position. Therefore, we will ap-
ply the mask to the edge image only. For searching all
the pixel positions inside the mask, we calculate the
pixel position by shifting by one up to the size of the
mask and rotating each position from 0 to 180 degrees
at the same time. For increasing the rotation angle we
use the step size (depending on the size of the mask)
less then 180/(mask length). Therefore, we can access
every cell in the mask using this angle.

For each obtained position we search the edge im-
age gray scale value to check whether it is an edge
pixel or not. Once we find an edge pixel we then find
it’s mirror by shifting the angle of 180 degree and in-
creasing the distance from one to the maximum size
of the mask (Figure 6). In this way we produce a ro-
tational invariant mask and pick all the potential pixel
pairs to find the width or diameter of that cross sec-
tional area.

x1 = x′ + r ∗ cosθ
y1 = y′ + r ∗ sinθ (12)

where(x′,y′) is the vessel centreline pixel position,
r=1,2,..(mask size)/2 andθ = 0, ..,180o. For any pixel
position, if the gray scale value in the edge image
is 255 (white or edge pixel) then we find the pixel
(x2,y2) in the opposite edge (mirror of this pixel) con-
sideringθ = (θ+180) and varyingr.

After applying this operation we obtain the pairs
of pixels which are on the opposite edges (at line
end points) giving imaginary lines passing through
the centerline pixels (Figure 6). From these pix-
els pairs we find the minimum Euclidian distance
√

(x1−x2)2 +(y1−y2)2, the width of that crosssec-
tion. In this way, we can measure the width for all
vessels including the vessels’ with one pixel wide (for
which we have the edge and the centreline itself).

Figure 6: Finding the mirror of an edge pixel(left) and width
or minimum distance from potential pairs of pixels (right).

6 EXPERIMENTAL RESULTS
AND DISCUSSION

We used the centreline images and edge images for
measuring the width of the blood vessels. We mea-
sure the accuracy qualitatively by comparing with the
width measured by plotting the centreline pixel and
its surround edge pixels. We considered ten different
vessel cross-sections of these images and observed
that our method is working very accurately. Figure
7 portrays the Grid for a cross-section of a blood ves-
sel where c is the centreline pixel and w1 to w8 are
potential width end points. Figure 8 depicts the de-
tected width for some cross-sectional points indicat-
ing in white lines (enlarged).

Figure 7: Grid showing the potential width edge pairs for a
cross-section with centreline pixel C.

For quantitative evaluation we considered ten
images (each 3072×2048 which captured with the
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Table 1: Measuring the accuracy of the automatic width measurement.

Cross- Centreline pixel Detected width end points Auto. width Accuracy Error
section Xc Yc X1 Y1 X2 Y2 (A) (%) (%)

1 2055 629 2068 632 2046 628 22.361 99.14 0.86
2 1859 519 1871 519 1850 520 21.024 97.50 2.50
3 2259 815 2259 811 2259 824 13 99.46 0.54
4 2350 1077 2350 1070 2350 1084 14 87.61 12.39
5 2233 1317 2239 1314 2239 1322 11.314 93.49 6.51
6 2180 1435 2189 1431 2172 1440 19.235 95.39 4.61
7 2045 1451 2055 1452 2042 1452 13 85.55 14.45
8 1683 1500 1691 1509 1680 1496 17.029 87.52 12.48
9 1579 617 608 1593 630 1573 23.409 98.48 1.52
10 1434 855 853 1436 859 1432 7.211 85.48 14.52
11 1443 1000 999 1446 1004 1440 7.81025 91.23 8.77
12 1618 1331 1335 1623 1330 1617 7.81025 89.54 10.46
13 1475 1164 1169 1479 1162 1474 8.6023 83.20 16.80

Figure 8: Measured vessel width showing by the white lines
in an image portion.

Canon D-60 digital fundus camera) with manually
measured width on different cross-sections from
Eye and Ear Hospital, Victoria, Australia. For each
cross-section, we received the graded width by
five different experts who are trained retinal vessel
graders of that institution. For manual grading a
computer program was used where the graders could
zoom in and out at will, moving around the image
and selecting various parts. We applied our technique
on these images to produce the edge image and vessel
centreline image. We considered these images and
randomly picked ninety-six cross-sections of vessels
varying width from one to twenty-seven pixels. We
measured the width for each cross-section by our
automatic width measurement technique (we call it
automatic width,A) and considered the five manually
measured width (we call it manual width) by experts.
We calculated the average of the manual width
(µ), the standard deviation on manual widths (σm)
and considered the following formula to find the error,

E =

∣

∣

∣

∣

∣

(µ−σm)−A
(µ−σm)

+
(µ+σm)−A

(µ+σm)

2

∣

∣

∣

∣

∣

=
∣

∣

∣
1− µ×A

µ2−σ2
m

∣

∣

∣

(13)

In equation (13), we considered(µ±σm) to normal-
ize it. This formula is a good measure as the error
rate will be less if it is within the interval one stan-
dard deviation. With this formula, we calculated the
error and accuracy in all ninety-six cross-section and
achieve an average of 95.8% accuracy (maximum ac-
curacy is 99.58% and minimum accuracy is 83.20%)
in the detection of vessel width. We found the max-
imum error is 16.80% which is 2.04 pixel and the
minimum error is 0.698% which is 0.139 pixel. Ta-
ble 1 and 2 depict the manual and automatic width
measurement accuracy on different cross-sections in
an image. We compared our technique with (Lowell
et al., 2004) which achieved the maximum accuracy
of 99% (did not mention the average accuracy for all
cross-sections) with minimum pixel error of 0.34. Us-
ing the same formula,|(µ−A)/µ|), we achieved 100%
accuracy. Clearly, our technique is performing better.

7 CONCLUSIONS AND FUTURE
WORK

In this paper we proposed a new and efficient tech-
nique for blood vessels width measurement. This ap-
proach is a robust estimator of vessel width in the
presence of low contrast and noise. The results ob-
tained are promising and the detected width can be
used to measure different parameters (nicking, nar-
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Table 2: Manually measured widths for an image cross-sections.

Cross- Manually measured width (in Micron) Mean width(µ) Standard Deviation
section One Two Three Four Five (in pixel) (σm)

1 112.42 117.53 107.31 117.53 112.42 22.2 0.8366
2 107.31 112.42 107.31 117.53 107.31 21.6 0.8944
3 66.43 76.65 61.32 71.54 61.32 13.2 1.3088
4 61.32 71.54 61.32 71.54 56.21 12.6 1.3416
5 56.21 66.43 56.21 66.43 66.43 12.2 1.0954
6 107.31 107.31 102.2 102.2 97.09 20.2 0.8366
7 56.21 66.43 45.99 61.32 66.43 11.6 1.6733
8 86.87 107.31 102.2 107.31 97.09 19.6 1.6733
9 132.86 127.75 112.42 132.86 107.31 24 2.3452
10 45.99 51.1 35.77 56.21 35.77 8.8 1.7889
11 40.88 56.21 35.77 45.99 45.99 8.8 1.4832
12 35.77 51.1 45.99 56.21 40.88 9 1.5811
13 35.77 45.99 35.77 45.99 30.66 7.6 1.3416

rowing, branching coefficients, etc.) for diagnosing
various diseases. Currently, we are working on the
blood vessels’ bifurcation and cross-over detection
where the measured width is contributing as an im-
portant information for perceptual grouping process.
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Abstract: Aim of this study was the assessment of a T-wave alternans (TWA) identification procedure based on 
application of an adaptive match filter (AMF) method, recently developed by ourselves, to a 20-minute 
digital ECG recording (ECG20). Three-lead ECG20 tracings from 35 patients who survived an acute 
myocardial infarction (AMI-group) and 35 healthy subjects (H-group) were analysed. The AMI-group 
showed, on average, increased levels of TWA (P<0.01). Considering that noise may cause false positive 
TWA detection, a threshold (THRTWA) was defined for TWA magnitude (TWAM) as the mean TWAM 
+2SD over the H-group. TWAM exceeding this threshold identified a TWA-positive (TWA+) subject as 
one at increased risk of sudden cardiac death. Fifteen (43%) AMI-patients vs. zero H-subjects were detected 
as TWA+. This result meets clinical expectation. TWA manifested as a non stationary phenomenon that 
could even be missed in all TWA+ subjects if our AMF (as well as any other technique) was applied to a 
single short-term 128-beat ECG series, as usually done in previous reports. In conclusion, our AMF-based 
TWA identification technique, applied to 20-minute ECG recordings, yields a good compromise between 
reliability of time-varying TWA identification and computational efforts. 

1 INTRODUCTION 

T-wave alternans (TWA) is an electrophysiological 
phenomenon which consists of two-to-one beat-to-
beat changes in the morphology (amplitude, shape 
and, sometimes, polarity) of the electrocardiografic 
(ECG) T wave. According to the literature, visible 
and non-visible (microvolt) forms of TWA in ECG 
recordings play an important role in the 
arrhythmogenesis of failing myocardium (Schwartz 
and Malliani, 1975; Zareba et al., 1994; Adam et al., 
1984; Smith et al., 1988; Rosembaum et al., 1994; 
Kusmirek and Gold, 2007; Klingenheben and 

Ptaszynski, 2007; Narayan, 2007). Visible forms of 
TWA are infrequent. Non-visible TWA requires 
computerized analysis of digital ECG recordings to 
be recognized and parameterized in terms of 
amplitude and duration. Thus, in the effort to assess 
a clinically useful marker of sudden cardiac death, 
development of methods for non-invasive automatic 
detection of microvolt TWA has been a major 
challenge in the last two decades (Rosenbaum et al., 
1996; Klingenheben et al., 2000; Ikeda et al., 2002; 
Tapanainen et al., 2001; Bigger and Bloomfield, 
2007; Ikeda et al., 2006). Factors that may prevent a 
reliable TWA quantification must be controlled by 
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signal preprocessing, such as high frequency noise 
filtering, detection of R peaks, RR stability testing, 
and removal of baseline deviation from the 
isoelectric line.  

Recently, we developed a new adapting match 
filter (AMF; Burattini et al., 2006) method for 
automatic TWA detection, which, differently from 
other reported techniques, does not require any pre-
processing of the ECG tracing, with the only 
exception of R-peak detection. Making use of 
simulated (Burattini et al., 2006) and experimental 
(Burattini et al., 2007) data, we showed that this 
method yields an improvement in reliability of TWA 
detection over a previously reported correlation 
method (Burattini,1998; Burattini et al., 1999).  

Like any other TWA detection technique, our 
AMF needs to be applied to ECG tracings with no 
significant heart-rate variability and with a low noise 
level. As a consequence, these techniques have 
traditionally been applied to short-term ECG series, 
typically consisting of 128 consecutive heart beats. 
This rises the issue as to whether 128 beats portray 
sufficient information on the presence of TWA. To 
address this issue, in the present study we analyzed 
3-lead (X,Y,Z) 20-minute digital ECG recordings 
(ECG20). Our goal was to demonstrate that repeated 
applications of our AMF-based method to several 
tracings of 128 heart beats, within an ECG20, yields 
a good compromise between reliability of TWA 
identification and computational efforts. Our 
analysis was performed on Holter ECG recordings 
from patients who survived a myocardial infarction 
since these are known to show increased levels of 
TWA, compared to healthy subjects (Ikeda et al., 
2002; Pelicano et al., 2006; Ikeda et al., 2000; Puletti 
et al., 1980).  

2 METHODS  

2.1 Clinical Data 

Our study involved 35 healthy subjects (H-group; 
RR=0.93±0.17 s) and 35 patients who survived an 
acute myocardial infarction (AMI-group; 
RR=0.88±0.14 s). For a better traceability during the 
analysis, healthy subjects were identified as H01, 
H02, … H35. Analogously, AMI patients were 
identified as AMI01, AMI02, … AMI35.   

A twenty-minute, three-lead (X,Y,Z) digital 
Holter recording was obtained from each individual 
in resting conditions, making use of Burdick 
recorders (Burdick Inc., Milton, WI). Sampling rate 
was 200 samples per sec. Series of 128 consecutive 

cardiac beats were extracted every 10 seconds from 
each tracing. Each series underwent our TWA 
identification procedure as described below. 
Because extraction of 128 cardiac beats every 10 s 
causes a data overlap (on average 109 s for the H-
group, and 103 s for the AMI-group) between two 
consecutive series, effects of this overlapping were 
tested vs. an extraction procedure (data selection 
every 128 beats) that avoids data overlapping.  

2.2 T-Wave Alternans Detection by 
Adaptive Match Filter  

Our adaptive match filter method (AMF), 
specifically designed to detect TWA (Burattini et al., 
2006 and 2007), was applied to each ECG series of 
128 heart beats. 

To avoid cases where TWA could be driven by 
heart-rate variability (Adam et al., 1984; 
Rosembaum et al., 1994; Burattini, 1998; Burattini 
et al., 1999), an ECG time series has to be 
characterized by a stable heart rate to be eligible for 
TWA analysis. Specifically, we required that: 

 SDRR <0.1·MRR    (1) 
where MRR and SDRR are mean and standard 
deviation of RR intervals (in s).  

Under this condition, the TWA phenomenon is 
assumed to be characterized by a specific frequency 
of half heart rate: fTWA=0.5 cycles per beat, or fTWA= 
1/(2*MRR) Hz. To account for physiological 
variations of the RR interval, a narrow frequency 
band, instead of a single frequency, was assumed 
here to characterize the TWA phenomenon. On this 
basis, our AMF was designed as a passband filter 
with its passing band centred in fTWA. Technically, 
the AMF was implemented as a 6th order 
bidirectional Butterworth band-pass filter, having 
the passing band 2·dfTWA=0.12 Hz wide (value 
experimentally found) and centred at a frequency 
that adapts to mean RR interval. In particular, our 
AMF was designed as a cascade of a low pass filter 
(LPF) with cut-off frequency fLPF= fTWA+ dfTWA, and 
a high pass filter (HPF) with a cut-off frequency 
fHPF= fTWA-dfTWA. The squared module of the AMF 
transfer function is expressed by the following 
equation: 
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were n=3 (half of AMF order), wLPF=2πfLPF, and 
wHPF=2πfHPF. Being the AMF applied in a 
bidirectional fashion, no phase delay occurs. Thus, 
the AMF is expected to detect the TWA signal by 
filtering out not only noise and baseline wandering, 
but also any other ECG component but the TWA.  

The TWA signal provided by the AMF is a time 
domain, constant phase and, possibly, amplitude-
modulated sinusoid with its maxima and minima 
over the T-waves. A local estimate of TWA 
amplitude (ATWA), associated to each single beat, is 
directly given by the sinusoid amplitude in 
correspondence of the T-wave apexes. If the T wave 
of a beat is alternating, its ATWA is greater than zero. 
In our procedure, all local ATWA values are used to 
compute global (i.e. relative to all 128 beats of the 
ECG series) estimates of TWA characteristic 
parameters. In particular, the following global 
parameters were determined: TWA duration 
(TWAD, beat; defined as the total number of beats 
with alternating T-waves), TWA amplitude (TWAA, 
µV; defined as the mean ATWA over all alternating T-
waves), and TWA magnitude (TWAM, beat·µV; 
defined as the product of TWAA times TWAD). 
TWAM is used to detect the presence of TWA, since 
it includes information about both TWAA and 
TWAD. Moreover, TWAM allows identification of 
different TWA episodes (such as those short in time 
and high in amplitude, or long in time and low in 
amplitude), which would not be detected if only 
TWAD or TWAA, respectively, were used. Thus, 
the AMF allows characterization of non-stationary 
(i.e. time varying) characteristics of the TWA signal, 
when present. 

TWAD, TWAA and TWAM parameter values 
are determined in each available lead. 
Corresponding values from the three different leads 
(X,Y,Z) are then averaged for final TWA 
characterization relative to a specific 128-beat series.  
The series with the highest TWAM is assumed as 
the most representative of the entire 20-minute 
recording. 

2.3 Identification of TWA-Positive 
Subjects 

Considering that noise and artefacts may be detected 
as TWA episodes, once TWA is identified and 
parameterized, there is a need to define the TWA 
level that characterizes a TWA-positive subject as 
one at increased risk of sudden cardiac death. Taking 
advantage of the H-group involved in our study, the 
mean+2SD value of the TWAM distribution over 
this group was assumed as the normality threshold 

(THRTWA) of TWA magnitude. Thus, subjects with 
TWAM greater than THRTWA were considered as 
TWA positive (TWA+).  

2.4 Statistical Analysis 

Lilliefors test (Lilliefors, 1967), was used to evaluate 
the hypothesis that each data vector or parameter 
vector had a normal distribution (significance was 
set at 5% level) and could be expressed as mean ± 
SD. Comparisons between two groups of normally 
distributed samples were performed with two-tailed, 
non-paired Student’s t-test (statistically significant 
difference was assumed at P<0.05).  

3 RESULTS 

Application of our AMF method to an entire 20-
minute ECG recording (ECG20), with 128 beat ECG 
series selected every 10 s, yielded normally 
distributed TWA parameters with mean±SD for H-
group and AMI-group as given in Table 1. The 
AMI-group was found to be characterized by having 
significantly higher TWAD, TWAA, and TWAM. 
The threshold value (THRTWA), as defined in 
Methods, was 4176 beat·µV (that is, 2730+2×723). 
With this threshold, fifteen patients of the AMI-
group (i.e. 43%) were classified as TWA+. No 
subject of the H-group showed relevant TWA.  

Extraction of ECG time series every 128 beats 
(no overlap between two consecutive series) 
provided a lower number of TWA+ among AMI-
patients (eleven cases, i.e. 31%), and significantly 
lower estimates of TWA duration, amplitude and 
magnitude parameters, with respect to the extraction 
procedure performed every 10 s (Table 2). 

Application of our AMF method to 128-beat 
series taken in proximity of minutes 0 (t0), 5 (t5), 10 
(t10), 15 (t15), and 20 (t20), yielded even lower 
numbers of TWA+ patients associated with 
significant reduction of mean TWAM, compared to 
ECG20 with ECG time series extracted every 10 s 
(Table 3). Eight (23%) out of the 15 (43%) patients 
identified as TWA+ when analyzing ECG20 
(namely, AMI02, AMI10, AMI11, AMI15, AMI18, 
AMI19, AMI22 and AMI24), were never detected as 
TWA+ when using single 128-beat series. Four 
(11%) patients were detected as TWA+ at time t0 
and t15, two (6%) at t10, and only one (3%) at t5 and 
t20.  

A representative example of the time course of 
TWAD, TWAA and TWAM parameters averaged 
over the three leads in our AMI01 patient is 
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displayed in Fig. 1a to c. Panel c clearly shows that 
TWAM, which has been assumed as a marker of the 
presence of TWA, crosses the THRTWA value at 
different time instants. Under-threshold values of 
TWAM are due to a simultaneous decrement of both 
TWAD and TWAA (panels a and b). 

Because TWAM shows fluctuations with 
threshold-crossing within ECG20, TWA could even 
be missed in all TWA+ subjects if our AMF was 
applied to a single, short-term 128-beat ECG series. 
Confirmation of this statement is found in Fig. 2, 
where TWAM waves from all fifteen TWA+ 
patients are displayed. Arrow pointers in proximity 
of the eleventh minute mark 128-beat ECG series 
with under-threshold TWAM which would miss all 
TWA+ cases. 

4 DISCUSSION 

To satisfy the requirement of heart-rate stability for 
reliable TWA detection, short-term ECG series have 
been considered for TWA identification in most 
reported studies. Indeed, spectral analysis has been 
the first technique proposed in the literature for 
automatically detecting TWA (Adam et al., 1984). 
ECG series of 128-consecutive beats were 
considered for its application because this is the 
minimal requirement to guarantee reliable spectral 
analysis. Since then, ECG time series of 128-
consecutive beats have been traditionally used for 
TWA quantification. Thus, the issue arises as to the 
reliability of using a single 128 beat sequence to 
detect  TWA+  cases. The present study was 
designed to address this issue by applying our AMF-
based method for TWA detection (Burattini et al., 
2006). Comparison was performed among the results 
obtained from 128 beat ECG series selected 1) every 
10 s (data overlap), 2) every 128 beats (no data 
overlap), 3) every 5 minutes, in a time frame of 20 
minutes. For this technical investigation, we 
considered a population of 35 AMI-patients 
compared with a population of 35 H-subjects. The 
H-population was used as reference to define a 
threshold (THRTWA) for TWAM parameter provided 
by our method as a marker to identify a remarkable 
level of TWA.  

A novel finding of our analysis was that, based 
on the defined threshold, the use of a unique 128 
beat ECG series is unsuitable to unmask and detect 
TWA. An explanation of this shortcoming is found 
in that TWA is a transient phenomenon 
characterized by time-varying TWAD, TWAA and 

TWAM parameters (Fig. 1). As shown in Fig. 2, 
under-threshold values of TWAM, assumed as 
marker of TWA, would miss TWA+ patients if a 
unique 128-beat ECG series in proximity of the 
eleventh minute was used. 

Table 1: Comparison between TWA duration (TWAD), 
amplitude (TWAA), and magnitude (TWAM) 
distributions (mean±SD) in the H-group and AMI-group. 
Data refer to 20-minute ECG recordings (ECG20) with 
128 beat time series extracted every 10 s.  

 H-group AMI-group t-test 
TWAD 
(beat) 75±13 87±11 P<0.01 

TWAA 
(µV) 43±14 56±22 P<0.01 

TWAM 
(beat*µV) 2730±723 3982±1386 P<0.001 

Table 2: Comparison between TWA duration (TWAD), 
amplitude (TWAA), and magnitude (TWAM) 
distributions (mean±SD) in AMI-group. Data refer to 20-
minute ECG recordings with 128 beat time series 
extracted every 10 s (ECG20 overlap) or every 128 beats 
(ECG20 no overlap). 

AMI-
group 

ECG20 
overlap 

ECG20 
no overlap 

t-test 

TWA+ 15 11  
TWAD 
(beat) 87±11 81±11 P<0.001 

TWAA 
(µV) 56±22 50±21 P<0.001 

TWAM 
(beat*µV) 3982±1386 3453±1253 P<0.001 

 

 
Figure 1: TWA in the AMI01 patient. Panels a, b, and c: 
respectively, TWA duration (TWAD), TWA amplitude 
(TWAA), and TWA magnitude (TWAM) as functions of 
time. In panel c the normality threshold is represented with 
a dotted line. 
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Figure 2: TWAM waves from our TWA+ patients. All them would not be recognised as TWA+ if a single 128 beat series 
about the eleventh minute (arrows) was used, since TWAM is under threshold (dot line) about this time.  

Table 3: TWA+ patients of AMI-group identified by our AMF method applied to the entire 20-minute ECG recording with 
128 beats series extracted every 10 s (ECG 20 overlap), and to a single 128-beat series taken in proximity of minutes 0 (t0), 
5 (t5), 10 (t10), 15 (t15), and 20 (t20). TWAM: TWA magnitude; TWA+: TWA positive patient. Student’s t-test is used to 
compare the mean TWAM value over each considered 128-beat series (t0, t5, ..,t20) with mean TWAM over ECG 20.  

AMI-group ECG 20 
overlap t0 t5 t10 t15 t20 

TWA+ 
individual 
patients 

AMI01 
AMI02 
AMI03 
AMI05 
AMI10 
AMI11 
AMI15 
AMI18 
AMI19 
AMI21 
AMI22 
AMI23 
AMI24 
AMI25 
AMI26 

AMI01 
- 

AMI03 
AMI05 

- 
- 
- 
- 
- 

AMI21 
- 
- 
- 
- 
- 

AMI1 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

AMI23 
- 
- 

AMI26 

AMI01 
- 
- 

AMI05 
- 
- 
- 
- 
- 
- 
- 
- 
- 

AMI25 
AMI26 

- 
- 
- 

AMI05 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

Total TWA+ 15 
(43%) 

4 
(11%) 

1 
(3%) 

2 
(6%) 

4 
(11%) 

1 
(3%) 

TWAM 
(beat*µV) 3982±1386 2708±1324 2352±974 2330±1030 2494±1298 2397±1178 

t-test  P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 
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We identified in 3-lead (X, Y, Z) 20-minute 
digital ECG recordings a time frame that achieves a 
good compromise between reliability of TWA 
identification and computational efforts. Moreover, a 
20-minute time frame is short enough to be possibly 
obtained in controlled conditions, so that noise and 
heart-rate variability due to emotional or physical 
factors may not interfere significantly.  

The definition of a threshold for TWAM is a 
critical issue. The value identified here as mean 
TWAM+2SD over our H-group yielded no presence 
of TWA in this population, since the under-threshold 
level of TWA is considered as background noise. 
Our finding of no TWA in H-subjects is consistent 
with what is commonly recognised in clinics. 
Nevertheless, further studies on populations of 
clinical relevance are desirable to define an optimal 
normality threshold.  

Several techniques have been proposed in the 
literature for TWA detection (Adam et al., 1984; 
Nearing et al., 1991; Burattini et al., 1999; Burattini 
et al., 2006). Among these, the spectral method, 
pioneered by Adam et al. (1984), is the most widely 
used in clinics. However, being TWA a transient 
(i.e. non-stationary) phenomenon (Kusmirek and 
Gold, 2007; Cox et al., 2007; Richter et al., 2005; 
and present study), a time-domain approach, as our 
AMF method, appears, from a theoretical point of 
view, more appropriate since it provides local (i.e. 
relative to the single beat) as well as global (i.e. 
relative to the entire ECG series under analysis) 
TWA parameterization. Moreover, it is able to 
discriminate between TWA phenomena sustained-
in-time (minutes) but low-in-amplitude and short-in-
time (few beats) but large-in-amplitude. Because 
these two different kinds of TWA could potentially 
have different clinical implications (statement to be 
confirmed by future clinical studies), it appears 
worthwhile to have a TWA detection method, which 
allows discrimination between them. Such a 
discrimination is not allowed by the spectral method, 
which works, by definition, under the hypothesis of 
stationary signal, and provides TWA measurements 
that are averaged over the entire ECG time series 
under analysis (128 beats). As a consequence, no 
local (at the beat level) parameterization is possible 
with the spectral method.  

Two more TWA detection techniques proposed 
in the literature are the correlation method (Burattini 
et al., 1999) and the complex demodulation (Nearing 
et al., 1991), which operate in the time domain. 
Compared to the correlation method, our AMF 
improves TWA detection in the presence of baseline 
wanderings (Burattini et al., 2006). Complex 

demodulation is computationally very heavy and has 
never been used for practical purposes. In addition, 
compared to any other TWA detection algorithm, 
our AMF does not require pre-processing of the 
ECG tracing, because noise and ECG frequency 
components other than fTWA, are simultaneously 
filtered out. 

Our study suggests to analyse 20 minute ECG 
recordings by applying our AMF to 128 beat ECG 
time series selected every 10 seconds within a 20-
minute time frame. As a consequence, the TWA 
global parameters (TWA duration, amplitude and 
magnitude) associated to a time instant are the result 
of an integration procedure over a 128 beats 
window, corresponding (see Methods), on average, 
to 119 s for the H-group, and 113 s for the AMI-
group. This, of course, results in a significant 
overlap of data sets. A certain degree of overlap, 
however, is necessary. In fact TWA episodes could 
be divided into shorter ones during the windowing 
procedure for 128 ECG time series extraction, and 
this operation could prevent a correct TWA 
detection and quantification. In addition, to be 
eligible for TWA analysis, a 128 beat ECG is 
required to satisfy the heart-rate stability condition 
(eq. 1). The presence of local arrhythmic or noise 
conditions, including ventricular premature beats, 
artefacts, as well as false-positive and false-negative 
beat detections, may cause rejection of a 128 beat 
ECG. If no overlap among ECG time series is 
present, all information on TWA in the time frame 
belonging to the rejected ECG series is lost. Rather, 
if a certain degree of overlap is allowed, some 
information on TWA can be recovered from a close 
ECG time series not affected by the local noise 
factor. The time resolution recovering, consisting of 
the transition from the global (relative to the entire 
ECG series) domain to the local (relative to the 
single beat) domain, is possible only with time-
domain TWA detection methods, through the 
availability local TWA amplitude measure (ATWA). 

Computational efforts limit the frequency of 
time series extraction from an ECG20. Results of the 
present study indicate that application of our AMF-
based method to 128 beat series extracted every 10 s 
is a good compromise between reliability of non 
stationary, transient TWA identification and 
computational efforts. This kind of analysis, in fact, 
can be routinely performed in real time in a clinic or 
doctor’s office using a standard personal computer.  
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Abstract: In this article we compare the convergence rates at increaseof the number of processed trials of the three meth-
ods applied nowadays in electroencephalography research to denoising of event-related potentials: traditional
averaging, weighted averaging, and ERPSUB. We derive the weighted averaging procedure by maximizing
signal-to-noise ratio in the averaged subject responses and show, thereby, that maximizing signal-to-noise ra-
tio criterion is equivalent to minimizing the originally proposed mean-square error criterion in the sense of the
weighted averaging problem solving. Moreover, in order to characterize fully the performance of the selected
methods, we compare also noise reduction rates in estimatesof event-related potentials provided by methods,
while the number of processed trials increases.

1 INTRODUCTION

Reliable characterization of event-related potentials
(ERPs) is a central task in electroencephalography
(EEG) data processing. ERP is a concept used in
EEG research to denote brain electromagnetic poten-
tials occurring as responses to the external or men-
tal events, whose quantitative understanding underlies
many neuropsychological studies and clinical diagno-
sis (Huttunen et al., 2007; Luu et al., 2004; Makeig
et al., 1999; Näätänen, 1992). However, the signal-
to-noise ratio (SNR) is very low in a single mea-
surement (trial) of the brain response following the
stimulation event, which makes it impossible to iden-
tify ERP characteristics, such as amplitude and la-
tency, reliably. In order to increase SNR and, hence,
estimate reliably ERP characteristics, many trials of
equal length and synchronized to the same event are
measured from different locations on the scalp (chan-
nels) and averaged channel-wise (see Sect. 2). Aver-
ages of many trials for every channel are assumed to
have high SNR and important ERP characteristics can
be identified then from the averages with the accuracy
depending on the number of trials used for averaging.

Moreover, besides improving the reliability of the
estimates of ERP characteristics, it is also important
to shorten the experiment time, because subjects un-
der consideration suffer from the long time lasting ex-
periments. They get tired, lose attention and can not
adequately perform the experimental tasks anymore.
As a consequence, data become less informative from
the experimental design point of view. Furthermore,
for some groups of probationers (infants or patients)
long experiments may be too demanding.

Basically, we need less trials to shorten the time
of the experiment. Hence, our attention is focused on
methods, which extract useful information from EEG
data more effectively than the conventional averag-
ing does. This allows obtaining the desired accuracy
of ERP characteristics using fewer trials and, hence,
shorter experiment. We consider two methods that
were developed to increase SNR in the subject aver-
ages as compared to the conventional averaging pro-
cedure: weighted averaging (Hoke et al., 1984) and
ERPSUB (Ivannikov et al., 2007).

An important assumption underlying the averag-
ing in electroencephalography research is the ergod-
icity of the noise. However, we should be realistic and

195



understand that this assumption is violated to some
extent in practical applications. This leads us to a
situation, when the variance of the noise is different
across trials. It then turns out that SNR in the aver-
aged responses can be boosted by weighting the tri-
als inversely to the variance of the noise they contain.
The formal derivation of this result was originally ob-
tained in (Hoke et al., 1984) by minimizing the mean-
square error criterion. In (Davila and Mobin, 1992) a
similar technique has also been derived by maximiz-
ing SNR in the average using Rayleigh quotient and
solving the generalized eigenvalue problem. Later,
in (Łȩski, 2002) robust version of weighted averag-
ing was proposed and further developed into com-
putationally more effective algorithm in (Łȩski and
Gacek, 2004). In this paper we obtain essentially
same result as in (Hoke et al., 1984) by maximiz-
ing SNR criterion, but using different derivation pro-
cedure than that used in (Davila and Mobin, 1992)
and show, thereby, that SNR criterion is equivalent
to the mean-square error criterion in the sense of the
weighted averaging problem solving.

ERPSUB method utilizes the problem specific as-
sumptions for ERP/noise linear subspaces separation
in multichannel EEG data and results in more effec-
tive denoising of ERPs comparing to the conventional
averaging (Ivannikov et al., 2007). Method automat-
ically solves the component classification problem
for a priori known dimensionality of ERP subspace.
Moreover, it contains also means for estimating the
dimensionality of ERP subspace, if prior knowledge
is absent, with the accuracy depending on the close-
ness of the data properties to the values provided by
the ideal assumptions.

Since we are interested in decreasing the experi-
mental time (minimizing number of trials necessary
for reliable ERP identification), in this paper we con-
centrate on and compare the convergence rates of ERP
estimates provided by selected methods (traditional
averaging approach, weighted averaging, and ERP-
SUB), while the number of processed trials increases.
Moreover, in order to give a comprehensive evalua-
tion of the methods’ performance, we also compare
the noise reduction rates in ERP estimates for the
same conditions.

The structure of the work is as follows. First, in
Sect. 2, we describe the experimental data and formu-
late the research area. Then, in Sect. 3, the methods
are discussed. Section 4 represents the experimental
results. In Sect. 5, conclusions are drawn.

2 PRELIMINARIES

In this article we used EEG data that were introduced
and studied in (Huttunen et al., 2007) and (Kalyakin
et al., 2007). The same data were utilized also for the
purposes of testing in (Ivannikov et al., 2007). The
data collection experimental design was targeted to
elicit mismatch negativity (MMN) component of au-
ditory ERP. In fact, MMN has turned out to be espe-
cially useful for the investigation of the brain basis of
human auditory cognition (Näätänen, 1992).

In the data collection experiments, the experimen-
tal paradigm proposed in (Pihko et al., 1995) was
used. It is based on a sequence of standard stim-
uli consisting of continuously (uninterruptedly) alter-
nated sounds of 600 Hz and 800 Hz, each lasting 100
ms. Two types of deviant stimuli are randomly pre-
sented in this sequence with the frequency of 600 Hz
and duration of 30 ms or 50 ms. The measured trials
contain 300 ms of recordings before the start of the
deviant tone and 350 ms after the start of the deviant
tone. Measurements were collected with the sam-
pling rate 200 Hz, thus, giving 130 time points for
each trial. There were 102 participants (or subjects)
involved in the data collection experiment. Measure-
ments were recorded using 12-electrodes scheme re-
sulting in 350 trials collected for each of 102 subjects,
each of the two deviants and each of the nine chan-
nels of EEG data (i.e., C3, C4, Cz, F3, F4, Fz, Pz,
M1, M2) and the two channels of electrooculography
(EOG) data (i.e., ER, EL). An additional nose elec-
trode was used as a reference point.

We assume that each recorded trialxk
i (t) contains

both the weighted sum of the time-locked brain re-
sponsessk (t) assumed to be deterministic through all
trials and the weighted sum of the noise sourcesnk

i (t),
such as spontaneous EEG and artifacts (Vigário,
1997; Jung et al., 2000). Noisesnk

i (t) are assumed to
be uncorrelated with each other and withsk (t). Then,
without loss of generality we can assume thatxk

i (t),
sk (t), andnk

i (t) are zero mean variables, since data
always can be centered. Hence, the simplest additive
model to describe the phenomenon reads as

xk
i (t) = sk (t)+nk

i (t) , (1)

wherei = 1, ...,N, t = 1, ...,T, andk = 1, ...,K. Here
N denotes the number of measured trials,T is the
number of time points per trial, andK denotes the
number of measured channels. The conventional av-
eraging operation is performed for each channel sep-
arately and is described by formula:

xk
N (t) =

1
N
·

N

∑
i=1

xk
i (t) = sk (t)+nk

N (t) , (2)
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wheresk (t) is the time-locked ERP constituent (sig-
nal of interest) andnk

N (t) is the noise constituent in
the average. The resulting average in (2) is assumed to
have higher SNR than the single trial does that is con-
firmed by practical experience and theoretical compu-
tations (Näätänen, 1992; Furst and Blau, 1991).

3 METHOD DESCRIPTION

3.1 Weighted Averaging

The variance of the sum ofN stochastic variables can
be expressed through the formula

σ2

(

N

∑
i=1

xi (t)

)

=
N

∑
i=1

σ2 (xi (t))+2∑
i< j

Covi j , (3)

whereCovi j = E[xi (t)x j (t)] denotes the covariance
between the two zero mean stochastic variables or tri-
alsxi (t) andx j (t), andσ denotes the standard devia-
tion. To simplify the following discussion we omit the
channel indexk throughout the paper assuming that
all channels are treated in the similar way. Therefore,
for the weighted sum/average of trials∑N

i=1aixi (t)
and taking into account that the covariance of the
two perfectly linearly correlated signals equals to the
product of their standard deviations, we have

σ2

(

N

∑
i=1

aixi (t)

)

=

N

∑
i=1

a2
i σ2

s +
N

∑
i=1

a2
i σ2

ni
+2σ2

s

N−1

∑
i=1

ai

N

∑
j=i+1

a j , (4)

whereσ2
s denotes the variance of the signal andσ2

ni
is

the variance of the noise ini-th trial. Then the portions
of the total varianceσ2

s and σ2
n that are contributed

by the time-locked signals and noise sources, corre-
spondingly, to the weighted sum (normal average in
caseai = 1

N , ∀ i = 1, . . . ,N) of N trials read as

σ2
s = σ2

s

(

N

∑
i=1

ai

)2

, (5)

σ2
n =

N

∑
i=1

a2
i σ2

ni
. (6)

We define SNR in the weighted sum ofN trials as
the variance of ERP constituent in this sum divided
by the variance of the noise constituent:

SNRN =
σ2

s

σ2
n

(7)

and try to maximize its value in order to determine
the optimal values ofai ’s. For this purpose, taking the
partial derivatives ofσ2

s andσ2
n with respect toai, we

have
∂ σ2

s

∂ai
= 2σ2

s

N

∑
j=1

a j , ∀1≤ i ≤ N, (8)

∂σ2
n

∂ai
= 2aiσ2

ni
, ∀1≤ i ≤ N. (9)

Therefore, the partial derivative of SNR with respect
to ai is given by

∂SNRN

∂ai
=

∂σ2
s

∂ai
σ2

n−σ2
s

∂σ2
n

∂ai
(

σ2
n

)2 , ∀1≤ i ≤ N. (10)

Saddle points in theai ’s coordinate space can be
found by equating the numerator of equation (10) to
zero assumingσ2

n 6= 0. Therefore, the problem can be
expressed through a system of equations

(

σ2
s ∑N

j=1a j

)

σ2
n−σ2

s(aiσ2
ni
) = 0,

∀1≤ i ≤ N. (11)

Subtracting any two equations in this system, we ob-
tain

aiσ2
ni

= a jσ2
n j

, ∀1≤ i, j ≤ N. (12)

Plugginga j =
σ2

ni
σ2

nj
ai back to the system of equations

(11), we get a system of identical equations after some
manipulations. Moreover, since the values of weight-
ing coefficientsai ’s were not fixed in this operation,
they can be arbitrary within the constraint (12). This
means, in turn, that

aiσ2
ni

= a jσ2
n j

= C, ∀1≤ i, j ≤ N, (13)

whereC can be any constant. Hence, the solution has
a form

ai =
C

σ2
ni

, ∀1≤ i ≤ N. (14)

It is easy to check that this extremum point is the max-
imum by substitutingai =

C
σ2

ni
±∆, ∀1≤ i ≤N in (11),

where∆ > 0 is an infinitely small shift.
Assuming SNR in a single trial is very low (this

follows from the magnitude level of the time-locked
signal≈ 3–5µV compared to the magnitude level of
the trial itself ≈ 50–100µV), we can disregard the
variance contributed by the time-locked signal to the
trial and approximate

σ2
ni
≈ σ2

xi
. (15)

Thus, we can approximately compute the coefficients
ai ’s by arbitrarily fixingC constant first.
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Note that in (Hoke et al., 1984) the minimization
of the mean-square error leads to a single unique so-
lution, whereas in our case the maximization of SNR
yields an infinite set of solutions due to the arbitrary
choice ofC in (14). This result can be explained by
the obvious reasoning that only the ratio betweenai ’s
is emphasized by SNR criterion (the weighted sum
can be multiplied by any number keeping SNR on
a same level), whereas the solution based on mini-
mizing mean-square error criterion is associated with
the original level of ERP signal and with the highest
SNR as well. Hence, in order to correct the level of
ERP signal to original in the weighted average with
weighting coefficients fixed as in (14), whereC is ar-
bitrary, we need to multiply∑N

i=1aixi (t) by a correc-
tion factorα that eliminates uncertainty introduced by
arbitrariness ofC. Apparentlyα depends onC and
plays role of a constraint imposed onC andai ’s that
specifies only single set ofai ’s preserving the original
level of ERP signal in the weighted average. From (5)
α is obviously expressed through the formula

α =
1

√

σ2
s/σ2

s

=
1

∑N
i=1ai

. (16)

After embedding the correction factorα into (14)
the final solution for the weighting coefficients be-
comes

ai = σ−2
ni

/

N

∑
j=1

σ−2
n j

, ∀1≤ i ≤ N (17)

that coincides with the results from (Hoke et al.,
1984). These values of the weighting coefficients are
unique in the sense that they are connected to the orig-
inal level of ERP signal and, thus, do not require mul-
tiplication by the correction factorα, which equals to
1 in this case.

3.2 ERPSUB

In the contemporary research EEG data is often con-
sidered in the scope of the linear instantaneous noise-
less mixing model, which is also assumed in this pa-
per:

Xi = A ·Yi, ∀ i = 1, . . . ,N, (18)

whereXi is a matrix of sizeK × T, which contains
measurements fromK channels and one trial of length
T time points,Yi is a matrix of sizeK×T, which con-
tains the realizations ofK sources of lengthT time
points, andA stands for the mixing matrix. It is as-
sumed that every row inXi has zero mean for alli, i.e.
the data are centered. In addition we assume that the
mixing matrixA does not change in time. Practically
it means that for one subject during one experiment

with the static conditions matrixA stays the same for
all trials within the experiment. Therefore, we are al-
lowed to form a data matrix by concatenating matrices
Xi channel-wise:

X = A ·Y, (19)

where X = [X1 X2 . . . XN] is the matrix of con-
catenated measurements of sizeK × TN and Y =
[Y1 Y2 . . . YN] is the matrix of concatenated realiza-
tions of the sources of the same size. Matrix equiva-
lent of (2) can now be written as

X =
1
N

N

∑
i=1

Xi = A
1
N

N

∑
i=1

Yi = AY. (20)

Furthermore, in the framework of the model (18)
it is assumed that allK measurements in every multi-
dimensional trialXi are linearly independent and the
number of sources does not exceed the number of
channels. These assumptions are introduced to ensure
that measurements form the basis for the linear space
of the same dimension as sources do. This, in turn,
guarantees the existence of the pure signal and noise
subspaces in theory. Both assumptions are practically
addressed by reasonable selection ofK andT param-
eters. Moreover, we assume that subspaces of ERP
signals and noise are statistically independent. The
imposed assumptions, except the one concerning the
linear independence of measurements, are rather strict
and can not be completely justified in practical ap-
plications. However, they are necessary on the stage
of the method development. In real situations one is
instructed to reinterpret the results of the method ac-
cording to the types and extent of the assumptions’
violations.

The main idea of ERPSUB is to use the relevant
information stored in data along all time, trial, and
channel dimensions, while separating ERP/noise sub-
spaces. In contrary, most of the Independent Com-
ponent Analysis (ICA) methods also applied in EEG
data processing to ERP/noise sources separation ex-
ploit the information kept along the time and chan-
nel dimensions only, whereas the trial dimension is
ignored (Hyvärinen et al., 2001; Jung et al., 2000;
Vigário, 1997). Traditional averaging is one-channel
technique, and it exploits the information hidden in
trial dimension only for ERP denoising. Weighted av-
eraging is also one-channel procedure, but it utilizes
the information taken from trial and time dimensions
for the purposes of ERP denoising. ERPSUB exploits
the fact that after the averaging the variance of data
should decrease along the directions in the noise sub-
space, while the variance along the signal directions
should stay on the original level in ideal conditions.
This means that after whitening, which should make
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Figure 1: The averaged over 102 subjects MSD tracks providedby traditional averaging, weighted averaging and ERPSUB
(nine EEG channels, 30ms deviant, logarithmic scale).

subspaces orthogonal and standardize the data to sim-
ilar variances along all directions, and averaging ERP
components should have the largest variances in con-
trary to the noise components, and, hence, subspaces
can be extracted by standard linear Principal Com-
ponent Analysis (PCA) algorithm (Hyvärinen et al.,
2001; Oja, 1992). In practice, however, the variance
of data most likely will reduce along all directions af-
ter the averaging, because subspaces are overlapped,
and additive noise is always present, and, thus, pure
signal/noise subspaces do not exist. In this case the
results are interpreted in terms of SNR: higher SNR
is obtained in data projected to the directions describ-
ing larger data variations after whitening and aver-
aging. Thus, practically, we intend to separate the
subspace of dimensionNERP having maximal possi-
ble SNR from the subspace of dimensionK −NERP
with the minimal possible SNR. As one can see, ERP-
SUB is based on a sequence of linear transformations
applied in a problem-specific manner to multidimen-
sional EEG data and results in effective denoising of
ERP signals (Ivannikov et al., 2007).

ERPSUB:

1. Whiten the centered concatenated data:

Z = D−1/2WTX, (21)

where matricesD andW are taken from the eigen-
value decomposition̂Σ = WDWT of the estimated
covariance matrix̂Σ = XXT/(TN−1).

2. Average the whitened data:

Z = D−1/2WTX. (22)

3. Apply the standard linear PCA to the averaged
whitened data

Y
′
ERP= ∆NERPW

T
D−1/2WTX, (23)

where matrixWT is obtained from the eigenvalue
decompositionZZ

T
/(T −1) =WDW

T
and∆NERP

is the diagonal projection matrix having ones on
NERP first diagonal elements corresponding to the
components contributing energy to ERP (maximal
SNR) subspace and zeros otherwise. Here,NERP
is the amount of assumed ERP sources present in
EEG measurements. In practice, when pure sig-
nal/noise subspaces do not exist,NERP has differ-
ent meaning interpreted in terms of SNR. In this
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Figure 2: The averaged over 102 subjects tracks of the remaining noise variance in ERP estimates provided by traditional
averaging, weighted averaging and ERPSUB (nine EEG channels, 30ms deviant, logarithmic scale).

caseNERP is the amount of the components hav-
ing largest SNR, which in our opinion describe
ERP and noise variations in channels in propor-
tions providing suitable SNR and tolerable ERP
energy loss. Hence,Y

′
ERP is a matrix of the av-

eraged components, where all components from
noise (minimal SNR) subspace are zeroed. Note
that ERP components have the largest correspond-
ing eigenvalues and, thus, the component classi-
fication problem is solved automatically for fixed
NERP. In addition, if the difference between eigen-
values corresponding to ERP and noise compo-
nents is clearly observed, one can estimateNERP
value providing optimal separation of the compo-
nents into subspaces in the sense of SNR and ERP
energy loss. Moreover, eachK-dimensional trial
Xi can be decomposed into the components using
the same transformation as in (23):

Y′
ERPi = ∆NERPW

T
D−1/2WTXi , (24)

4. The matrixY
′
ERP containing only averaged com-

ponents related to ERP subspace is then trans-
formed back to the original data space (channels)
to result in the subject average with the reduced

noise:
XERP= WD1/2WY

′
ERP. (25)

A similar relation applies also to a single trial de-
noising:

XERPi = WD1/2WY′
ERPi . (26)

4 EXPERIMENTAL RESULTS

It was noticed during the simulations and is theoreti-
cally predictable that the weighted averaging method
is highly sensitive to the trials having small portions
of variance concentrated on short time intervals. Gen-
erally, such trials do not carry much of the informa-
tion and are usually recorded at the saturation state of
the amplifier, when parts of the trials are truncated re-
sulting in peaks alternating with flat periods. Satura-
tion state occurs, when signal exceeds the dynamical
range of the amplifier. The weighting coefficientsai ’s
assigned for such trials are very large following the al-
gorithm. As a consequence, when trials are weighted,
peaks in truncated trials become very strong against
a background of other trials’ amplitude resulting in a
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high frequency noise in the averaged signal. To an-
nul the harmful consequences introduced by the trun-
cated trials we performed the trial rejection procedure
for our data before doing the computations. The suc-
cessful upper limit of the trial’s variance for the trial
removal was 30µV2, which finally rejected all trun-
cated trials in our database.

Apparently, for our problem the converged ERP
estimate (subject average) is indicated by only in-
significant change introduced by the consequent trial.
We measure the amount of change between the two
subsequent ERP estimates in one channel for method
LABEL by MSD score:

MSDLABEL
N =

1
T

T

∑
t=1

(xLABEL
N (t)−xLABEL

N−1 (t))2
,

wherexLABEL
N (t) denotes ERP estimate obtained after

application of a particular method LABEL involving
N trials. Thus, for example, for ERPSUBxERPSUB

N (t)
equals to a row in the matrix of averaged filtered chan-
nelsXERP corresponding to the considered channel;
for weighted averagingxWA

N (t) = ∑N
i=1 âixi (t), where

âi ’s are computed as in (17) substituting approxima-
tion from (15) forσ2

ni
for all i = 1, . . . ,N. To compare

the convergence rates of ERP estimates provided by
methods under consideration at increase of the num-
ber of processed trials, we computed averaged over
102 subjects MSD values forN = 1, . . . ,350 (MSD
tracks) for each method (see Fig. 1). We did this
for the nine EEG channels and for 30ms deviant only,
where ERP appeared to be the strongest. The value
of NERP parameter of ERPSUB method was set to 3,
that is, a good choice of maximal SNR subspace di-
mension for our data, because signal loss is insignif-
icant and noise reduction is sufficiently high result-
ing in essential SNR increase (Ivannikov et al., 2007).
According to the obtained results, the weighted av-
eraging procedure outperforms both the traditional
averaging scheme and ERPSUB algorithm, because
MSD provided by weighted averaging, in general, de-
creases faster than for other methods at increase of
the number of processed trials. The superiority of the
weighted averaging here is probably a consequence of
the core idea underlying the method. Weighted aver-
aging is designed in a way that trials are ’equalized’
in the sense of the variance. This should make the
convergence of the ERP estimate smoother and faster.
Although application of ERPSUB should result in
higher noise reduction rate than the conventional av-
erage provides (Ivannikov et al., 2007), ERPSUB
has shown the lowest convergence rate of MSD to
zero. Most likely this happens, because new-coming
trial influences the denoising of all previous trials by
changing the projection axes. Since the shapes of all

filtered trials are affected, when new trial is added to
processing, the difference between the two adjacent
ERP estimates becomes more significant.

Therefore, in order to have a complete and fair
comparative picture of the methods’ performance, we
also computed averaged over 102 subjects remaining
noise variances in ERP estimates obtained under the
same conditions as used in the first test (see Fig. 2).
We used the following estimate of the noise variance
in the averaged brain responses taken from (van de
Velde, 2000):

̂σ2 LABEL
n = var{

1
N

N

∑
i=1

(−1)i xLABEL
i (t)}, (27)

wherexLABEL
i (t) is the modified trialxi (t) obtained

after application of method LABEL, and̂σ2 LABEL
n is

the estimate of the remaining noise variance in ERP
estimate obtained after application of method LABEL
involving N trials. For instance,xWA

i (t) = âixi (t),
where âi is computed as in (17) replacingσ2

ni
with

the approximation from (15) for alli = 1, . . . ,N; and
xERPSUB

i (t) equals to a row in the matrix of filtered
trial XERPi corresponding to the considered channel.
In this test the performance order of the methods ap-
peared to be different. ERPSUB has shown now the
highest effectiveness in the sense of the noise reduc-
tion rate, since the remaining noise variance in ERP
estimate provided by ERPSUB, in general, decreased
faster than for other methods at increase of the num-
ber of processed trials. This outstanding performance
can be explained here by the algorithmic nature of
ERPSUB, which simultaneously operates through all
time, trial, and channel dimensions that allows more
efficient extraction of the information discriminating
ERP and noise from data. The conventional averag-
ing has shown the lowest noise reduction rate in ERP
estimate following the results of the test.

5 CONCLUSIONS

In this article we compared the performance of the
three methods used nowadays in EEG research for
ERP denoising: conventional averaging, weighted av-
eraging and ERPSUB. For this purpose we carried out
two tests investigating the convergence and the noise
reduction rates in ERP estimates provided by the se-
lected methods at increase of the number of processed
trials. The convergence rate of ERP estimate appeared
to be the highest for the weighted averaging technique
and the lowest for ERPSUB. However, ERPSUB has
shown stronger noise reduction power than the tra-
ditional and weighted averaging methods have. The
noise reduction rate in ERP estimate provided by the

TRADITIONAL AVERAGING, WEIGHTED AVERAGING, AND ERPSUB FOR ERP DENOISING IN EEG DATA - A
Comparison of the Convergence Properties
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traditional averaging was the poorest among tested
methods.

The paper touches practical issues the neuropsy-
chology researchers are faced with during EEG/ERP
data processing and analyzing. Namely, it points out
the bottlenecks of the traditional averaging technique
used for the time-locked brain responses denoising.
The roots of these bottlenecks are connected to the
violation of the assumptions underlying the averag-
ing in real applications and insufficiently powerful
’decoding’ of the relevant information ’encrypted’ in
the data. The weighted averaging method addresses
the bottlenecks, which arise due to the violation of
the assumptions underlying traditional averaging. We
have shown that this strategy for improving the per-
formance and the reliability of the traditional averag-
ing technique can be derived based on different crite-
ria and, in particular, SNR and mean-square error as it
has been shown in (Hoke et al., 1984). ERPSUB tries
to eliminate the second type of the bottlenecks, which
come from the disability of the traditional averaging
to effectively extract from data the overall available
information related to ERP and noise discrimination.
ERPSUB ’decrypts’ more effectively this information
hidden in data, since it operates through all time, trial,
and channel dimensions.
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Pihko, E., Leppäsaari, T., and Lyytinen, H. (1995). Brain
reacts to occasional changes in duration of elements
in continues sound.NeuroReport, 6:1215–18.

van de Velde, M. (2000).Signal validation in electroen-
cephalography research. PhD thesis, Eindhoven Uni-
versity of Technology.

Vigário, R. (1997). Extraction of ocular artifacts from
EEG using independent component analysis.Elec-
troencephalography and Clinical Neurophysiology,
103:395–404.

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

202



BIO-INSPIRED DATA AND SIGNALS CELLULAR SYSTEMS
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Abstract: Living organisms are endowed with three structural principles: multicellular architecture, cellular division,
and cellular differentiation. Implemented in digital according to these principles, our data and signals cellular
systems present self-organizing mechanisms like configuration, cloning, cicatrization, and regeneration. These
mechanisms are made of simple processes such as growth, load, branching, repair, reset, and kill. The data
processed in the self-organizing mechanisms and the signals triggering their underlying processes constitute
the core of this paper.

1 INTRODUCTION

Borrowing three structural principles (multicellular
architecture, cellular division, and cellular differenti-
ation) from living organisms, we have already shown
how to grow cellular systems thanks to two algo-
rithms: an algorithm for cellular differentiation, based
on coordinate calculation, and an algorithm for cellu-
lar division (Mange et al., 2004). These cellular sys-
tems are endowed with self-organizing properties like
configuration, cloning, cicatrization, and regeneration
(Stauffer et al., 2005).

In a previous work (Stauffer et al., 2006), the
configuration mechanisms (structural and functional
growth), the cloning mechanisms (cellular and organ-
ismic growth), the cicatrization mechanism (cellular
self-repair), and the regeneration mechanism (organ-
ismic self-repair) were already devised as the result of
simple processes like growth, load, branching, repair,
reset, and kill. The goal of this paper is to point out the
data processed in these mechanisms and the signals
triggering their underlying processes. Starting with a
minimal system, a cell made up of six molecules, Sec-
tion 2 will introduce digital simulations to describe
the data and the signals involved in the self-organizing
mechanisms and the corresponding processes. We de-
fine then a small organism made of three cells, the
“SOS” acronym, as an application example for the
simulation of our mechanisms and processes (Sec-
tion 3). A brief conclusion (Section 4) summarizes
our paper and opens new research avenues.

2 SELF-ORGANIZING
MECHANISMS

2.1 Structural Configuration

The goal of thestructural configuration mechanismis
to define the boundaries of the cell as well as the liv-
ing mode or spare mode of its constituting molecules.
This mechanism is made up of astructural growth
processfollowed by aload process. For a better un-
derstanding of these processes, we apply them to a
minimal system, a cell made up of six molecules ar-
ranged as an array of two rows by three columns, the
third column involving two spare molecules dedicated
to self-repair.

Thegrowth processstarts when an externalgrowth
signal is applied to the lower left molecule of the cell
(Fig. 1a) and this molecule selects the corresponding
eastward data input (Fig. 1b). According to thestruc-
tural configuration dataor structural genome, each
molecule of the cell generates then successively an
internalgrowth signaland selects an input (Fig. 2),
in order to create a data path among the molecules of
the cell (Fig. 1b-g). When the connection path be-
tween the molecules closes, the lower left molecule
delivers aclose signalto the nearest left neighbor cell
(Fig. 1h). The structural configuration data is now
moving around the data path and ready to be trans-
mitted to neighboring cells.

The load processis triggered by theclose sig-
nal applied to the lower right molecule of the cell
(Fig. 3a). A load signalpropagates then westward
and northward through the cell (Fig. 3b-d) and each of
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(e) (f)

(g)

(a) (b) (c)

(d)

(h)

Figure 1: Structural growth process of a minimal system, a
cell made up of six molecules. (a) External growth signal
is applied to the lower left molecule. (b-g) Generation of
internal growth signals to build the structural data path. (h)
Closed path and close signal delivered to the nearest left
neighbor cell.

(a) (b) (c) (d)

Figure 2: Data input selection. (a) Northward. (b) East-
ward. (c) Southward. (d) Westward.

its molecules acquire amolecular mode(Fig. 4) and
amolecular type(Fig. 5). We finally obtain an homo-
geneous tissue of molecules defining both the bound-
aries of the cell and the position of itsliving modeand
spare modemolecules (Fig. 3e). This tissue is ready
for being configured by the functional configuration
data.

(b) (c)

(d) (e)

Figure 3: Load process. (a) External close signal applied
to the lower right molecule by the nearest right neighbor
cell. (b-e) Generation of internal load signals propagating
westward and northward to store the molecular modes and
types of the cell.

(a) (b) (c) (d) (e)

Figure 4: Molecular modes. (a) Living. (b) Spare. (c)
Faulty. (d) Repair. (e) Dead.

(b) (c) (d)(a) (e) (f) (g) (h) (i)

Figure 5: Molecular types. (a) Internal. (b) Top. (c) Top-
left. (d) Left. (e) Bottom-left. (f) Bottom. (g) Bottom-right.
(h) Right. (i) Top-right.

2.2 Functional Configuration

The goal of thefunctional configuration mechanism
is to store in the homogeneous tissue, which already
contains structural data (Fig. 3e), the functional data
needed by the specifications of the current applica-
tion. This mechanism is afunctional growth process,
performed only on the molecules in theliving mode
while the molecules in thespare modeare simply by-
passed. It starts with an externalgrowth signalap-
plied to the lower left living molecule (Fig. 6a). Ac-
cording to thefunctional configuration dataor func-
tional genome, the living molecules then successively
generate an internalgrowth signal, select an input,
and create a path among the living molecules of the
cell (Fig. 6b-f). The functional configuration data is
now moving around the data path and ready to be
transmitted to neighboring cells.

(a) (b) (c)

(d) (e) (f)

Figure 6: Functional configuration of the cell performed as
a functional growth process applied to the living molecules.
(a) External growth signal is applied to the lower left
molecule. (b-e) Generation of internal growth signals in or-
der to build the functional data path. (f) Closed functional
data path.

2.3 Cloning

The cloning mechanismor self-replication mecha-
nism is implemented at the cellular level in order to
build a multicellular organism and at the organismic
level in order to generate a population of organisms.
This mechanism suppose that there exists a sufficient
number of molecules in the array to contain at least
one copy of the additional cell or of the additional or-
ganism. It corresponds to abranching processwhich
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takes place when the structural and the functional con-
figuration mechanisms deliver northward and east-
ward growth signals on the borders of the cell during
the corresponding growth processes (Fig. 7).

(a) (b) (c)

(d)

Figure 7: Generation of growth signals triggering the
cloning mechanism. (a) Northward structural branching
process. (b) Eastward structural branching process. (c)
Northward functional branching process. (d) Eastward
functional branching process.

2.4 Cicatrization

Fig. 6f, shows the normal behavior of a healthy min-
imal cell, i.e. a cell without any faulty molecule. A
molecule is considered as faulty, or in thefaulty mode,
if some built-in self-test detects a lethal malfunction.
Starting with the normal behavior of Fig. 6f, we sup-
pose that two molecules will become suddenly faulty
(Fig. 8a): (1) The lower left molecule, which is in the
living mode. (2) The upper right molecule, which is in
thespare mode. While there is no change for the up-
per right molecule, which is just no more able to play
the role of a spare molecule, the lower left one triggers
a cicatrization mechanism. This mechanism is made
up of arepair processinvolving eastward propagating
repair signals(Fig. 8b-c) followed by areset process
performed with westward and northward propagating
internal reset signals(Fig. 8d-g). This tissue, com-
prising now two molecules in thefaulty modeand
two molecules in therepair mode, is ready for be-
ing reconfigured by the functional configuration data.
This implies afunctional growth processbypassing
the faulty molecules (Fig. 9).

2.5 Regeneration

Our minimal system comprises a single spare
molecule per row and tolerates therefore only one
faulty molecule in each row. A second faulty
molecule in the same row will cause the death of the
whole cell, and the start of aregeneration mechanism.
Fig. 10 illustrates therepair processandkill process
involved in this mechanism. Starting with the nor-
mal behavior of the cicatrized cell (Fig. 9f), a new

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8: Cicatrization mechanism performed as a repair
process followed by a reset process. (a) Living and spare
molecules becoming faulty. (b-c) Generation of repair sig-
nals propagating eastward. (d-f) Generation of internal re-
set signals propagating westward and northward. (g) Cell,
comprising two faulty and two repair molecules, ready for
functional reconfiguration.

(a) (b) (c)

(d) (e) (f)

Figure 9: Functional reconfiguration of the living and repair
molecules. (a) External growth signal bypassing the lower
left faulty molecule. (b-e) Generation of internal growth
signals to build a functional data path bypassing the faulty
molecules. (f) Closed functional data path within the living
and repair molecules.

molecule, the upper middle one, becomes faulty. In a
first step, the new faulty molecule sends arepair sig-
nal eastward, in order to look for a spare molecule,
able to replace it (Fig. 10b). In a second step, the sup-
posed spare molecule, which is in fact a faulty one,
enters the lethaldead modeand triggerskill signals
which propagate northward, westward and southward
(Fig. 10c-f). Finally in Fig. 10g, all the molecules of
the array are dead as well as our minimal system.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 10: Regeneration mechanism performed as a repair
process followed by a kill process. (a) Living molecule be-
coming faulty. (b) Eastward repair signal. (c-f) Genera-
tion of internal and external kill signals propagating north-
ward, westward and southward. (g) Cell made up six dead
molecules.

3 SOS ACRONYM APPLICATION

3.1 Structural Configuration,
Functional Configuration and
Cloning

Even if our final goal is the self-organization of com-
plex bio-inspired data and signals cellular systems,
we will use an extremely simplified application ex-
ample, the display of the “SOS” acronym, in order
to illustrate its basic mechanisms. The system that
displays the acronym can be considered as a one-
dimensional artificial organism composed of three
cells (Fig. 11). Each cell is identified by aX coor-
dinate, ranging from 1 to 3. For coordinate values
X = 1 andX = 3, the cell implements the S character,
for X = 2, it implements the O character. Such a cell,
capable of displaying either the S or the O character,
is a totipotent cellcomprising 4×6= 24 molecules.

X=1 2 3

Figure 11: One-dimensional organism composed of three
cells resulting from the structural configuration, functional
configuration and cloning mechanisms applied to a totipo-
tent cell.

In order to build the multicellular organism of
Fig. 11, the structural configuration mechanism, the
functional configuration mechanism, and the cloning
mechanism are applied at the cellular level. Starting
with the structural and functional configuration data
of the totipotent cell, these mechanisms generate suc-
cessively the three cellsX = 1 to X = 3 of the organ-
ism “SOS”.

3.2 Cicatrization and Functional
Reconfiguration

The cicatrization mechanism (or cellular self-repair)
results from the introduction in each cell of one col-
umn of spare molecules (Fig. 11), defined by the
structural configuration of the totipotent cell, and the
automatic detection of faulty molecules. Thanks to
this mechanism, each of the two faulty molecules
of the middle cell (Fig. 12) is deactivated, isolated
from the network, and replaced by the nearest right
molecule, which will itself be replaced by the near-
est right molecule, and so on until a spare molecule is
reached. The functional reconfiguration mechanism
takes then place in order to regenerate the O charac-
ter of the organism “SOS”. As shown in Fig. 12, the
regenerated character presents some graphical distor-
tion.

X=1 2 3

Figure 12: Graphical distortion resulting from the cicatriza-
tion and reconfiguration mechanisms applied to the middle
cell of the organism.

3.3 Regeneration

The totipotent cell of the organism “SOS” having only
one spare column allows only one faulty molecule per
row. When a second one is detected, the regeneration
mechanism (or organismic self-repair) takes place and
the entire column of all cells to which the faulty cell
belongs is considered faulty and is deactivated (col-
umnX = 2 in Fig. 13; in this simple example, the col-
umn of cells is reduced to a single cell). All the func-
tions (X coordinate and configuration) of the cells to
the right of the columnX = 1 are shifted by one col-
umn to the right. Obviously, this process requires as
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many spare cells to the right of the array as there are
faulty cells to repair. As shown in Fig. 13, the repara-
tion of one faulty cell needs one spare cell to the right
and leaves a scar in the organism “SOS”.

X=1 2 3

Figure 13: Scar resulting from the regeneration mechanism
applied to the organism.

4 CONCLUSIONS

The self-organizing mechanisms are made of simple
processes like growth, load, branching, repair, reset,
and kill. They allow the data and signals cellular
systems to possess three bio-inspired properties: (1)
Cloning or self-replication at cellular and organismic
levels. (2) Cicatrization or self-repair at the cellular
level. (3) Regeneration or self-repair at the organis-
mic level.

Starting with a very simple system, a cell made
of six molecules, we realized digital simulations in
order to describe the data and signals involved in the
self-organizing mechanisms. The “SOS” acronym, an
organism made of three cells, was introduced as an
application example for the simulation of our mecha-
nisms and processes.

The functional configuration mechanism pre-
sented here will be implemented in theubichip (Up-
egui et al., 2007), a programmable circuit that draws
inspiration from the multi-cellular structure of com-
plex biological organisms.
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Abstract: The aim of his work was examination of asymmetries in activity of the left and right cerebral hemispheres 
as well as localization and contouring of the regions of reduced or increased activity on the basis of single 
photon emission computer tomography (SPECT) images. The mean and standard deviation of normalized 
intensities inside the contoured areas of images, entropy based on intensity histograms and Chen’s fractal 
dimension were calculated. 

1 INTRODUCTION 

The aim of his work was examination of 
asymmetries in activity of the left and right cerebral 
hemispheres as well as localization and  contouring 
of the regions of reduced or increased activity on the 
basis of  single photon emission computer 
tomography (SPECT) images (Prószyński, 1989). 
Advantage of this technique is possibility of brain 
activity map acquisition at the time of radiotracer 
injection during seizures though the image 
registration is done one hour after seizure. SPECT 
imaging method allows better spatial localization of 
seizure source than the analysis of EEG signal. 
Simultaneous EEG signal registration allows to 
qualify exactly the moment of seizure onset when 
radiotracer injection could be done to register an 
unequivocal image. The mean and standard 
deviation of normalized intensities inside the 
contoured areas of images were calculated. Methods 
like entropy based on intensity histograms and 
Chen’s fractal dimension were also applied. 

2 MATERIALS 

The scintigraphic examinations of cerebral perfusion 
in 6 patients were performed in the Department of 
Nuclear Medicine of the Medical Academy of 
Warsaw.  

From each patient after delivering them the 
HMPAO Tc99m isotope in interictal phase several 

transverse cerebral images have been acquired. In 
the below-shown series of images they have been 
ordered from the basis to the top of the examined 
brain; left side of an image corresponds to the right 
side of the brain and vice versa.  

An increased/reduced cerebral perfusion 
corresponds to a higher/lower isotope density and is 
manifested by an increased/ reduced image 
luminance registered in an 8-bits scale and 
normalized to the maximum (256 steps) luminance 
level. Images of 128x128 pixels size were registered. 
In table 1 several examples of medical description of 
the corresponding cases are given. 

3 METHODS 

In order to evaluate the effectiveness of various 
methods the comparative analysis of the images of 
the left and right cerebral hemispheres was 
performed by using three independent methods: 

1. comparison of the mean and standard 
deviation values, 

2. comparison of estimated entropies, 
3. comparison of fractal dimensions. 

 
 
 
 
 

208



Table 1: Kind of perfusion and localization of the brain region by medical assessment. 

Patent name 
(slices number) Kind of perfusion Localization on the image Brain region 

CHM (16) Reduced Right upper Left frontal lobe  

KOS (15) Disabled Right Left temporal lobe 

SIE (15) Reduced Right Left temporal lobe 

SZY (14) Disabled Left upper Right frontal temporal lobe  

TWO (15) Disabled Left upper Right frontal temporal lobe 

ZIE (11) Increased Left 
Right temporal lobe  

(numerous movement artifacts) 

 
3.1 The Mean and Standard Deviation 

of Normalized Intensities 

The images were processed and analyzed using 
standard Image Pro Plus (Media Cybernetics) and 
Microsoft Excel software packages (Russ, 1995). 
Each image was geometrically divided into the left 
and right parts. For a direct visual assessment of 
monochromatic images they also were visualized in 
pseudocolors. Then the left and right cerebral 
hemispheres were automatically contoured and the 
mean and standard deviation of normalized 
luminances inside the contoured areas of images 
were calculated. At the next step the surrounding 
background, outside a mask selecting the object of 
interest, from the images was reduced to the 0 level.  

3.2 Entropy based on Intensity 
Histograms 

The Shannon’s entropy (Shannon, 1948) of a 
probability distribution of image intensities is 
defined as: 

S = −∑N
i=1  pi log pi    ,     ∑N

i=1  pi=1 (1) 
where    
pi    ,  i=1,…N    - probability of i-th intensity level. 

 
Entropy based on intensity histogram (Kuczyński 
and Mikołajczyk, 2003) can be estimated as: 
 

pi  =   gi   / gtotal                           (2) 
where   gi      - number of pixels with intensity i; 

          gtotal   - total number of pixels;            
          N       - number of image gray levels. 
 

Entropy is a measure of information. The bigger 
are changes of pixel intensities the bigger is the 
entropy. In this method only a total histograms are 
used to calculate entropy therefore the spatial 
information is lost. 

3.3 Chen’s Fractal Dimension 

For image matrices with dimension N x N a multi-
scale vector of difference intensity MSID = 
[ri(s1),ri(s2),… ri(sk)], where ri(sk) – mean intensity 
of all pairs of pixels at the distance sk, was defined 
(Chen, 1989). 

If  I(x,y) is a measure of intensity (gray level at 
point with (x,y) coordinates), then: 

ri(sk) = ∑N-1
x1=0  ∑N-1

y1=0   ∑N-1
x2=0  ∑N-1

y2=0  
(|I(x2,y2) -I(x1,y1)|)  /  number of pixel 

pairs for sk scale                         
(3) 

There are the following relations for coordinates  x1, 
y1, x2, y2: 

22 )12()12( yyxxsk −+−=                  (4) 

 
|ΔI| =|I(x2,y2) -I(x1,y1)| ~ |Δx|H             (5) 

 
where    
H – Hurst’s exponent (fractal dimension Df = 3-H); 
Δx – the distance between points with coordinates 
(x2,y2) and (x1,y1). 
 
The logarithms of both sides were calculated: 

log |ΔI| ~ H ·log  |Δx|                      (6) 

4 RESULTS 

4.1 The Mean and Standard Deviation 
of Normalized Intensities 

The comparative analysis was performed in 6 
patients for which mean values and standard 
deviations of luminance on the left and right cerebral 
hemispheres were measured. In order to make the 
results independent on the mean brightness level 
data were normalized by calculation of the ratio of 
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the difference to the sum of mean brightness in the 
hemispheres. The regions of reduced/increased 
perfusion were localized using the above-described 
image segmentation method. The results of 
calculations (for two patients mentioned above) are 
shown in Fig. 1. The horizontal axes indicate the 
numbers of consecutive slices. The normalized 
values of mean brightness differences for 6 patients 
are shown in Fig. 2.  

4.2 Entropy and Fractal Dimension 

Entropy and Chen’s fractal dimension were 
calculated for all quarters of brain (upper-left, upper-
right, down-left, down-right) in 8 ranges of pixel 
intensity: 1-32, 33-64, 65-96, 97-128, 129-160, 161-
192, 193-224, 225-256. Each of four regions of brain 
contains 63 x 63 pixels. The ratio of the difference

 
1.KOS                                                                               2. SIE 

  
 
 
 
 
 

Figure 1: Mean values and standard deviations of luminance for the left and right cerebral hemispheres, patients KOS, SIE. 

 
Figure 2: Normalized values of mean brightness differences for 6 patients. 
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Figure 3: Entropy and Chen’s fractal dimension graphs for the higher level of pixels intensity (225-256) for patient KOS in 
regions of brain in which differences of these measures between both hemispheres are bigger than 10%. 
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Figure 4: Histogram of entropy and Chen’s fractal dimension for all levels of pixels intensity for patient KOS in regions of 
brain in which differences of these measures between both hemispheres are bigger than 10%. 
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to the sum of entropy and Chen’s fractal dimension 
for left upper/down respect of right upper/down 
quarter of brain was calculated. Entropy results 
confirmed the medical observations (Table 2). 
Graphs of entropy and Chen’s fractal dimension for 
the higher level of pixel intensity (225-256) in 
regions of brain for which the differences of these 
measures between both hemispheres are bigger than 
10% are showed on Fig. 3. Histograms of entropy 
and fractal dimension (Fig.4) show significant 
differences for the higher level of pixel intensity. 

Table 2: Number of slices for which the rate of the 
difference to the sum of S or Df in the left and right 
hemispheres in range with the biggest intensity of pixels 
(from 193 to 256) has values bigger than 0.1 for four 
regions of brain (UL-upper left, UR-upper right, DL-down 
left, DR-down right).  

Pacjent 
name 

Number of slices 
for entropy 

UL-UR-DL-DR 

Slices number 
for fractal 
dimension 

UL-UR-DL-DR 
CHM 1-7-7-0 1-1-0-4 
KOS 3-7-8-0 6-1-1-3 
SIE 0-9-3-5 1-0-0-0 
SZY 10-0-9-0 0-0-0-0 
TWO 3-3-2-0 1-0-0-5 
ZIE 1-7-4-2 1-1-0-0 

5 CONCLUSIONS 

The above presented methods of cerebral SPECT 
images analysis based on simple image processing 
methods and calculation of basic statistical 
parameters are effective tools for a preliminary 
assessment of cerebral perfusion in diagnosis of 
epileptic and/or cerebral ischemic patients. It was 
found that for reduced perfusion entropy increases 
and Chen’s fractal dimension decreases. Entropy 
based on the intensity histograms permits on 
automatic perfusion asymmetry evaluation between 
left and right brain hemisphere taking into account 
only the bigger intensities of pixels (in the range 
from 193 to 256). Entropy is a better measure to 
estimate the global intensity however without 
information about spatial distribution. For 
identification of epileptic seizure localization 
(concentration of high intensity pixels) Chen’s 
fractal dimension seems to be the better measure.In 
further work calculations for more patients and for 
group of healthy volunteers should be done. Chen’s 
fractal dimension could be calculated for less-
dimensional matrices (8 x 8) in sliding window to 

construct map of fractal dimension of the whole 
brain. It will allow to estimate better the utility of 
this method to localize the epileptic seizure and to 
compare different regions of interest (ROIs).  
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Abstract: We propose a new method for motion estimation between two successive frames in medical image sequences
and videos. The method is based on inverse polynomial interpolation.

1 INTRODUCTION

The applications of motion estimation have been in-
creasingly gaining interest in the field of medical
imaging. (Hemmendorff, 2001) proposed a frame-
work for motion estimation of 2D X-ray angiogra-
phy images and 3D MRI mammograms. Deformable
models were used by (Kurabayashi et al., 2005) to es-
timate the motion in time-series chest MR images.
(Auvray et al., 2006) applied motion estimation to
transparent X-ray image sequences.

Motion estimation is a key step in video cod-
ing and compression, which is an important tool to
achieve bandwidth reduction when transmitting med-
ical image sequences and videos. In addition, remote
and robot-assisted surgeries and medical diagnostic
tools can benefit from motion estimation in analyzing
and interpreting the motions of body parts.

2 PROBLEM STATEMENT

Consider the pair of imagesI1(r,c) andI2(r,c), both
of sizeR×C, where the spacial argumentsr andc re-
fer to the pixel at therth row andcth column. Here we
assume that the two images are successive frames in a
medical video or image sequence with spacial differ-
ences between the two images but no change in inten-
sity. The pixelsI2(r,c) of the destination image can
be generated by shifting corresponding pixels in the
source image in the 2D space. Letτ1(r,c) andτ2(r,c)

be the horizontal and vertical shifts respectively, then
we can write

I2(r,c) = I1(r + τ2(r,c),c + τ1(r,c)) (1)

Sub-pixel shifts are approximated by 2D polynomial
interpolations within square neighborhoods of the
source imageI1. The advantage of this choice is the
separability and simplicity of implementation that al-
lows an approximation of (1) to be written in an easily
manipulated form.

Now assume that|τ1(r,c)| ≤ p and|τ2(r,c)| ≤ p.
Then the neighborhood in consideration would be of
size(2p+1)× (2p+1) and the interpolation polyno-
mial is of order 2p. Define a vector function

u(τi(r,c)) =











τ2p
i (r,c)

τ2p−1
i (r,c)

...
1











(2)

The polynomial approximation of (1) can be written
in the form

I2(r,c) = uT (τ1(r,c))A(r,c)u(τ2(r,c)) (3)

whereA(r,c) is a (2p + 1)× (2p + 1) matrix . For
simplicity, the spacial arguments(r,c) are dropped
from this point and assumed implicitly

I2 = uT (τ1)Au(τ2) (4)

With τ1 andτ2 are the unknowns in equation (4),
our goal is to solve the inverse polynomial interpo-
lation problem represented by (4), which would also
solve the motion estimation problem described above.
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Many motion estimation methods use multiscale
or hierarchial levels in order to process large motions,
the proposed method can handle the size of motions
that typically exist between two successive frames
and therefor we are not using any multiscale pyra-
mids.

3 POLYNOMIAL
INTERPOLATION

For a pixel that is assumed to move a maximum of
p pixels to the right or the left in a 1D source signal,
the neighborhood consideredY is of length 2p + 1
and centered at the elementy(0). Using polynomial
interpolation,y(x) representing a shift from the center
by a valuex where|x| ≤ p can be approximated by
using a polynomial of order 2p

y(x) = c2px2p + c2p−1x2p−1+ · · ·+ c2x2 + c1x + c0
(5)

The coefficientsc2p · · ·c0 are found by solving a sys-
tem of 2p +1 linear equations of the form

XC = YT (6)

where

X =



























(−p)2p (−p)2p−1 · · · −p 1
(−p+1)2p (−p+1)2p−1 · · · −p+1 1

...
... · · ·

...
...

0 0 · · · 0 1
...

... · · ·
...

...
(p−1)2p (p−1)2p−1 · · · p−1 1

p2p p2p−1 · · · p 1



























C =

















c2p

c2p−1

...
c1

c0

















, YT =



















y(−p)
...

y(0)
...

y(p)



















(7)

and the solution to the linear system is given by

C = QYT
, Q = X−1 (8)

The matrix X in (7) is a special form of the Van-
dermonde matrix. Its inverse can be found using an
explicit LU factorization discussed in the paper by
(Olver, 2006).

Denote theith row of the matrixQ in (8) asqi.
The process of 1D polynomial interpolation can be
expressed as

y(x) = Y
2p+1

∑
i=1

qT
i xi (9)

The 1D polynomial interpolation in (9) can be ex-
tended to the 2D case. When a pixel in a 2D neigh-
borhood is assumed to move a maximum ofp pixels
along any dimension, the neighborhood in considera-
tion is of size(2p +1)× (2p +1) and centered at the
pixel n(0,0).

Recall thatqi is theith row of the matrixQ in (8).
We use the fact that the 2D polynomial interpolation
is separable to build the matrixA, with each element
on theith row andjth column is given by

a(i, j) =
p

∑
m=−p

p

∑
n=−p

N(m,n)q j(m)qi(n) (10)

The process of 2D polynomial interpolation can be
expressed now as

I2 =
2p+1

∑
i=1

2p+1

∑
j=1

a(i, j)τ
2p+1−i
1 τ2p+1− j

2 (11)

with the matrix form of (11) is as given by (4).

4 SOLUTION OF INVERSE
INTERPOLATION

4.1 The Linear Approximation

First we start by finding a linear approximation of (4)
around some values̄τ1, τ̄2 (to be defined later). The
first order approximation using Taylor series is easily
computed since the differentiation of (4) with respect
to etherτ1 or τ2 is trivial.

I2 ≈ uT (τ̄1)Au(τ̄2)+ u̇T (τ̄1)Au(τ̄2) [τ1− τ̄1]
+uT (τ̄1)Au̇(τ̄2) [τ2− τ̄2]

(12)
Equation (12) is written in a form of a linear equa-

tion
Ī(τ̄ττ) = H(τ̄ττ)τττ (13)

where

Ī(τ̄ττ) = I2−uT (τ̄1)Au(τ̄2)+ H(τ̄ττ)τ̄ττ
H(τ̄ττ) =

[

u̇T (τ̄1)Au(τ̄2) uT (τ̄1)Au̇(τ̄2)
]

τ̄ττ =

[

τ̄1
τ̄2

]

, τττ =

[

τ1
τ2

]

(14)
An approximate solution to equation (13) can be

found as

τττ = G(τ̄ττ)Ī(τ̄ττ)
G(τ̄ττ) =

(

HT (τ̄ττ)H(τ̄ττ)+ I2
)−1 HT (τ̄ττ)

(15)

whereI2 is the 2×2 identity matrix.
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4.2 The Iterative Solution

Define τ̄ττ(k) to be the accumulated shifts from initial
step until thekth step

τ̄ττ(k) =
k

∑
i=0

τττ(i) (16)

Starting with an initial valuēτττ(0) = 0, the linear equa-
tion (13) and its solution (15) can be used in an itera-
tive manner as follows

τ̄ττ(0) = 0
e(0) = Ī(τ̄ττ(0))
τττ(1) = G(τ̄ττ(0))e(0)

= G(τ̄ττ(0))Ī(τ̄ττ(0))
e(1) = Ī(τ̄ττ(1))−H(τ̄ττ(1)) [τττ(0)+ τττ(1)]

= Ī(τ̄ττ(1))−H(τ̄ττ(1))τ̄ττ(1)
τττ(2) = G(τ̄ττ(1))e(1)

= G(τ̄ττ(1)) [Ī(τ̄ττ(1))−H(τ̄ττ(1))τ̄ττ(1)]
...

(17)

In general

τττ(k +1) = G(τ̄ττ(k)) [Ī(τ̄ττ(k))−H(τ̄ττ(k))τ̄ττ(k)] (18)

SubstitutingĪ(τ̄ττ(k)) from equation (14) into equation
(18) yields the formula for the iterative numerical so-
lution as

τττ(k +1) = G(τ̄ττ(k))
[

I2−uT (τ̄1(k))Au(τ̄2(k))
]

(19)

Whenτττ(k + 1) in the iterative equation (21) con-
verges to zero (or asmall enough number near zero)
we getτ̄ττ(k +1) such that

I2 ≃ uT (τ̄1(k +1))Au(τ̄2(k +1)) (20)

which is the solution to both problems of motion esti-
mation and inverse polynomial interpolation. Finally,
algebraic manipulation of (19) and using (16) sim-
plify the solution into the iterative formula given by

τ̄ττ(k +1) = τ̄ττ(k)+
I2−uT (τ̄1(k))Au(τ̄2(k))

H(τ̄ττ(k))H(τ̄ττ(k))T H(τ̄ττ(k))T

(21)
Our solution in (21) is closely related to the al-

gorithm proposed by (Biemond et al., 1987). The
major difference is that in (Biemond et al., 1987) a
bilinear interpolation was used to calculate the dis-
placement frame difference, and the spatial gradients
were obtained by rounding off the displacement es-
timates; whereas in we use polynomial interpolation
which provides better interpolation and simplifies cal-
culating the gradients. Also, (Biemond et al., 1987)
used observations from a block of pixels.

Motion estimation results can be improved signif-
icantly by testing multiple initial values. Figure 1

Figure 1: The circled pixel positions are the chosen initial
positions for the 5×5 neighborhood.

shows the chosen initial positions for the 5×5 neigh-
borhood (i.e. p = 2). For the(2p + 1)× (2p + 1)
neighborhood, the number of initial valuesτ̄ττ(0) is p2.
The different initial values are sorted and tried accord-
ing to their distance from the mean shift obtained for
the previously processed adjacent pixels inI2, starting
with the closest. This also establishes dependency be-
tween the motions of the image pixels. For an initial
value, if the iterative equation (21) converges to a so-
lution before reaching a specified maximum number
of iterations, the result is recorded and there would be
no need to try the other initial values. Otherwise, the
next initial value is tried.

5 RESULTS

We tested our method using gray-scaled images. For
comparison, motion in the same frames was estimated
by the elastic image registration method by (Peri-
aswamy and Farid, 2003) and the widely-used optical
flow method by (Lucas and Kanade, 1981). The Mat-
lab code for Periaswamy and Farid’s method is avail-
able on the internet (Web, 1). Examples show that our
method provides better performance.

In the first example (Figure 2) two images are
extracted from an echocardiography video (Web, 2).
The images are of size 430×550 pixels. The second
example (Figure 3) shows two images extracted from
a video recorded during a robotic-assisted repair of a
pulmonary artery (Web, 3). The images are of size
240×352 pixels. For both examples we chosep = 7,
a convergence threshold of 0.001 and the maximum
number of iterations to be 20.

For each example, we computed the peak signal-
to-noise ratio (PSNR) for the displaced frame differ-
ence. The PSNR equation is defined by (22) and the
results are listed in Table 1.

PSRN = 10log10
2552RC

R
∑

r=1

C
∑

c=1
(I2(r,c)− Is(r,c))

2
(22)

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

214



(a) Source imageI1 (b) Destination image
I2

(c) |I2− I1| (d) |I2− IAS|

(e) |I2− IPF | (f) |I2− ILK |

Figure 2: Motion estimation between two successive frames
from echocardiography video.

(a) Source imageI1 (b) Destination image
I2

(c) |I2− I1| (d) |I2− IAS|

(e) |I2− IPF | (f) |I2− ILK |

Figure 3: Motion estimation between two successive frames
from robot-assisted artery surgery video.

Table 1: PSNR of displaced frame difference.

Echocar- Artery
diography Surgery

Our method 50.27 dB 42.34 dB
Periaswamy-Farid 25.66 dB 19.85 dB

Lucas-Kanade 27.10 dB 19.12 dB

In (Periaswamy and Farid, 2003) the motion
within a small neighborhood was modeled locally by
an affine transform. In video sequences the consid-
ered neighborhood may contain one or more different
motions in addition to the stationary background. An
attempt to model these motions and the static back-
ground using one affine transform will produce esti-
mation errors. Our method does not suffer from this
shortcoming because it works on a pixel level.
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Abstract: Thin plate spline (TPS) and compact support radial basis functions (CSRBF) are well-known and successful 
tools in medical image elastic registration base on landmark. TPS minimizes the bending energy of the 
whole image. However, in real application, such scheme would deform the image globally when 
deformation is local. Although CSRBF can limit the effect of the deformation locally, it cost more bending 
energy which means more information was lost. A new radial basic function named ‘Compact Support Thin 
Plate Spline Radial Basic Function’ (CSTPF) has been proposed in this paper. It costs less bending energy 
than CSRBF in deforming image locally and its global deformation effect is similar to TPS. Numerous 
experimental results show that CSTPF performs outstanding in both global and local image deformation. 

1 INTRODUCTION 

Elastic image registration is a significant content in 
medical image registration. And image deformation 
plays an important part in elastic image registration. 
The use of TPS for point-based elastic registration 
was first proposed by Bookstein (Bookstein, 1989). 
TPS forces the corresponding landmark to match 
each other exactly and minimizes the utilization of 
the bending energy of the whole image, therefore, it 
is widely used in various fields (Brown and 
Rusinkiewicz, 2004). However, the deformation of 
TPS is global, it would be problematic when only 
local difference exists (Ruprecht and Müller, 1993). 
N. Arad, D. Reisfeld(Arad and Reisfeld, 1995) has 
investigated Gaussian radial basis function(RBF) 
which reduces the global influence. And M. 
Fornefett, H.S.Stiehl (Fornefett et 
al.,1999),(Fornefett et al., 2001) used compact 
support radial basis function(CSRBF) in medical 
image registration.  

Although TPS can minimize the bending energy 
of the whole image, it can not deform the image 
locally. CSRBF can deform the image locally; 
however, it costs much bending energy which means 
that the warping loses lots of information form 
original image. This weakness is especially distinct 
while the deformation is globally.  

In this paper, we proposed a new compact 
support radial basic function to deform the elastic 

image. This function not only limits the image’s 
deformation in a local domain, but also is a 
fundamental solution to the biharmonic equation . Its 
bending costs less energy consequently. 
Simultaneously, when the support set is wide, its 
warp effect is similar to TPS. Therefore, this new 
compact support radial basic function performs well 
in the local and global registration experiments. 

2 THE LIMITATION OF ELASTIC 
IMAGE REGISTRATION 
PRESENTLY 

TPS models the deformations by interpolating 
displacements between source and target points. The 
basic function of TPS is 2 2( ) logi i iU r r r= , ir is 
the distance form the cartesian origin. TPS’s basic 
function is a so-called fundamental solution to the 
biharmonic equation (Bookstein, 1989), which can 
minimize the bending energy(1).  

2 2 22 2 2

2 2( )TPS
f f fE f dxdy

x x y y
∂ ∂ ∂

= + +
∂ ∂ ∂ ∂∫∫

 

 
(1) 

Local elastic image registration which bases on 
RBFs has the same interpolation function as TPS. It 
can not eliminate the global effect of the 
deformation. M. Fornefett and K. Rohr(Fornefett et 
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al.,1999), (Fornefett et al., 2001) applied Ψ -
function of Wendland as RBFs for elastic 
registration of medical image. These radial basic 
functions have compact support. 

These compact support radial basic functions can 
limit the deformation in a local domain. However, 
they are not the fundamental solution to the 
biharmonic equation. So they cost more bending 
energy in deforming the image, especially when 
their support radius are enormous, the loss of 
information of the source image is considerable. 

3 COMPACT SUPPORT THIN 
PLATE SPLINE RADIAL BASIC 
FUNCTION 

3.1 Compact Support Thin Plate Spline 
Radial Basic Function 

In this paper, we aim to find out a function that not 
only is the solution to the biharmonic equation 
which can limit the bending energy, but have the 
characteristic of the functions which can deform 
image locally as well. Therefore, we use TPS’s basic 
function: 2 2( ) logi i iU r r r=  to construct a new 
compact support radial basic function: 

 
(a)                       (b)                        (c) 

Figure 1: Compact support thin plate spline radial basic 
function：  (a) 2 2( ) logi i iU r r r=  (b) fig.(a) displace 1/e 
upward (c) CSTPF. 

As proven in figure.1 (a), TPS’s original basic 
function 2 2( ) logi i iU r r r=  decreases at e/10 − , 
after e/1 , the function increases rapidly 
afterwards. It can be noticed that the decreasing part 
( e/10 −  part) of this function is similar to compact 
support radial basic functions which can deform the 
image locally. So we add a constant (constant value 
is the min value of this function: e/1 ) to this 
function (View at fig.1 (b)), and let its increasing 
part become zero. Then the function becomes: 
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(2) 

Figure.1 (c) shows that presently this function (2) 
has the characteristic of CSRBF. It has the max 
value at 0=r , it is a decreasing function which is 
compact supported meanwhile. Therefore, this 
function can be used for local deform interpolation. 
Furthermore, this function is the solution to the 
biharmonic equation and is able to decrease the 
bending energy. Because this function comes from 
TPS’s original interpolate function, we name it as 
CSTPF (compact support thin plate spline radial 
basic function).

 
3.2 Local Deformation using CSTPF 

For the purpose of further investigating elastic image 
deformation, we hypothesized that the source images 
have already been rigidly registered with the target 
image, ignoring the affine part of the interpolation 
function. In case of affine free deformation, the 
interpolation function is illustrated as follow: (This 
interpolation function was utilized in the following 2 
chapters.)  
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First of all, we compared the performance of local 
deformation of CSTPF and CSRBF（ 2,3,aψ ）at the 
same support set. Figure.2 explains the result of the 
deformation using the elastic registration approach 
base on CSTPF and CSRBF with four pairs of 
manual landmarks. It can be noticed that CSTPF is 
the solution to the biharmonic equation, 
correspondingly, less bending energy is required 
than using CSRBF, which means source image’s 
information is better saved and the deformation has 
been greatly improved.   

        
(a) CSTPF                         (b) CSRBF 

Figure 2: Local deformation results (support radius 
100=r ) (a)Deformation using CSTPF, the cost of 

bending energy is3.342; (b) Deformation using CSRBF, 
the cost of bending energy is 6.323. 
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3.3 Global Deformation using CSTPF 

It has been proved that CSFPF preformed well in 
local deformation in last paragraph, now let’s 
discuss how it perform in global deformation. 

Figure.3 is a contrast of the global deformations 
using the elastic registration approach base on TPS
、CSTPF、CSRBF with manual landmarks. In this 
Figure shows we can see that the deformations using 
the elastic registration approach base on CSTPF 
(Fig.3 (b)) and TPS (Fig.3 (c)) are almost the same. 
Figure.3(e) takes one line out of the deformation’s 
results and makes a comparison. It is shown that the 
deformation’s lines of CSTPF and TPS are almost 
superposed. This result illustrated that image 
deformation using CSTPF can keep the advantage of 
TPS in global deformation, which can not be 
achieved by using CSRBF. 

  
(a) Landmarks              (b) TPS               (c) CSTPF 

 
 (d) CSRBF                                  (e) 

Figure 3: Global deformation contrast (support radius 
10000=r ) ： (a) Landmarks’ position; (b) global 

deformations using TPS; (c) global deformations using 
CSTPF; (d) global deformations using CSRBF; Contrast 
of the third line of Figure 3 (b)(c)(d), Notice Figure 3 (b) 
and (c) are almost superposed. 

Experimental results have proved that image 
deformation using the elastic registration approach 
base on CSTPF is better than CSRBF. 

To better illuminate the problem and aiming to 
compare the bending energy cost at different support 
radii, we experimented on 6 groups of deformations 
with random landmarks using the elastic registration 
approach based on CSTPF and CSRBF. Figure.4 
shows the deformations’ bending energy cost at 
different radii. In this graph, it is evident that image 
deformation using CSTPF costs less bending energy 
than CSRBF.  

Consequently, the analysis and experiments in 
this chapter indicate that image global deformation 
using the elastic registration approach bases on 
CSTPF is similar to those on TPS. Furthermore, it is 

capable to localize the image deformation domain 
while TPS can not. In local image deformation, 
utilization of the elastic registration approach bases 
on CSTPF costs less bending energy than CSRBF 
with the same support radius.   

 

  
(a) Deformations with 6 random landmarks 

 
(b) Deformations with 10 random landmarks 

Figure 4: Contrast of deformations’ bending energy cost 
with random landmarks usizng CSTPF and CSRBF (X-
axis: support radius, Y-axis is deformation’s bending 
energy cost. real line in figure: CSRBF’s energy cost，
broken line in figure: CSTPF’s energy cost): (a) 
Deformations with 6 random landmarks; (b) Deformations 
with 10 random landmarks. 

4 EXPERIMENTAL RESULTS OF 
MEDICAL IMAGES 

In this chapter, we have prepared two experiments in 
practical situations. With manual landmark, we 
compared the registration results for medical images 
using the elastic registration approach base on 
CSTPF and CSRBF.   

In Figure 5, we can compare the results of 
deformation using CSTPF and CSRBF. They look 
similar but definitely not the same. Observing their 
edge comparison (Figure 5 (d) and (e)), it is revealed 
that after deformation, figure 5(d) has more edge 
information than figure 5(e) (as shown by the 
arrowhead), which means more information was 
saved by using CSTPF than CSRBF.   

Finally, we employed another experiment to 
demonstrate that global deformation using CSTPF is 
better than CSRBF. In this experiment, we used an 
image of deferent mode, figure.6 (a) is MRI image 
and figure 6 (b) is CT image. It can be easily noticed 
that the source image and target image are just the 
same as they have no deformation. However, 
because we get landmarks manually, it is liable to 
have some artificial errors which are, however, 
considered as allowable errors. Given that these 
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allowable errors are unavoidable, the source image 
deform globally.  

        
(a)                        (b)                        (c) 

    
(d)                                           (e)  

Figure 5: Comparison of local deformation using CSTPF 
and CSRBF(

2,3,aψ ) ( 40=r ): (a) Source Image(with 

landmarks); (b) Target Image (with landmarks); (c) 
Comparison of edge of (a) and (b); (d)Deformation using 
CSTPF and the edge comparison of deformed image and 
original image(top left corner); (e)Deformation using 
CSTPF and the edge comparison of deformed image and 
original image(top left corner). 

     
(a)                    (b)                      (c) 

   
 (d)                                        (e) 

Figure 6: Comparison of global deformation using CSTPF 
and CSRBF(

2,3,aψ ) ( 1000=r ):(a) Source Image(with 

landmarks); (b) Target Image (with landmarks); (c) 
Comparison of edge of (a) and (b); (d)Deformation using 
CSTPF and the edge comparison of deformed image and 
original image(global), the deformation cost 0.051327 
bending-energy; (e)Deformation using CSTPF and the 
edge comparison of deformed image and original 
image(global), the deformation cost 0.19555 bending-
energy. 

It can be seen in figure.6 (d) that the image after 
global deformation using CSRBF has changed its 
shape significantly, while CSTPF kept the shape of 
source image satisfied. This demonstrated that 
CSTPF has stronger capability in global deformation 
than CSRBF.  

5 CONCLUSIONS 

In conclusion, TPS performs better in image global 
deformation, but it is not suitable for the local elastic 
registration. CSRBF can be used in the local 
registration, but it cost more bending energy which 
means that it will lose more information during the 
deformation. Moreover, its global deformation is not 
as well as TPS. In this paper, we proposed a new 
radial basic function ‘CSTPF’ which is a solution to 
the biharmonic equation. In local deformation, using 
CSTPF cost less bending energy. In global 
deformation, using CSTPF can keep the topology of 
source image. Additionally, it can save the 
information more integrated and it is approaches to 
TPS. Hence CSTPF is considered superior in image 
deformation. 
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Abstract: Finding good features that represent speaker identity is an important problem in speaker recognition area.
Recently a number of novel acoustic features have been proposed for speaker recognition. The researchers
use different data sets and sometimes different classifiers to evaluate the features and compare them to the
baselines such as MFCC or LPCC. However, due to different experimental conditions direct comparison of
those features to each other is difficult or impossible. This paper presents a study of five new recently proposed
acoustic features using the same data (NIST 2001 SRE), and the same UBM-GMM classifier. The results
are presented as DET curves with equal error ratios indicated. Also, an SVM-based combination of GMM
scores produced on different features has been made to determine if the new features carry any complimentary
information. The results for different features as well as for their combinations are directly comparable to each
other and to those obtained with the baseline MFCC features.

1 INTRODUCTION

Speaker recognition is the process of automatic iden-
tification or verification of a speaker using the in-
formation obtained from his/her speech. Verification
permits access control by voice as well as facilitates
in crime investigation if recordings of phone conver-
sations are available. Speaker recognition systems in-
cludes speaker identification and speaker verification;
however, studies usually focus on speaker verification
only. Text-independent verification has gained much
attention because does not require a user to speak any
pre-defined phrases for the system to operate and thus
is an attractive method of personal verification.

To represent a speaker features extracted from the
audio file are used. It is supposed that different speak-
ers can be represented differently in the feature space.
Therefore by building statistical models that approxi-
mate the distribution of feature vectors for different
speakers, the conditional probability of the speaker
being who he claims can be estimated.

Finding good features with low intra-speaker vari-
ation and high inter-speaker variation, as well as not
too sensitive to channel type, is an important prob-

lem in speaker recognition. Commonly used features
are Linear Prediction (LP) based features such as Lin-
ear Predictive Cepstral Coefficients (LPCC) and Mel
Frequency Cepstral Coefficients (MFCC) (Gish and
Schmidt, 1994). Although recently research focus has
been shifted mostly to developing methods of elimi-
nation of channel effects, a number of new and novel
features have been proposed (Wang and Wang, 2005;
Sant’Ana et al., 2006; Cordeiro and Ribeiro, 2006; Sri
Rama Murty and Yegnanarayana, 2006). New classi-
fication method to be used with the new features has
also been proposed in (Sant’Ana et al., 2006). Re-
searchers use different data sets to compare perfor-
mance of speaker verification systems with their fea-
tures to that of the baseline systems. Therefore, it is
often difficult or impossible to compare the effective-
ness of the new features to each other and to baseline
features (such as MFCC).

This paper presents a comparative study of five
new features proposed in 2005–2006 publications.
The features studied are Mean Energy within Critical
Bands (MECB) and Difference of Mean Energy within
Critical Bands (DMECB) (Wang and Wang, 2005),
pH features based on Hurst parameter and fractional
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Brownian motion model (Sant’Ana et al., 2006), Mel
Line Spectrum Frequencies (MLSF) (Cordeiro and
Ribeiro, 2006), and Residual Phase (Sri Rama Murty
and Yegnanarayana, 2006). The paper is organised as
follows. Section 2 shortly describes the features and
section 3 presents the feature combination scheme.
Section 4 discusses the experimental setup and the re-
sults, and section 5 draws the conclusions.

2 FEATURES STUDIED

Mel Frequency Cepstral Coefficients. Commonly
used MFCC features were taken as the baseline. The
data set audio files were divided into frames of 30 ms
length with 1/3 overlap using Hamming window.
Twelve MFCC coefficients were calculated for each
frame along with their first and second differences
(∆MFCC and ∆∆MFCC) resulting in 36-dimensional
feature vectors. The feature values were normalised
by subtracting the mean and dividing by the standard
deviation.

Mel Line Spectrum Frequencies. Mel Line Spec-
trum Frequencies (MLSF) are similar to Line Spec-
trum Frequencies calculated from Linear Prediction
(LP) coefficients. The difference is in taking an
advantage of mel frequency warping, emphasising
the information in lower frequencies (Cordeiro and
Ribeiro, 2006). To extract MLSF features, the signal
was divided into 30 ms frames windowed using Ham-
ming window with 1/3 frame overlap. Fast Fourier
Transform (FFT) and mel filter bank were used to
generate mel spectrum. Then the inverse Fourier
transform was applied to get the mel autocorrelation
of the signal. The MLSF features were then calcu-
lated via the Levinson-Durbin recursion. An LP filter
of order 16 was used resulting in 16-dimensional fea-
ture vectors. The feature values were normalised by
subtracting the mean and dividing by the standard de-
viation. Since addition of the first and second differ-
ences (∆MLSF and ∆∆MLSF) might increase the ver-
ification accuracy both differences were calculated. In
the original paper MLSF features were evaluated on
NIST 2002 SRE database.

Residual Phase. A person’s vocal tract can be mod-
elled as an excitation source and a set of filters that
characterise the vocal tract shape. While LP coeffi-
cients approximate the vocal tract shape, the excita-
tion source can be evaluated from the residual signal:

en = sn +
p

∑
k=1

aksn−k (1)

where sk is the signal, ak are the LP coefficients.
Examples of features calculated from the residual
signal include Haar Octave Coefficients of Residue
(HOCOR) (Zheng and Ching, 2004) and Residual
Phase (Sri Rama Murty and Yegnanarayana, 2006).
The latter was evaluated on NIST 2003 SRE database.
To extract the residual phase, the analytic signal Rn =
rn + jhn is calculated from the residual signal rn,
where hn is the Hilbert transform hn of rn. The phase
is then calculated from the analytic signal as:

θn = arccos
(

rn/
√

r2
n +R2

n

)
(2)

Authors (Sri Rama Murty and Yegnanarayana, 2006)
recommend to calculate the residual phase from short
segments of speech of around 5 ms, which is justified
by the period of the bursts in the excitation source. In
the our study the signal was divided into 6 ms frames
with 1/3 overlap. LP of orders 6 and 10 were tried.

Hurst Parameter Features. Hurst parameter
features were proposed for speaker recogni-
tion (Sant’Ana et al., 2006) and evaluated on
BaseIME database developed in the Instituto Militar
de Engenharia. The feature vector is a vector of Hurst
parameters calculated for frames of a speech signal
via Abry-Veitch Estimator using discrete wavelet
transform. To extract the features the speech signal
was divided into 80 ms frames with 1/2 overlap,
which were chosen to make the extraction similar
to that presented in the original paper. Daubechies
wavelets with 4, 6, and 12 coefficients were used,
thus resulting in pH4, pH6, and pH12 features. The
depth of wavelet decomposition was to be 5, 4, and 3
for pH4, pH6, and pH12 respectively.

Mean Energy within Critical Bands. Fractional
Fourier transform (FrFT) is a generalisation of the
ordinary (integer) Fourier transform. Mean Energy
within Critical Bands (MECB) features based on the
fractional Fourier transform were proposed in (Wang
and Wang, 2005) and evaluated on a custom data set.
The critical bands are formed by warping frequency
according to the mel or bark scale. MECBp are cal-
culated by taking the fractional Fourier transform of
order p of each frame of the signal. For i-th critical
band fi . . . fi+1 the log of mean energy is

Ei = log

∫ fi+1
fi |F( f )|2 d f

fi+1− fi
(3)

For two MECB features of orders p1 and p2 the dif-
ference MECB (DMECB) features are calculated as:

DMECBp1−p2 = MECBp1 −MECBp2 (4)
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In our study the signal was divided into 30 ms long
frames with 1/3 overlap. MECB of orders p =
0.5,0.6, . . . ,1.0 were extracted. DMECB were calcu-
lated for a fixed p1 of 1.0 and p2 0.5 . . .0.9.

3 COMBINATION OF FEATURES

Combining different acoustic features can be per-
formed in a number of ways. One way is to concate-
nate the feature vectors of the corresponding frames.
However, this leads to feature vectors of very high
dimensionality, which means much more data is re-
quired for reliable training of a classifier. Thus the
concatenation was only done for low-dimensional
feature vectors pH, while for the high-dimensional
features another method was used. A GMM en-
ables modelling the conditional probability density
functions in the feature space for each class. A
GMM classifier returns a score for each given pattern,
which is an estimation of the log likelihood ratio for
the hypothesis that the speaker is who he claims to
be (Reynolds and Rose, 1995). These scores from
GMM classifiers for each of the acoustic features
were used as features. The resulting score feature vec-
tors were used with an SVM classifier.

4 EXPERIMENTS AND RESULTS

All experiments were conducted on NIST 2001
Speaker Recognition Evaluation (SRE) database,
single-speaker files. The audio files sampled at 8 kHz
were pre-emphasised with filter coefficient of 0.97
and divided into frames as described above. For all
features a Gaussian Mixture Model (GMM) classifier
of 512 multivariate normal distributions with diagonal
covariance matrices was used (Reynolds and Rose,
1995). The Universal Background Models (UBM)
were trained on samples from 82 male and 56 fe-
male speakers. The resulting Detection Error Trade-
off (DET) curves and the Equal Error Ratios (EER)
are shown in Fig. 1(a)–(g).

Individual Features. The results achieved with
MFCC features with the first and second differences
were taken as the baseline (Fig. 1(a)). As seen from
the DET curves in Fig. 1(b), adding the first difference
to MLSF improves the speaker verification accuracy,
which is in agreement with the results in (Cordeiro
and Ribeiro, 2006). Adding the second difference im-
proves the accuracy further. Because of high dimen-
sionality of the resulting feature vectors (48) more
training data may lead to better system performance.

Fig. 1(c) shows the DET curves for Residual
Phase features and two different order LP filters. The
difference in the LP filter order does not result in a
significant difference in the speaker verification accu-
racy. It was also found that adding the first difference
features does not change the system performance ei-
ther, so the second difference was not tried.

Features pH4+6+12 were obtained by concatenat-
ing feature vectors pH4, pH6, and pH12 for each
frame. It was found that performance of the speaker
verification system is similar when either one of pH4,
pH6, pH12 are used. Concatenating them into 12-
dimensional pH4+6+12 vectors leads to a dramatic im-
provement in the accuracy with EER dropping from
29.0% to 20.8% (Fig. 1(d)).

The accuracy of speaker verification for MECBp
features declines with p of FrFT (Fig. 1(e)). This is
in accordance with the results reported in (Wang and
Wang, 2005), while the results for DMECB1.0−p2 fea-
tures with various p2 (Fig. 1(f)) are different from
that reported in the paper: the highest speaker veri-
fication accuracy was achieved for p2 = 0.5 and for
p2 = 0.6 . . .0.9 the accuracy decreased with increase
of p2. Adding the difference features to MECB and
DMECB did not lead to accuracy improvement.

Table 1: Equal error rates for MECB features of different
orders.

MECBp, p 1.0 0.9 0.8 0.7 0.6 0.5
EER, % 17.6 18.7 21.2 24.2 27.5 31.4

Table 2: Equal error rates for DMECB features of different
orders.

DMECB1.0−p2 , p2 0.9 0.8 0.7 0.6 0.5
EER, % 19.7 19.4 18.9 18.3 17.8

Table 3: Summary of equal error rates for different feature
types and their SVM combination.

Feature type EER, % Feature type EER, %
MFCC+∆+∆∆ 9.5 Residual phase 21.5
MLSF+∆+∆∆ 16.0 pH4+6+12 20.8
MECB1.0 17.6 DMECB1.0−0.5 17.8
Combined 8.7

Combination of Features. To make the results
comparable to those of acoustic features alone a 5-
fold cross-validation scheme was applied. The test
set of speakers was divided into 5 approximately
equal parts. Every time one different part was left
for testing and four others were used for training
the SVM, resulting in 5 experiments in total. The
SVM was designed to produce a soft decision, which
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(c) Residual Phase
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Figure 1: DET curves for different feature types.
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Figure 2: DET curve for combination of acoustic features.

was then treated as a score for plotting the DET
curve and calculating the EER. It was decided to
combine MFCC+∆ + ∆∆, MLSF+∆ + ∆∆, Resid-
ual Phase with LP of order 6, pH4+6+12, MECB1.0,
and DMECB1.0−0.5, choosing one feature from each
group with the best performance. The results of the
combination are shown in Fig. 2 with the EER in Ta-
ble 3 with the DET curve for the MFCC+∆+∆∆ plot-
ted for comparison.

5 CONCLUSIONS

As assessed on NIST 2001 SRE database, none of the
novel acoustic features considered in this study out-
performed the MFCC features. MLSF and MECB
features have performance that is comparable to that
of MFCC. Features pH showed a high accuracy of
speaker verification taking into account their low di-
mensionality (5, 4, and 3 for pH4, pH6, and pH12 re-
spectively), hence they may be attractive when lim-
ited training data is available. Combination of several
different acoustic features resulted in significantly
higher accuracy of speaker verification. We can con-
clude that the studied features carry additional infor-
mation about speakers. How big is the contribution of
each of the features into the speaker verification accu-
racy, however, needs to be established. To determine
this either all possible feature combinations have to
be tried, or feature selection methods have to be used.
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Abstract: Automatic speaker change point detection separates different speakers from continuous speech signal by utilis-
ing the speaker characteristics. It is often a necessary step before using a speaker recognition system. Acoustic
features of the speech signal such as Mel Frequency Cepstral Coefficients (MFCC) and Linear Prediction Cep-
stral Coefficients (LPCC) are commonly used to represent a speaker. However, the features are affected by
speech content, environment, type of recording device, etc. So far, no features have been discovered, which
values depend only on the speaker. In this paper four novel feature types proposed in recent journals and con-
ference papers for speaker verification problem, are applied to the problem of speaker change point detection.
The features are also used to form a combination scheme using an SVM classifier. The results shows that the
proposed scheme improves the performance of speaker changing point detection as compared to the system
that uses MFCC features only. Some of the novel features of low dimensionality give comparable speaker
change point detection accuracy to the high-dimensional MFCC features.

1 INTRODUCTION

The aim of speaker changing point detection (speaker
segmentation) is to find acoustic events within an au-
dio stream (e.g finding the speaker changing point
in the continuous speech files according to different
speakers’ characteristics). Automatic segmentation of
an audio stream according to speaker identities and
environmental conditions have gained increasing at-
tention. Since some speech files are obtained from
telephone conversations or recorded during meetings,
there are more than one person speaking in the audio
recordings. In such cases before performing speaker
recognition it is necessary to separate audio signal ac-
cording to different speakers. Features extracted from
a speech waveform are used to represent the charac-
teristics of the speech and speaker. Among the fea-
tures acoustic features are those based on spectro-
grams of short-term speech segments. However, the
feature values that represent a speaker also vary due
to speech content, environment, type of recording de-
vice, etc. So far no features have been discovered,
whose values only depend on the speaker. Also, dif-

ferent speech features contains different information
about a speaker: some features reflect a person’s vo-
cal tract shape while others may characterise the vocal
tract excitation source.

Generally there are three main techniques for de-
tecting the speaker changing points: decoder guided,
metric based and model based. In this paper, a
method using Support Vector Machines (SVM) to find
speaker changing point in a continuous audio file is
presented. SVM is a binary classifier that constructs a
decision boundary to separate the two classes. SVM
has gained much attention since the experimental re-
sults indicate that it can achieve a generalisation per-
formance that is greater than or equal to other clas-
sifiers, but requires less training data to achieve such
an outcome (Wan and Campbell, 2000). Speaker seg-
mentation can be treated as a binary decision task: the
system must decide whether or not a speech frame
has the speaker changing point. This study uses the
SVM for seeking speaker changing points by com-
bining commonly used acoustic features with several
novel acoustic features proposed recently. The novel
features have been recently proposed by different re-
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searchers for the problem of speaker recognition.
The paper is organised as follows: section 2

describes the speaker segmentation method with
Bayesian Information Criteria. In section 3 the fea-
ture extraction is described for each feature type. In
section 4 the structure of SVM speaker segmentation
is explained. Section 5 presents the experimental re-
sults and draws the conclusion.

2 SPEAKER SEGMENTATION
WITH BIC

A speaker changing point detection algorithm us-
ing Bayesian Information Criterion (BIC) is proposed
in (Chen and Gopalakrishnan, 1998). A speech signal
is divided into partially overlapping frames of around
30 ms length using a Hamming window. Extraction of
acoustic features is performed for each speech frame.
A sliding window with minimum size Wmin and max-
imum size Wmax shifted by F frames is used to group
several consecutive frames. For detail grouping al-
gorithm the reader may refer to (Chen and Gopalakr-
ishnan, 1998). Each segment contains a number of
frames and is represented by the corresponding acous-
tic feature vectors. A segment can be modelled as a
single Gaussian distribution. The distance between
consecutive segments is calculated based on variances
of the Gaussian distributions that model the segments
in the feature space. The variance BIC (Nishida and
Kawahara, 2003) was developed from BIC and used
to represent the distance between two speech seg-
ments represented as their feature vectors. Variance
BIC is formulated with the following function:

∆BICi
variance =−n1 +n2

2
logi|Σ0|+

+
n1

2
logi|Σ1|+

n2

2
logi|Σ2|+

+α
1
2
(d +

1
2

d(d +1))log(n1 +n2)

(1)

where Σ0, Σ1 and Σ2 are the covariance values of
the whole segment, the first segment and the second
segment respectively, ni is the number of frames for
the i-th segment, and d is the dimensionality of the
acoustic feature vectors. The larger the variance BIC
of two segments is, the larger is the probability that
there is a speaker changing point between these two
segments. A sliding window is used to calculate the
variance BIC value for the whole speech files (Chen
and Gopalakrishnan, 1998). Local maxima in vari-
ance BIC values of the whole speech are marked as
the speaker changing points.

When different acoustic features are used, there
will be different variance BIC values generated for

a speech file. These values can be used as features
forming feature vectors to be used for determining
speaker changing points. Fig. 1 shows the process of
generating a variance BIC vector after acoustic fea-
ture extraction. After the feature extraction for each
frame, the feature vector of each frame is used to cal-
culate the variance BIC values.

Audio signal

Acoustic features

Acoustic feature vectors
Fram

e 1

Fram
e 2

Fram
e n…

Calculate variance BIC value

Figure 1: Generating variance BIC values for single type
acoustic features.

                                             SVM feature vector for Frame 1 
                                             SVM feature vector for Frame 2 

                             ………. 

                              

                                             SVM feature vector for Frame n 

Feature 1  Feature 2   Feature 3      Feature n 

BIC values 

BIC values 

BIC values 

BIC values 

Figure 2: Combination of variance BIC values generated
from different acoustic features into feature vectors.

Most of the acoustic features are of high dimen-
sionality, and simple concatenation of the feature vec-
tors will result in a feature vector of even higher di-
mensionality, which, in turn, will require too many
training samples to be trained reliably. Instead, in
the current study the variance BIC value is calculated
from each of the acoustic features as described above.
The BIC values calculated for the same frames using
different acoustic features form new feature vectors
are then used with the SVM classifier (Fig. 2).

3 EXTRACTION OF FEATURES

The features were extracted from speech sampled
at 16 kHz. Mel Frequency Cepstral Coefficients
(MFCC) (Oppenheim and Schafer, 2004) features
were used to calculate the variance BIC values.
MFCC vectors were extracted from 30 ms frames
without overlap. The feature values were normalised
by subtracting the mean and dividing by the standard
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deviation. First order difference features were added.
In addition, several novel acoustic features were used
to calculate variance BIC values: Mel Line Spec-
trum Frequencies (MLSF) (Cordeiro and Ribeiro,
2006), Hurst parameter features (pH) (Sant’Ana et al.,
2006), Haar Octave Coefficients of Residue (HO-
COR) (Zheng and Ching, 2004), and features based
on fractional Fourier transform (MFCCFrFT).

FrFTMFCCp are extracted similarly to MFCC
with the only difference that the fractional Fourier
transform of order p is used in place of the inte-
ger one. Features of various orders p were tried
and FrFTMFCC0.9 were chosen because they gave
the next highest speaker segmentation accuracy after
FrFTMFCC1.0, which are the conventional MFCC, as
measured by the F-score (see below).

MLSF are similar to Line Spectrum Frequencies
calculated from LP coefficients and were proposed in
the context of the speaker verification problem. A mel
spectrum was generated via Fast Fourier Transform
(FFT) and mel filter bank applied to 30 ms frames.
The inverse Fourier transform was applied to calcu-
late the mel autocorrelation of the signal, from which
MLSF features were then calculated via Levinson-
Durbin recursion. LP of order 10 was used. The fea-
ture values were normalised by subtracting the mean
and dividing by the standard deviation.

Hurst parameter is calculated for frames of a
speech signal via Abry-Veitch Estimator using dis-
crete wavelet transform (Veith and Abry, 1998). In the
current study a frame length of 60 ms was used, and
Daubechies wavelets with four, six, and twelve coef-
ficients were tried giving rise to pH4, pH6, and pH12
features. The depth of wavelet decomposition was
chosen to be 5, 4, and 3 for pH4, pH6, and pH12 corre-
spondingly, thus resulting in 5-, 4-, and 3-dimensional
feature vectors (Sant’Ana et al., 2006).

While LP coefficients are aimed at characteris-
ing the person’s vocal tract shape, information about
the glottal excitation source can be extracted from
the residual signal en = sn + ∑

p
k=1 aksn−k. Haar Oc-

tave Coefficients of Residue (HOCOR) features are
extracted by applying Haar transform to the residual
signal. In the current study the LP of order 12 was
applied to 30 ms frames. HOCORα features of order
α 1, 2, 3, and 4 were extracted (Zheng and Ching,
2004).

4 SVM SPEAKER
SEGMENTATION

Fig. 3 shows the structure of SVM speaker segmen-
tation. To be used in SVM the frames which contain

speaker changing point are labelled as −1, the frames
without speaker changing point are labelled as 1. The
acceptable error range of the found speaker chang-
ing points was chosen to be 1 second (Ajmera et al.,
2004), which means the frames that are half a sec-
ond before and after a speaker changing point are all
labelled as −1. The variance BIC values that are ob-
tained from different acoustic features are of different
order. To use them as features in SVM a linear scaling
is applied:

f̂ j
i =

f j
i −〈 fi〉

σi
(2)

where i represent different features, j is the frame
number of the i-th feature,

〈
f j

〉
is the mean value of

f j
j and σi is its standard deviation.
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Figure 3: SVM speaker segmentation system.

The SVM classifier returns two values for each
frame that are related to the distance to the separat-
ing hyperplane (either of them can be monotonically
mapped into the conditional class probability). The
values sum to one and indicate to what extent the
frame belongs to class −1 (or 1). The −1 class value
is analysed to determine the true speaker changing
point. A peak search algorithm was used to deter-
mine the local maxima of−1 class value as we moved
along the frames. The peak searching algorithm uses
adaptive threshold in an attempt to eliminate small
peaks due to noise and find only true local maxima.

5 RESULTS AND CONCLUSION

The NIST HUB-4E Broadcast News Evaluation data
set was used in this study. The data was obtained
from the audio component of a variety of television
and broadcast news sources and each audio file con-
sist of approximately one hour of speech in English
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and includes the speech of several speakers in one au-
dio channel (Hub, 1997). To evaluate the performance
of the speaker changing point detection, two criteria
were used: the precision of speaker changing points
that were found and the number of missed changing
points. The precision indicates the percentage of true
turning points from the total number of turning points
that were found. The recall indicates how many of the
true turning points were missed. These two are com-
bined into an F-score. F-score indicates how good
a system is: it is high when both precision and re-
call values are high and low when either of them is
low (Nishida and Kawahara, 2003).

Table 1: F-score, precision and recall for different features
and their combination via SVM. d is the dimensionality of
the acoustic feature vectors.

Feature d F-score Precision Recall
MFCC 26 0.62 0.61 0.62
MLSF 10 0.42 0.29 0.80
pH4 5 0.52 0.67 0.43
pH6 4 0.53 0.67 0.44
pH12 3 0.55 0.68 0.46
HOCOR1 6 0.42 0.54 0.35
HOCOR2 5 0.37 0.47 0.30
HOCOR3 4 0.31 0.39 0.26
HOCOR4 3 0.30 0.38 0.25
FrFTMFCC0.9 12 0.61 0.73 0.56
SVM1 10 0.64 0.72 0.58
SVM2 6 0.65 0.75 0.58

Table 1 (except for the two bottom rows) shows
the speaker changing point detection results achieved
when different acoustic features were used to calcu-
late the variance BIC and the peak detection algorithm
was used to detect speaker changing points from the
BIC values. It is worth noticing that using pH features
gives F-scores comparable to those when MFCC fea-
tures are used, even though the dimensionality of fea-
ture vectors of pH features is far less than those of
MFCC. This suggests that pH features may be a bet-
ter choice when the training data set is small.

The features used for SVM combination 1
(SVM1) are the 10 variance BIC values resulted from
the 10 acoustic features. The results in Table 1 show
that the proposed SVM speaker changing point de-
tection scheme improves the speaker changing point
detection performance as compared to each of the
individual acoustic features, with a higher F-score
of 0.64. This means that other acoustic features,
which were originally proposed for speaker recogni-
tion problem, can be used for the problem of speaker
segmentation as well. Because of low both preci-
sion and recall values achieved on HOCOR features,
a combination of the acoustic features was attempted

without HOCOR features. The results (SVM2 in Ta-
ble 1) were comparable with those of SVM1. How-
ever, elimination of any other acoustic features from
the combination degraded the speaker segmentation
performance.

This study demonstrates that the new features
do carry additional information about speaker dif-
ferences to MFCC features, and some of them also
have attractiveness because of their low dimensional-
ity. Further study may find better ways of how to in-
tegrate complimentary information about speaker dif-
ferences contained in the new features with traditional
features such as MFCC and LPCC.
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Abstract: Portable chest radiography is the most commonly ordered radiographic test in the intensive care unit (ICU). 
In the ICU, a succession of portable images is usually taken over a period of time to monitor the progress of 
a patient’s condition. A prompt diagnosis of any changes in the conditions of these ICU patients allows 
clinicians to provide immediate attention and treatments that are required to prevent the conditions from 
worsening and which could result in a treat to the patient’s life. However, because of differences in X-ray 
exposure setting, patient and apparatus positioning, scattering, and grid application, for example, differences 
in image quality from on image to the next taken at different times can be significant. The differences in 
image quality make it difficult for clinicians to compare images to detect subtle changes. This paper 
presents an image-rendering method that reduces the variability in image appearance and enhances the 
diagnostic quality of these images. Use of the presented method allows clinicians to detect subtle 
pathological changes from one image to the next, thus improving the quality of patient management in the 
ICU. 

1 INTRODUCTION 

In the ICU, clinical evaluation can rely heavily on 
diagnostic images such as portable chest 
radiographic images. The successive diagnostic 
images taken by a portable computed radiography 
(CR) system are helpful for indicating significant 
pathological changes of the patient, such as a 
collapsed lung or and improper tube placement 
within the patient. 

However, image differences owing to different 
exposure settings, or patient and apparatus 
positioning, limit the accuracy of image comparison 
in the ICU, even for those images obtained from the 
same patient over a short treatment interval. 
Obviously it constrains the ability of the clinician to 
subtle changes that can be highly significant. An 
important problem is allocating the output dynamic 
ranges to display the clinically important part of the 
input code values. The process of selecting the 
relevant sub-range of input code values and 
constructing the proper mapping function from the 
input code values to the output display media is 
termed a tone-scale adjustment. Using a tone-scale 
method in CR images provides an optimal rendering 
result (Lee and Barski, 1997). There are also other 

methods (Barski and Metter, 1998) that provide 
improvements in contract enhancement for 
diagnostic imaging. 

However, these methods do not address the 
problem of consistent rendering between images of 
the same patient taken at different times. Application 
of such tone-scale techniques is not likely to provide 
consistent rendering results, which makes accurate 
changes assessment by the ICU clinician difficult. 

In this paper, we present a region of interest 
(ROI)-based lookup table (LUT) mapping method 
for diagnostic images that provides a consistent 
rendering result for images taken of the same patient 
at different times. This will help the clinicians 
compare images and track patient progress. First is a 
background segmentation step when the background 
of all the images (that may have different amounts of 
background content or no background content) are 
segmented. In the ROI selection step, the ROI region 
is located. These are the images of the tissue parts 
that are critical for clinicians to make a correct 
diagnosis. Next, an LUT constructed for the pixel 
values in the ROI. Then a toe-shoulder construction 
step is taken, constructing a LUT for very dark and 
very light regions. In the LUT mapping step, the 
pixel values in the input images are mapped to the 
corresponding pixel values in the output image. 
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The structure of this presentation is organized as 
follows: in section2, we introduce why and how the 
ROI is selected. In section3, the ROI-based LUT 
construction method is presented. Section4 reports 
the performance comparison result of the current 
method and of baseline method. Finally, the 
conclusion is drawn in Section 5. 

2 AUTOMATED ROI SELECTION 

After doing a background segmentation based on 
ICU’s image histogram and difference histogram 
(Kuhn, 1999), we get an appropriate threshold for 
removing the background. A region-labeling 
operation can be done to prevent over-segmentation. 
Then we perform the automated ROI selection. 

In ICU images, the position of the parts 
necessary for the clinicians’ diagnosis varies. In 
some cased, they will only take up a little part of the 
image. The basic principle of automated ROI 
selection is to identify the RIO in each image 
automatically and adjust the image contrast values 
within the ROI to a suitable range for each image, so 
that comparison of one image to another is feasible. 

 
Figure 1: Automated region of interest selection; this is an 
example of selecting similar regions of interest for two 
images of the same patient. 

ROI identification located key features (lung line, 
spine line) in an image and allows the correlation of 
two or more images accordingly. Figures1(c) and (f) 
show two chest X-ray images of the same patient 
with two automated regions of interest (ROI) 
selected. 

First we use a median filter to resize the image, 
then a Gaussian filter for noise removal. Next, the 
locations of the spine line and lung line are detected 
(Amit and Mark, 2005). Fig.1 (a) and (d) show the 
spine and lung line detection. We search for the 
highest/lowest mean column value row by row. 
Connecting these points, we validate the lung line 
step (Fig.1 (b) and (e)), and combine and validate 

similar lung line parts based on gray-level and 
position. 

With the approximate lung line and spine line 
determined, a spine-line-fitting step can be executed. 
This is performed by doing an iterative of the spine-
line-fitting step. We search all the rows between the 
top and bottom of the lung lines. We then choose the 
fitting result that has the lower mean residual form 
these two. We then can get a trapezoid ROI for all 
the images of the same patient based on the spine 
line and the distance of the spine line to the lung 
line. 

3 ROI-BASED LUT 
CONSTRUCTION 

Once one or more ROIs have been identified, we can 
do the ROI-based LUT construction step. 

First we identify the primary area o the image 
from the histogram data that is related only to the 
ROI. Points lp and rp represent left and right points, 
respectively, of the histogram data that is from the 
main range (2.5%-95%) in the ROI. After that, for 
each image, left points lp1 and lp2, and right points 
rp1 and rp2, are obtained. The goal of next few steps 
is to remap left points lp1 and lp2, and right points 
rp1 and rp2, to the corresponding points A1 and A2, 
in order to form consistent images in the output 
images. 

 
Figure 2: Lookup table construction. 

Figure 2 shows how various portions of the image 
are remapped for consistent rendering. We can map 
the right point rp, obtained from the ROI of each 
input image, to the same value Ar in the output 
image that has been determined for the same patient. 
However, to accommodate the difference in patient 
position between two images of same patient, we 
proposed to use Ar for each image. Here, the 
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diaphragm in Fig.1 (a) is higher that that in Fig.1 (d). 
This difference can be best expressed by means of a 
proportion of distance d to column length Lc for 
each image as illustrated in Fig.1. 

Given these considerations, Ar can be calculated 
using the following calculations to adjust the 
difference in patient position: 
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Where d  and column length cL  are illustrated in 
Figure 1. 21, pp  and t  are empirical parameters. 

In out method, features used to determine the 
value Al  include the difference lprp − , and the 
value of ( )rencespinediffelprp /− : 
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AlAlaaaacba max,min,,,,,,, 4021 are empirical 
parameters and spuvspdv, (spine down-part value 
and spine up-part value) are the main gray-level 
range in the spinal region (10%-80%), which can be 
detected automatically. Note that the A1 can be 
justified differently by the ratio of pdark  for each 
image. Here we choose the same Al  for all the 
images from the same patient. 

After we get ArAlrplp ,,, for each image, the 
LUT construction between lp and rp to Al and 
Ar can be applied. The mapping from [ ]rplp, to 
[ ]ArAl, is established based on the active rate (Lee, 
2004) calculated in equation (3). 
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][kactivity is the activity of intensity k and h(i) is the 
number of the pixel at that intensity. 

Figure 3 shows an ICU image’s active rate and 
example of LUT construction using equation(4) 
considering the active rate. 

 

 

 
Figure 3: Active-rate in LUT construction. 
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In addition to mapping the ROI of the image, for 
darker or brighter regions, a toe-shoulder LUT 
construction step was performed for additional 
mapping, such as the toe region and the shoulder 
region in the LUT curve in Fig.3. The toe region was 
constructed for mapping the dark area in the image 
and the shoulder region was constructed for the 
bright area in the image. 

4 PERFORMANCE 

We collected 83 portable X-ray images from 19 
patients. There were two to nine images of each 
patient. An experienced chest radiologist reviewed 
all the images from the 19 patients and provided a 
diagnosis that included the types of diseases detected 
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and any change in a patient’s condition 
(improved/worsened). We compare the presented 
method with a baseline image enhancement 
technique that is an image optimization technique 
based on single image (Barski and Metter, 1998). An 
evaluation of the images from the 19 patients was 
performed in order to compare the overall 
consistency in the image and the lung areas as well 
as the ability to detect changes in patients’ 
conditions against the radiologist’s diagnosis. 

 
Figure 4: Processed image of the same patient. (a), (b), 
and (c) are raw images of the same patient, and (d), (e) and 
(f) are the processed result using the current method. 

Figure 4 shows the processing result examples of a 
patient’s ICU chest X-ray images. In the evaluation, 
all of the processed images form each patient were 
presented to a radiologist in the order of the 
processed images form the baseline method first and 
next the processed images from the presented 
method. The radiologist gave a rating on a 5-point 
acceptability scale where 1 is not acceptable and 5 is 
outstanding in terms of the consistency rendering 
effect demonstrated among the images presented for 
diagnostic purposes. Table 1 is the evaluation result. 
A t-test is also done to compare the baseline and 
current methods. 

5 ROI-BASED LUT 
CONSTRUCTION 

Our image-rendering technique reduces the 
variability in the image appearance caused by the 
differences in patient or apparatus positioning and 
image acquisition parameters. The improved 
consistency over the baseline image enhancement 
technique can potentially improve the overall 
workflow and patient management. 

Thus, it is a method for enhancing diagnostic 
images taken at different time in order to provide 
consistent rendering for regions of interest. 

Table 1: The evaluation result. 
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Abstract: In this paper we present a quantitative comparisons of different independent component analysis (ICA) algo-
rithms in order to investigate their potential use in preprocessing (such as noise reduction and feature extrac-
tion) the electroencephalogram (EEG) data for early detection of Alzhemier disease (AD) or discrimination
between AD (or mild cognitive impairment, MCI) and age-match control subjects.

1 INTRODUCTION

Independent component analysis (ICA) is a method
for recovering underlying signals from linear mix-
tures of those signals. ICA draws upon higher-order
signal statistics to determine a set of ”components”
which are maximally independent of each other.

The aims of this paper is to investigate which ICA
algorithm is best adapted to deal as a preprocessing
stage with EEG signals. In order to do that, we made
different experiments with EEG data from Alzheimer
and age-match control subjects. The evaluation was
calculated in terms of measure of receiver operating
characteristic (ROC) score.

The paper is organized as follows: in Section 2
we present experimental data characteristics used in
the experiments. Section 3 is devoted to procedure
and ICA algorithms used. In Section 4 we explain
the measure that we will use for obtaining the experi-
mental results, that are presented in Section 5. Finally,
conclusions are presented in Section 6.

2 EXPERIMENTAL DATA

In the course of a clinical study, mutlichannel EEG
recordings (Deltamed EEG machine) were recorded
from 33 elderly patients affected by Alzheimer’s dis-
ease and followed clinically (labeled AD set) and

from 39 age-matched controls (labeled Control set),
with electrodes located on 19 sites according to
the 10-20 international system. This database was
recorded in normal routine. Reference electrodes
were placed between Fz and Cz, and between Cz and
Pz. The sampling frequency was 256 Hz, with band-
pass filter 0.17-100 Hz. Three periods of 5 seconds
were selected in a ”rest eyes-closed” condition for
each patients. In selecting these three independent
sessions, an artifact rejection procedure was used to
help minimize the artifact effect.

3 ICA AND BSS

3.1 Procedure

At the first stage, we apply principal component anal-
ysis (PCA) to perform dimensionality reduction. At
the second stage, an ICA algorithm is implemented to
perform BSS. The estimated output signalyt are as-
sumed to be the source signals of interest up certain
scaling and permutation ambiguity.

In addition, if we are only interested in denoising
or getting rid of specific component, we can set that
specific output signal (sayyi) to zero while keeping
other components intact, and apply back projection
procedure to recover the original scene. In our ex-
periments, in ranking the output components, we al-
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ways select the one that has the least absolute kurtosis
value (i.e., the one close to Gaussian by assuming zero
kurtosis statistic for Gaussian signal, positive kurtosis
statistic for super-Gaussian signal, and negative kur-
tosis for sub-Gaussian signal).

3.2 Selection of Candidate Algorithms

For comparison, we have selected seven representa-
tive ICA algorithms. The selection criteria of them
are based on several factors: (i) computationally effi-
ciency; (ii) robustness; (iii) fewer degree of freedom
(such as the choices of learning rate parameter, non-
linearity, or number of iterations); (iv) preference to
batch method.

Specifically, the following seven ICA/BSS algo-
rithms are among some of most popular BSS meth-
ods in the literature: AMUSE, SOBI, JADE, Pearson-
ICA, Thin-ICA, CCA-BSS and TFD-BSS.

The detailed description of algorithms are ne-
glected here; for relevant references, see (Cichocki
and Amari, 2002). All of algorithms are implemented
in MATLAB, some of them are available for down-
load from the original contributors (Cichocki et al., ).

For each algorithm, we have varied the number of
independent components (namely,n), from 3 to 10, to
extract the resultant uncorrelated or independent com-
ponents.

4 PERFORMANCE EVALUATION

In signal detection/classification theory, a receiver op-
erating characteristic (ROC) is a graphical plot of the
sensitivity vs (1-specificity) for a binary classifier sys-
tem as its discrimination threshold is varied. The
ROC can also be represented equivalently by plotting
the fraction of true positives (TP) vs the fraction of
true negatives (TN). Nowadays, the usage of ROC has
become a common measure to evaluate the discrimi-
nation ability of the feature or classifier. Roughly, the
discrimination ability or performance is measured by
the area value underneath the ROC curve, the greater
the value, the better is the performance (with 1 denot-
ing perfect classification, and 0.5 denoting pure ran-
dom guess).

Since the primary purpose here is to evaluate the
features extracted from different ICA algorithms, we
have focused on the comparison between ICA algo-
rithms and the choice of number of independent com-
ponents. In order to obtain the baseline, we choose
two simple yet popular linear classifiers—the linear
discriminant analysis (LDA) and linear perceptron.

In calculating the ROC score, we have employed the
leave-one-out (LOO) procedure.

The features we use to feed the linear classifier are
the power values extracted from different frequency
bands (θ,α,β, andγ). The ROC score is first calcu-
lated by using raw EEG data without any ICA prepro-
cessing; this ROC score is regarded as a baseline for
further comparison. For ICA feature extraction, we
conduct the procedures of dimensionality reduction,
source separation, component rejection, followed by
backward projection. For each algorithm, we calcu-
late their ROC score by varying the number of in-
dependent components from 3 to 10. Note that all
the discrimination tasks are binary classification: AD
against control subjects.

5 EXPERIMENTAL RESULTS

First, we calculated the ROC score for all ICA al-
gorithm with varying number of independent compo-
nents. All algorithms follow the similar-shape trend:
compared to baseline, there is a positive gain in high-
frequency bands using ICA; while for low-frequency
bands, there is no need for using ICA because of their
negative gains. In fact, the result is consistent with
what was expected: since the SNR is poor in high-
frequency bands, eliminating the independent compo-
nent with the least absolute value of kurtosis would
lead to a gain in SNR; consequently, the ROC score
or its gain is greater.

Next, the comparison was conducted on three in-
dividual 5-second sessions’ EEG recordings. By av-
eraging these three independent data set, we also ob-
tain the performance comparison. It can be seen from
these results that for all independent data sets, the
performance depends on the choice of the ICA algo-
rithm as well as the choice of components. On the
other hand, it is also obvious that by using ICA algo-
rithms for feature extraction, it is possible to boost the
ROC score performance (w.r.t. the baseline) around
0.7467−0.6193

0.6193 = 20.6% (data set 1), 15.6% (data set 2),
and 10.2% (data set 3), assuming the best ICA al-
gorithm (with optimum number of IC) is employed.
This improvement is quite significant. The averaged
ROC score against the number of independent com-
ponents is plotted in Figure 1.

From Table 1, several noteworthy observations
are in order:

• It seems that the optimum number of IC is 4, ob-
taining the highest mean ROC score (averaged
over all ICA algorithms) 0.6536, followed by
0.6447 (IC=6). Overall, it seems the optimal
range for the number of IC is between 4 to 7.
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Figure 1: Left: The mean ROC score gain (averaged over 3 data bases and the number of independent components; with 0 as
baseline) against frequency bands for 7 algorithms. Rigth:The averaged ROC score (over 3 data bases) comparison between
different ICA algorithms with varying number of independent components.

• By averaging different numbers of IC, it seems
the overall best ICA algorithms are Pearson-ICA
and JADE (averaged from 4 to 7 components), or
Thin-ICA and SOBI (averaged from 3 to 10 com-
ponents).

• Overall, JADE and SOBI seem to give quite con-
sistent performance for different number of com-
ponents.

In addition, we can also compare the correct clas-
sification rate between different ICA algorithms with
different setups. The results using LDA and linear
perceptron classifiers are summarized in Table 2.
Likewise, compared to the baseline correct classifi-
cation rate, the performance with appropriate ICA al-
gorithm give some more or less improvement.

6 CONCLUSIONS

In this work, we have proposed a measure or crite-
ria to compare several popular ICA algorithms in the
investigation of feature extraction of eeg signals in
discrimination of Alzheimer disease. As a powerful
signal processing tool used in the preprocessing step,
ICA was found useful in artifact rejection, improving
SNR, and noise reduction, all of which are important
for the feature selection at the later stage. The ICA
algorithms and the optimum choice of independent
components are extensively investigated using sim-
ple linear classifiers and LOO procedure for calculat-
ing the resultant ROC scores and correct classification
rate, both compared to their baselines.

It was found, in general, ICA algorithms are par-
ticularly useful for feature extraction in high fre-
quency bands, especially on high alpha and beta
ranges; where in low frequency bands, little gain has

been obtained compared to the baselines. This is more
or less anticipated, because EEG signals are usually
contaminated by noise at high frequency bands, but
are more resistant to noise at low frequency bands.
Moreover, the optimum number of selected compo-
nents seem to depend on the selected algorithms,
but overall observations seem to indicate the number
should be in the range from 4 to 7. Interestingly, this
number is consistent with our early independent in-
vestigations (Vialatte and et al., 2005). In terms of
overall average performance, it seem that the JADE,
SOBI, thinICA, and CCABSS algorithms give more
consistent and better results.
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Table 1: The ROC score comparison between ICA algorithms by averaging the results from three 5-second sessions. The
baseline value (without ICA) of ROC score is 0.63. The bold fonts indicate the top two winners or the maximal two values in
each column.

no. IC AMUSE SOBI JADE Pearson-ICA Thin-ICA CCA-BSS TFBSS

3 0.5791 0.6358 0.5379 0.5618 0.5569 0.6255 0.5755

4 0.6496 0.6566 0.6729 0.6729 0.6506 0.6496 0.6234

5 0.6265 0.6154 0.6099 0.5983 0.6408 0.6182 0.6343

6 0.6299 0.6369 0.6654 0.6649 0.6457 0.6511 0.6193

7 0.5998 0.6346 0.6325 0.6485 0.6496 0.6097 0.6382

8 0.6263 0.6270 0.6317 0.6203 0.6475 0.6141 0.6213

9 0.6203 0.6094 0.6382 0.6123 0.6289 0.6250 0.6402

10 0.6327 0.6244 0.6265 0.6055 0.6348 0.6131 0.6244

average from{2,3,4,5} rows

0.6292 0.6210 0.6498 0.6544 0.6385 0.6094 0.6364

average from all rows

0.6205 0.6300 0.6269 0.6231 0.6318 0.6258 0.6221

Table 2: Classification results using leave-one-out procedure. The bold font indicate the maximum value in each column.

no. IC AMUSE SOBI JADE Pearson-ICA Thin-ICA CCA-BSS TFBSS

LDA baseline value (without ICA) 75%

3 65.2778 65.2778 65.2778 63.8889 62.5000 61.1111 62.5000

4 69.4444 73.6111 70.8333 69.4444 68.0556 69.4444 61.1111

5 68.0556 66.6667 77.7778 69.4444 75.0000 73.6111 69.4444

6 72.2222 72.2222 76.3889 75.0000 70.8333 77.7778 69.4444

7 68.0556 73.6111 70.8333 76.3889 72.2222 72.2222 72.2222

8 73.6111 76.3889 72.2222 73.6111 72.2222 70.8333 70.8333

9 76.3889 73.6111 68.0556 73.6111 76.3889 69.4444 70.8333

10 70.8333 75.0000 73.6111 72.2222 77.7778 72.2222 76.3889

linear perceptron baseline value (without ICA) 62.5%

3 59.7222 51.3889 54.1667 54.1667 45.8333 68.0556 54.1667

4 62.5000 70.8333 65.2778 70.8333 68.0556 56.9444 54.1667

5 59.7222 62.5000 56.9444 56.9444 68.0556 62.5000 62.5000

6 65.2778 62.5000 70.8333 65.2778 68.0556 65.2778 62.5000

7 59.7222 56.9444 65.2778 65.2778 62.5000 65.277865.2778

8 65.2778 62.5000 59.7222 59.7222 65.2778 65.2778 62.5000

9 62.5000 62.5000 70.8333 56.9444 68.0556 62.5000 62.5000

10 62.5000 62.5000 68.0556 59.7222 62.5000 65.2778 59.7222
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Abstract: Manual evaluation of long-term EEG recordings is very tedious, time consuming, and subjective process. 
The aims of automated processing are on one side to ease the work of medical doctors and on the other side 
to make the evaluation more objective. This paper addresses the problem of computer-assisted sleep staging. 
It describes ongoing research in this area. The proposed solution comprises several consecutive steps, 
namely EEG signal pre-processing, feature extraction, feature normalization, and application of decision 
trees for classification. The work is focused on the feature extraction step that is regarded as the most 
important one in the classification process. 

1 INTRODUCTION 

The electroencephalogram (EEG), describing the 
electric activity of the brain, contains a lot of 
information about the state of patient health. It has 
the advantage of being non-invasive and applicable 
over longer time span (up to 24 hours if necessary). 
This is an important feature in case we want to 
follow disorders that are not permanently present but 
appear incidentally (e.g. epileptic seizure) or under 
certain conditions (various sleep disorders). 
Although the attempts to support EEG evaluation by 
automatic or semi-automatic processing have been 
made for a long time, there are still many problems 
to be solved. We try to contribute by our research to 
this effort. The main objective of the described work 
is the identification of the most informative features 
from sleep EEG records that could be used for 
automated (or semi-automated) sleep stage 
classification. Our approach to the analysis of 
human sleep uses wavelet transform (WT) and 
statistics for feature extraction and construction. The 
extracted and computed features are used as inputs 
for a decision tree (Quinlan, 1990) that is learned to 
classify individual sleep stages. We use for our 
experiment EEG sleep records rated by an expert, 

freely available and downloadable from the Internet 
(Kemp, 2007). 

The paper is organized as follows. Section 2 
describes sleep EEG signal and approaches to its 
evaluation. Methods used in our research are 
presented in Section 3. Section 4 is devoted to 
description of performed experiments. In Section 5 
the results of experiments are discussed and the 
conclusion is presented in Section 6. 

2 SLEEP AND ITS COMPUTER 
SUPPORTED CLASSIFICATION 

Sleep is a non-uniform biological state that has been 
divided into several stages based on 
polysomnographic (PSG) measurements that include 
EEG, EMG, EOG, ECG, temperature, SpO2 (oxygen 
saturation of the blood, recorded on the finger), 
respiration signals, as well as movement or body 
position. Polysomnography is usually performed 
over the duration of an entire night, or at least 6.5 
hours, in order to investigate normal and disturbed 
sleep or vigilance (Bloch, 1997). Normal healthy 
sleep is organized into sequences of stages that 
typically cycle every 60 – 90 min. The most widely 
used standard for terminology and scoring of sleep 
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stages is the manual by Rechtschaffen and Kales 
(RK) (Rechtschaffen and Kales, 1968). A standard 
summary method is the hypnogram that graphically 
represents sleep stages in 20-30 second epochs. The 
PSG can be generally divided into epochs of 10, 20, 
30, or 60 s, which are then visually classified into 
one of RK stages by a sleep technologist. The 
resulting time evolutionary description of sleep in 
terms of stages, termed hypnogram, is used by 
physicians for diagnosis. The Rechtschaffen and 
Kales manual details a complete process of 
recording and analysing sleep, which is followed by 
the vast majority of sleep laboratories, worldwide. 
On the basis of EEG (plus EOG and EMG), epochs 
can be scored into sleep stages:  
• Stage 1 – shallow/drowsy sleep;  
• Stage 2 – light sleep;  
• Stage 3 – deepening sleep;  
• Stage 4 – deepest sleep;  
• Stage REM – dreaming sleep.  

Stages 1 to 4 are frequently described as non-
REM sleep, and stages 3 and 4 are described as slow 
wave sleep (SWS). Other scores are Wake (W) and 
Movement Time (MT). Since the depth of sleep 
changes continuously, the artificial demarcation of 
sleep stages by the RK classification is a 
simplification. The exact time of change of state is 
highly subjective and leaves room for interpretation 
by the physician who scores transitional epochs 
(e.g., Stage 1 and Stage 3) differently on different 
occasions (Schaltenbrand, 1996). 

Studies have shown agreement between 
physicians performing scoring that ranges from 67% 
to 91% (Gaillard and Tissot, 1973), (Stanus et al., 
1987), (Kim et al., 1992), depending on different 
scoring epoch lengths and number of readers. 
However it is necessary to remark that most data on 
interscorer agreement are based on the study of 
normal subjects. Processing of sleep recordings 
requires elaborate training and is time consuming 
and expensive. No generally accepted standard 
exists for automatic sleep staging, but 
computerization can improve efficiency and reduce 
cost (Doman, 1995), and enhance collaboration 
between laboratories (Kemp, 1993). 

Various approaches to computer classification of 
PSGs have been used. Johnson et al. (Johnson et al., 
1969) presented a spectral analysis study of the EEG 
in different stages, which was subsequently used by 
Larsen and Walter (Larsen and Walter, 1970) to 
develop an automated staging technique based on 
multiple-discriminant analysis. Agarwal and Gotman 
(Agarwal and Gotman, 2001) use a method based on 
the segmentation and self-organization technique. 
The following five steps are necessary to perform 
computer-assisted staging: segmentation; feature 

extraction; clustering; assignment of stages to 
different clusters of patterns; and optional smoothing 
of the hypnogram. The study (Agarwal and Gotman, 
2001) shows that the greatest discrepancy occurs in 
Stage 1. The sensitivity and the specificity are 
38.6% and 43.4%, respectively. This is to be 
expected in the highly transitional Stage 1. Stage 1 
also has significant similarities to REM stage and 
can be considered as one stage away from Stage 1. 
Moreover, it is accepted that manual scoring of 
Stage 1 is the most subjective due to its transitional 
nature. 

3 METHODS 

In our study we have used similar procedure as 
Agarwal and Gotman and the same we used in one 
of our previous studies (Gerla, Lhotska, and Krajca, 
2005). The sleep EEG signal classification 
comprises several steps: segmentation, feature 
extraction, feature normalization, feature selection, 
and generation of decision trees. 

We have applied wavelet transform (Daubechies, 
1992) to sleep EEG signal preprocessing. Mean of 
the signal is calculated and subtracted from a signal 
before WT is applied. Discrete Wavelet Transform 
(DWT) represented by a filter bank is employed for 
wavelet decomposition. Before the decomposition 
starts it is necessary to select a mother wavelet used 
for defining FIR filters and a level of a 
decomposition tree. For deciding which mother 
wavelet should be selected we consider the impulse 
response and amplitude frequency characteristics of 
the FIR filter specified by the corresponding mother 
wavelet. After the DWT is done we get 
approximation and detail coefficients as input data 
for further processing. Then the segmentation is 
performed. 
Segmentation. The non-adaptive segmentation is 
employed. Non-adaptive or constant segmentation 
divides a signal into segments of a constant length. 
This kind of segmentation is basically the easiest 
one. The disadvantage of this method is that the 
segments are not necessarily stationary. The length 
of a segment is chosen regarding the character of 
data. 
Feature extraction is the second most important 
part after wavelet decomposition. It is a process 
which changes representation of segments by 
extracting features from them. The aim is to select 
those features which carry most information about 
the segment. The statistic parameters are in principle 
very suitable for this purpose. We use autoregressive 
features and computed wavelet coefficients as well. 
We use the following parameters: average absolute 
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amplitude, maximal positive amplitude, maximal 
negative amplitude, maximal absolute amplitude, 
frequency weighted energy, sample mean, sample 
central moment, sample variance, statistical median, 
energy, and entropy. The autoregressive features are 
calculated from the transfer function of an 
autoregressive model, in which a present value xn or 
future values xn+I , i=1,2,… are estimated by using 
the previous values {xn-m ,…. xn-1} (Therrien, 1992). 
We can extract features from each source (an 
original signal, its first and second derivation) 
independently. 
Feature normalization. Mean and standard 
deviation of extracted features are different. That 
could have a negative influence to the classification 
process, when a classifier uses distances between 
points in n-dimensional space. Before we start 
classification the features must be normalized to 
have the same mean and standard deviation. The 
features have normal distribution N(0,1). 
Feature reduction. There are several different ways 
in which the dimension of a problem can be reduced. 
In this work Principal Component Analysis (PCA) 
(Smith, 2002) approach is used which defines new 
features (principal components or PCs) as mutually-
orthogonal linear combinations of the original 
features. 
Feature selection is considered successful if the 
dimensionality of the data is reduced and the 
accuracy of a learning algorithm improves or 
remains the same. Decision tree algorithms such as 
C4.5 can sometimes overfit training data, resulting 
in large trees. In many cases, removing irrelevant 
and redundant information can result in C4.5 
producing smaller trees. The Chi-squared statistic is 
used for feature selection. 
Classification. We have decided to use decision tree 
algorithms because they are robust, fast, and what is 
important especially in medical domain their results 
are very easy to interpret. In particular, the C4.5 
algorithm has been applied, namely its J48 variant 
available in the Weka software tool (Frank et al., 
2007). 
Success rate of classification. As a measure of 
success rate we have used the overall accuracy of the 
classification. The overall accuracy is calculated as 
the relative number of correct decisions. 

4  EXPERIMENTS 

The main purpose of our experiments has been to 
find the most suitable wavelet decomposition and 
the most discriminative features to achieve good 
classification results. The analyzed EEG recordings 

are presented in the next section and then our 
experiments with EEG data are described. 

4.1  Source of EEG Recordings 

Our source of EEG recordings is The Sleep-EDF 
Database (Kemp, 2007). Four EEG recordings from 
different subjects were downloaded. The recordings 
were obtained from Caucasian males and females 
(21 - 35 years old) without any medication. They 
contain horizontal EOG, Fpz-Cz and Pz-Oz EEG, 
each sampled at 100 Hz. The recordings also contain 
the submental-EMG envelope, oro-nasal airflow, 
rectal body temperature and an event marker, all 
sampled at 1 Hz. Hypnograms are also added which 
are manually scored according to Rechtschaffen & 
Kales based on Fpz-Cz / Pz-Oz EEG instead of C4-
A1 / C3-A2 EEG (Sweden et al., 1990). 

Subjects, recordings and hypnogram scoring for 
the 4 sc* recordings are described in (Mourtazaev, 
1995). Subjects and 4 st* recordings are more 
extensively described in (Kemp et al., 2000). The 
sleep stages Wake, Stage1, Stage2, Stage3, Stage4, 
REM and 'unscored' are coded in the file as binaries 
0, 1, 2, 3, 4, 5, 6 and 9. 

After reviewing the data we have found out that 
the classes in data are unevenly represented. Class 1 
(Wake) is the most frequent one and class 5 (stage4) 
occurs sporadically. We have generated the training 
set in which all classes are equally represented. That 
means that a classification error caused by an 
unequal distribution of classes should be reduced. 

4.2  Experiment 1 

A goal of this experiment is to find features which 
contain the information about classes included in 
data. In other words the features should be highly 
correlated with the class. In our case we have six 
classes (wake, stage1, stage2, stage3, stage4, REM). 
This is a complex task and it is quite impossible to 
find only one feature to correlate with all classes.  

We modify our goal to examine all features for 
every combination of two different classes and select 
the most significant feature for discriminating the 
classes from each other. There are 15 combinations 
so we get 15 features in total. We have chosen EEG 
sample (sc4002e0), which includes all 6 classes; 
each having 200000 samples (2000 seconds). For 
WT, the following setting has been used: level of 
decomposition tree 7; mother wavelet db6; wavelet 
coefficients used for feature extraction (2,1), (3,1), 
(4,1), (5,1), (6,1), (7,1), (7,0); segment length 10s.  

The results of this experiment and the best 
features selected for classification of every 
combination  of two  different  classes  are shown  in 
. 
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Table 1: Results of experiment 1 and the best features selected for differentiation between couples of classes. 

Stage Wake Stage 1 Stage 2 Stage 3 Stage 4 REM 
class 1 2 3 4 5 6 
1  96% - f1 97.5% - f2 99.5% - f3 99.5% - f5 98.9% - f1 
2 96% - f1  85% - f7 91.5% - f8 98.5% - f9 70% - f10 
3 97.5% - f2 85% - f7  73% - f11 94% - f12 85% - f4 
4 99.5% - f3 91.5% - f8 73% - f11  85% -f3 94.5% - f13 
5 99.5% - f5 98.5% - f9 94% - f12 85% -f3  99.4% - f6 
6 98.9% - f1 70% - f10 85% - f4 94.5% - f13 99.4% - f6  

Table 2: Description of the used features. 

feature original name of a feature  
source for 

extraction 
wavelet 

coefficient 
full name of the feature 

f1 MeaAbV_1d_d2_Fpz-Cz first derivation  D2 (2.1) average absolute amplitude 
f2 Energy_sg_d4_Pz-Oz signal D4 (4.1) energy 
f3 MeaAbV_Sg_d5_Pz-Oz signal D5 (5.1) average absolute amplitude 
f4 Energy_1d_d5_Fpz-Oz first derivation D5 (5.1) energy 
f5 Energy_1d_d5_Pz-Oz first derivation D5 (5.1) energy 
f6 FrWeiE_Sg_d6_Fpz-Cz signal D6 (6.1) frequency weighted energy 
f7 FrWeiE_1d_d5_Pz-Oz first derivation D5 (5.1) frequency weighted energy 
f8 FrWeiE_Sg_d5_Pz-Oz signal D5 (5.1) frequency weighted energy 
f9 MeaAbV_Sg_d5_Fpz-Cz signal D5 (5.1) average absolute amplitude 
f10 MeaAbV_Sg_d3_Pz-Oz signal D3 (3.1) average absolute amplitude 
f11 FrWeiE_Sg_d7_Pz-Oz signal D7 (7.1) frequency weighted energy 
f12 Energy_Sg_d6_Pz-Oz signal D6 (6.1) energy 
f13 Energy_1d_d6_Fpz-Cz first derivation D6 (6.1) energy 

 
Table 1. The names and sources of these features are 
presented in Table 2. There are five classification 
results below 90% as it is shown in Table 1. It 
means that we are not able to extract any single 
feature which can separate these particular 
combinations of two classes. There must be used a 
combination of features. We can see that there are 
two features (f1, f3) occurring not only once as most 
discriminative. Each of them is chosen to be the 
discriminative feature for two combinations. A set of 
features is therefore reduced and we have 13 
features. Unfortunately 5 of the features (marked in 
italics in Table 1) are not good enough for 
classification and thus we have decided to perform 
another experiment where different wavelet 
coefficients are decomposed and other features are 
examined. 

4.3  Experiment 2 

The goal is implicated by the result of the previous 
experiment. There are five combinations of two 
classes (4x3, 6x2, 3x2, 5x4, 6x3) which are 
classified with success rate lower than 90% by using 
features extracted from the wavelet coefficients. 
Now we try to achieve more accurate results by 

extracting features from such wavelet coefficient 
that have the same frequency resolution. Frequency 
resolution of a wavelet coefficient depends on 
sample frequency of data (100Hz) and on the level 
of the wavelet coefficient. We may be able to find 
more specific features carrying more information 
about separability of classes. Two different settings 
and wavelet decomposition trees are used: 1. level of 
decomposition tree 4; mother wavelet db15; wavelet 
coefficients used for feature extraction (4,0), (4,1), 
(4,2), (4,3), (4,4), (4,5), (4,6), (4,7); segment length 10s; 
2. level of decomposition tree 5; mother wavelet 
db20; wavelet coefficients used for feature 
extraction (5,0), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), 
(5,7), (5,8), (5,9), (5,10), (5,11), (5,12), (5,13), (5,14), 
(5,15); segment length 10s. Wavelet coefficients 
from the highest level of decomposition trees are 
used for feature extraction. They have the highest 
frequency resolution compared with others in the 
wavelet decomposition tree. We can assume that the 
features extracted from these coefficients carry 
different piece of information about classes. 

The results of this experiment have not been so 
successful as we have expected. The only feature 
that has brought relatively significant improvement 
of differentiation between two classes (by 7.5%) has 
been average absolute amplitude FPz-Cz (wavelet 
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coefficient (5,1)). The experiment has shown that 
application of other mother wavelets (db20 or 
higher) and different wavelet decomposition trees 
could result in finding new more discriminative 
features. 

4.4  Experiment 3 

The final experiment has been divided into three 
parts, namely using different groups of classes. EEG 
recordings (sc4012e0, st7022j0, sc4102e0) have 
been used as testing sets for this purpose.  

Part 1. We have classified data into all six classes 
using all features as described in experiment 1. The 
results have verified our assumption that the features 
f3, f4, f7, f10 and f11 which do not separate classes 
well (see Table 1) decrease final classification 
accuracy.  

Part 2. Based on the experiment 1 we have tried 
to distinguish among four classes, organized in two 
groups, namely (1, 3, 5, 6) and (1, 4, 5, 6). We have 
used six features from the original 15 for each 
group. The classification results for the first group 
have been negatively influenced by the feature f3 
and for the second group by the feature f4.  

Part 3. We have verified well discriminating 
features discovered in experiment 1. For this 
purpose we have selected three groups of three 
classes each that can be separated very well by these 
features. The three groups are composed of the 
following classes (1, 5, 6), (1, 2, 5) and (1, 4, 6). 

All results are summarized in Table 3. The record 
sc4102e0 has not been used in those experiments 
where class 5 has been tested because it does not 
contain any segment belonging to class 5. The 
classification results are as we have assumed. They 
are mainly affected by low discriminability between 
classes 2 (stage1) and 3 (stage2) and classes 2 
(stage1) and 6 (REM). 

Table 3: Results of experiment 3 (success rate of 
classification). 

classes sc4002e0 sc4012e0 st7121j0 sc4102e0 
1,2,3,4,5,6 72.1% 69.5% 63% x 
1,3,5,6 87.2% 87.6% 78.4% x 
1,4,5,6 87.8% 82.9% 73.2% x 
1,5,6 98.3% 94.5% 92% x 
1,2,5 97.2 92% 87% x 
1,4,6 96.5% 91.3% 90% 87% 

5 DISCUSSION 

Tables 1 and 2 are used for the interpretation. When 
we look at Table 2 we can see that all features 

extracted for the classification task in the experiment 
1 are based on energy, mean absolute amplitude and 
frequency weighted energy. These features reflect 
the changes of energy in the given wavelet 
coefficient which is related to a specific frequency 
spectrum. This is very important as we see later. 
Now we try to explain why we have got the results 
of classification shown in Table 1. When we look at 
this table we can see that successful classifications 
are for the classes classified with features extracted 
from wavelet coefficients which have the frequency 
spectrum same as the frequency spectrum only a 
single class in the set of two classes has. That means 
that the feature used for such classification has high 
energy for this class and small energy for the other 
one. Then we can simply use a threshold to separate 
these two classes from each other. When we look at 
Table 1 again we can see that all successful 
classification results (success rate higher than 90%) 
are achieved between classes with mutual distance 
more than one class, for example, classes 1x3, 1x4, 
2x5 etc. It is because the distance between these 
classes is quite long which is required for successful 
classification. An exception is the class 1 which is 
classified correctly in all cases. When we examine 
frequency spectra of classes 1 (Wake) and 2 
(stage1), we find out that they are well separable. 
However we have to note that there exists 
overlapping (some frequencies occur in 
neighbouring stages). Therefore poorer classification 
result (below 90%) is for classes just next to each 
other (2x3, 3x4, 4x5 and 6x2). Unfortunately we 
have not yet found any feature better describing the 
classes by using different wavelet decomposition 
(experiment 2). The results of classification in 
experiment 3 are affected by this fact as well. In the 
following paragraph we suggest some ideas which 
could improve classification of sleep EEG data. 

The frequency resolution of wavelet coefficients 
in level 5 of a wavelet decomposition tree is 3.12Hz. 
This decomposition is used in experiment 2. It was 
not detailed enough for distinguishing incorrectly 
classified classes. So we propose to make the 
frequency resolution higher by getting wavelet 
coefficients from level 6 (frequency resolution 
1.57Hz) or even level 7 (0.78Hz). For these purposes 
we must ensure that the filter used for 
decomposition has steep frequency characteristic. 
We would recommend to use mother wavelets db20 
and higher. If this condition is satisfied the results 
would not be influenced by leakage of other 
frequency components (antialiasing). 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

240



 

6 CONCLUSIONS AND FUTURE 
WORK 

Sleep problems belong to the most common serious 
neurological disorders. Reliable and robust detection 
of these disorders would improve the quality of life 
of many people. The implemented methods allow 
automatic classification of EEG signals. The 
approach has been tested on real sleep EEG 
recording for which the classification has been 
known. We have focused on discovering the most 
significant features which would be highly 
correlated with classes of data. Our experiments 
have been based on the selection of a single feature 
to separate data belonging to two classes. There have 
been many other features with good selection 
results. The most frequent ones have been 
autoregressive features representing the order of 
used AR model and error of AR model. We have 
determined some features and wavelet coefficients 
which are best suited for classification of sleep EEG 
data. The future work will be focused on 
exploitation of other types of mother wavelets, using 
higher level of wavelet coefficients as source of 
features, and more sophisticated classifiers. 
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Abstract: Computer Tomography is shown to be an efficient and cost-effective tool for classification and 
segmentation of soft tissues in animal carcasses. By using 15 fixed anatomical sites based on vertebra 
columns, 120 lamb carcasses were CT scanned in Norway during autumn of 2005. Frequency distributions 
of CT values (HU [-200,200]) of soft tissues from each image were obtained. This yielded a 3-way data set 
(120 samples * 400 CT values * 15 anatomical sites). The classification of the soft tissues was done by 
multi way Parallel Factor Analysis (PARAFAC), which resulted in 3 components or soft tissues classified 
from the images; fat, marbled and lean muscle tissue. 

1 INTRODUCTION 

Computer Tomography is based on the attenuation 
of X-ray through a body. There is high correlation 
between the density of the body or body 
components, and the X-ray attenuation measured. 
This relationship is used to estimate the body 
composition, volume or weight of a biological 
sample. The attenuation of X-rays is visualized by 
reconstruction of 360o rotation of X-ray tube in a CT 
tomogram or CT image. Image data from Computer 
Tomography can be orientated in different ways. 
Single slice tomograms can be handled like 2-way 
(rows*columns) data arrays. Stacks of tomograms 
from 3D samples are often orientated as multi-way 
data arrays (rows*columns*stack). Combining CT 
data with other types of data, like MRI etc., can also 
yield multi-modal data arrays which can be handled 
either in a multi-dimensional fashion or be unfolded 
prior to analysis. Unfolding of multi-way data may 
sometimes lead to poor estimation and 
interpretability of variation between the different 
stacks or batches in a multi-way data array.  

There are two primary ways to perform 
classification. Supervised classification (1), where 
classes are known in advance (a priori), and un-
supervised classification (2), where classes are not 
known in advance. For classification of soft tissues 
from CT images of lamb carcasses, it can be difficult 
to obtain solid a priori knowledge or reference data 
of classes. Traditionally, reference data has been 

collected by using destructive dissection. This 
procedure is both expensive and not very accurate 
due to differences operators / butchers (Nissen et al. 
2006). The accuracy of classification of tissues may 
be influenced the accuracy of the reference method 
used, i.e. for calibration purposes or detection of 
false negatives or positives. By using non-supervised 
classification, validation techniques can ensure that 
the model works for new data and finds the optimal 
or true number of classes in the model. The non-
supervised approach will not be affected by 
reference or a priori error.  

Parallel Factor Analysis (PARAFAC) is one 
method designed to analyze and decompose multi-
way data, and was introduced by Harshman in 1971 
for Psychometrics. The PARAFAC method can be 
used as a non-supervised classification tool to 
classify soft tissues in CT image stacks sampled 
from whole lamb carcasses.  

The main purpose of this study is to apply 
PARAFAC decomposition of multi-way CT image 
data array as a classification tool of different lamb 
carcass soft tissues. 

2 MATERIALS & METHODS 

2.1 Sampled Animals 

120 lambs from a single Norwegian abattoir were 
sampled according to an experimental design from 
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August to September in 2005. The design was set up 
to cover the variation in all levels of fatness in the 
carcasses, and the principle of over-sampling at the 
extremes was applied (Engel et al. 2003): The 
carcasses were sampled in three groups; low, 
intermediate and high level of fatness. Selection was 
made using fatness score from the EUROP carcass 
grading system for lamb in Norway. Low fatness 
equals –2 standard deviations (st.dev.) and below 
mean value. High fatness + 2 std and above mean 
value (Kirton et al., 1995). Intermediate between 
high and low (table 1). 40% of the samples were 
selected for each of the groups low and high fatness 
and 20% selected for intermediate fatness (Tab. 1), 
yielding a 40-20-40 grouping of the designed 
samples. In addition, two subsets of equal size (50-
50) were constructed for validation by split-half-
analysis.  

Table 1: Sampling and experimental design. 

n = 120 Low Mid High 
 % n % n % n 
Design1 40 48 20 24 40 48 
Subset 12 38 23 20 12 42 25 
Subset 22 38 23 20 12 42 25 

1 40-20-40 design for sampling 

2 Data subsets for Split-half analysis 

2.2 Computer Tomography 

2.2.1 Settings 

The lambs were scanned at the Norwegian 
University of Life Sciences using a Siemens 
Somaton Emotion CT Scanner. Two persons were 
involved in the scanning of lamb carcasses: one 
operation the scanner, and the other preparing and 
entering the carcasses into the machine. The 
capacity of this procedure was approximately 8-10 
carcasses per hour. The protocol for CT scanning is 
described in Table 2. 

Table 2: CT protocol used for scanning of lamb carcasses. 

Topogram Sequence 
100 mA 
130 kV 
Slice width: 2.0 mm 
Length: 1024 mm 
Tube position: AP 
Direction: Caudiocranial 
Kernel: T80s (sharp) 
Window: 256-64 

170 mAs 
130 kV 
Scan time: 0.8s 
Slice width: 3 mm 
Number of scans: 15 
Direction: Caudiocranial 
Kernel: B50M 
Window: 100-50 
Field of view (FOV): 400 

2.2.2 Anatomical Sites 

 
Figure 1: Scanning sites CT, lamb carcass. 

Fifteen (15) anatomical scanning sites spanning the 
entire carcass were selected from a topogram using 
spine vertebras as fixing points (Fig. 1). A topogram 
is a survey picture produced by the CT-scanner. It is 
obtained by fixation of the X-ray tube in the upper 
position and moving the object at constant speed 
through the gantry. Each colour of the lines 
represents anatomical sections of the carcass 
(cervical, thoracic, lumbar, sacral and caudal). The 
anatomical sites were selected to span the entire 
variation of the carcass, but the number of images 
was limited due to capacity. High X-ray dose (170 
mAs) was selected to increase the resolution of the 
tomograms. The anatomical sites collected from the 
mid-section of the carcass, were selected using 
literature reference sites for grading of lamb 
carcasses (Berg et al. 1997;Bruwer et al. 
1987;Chandraratne et al. 2006;Chandraratne, 
Kulasiri, & Samarasinghe 2007;Cunha et al. 
2004;Jones et al. 1992;Kirton et al. 1995). In 
addition to literature reference sites, additional sites 
on the leg and shoulder were added using spine 
vertebras as fixing points.  

2.2.3 Import and Pre-processing of Images 

The CT scanner generated images in DICOM 
format, which is a common medical image format. 
The images were imported into MATLAB using the 
Image Processing Toolbox routine dicomread. 
 

 
Figure 2: Raw image, Binary image for arithmetic 
extraction and processed image after extraction. 

In the raw CT images, the couch material (non-
carcass component) was visible (Fig. 2). This was 
removed using arithmetic extraction in MATLAB. 
The extraction was performed using image array 
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multiplication, subtracting the couch material from 
the raw image using a binary image (Fig. 2) 
containing zeros and ones to remove the couch area 
(zeros) of the image. The lamb area of the image 
was now extracted and ready for further analysis 
(fig.3).  

2.2.4 Frequency Distribution of Pixel Values 
(HU) 

 
Figure 3: 15 pre-processed CT images from all scanning 
sites, from neck (1) to knee joint of leg (15). 

A frequency distribution of the signal intensities 
(pixels) was generated for each anatomical site 
(Dobrowolski et al., 2004) (Fig. 5) from each of the 
pre-processed images (Fig. 5) using the frequency of 
Hounsfield Units [HU] in the interval [-200,200]. 
HU is related to density of biological tissues, where 
0 is regarded as the HU of pure water. The interval 
of 400 HU is expected to cover the soft animal 
tissues (fat and muscle) in the CT images 
(Dobrowolski et al. 2004;Romvari et al. 2002). Each 
image was represented as a frequency distribution 2-
way array [1 x 400]. For each sample, 15 images 
were generated, generating a 3-way array [1 x 400 x 
15], giving a [120 x 400 x 15] data array for the 
entire samples.  

2.3 PARAFAC 

PARAFAC is a generalization of Principal 
Component Analysis (PCA) to higher order arrays 
(Bro 1997). Decomposition of the data array is made 
into triads or trilinear components (Fig. 4), but 
instead of one score vector and one loading vector as 
in bilinear PCA, each component consist of one 
score vector and two loading vectors (trilinear). 
PARAFAC is regarded as a “strong” multi-way 
method utilizing the multi-mode structure for 

modelling without unfolding, and providing other 
attractive features (Huang et al. 2003).  

 
Figure 4: PARAFAC decomposition of a 3-way data 
array. 

In this study, PARAFAC is used to decompose 
the landscapes of the frequency distributions and 
anatomical positions into a number of trilinear 
components (f). 

∑
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The element xijk represent the landscape of 
histogram spectra and anatomical positions of the 
lamb carcass sample i, frequency distribution j, 
anatomical position k. The landscapes are 
decomposed into sample scores aif, frequency 
distribution loadings bjf and anatomical position 
loadings ckf for each factor f or PARAFAC 
component f. The residuals eijk, contains variation 
not explained by the model.  

The PARAFAC components will be estimates of 
the CT histogram signals from the individual 
chemical components (fat & lean) if the data are 
approximately low-rank trilinear and when the 
correct number of components is used. If the optimal 
case is found, the scores for each of the components 
represent the relative content of  carcass soft tissues. 
The number of components will represent the non-
supervised classes of soft tissues suggested by the 
validated PARAFAC model. 

PARAFAC models of CT image histogram 
landscapes were estimated with 1 to 4 components. 
The models were mean-centred since this has proven 
to yield the best result and interpretation of the 
figures. Since each component is expected to 
represent a single peaked frequency distribution (one 
local maxima) of a soft tissue, unimodality 
constraints was imposed on the model (Johansen et 
al. 2006). When calibrating PARAFAC models of 
CT images against a dissection reference, 
unimodality constraints seemed to yield the most 
accurate results (Johansen, Egelandsdal, Røe, Kvaal, 
& Aastveit 2006). 
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The correct number of components was selected 
using core consistency and split-half analysis (Bro 
1997) as validation tools. The split was done using a 
50-50 split of the actual designed (table 1) samples, 
estimating independent PARAFAC models for both 
split data subsets. Due to the uniqueness of the 
PARAFAC model, the same loadings will be 
obtained from different samples if the samples 
reflect the same CT histogram variables, when the 
correct number of components is chosen and enough 
data are available in each of the split data subsets 
(Andersen & Bro 2003). 

All the models were constructed using the 
PLS_Toolbox 4.0, August 10, 2006, Copyright 
Eigenvector Research, Inc. 1995-2006 for 
MATLAB, the Image Processing Toolbox V5.3 
(R2006b) for MATLAB and MATLAB 7.3.0.267 
(R2006b), August 03, 2006 © 1984-2006The 
MathWorks Inc. 

3 RESULTS & DISCUSSION 

3.1 Landscapes 

 
Figure 5: 3D CT histogram landscape of one sample, raw 
data. 

From the landscape, a distinctive frequency 
distribution that appears between different 
anatomical sites is revealed (Fig. 5). There are two 
peaks identified as the shoulder site and the leg 
anatomical site. These sites are the “muscular” parts 
of the carcass (leg muscles), and therefore provide a 
high response or histogram intensity (number of 
pixels). There are two ridges in the landscapes, one 
larger than the other. The large ridge is identified as 
the lean tissue, and the small ridge as the fat tissue 
part. When comparing very fat animals with very 

lean animals, the fat ridge is almost absent in the 
very lean animals. These observations will be further 
investigated in the PARAFAC analysis. 

3.2 PARAFAC 

Table 3: PARAFAC diagnostics. Full model (n=120). # of 
components, explained variance, core consistency, number 
of iterations and computation time (s). 

# Expl. Var. 
(%) 

Core cons. # iter Time 
(s) 

1 50.06 100 5 6 
2 66.36 95 11 12 
3 73.18 78 18 20 
4 76.80 0 23 28 

 
The results from the PARAFAC models are shown 
in Table 3. Three components seem to yield a 
consistent model, with relatively low number of 
iterations and computation time. 

In order to validate the appropriate number of 
components in the model, the results from the split-
half analysis is shown in Figure 6. The figure shows 
the frequency distribution loadings for 1 to 4 
components, were subset 1 has solid lines, and 
subset two dashed lines. Due to the uniqueness of 
the PARAFAC model, the same loadings should be 
obtained if the samples reflect the same CT 
histogram and anatomical site pattern when the 
optimal number of components is chosen. The solid 
and dashed lines seem to be correlated for the 1-, 2- 
and 3-component models, while for the 4-component 
model; the solid and dashed lines do not correlate. 
Thus, the model seems to be valid with 3 
components. 

The PARAFAC decomposition of the CT 
histogram landscapes is shown in Figure 7, were the 
raw landscape in Figure 5 is decomposed into three 
PARAFAC components. The 1st component seems 
to model the fat tissue in the frequency distribution, 
and the 2nd seem to model muscle tissue. The 3rd 
component seems to model very lean muscle tissue. 
Component 2 and 3 seem to be two types of muscle 
tissue, “marbled” or muscle tissue with higher fat 
content (# 2) and lean muscle tissue (# 3)  

For practical purposes, the PARAFAC models 
yields a better understanding of the uniqueness and 
nature of the CT value (HU) frequency distribution. 
From the images in Figure 8, the PARAFAC 
loadings were applied to a test image from a lamb 
carcass belly. Loadings above a manually set 
baseline (0.02) were selected to ease interpretation 
of the test images. The first image from left 
represents the total area of soft tissue. The 2nd image  
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Figure 6: Validation of PARAFAC components (split-half analysis). 1 to 4 component PARAFAC models. 1 –and 2 –
component model (top), 3- and 4- component model (bottom). 

 
Figure 7: PARAFAC decomposition of a 3D CT frequency distribution. 3 components or classes identified. # 1 represent fat 
tissue, # 2 muscle tissue with marbling fat and the 3rd lean muscle tissue. 
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Figure 8; PARAFAC CT value frequency loadings > 0.02 applied on CT image from belly. From left, soft tissue HU= [-
200, 200], # 1, # 2, # 3. 

represents component 1, the 3rd component 2 and 4th 
(right) component 3. When inspecting the images 
visually, # 1 represent fat tissue, # 2 muscle tissue 
with marbling fat and the 3rd lean muscle tissue. 
PARAFAC yields a consistent decomposition of the 
3D frequency distribution of the CT images, and 
selected 3 unique soft tissue components 
representing fat, and two types of muscle tissue. 

4 CONCLUSIONS 

This paper presents modelling and decomposition of 
multi-way array CT image data, using PARAFAC as 
a non-supervised classification tool for different 
lamb carcass soft tissues. Multi-way modelling 
applying PARAFAC did yield sensible interpretation 
of the 3D CT value frequency distribution. Three 
components or classes of soft tissues were extracted 
from the model; fat, marbled and lean muscle. 
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Abstract: This paper presents an algorithm to segment the liver structures on computed tomography (CT) images 
according to the Couinaud orientation. Our method firstly separates the liver from the rest of the image. 
Then it segments the vessels inside the liver area using a region growing technique combined with 
hysteresis thresholding. It separates the vessels in segments without any bifurcation, and using heuristics 
based on anatomy, it classifies all vessel segments as hepatic or portal vein. Finally, the method estimates 
the planes that best fit each of the three branches of the segmented hepatic veins and the plane that best fits 
the portal vein. These planes define the subdivision of the liver in the Couinaud segments. An experimental 
evaluation based on real CT images demonstrated that the outcome of the proposed method is generally 
consistent with a visual segmentation. 

1 INTRODUCTION 

By and large the CT data analysis is performed 
visually by a radiologist. This is a time consuming 
task, whose accuracy depends essentially on the ex-
perience of the analyst. Digital Image Processing 
techniques can be used to develop methods that 
automatically perform many of the tasks involved in 
the CT analysis, improving productivity and the 
overall accuracy. 

The segmentation process is particularly arduous 
in abdominal CT images because different organs lie 
within overlaping intensity value ranges and are 
often near to each other anatomically. Many 
techniques have been proposed in the literature for 
the analysis of abdominal CT scans. They can be 
roughly divided in two main groups: model driven 
and data driven approaches (Masutani et al, 2005).  

The blood vessel definition is an essential step in 
several medical imaging applications. They can be 
used as reference to segment different organs and 
structures in the human body. Kirbas et al (2004) 
presented a review of vessel extraction, in which 
many of the available techniques are described in 
details. 

This paper presents a data driven method to 
segment the liver into the eight  different regions 
proposed by Couinaud (1957), using the hepatic and 
portal veins position in the liver. It deals with the 
case of low contrast and erroneous connection 
between the hepatic and portal veins, as a 
improvement proposed in previous work (Oliveira et 
al., 2007). 

The subsequent text is organised in the following 
way. Section 2 presents segmentation method in 
details, section 3 reports some results, and the main 
conclusions are presented in section 4. 

2 THE 3D SEGMENTATION 
METHOD 

The segmentation method consists of five main 
steps: 

a) segmentation of organs and muscle tissues, 
b) segmentation of the liver,  
c) segmentation of the vessels within the liver ,  
d) classification of segmented vessels as hepatic 

and portal veins, and  
e) determination of  Couinaud sectors.  
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Details of each step are presented in the next 
subsections. 

2.1 Segmentation of Organs and 
Muscle Tissue 

Organs and muscles tissue are the main presence in 
abdominal images. Typical grey values of these 
tissues occur around the maximum (CM) of the grey 
value histogram for the whole CT sequence. 

Figure 1: histogram for gray level range definition. 

Figure 1 shows the histogram of a sample CT 
exam, the range of intensities corresponding to 
organs and muscles and the lower and upper limits 
TL and TH defining this range. 

Let CM be the maximum CT histogram count, 
TM the corresponding intensity value, and CL and 
CH the counts corresponding respectively to TL and 
TH. It has been observed in our experiments that the 
ratios RL=CL/CM and RH=CH/CM do not 
significantly change from CT exam to CT exam.  In 
fact these ratios lied around RL=0.6 and RH=0.2 
through all our experiments. 

This regularity suggests the following procedure 
to select the lower and higher threshold values: 

a) Compute and smooth the histogram of the 
whole CT exam; 

b) Detect the maximum histogram count CM; 
c) Multiply CM by factors RL and RH, and 

obtain the count values CL and CH. 
d) Search the smoothed histogram for the 

intensity values TL and TH closest to TM 
corresponding to CL and CH, such that 
TL<TM and TH>TM. 

2.2 Liver Segmentation 

The next step consists in segmenting the liver. 
Generally the liver appears as nearly homogeneous 
areas on CT slices, i.e. its intensities are restricted to 
a narrow grey value interval. This can be observed 
in Figure 1, where the histogram of pixels belonging 

to the liver is drawn in red over the histogram of the 
whole CT sequence shown in blue.  

The extreme values of this interval are 
determined in the following way. 

One image of the CT set where the liver is 
present is selected as the main sample and passed as 
an input parameter to the algorithm. Then, the 
largest connected component of this slice located on 
the upper-left side of the image (right side of the 
human body), is identified and its mean value on the 
original image is computed. 

Using the pixels of organs and muscle tissue 
previously segmented, a new grey level range is 
determined following a procedure similar to the one 
described in subsection 2.1. The histogram count 
value corresponding to the liver mean value is used 
as the maximum count value and the range limits are 
calculated using as limiting ratios the value 0.8 for 
both cases. The threshold values obtained this way 
are applied to the regions selected in the previous 
step. 

A simple procedure extracts the liver from the 
remaining objects. Starting on the main sample it is 
executed on the next adjacent slice upward and 
downward in the CT image set till all slices have 
been processed. It consists of three main steps: 

a) Select the biggest object in the collection; 
b) If its centroid is in the upper left quadrant of 

the CT image, go to step c, otherwise discard 
this object from the collection and go back to 
step a; 

c) If the selected object is connected to another 
object of an adjacent slice previously 
classified as liver, classify it as liver, 
otherwise discard the object from the 
collection and go back to step a; 

Clearly the first iteration does not pass through 
step c and the object selected in step b is set as liver 
directly. 

2.3 Vessel Segmentation  

Having segmented the liver, and considering only 
the region delimited by this organ, we select a 
threshold VH, such that the intensities above it 
identify unambiguously the vessels inside the liver. 
A second threshold VL (VL<VH) is further selected 
such that intensities below it clearly indicate liver 
parenchyma.  

These two threshold values define three ranges 
of pixel intensities, namely: 
- the strong vessel range, defined by 

intensities above VH,  
- the weak vessel range, comprising 

intensities between  VL and VH, and 
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- the liver tissue range, covering intensities 
below VL.  

The construction of the vessel tree is performed 
by a region growing approach consisting of the 
following basic steps: 

a) Build the weak vessel object set defined by 
the pixels with values above VL. 

b) Build the strong vessel object set defined by 
the pixels with values above VH. 

c) Take the strong vessel set computed in the 
preceding step as the initial vessel tree 
estimate, and add to it all objects of the weak 
vessel set connected to it.  

d) Repeat the previous step using the current 
vessel tree estimated until it stops growing. 

We searched appropriate values for VL and VH 
manually through many experiments using different 
CT sequences. We observed that the histogram 
counts for the manually selected values stayed at a 
roughly constant ratio to the intensity corresponding 
to the maximum count. 

Considering NM the maximum liver histogram 
count, and NL and NH the counts corresponding 
respectively to VL and VH, the ratios rl=NL/NM and 
rh=NH/NM do not significantly change from CT 
exam to CT exam.  These ratios were determined 
experimentally as rl=0.5 and rh=0.2. 

Based on this regularity the following procedure 
is proposed to select the lower and higher threshold 
values: 

a) Compute and smooth the histogram of the 
image region inside the liver; 

b) Detect the maximum histogram count NM 
and the corresponding intensity VM. 

c) Multiply NM by the ratios rl and rh, and 
obtain the count values NL and NH. 

d) Search the smoothed histogram for the 
intensity values VL and VH corresponding to 
NL and NH, whereby both VL and VH are 
greater than VM. 

2.4 Classification of Portal and Hepatic 
Veins 

The hepatic and portal veins appear as separate three 
dimensional objects in most CT exams.  However, 
sometimes these veins touch to each other on some 
CT slice, what may lead to identifying them as a 
single object. In such case the Couinaud 
segmentation becomes not possible.  

This subsection describes a method to correctly 
segment the veins even when they touch in some CT 
slice. 

Firstly, the method separates the vessel objects 
segmented previously in connected components, 

hereafter called objects, performing the following 
steps: 

a) The first slice S1 containing any object is 
labelled. 

b) The area projected by each object in S1 on 
the next adjacent slice S2 is verified. If it 
intersects only one object, the same label is 
set to the object in S2. If it intersects more 
than one object, new labels are created for 
each intersected object in S2. 

c) Step b is repeated until all objects in the CT 
sequence are labelled. 

As result vessels segments are obtained whose 
extremes are determined by bifurcations, as shown 
in Figure 2-b.  

A second procedure is performed to classify 
these vessel segments as hepatic or portal vein. 
Based on knowledge of the anatomy, the following 
simple algorithm is proposed. It consists of six steps: 

a) The first object identified on the top slice is 
selected.  

b) If it is divided in three other objects in the 
next adjacent slice, it is classified as hepatic 
vessel, otherwise it is discarded and other 
object is selected on the top slice until this 
condition is reached. 

c) For each of the three objects identified as 
hepatic branches, the next adjacent slice is 
analysed. The object with the largest 
intersection area is selected as continuation of 
the respective hepatic branch. 

d) Step c is repeated recursively for each hepatic 
branch until no other segment can be merged 
to the hepatic vessel tree. At the end of this 
step, the major hepatic vessels have been 
identified. 

e) The vessel segments not assigned to the 
hepatic vessel tree up to step d are examined 
and the largest 3D connected component is 
labelled as the portal vein. 

f) Non classified segments which are connected 
to the hepatic vessel tree are merged to it. 

In figure 2-a the hepatic and portal veins are 
shown as a single object because they touch on some 
CT slice. Figure 2-b shows in different colours 
several independent segments delimited by each 
bifurcation identified during the classification 
process. Figure 2-c shows the final result, where the 
hepatic and portal veins appear as separated vessel 
trees. 
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Figure 2: Vessel segmentation results – (a) the portal and 
hepatic veins (b) the independent vessel segments 
determined by bifurcations (c) the portal and hepatic veins 
as separated vessel trees. 

2.5 Segmentation of Couinaud regions 

The Couinaud paradigm divides the liver into eight 
independent segments each one having its own 
vascular inflow, outflow, and biliary drainage. 
Because of this division into self-contained units, 
each can be removed without damaging those 
remaining. 

Our method estimates the subdivision of the liver 
in the eight Couinaud segments, by fitting planes to 
the portal vein, and to each of the hepatic vein 
branches. To separate the three main branches of the 
hepatic vein we apply the k-means algorithm on the 
3 dimensional coordinates of the pixels identified in 
the preceding step as belonging to the hepatic vein. 
It is assumed that there are three clusters. A 
restriction for singleton value is imposed so as to 
guarantee that no cluster will be empty. This leads to 
three different objects corresponding to each branch 
of the hepatic vein. 

Then, a least squares based procedure determines 
the four planes that best fit the points of each branch 
of the hepatic vein and the portal vein segmented 
before. These planes divide the liver in the Couinaud 
segments. 

3 RESULTS 

A software prototype implementing the proposed 
method has been built for validation purpose.  It also 
implements both the surface and volumetric 
visualization of the internal liver structures. It 
receives as input the segmented structures of each 
image slice and the thickness of the CT slices 
available in the DICOM image file header. 

Figure 3 shows an example of segmentation 
result produced by the proposed procedure as a 3D 
surface which can be visualized within our 
prototype. It is possible to observe the hepatic vein 
and the portal vein respectively in blue and red, and 
the Couinaud segments in different colours are also 

present. It can be observed that the Couinaud 
segments are divided according to the veins 
orientation. 

 
 
 
 
 
 
 
 

Figure 3: 3D models of segmented liver structures. 

Experiments performed on seven different CT 
sequences have shown that the results produced by 
the proposed method are consistent with the visual 
perception of a specialist. 

4 CONCLUSIONS 

This work proposes an algorithm to segment the 
liver in computer tomography (CT) images 
according to the Couinaud classification.  

Experiments conducted on a software prototype 
of the proposed algorithm upon 7 CT produced 
results consistent with the visual perception. The 
method has the potential of becoming a useful tool 
in various applications. It can be used to generate 3D 
liver representations to aid visual diagnostic and 
surgery planning. Shape attributes other than volume 
may also be measured from the 3D model and 
explored in Computer Aided Diagnostic 
environments. 

The assessment of segmentation accuracy is a 
major concern in the continuation of this work. 
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Abstract: The study of automatic emotional awareness of human subjects by computerized systems is a promising 
avenue of research in human-computer interaction with profound implications in media arts and theatrical 
performance. A novel emotion elicitation paradigm focused on self-generated stimuli is applied here for a 
heightened degree of confidence in collected physiological data. This is coupled with biosignal acquisition 
(electrocardiogram, blood volume pulse, galvanic skin response, respiration, phalange temperature) for 
determination of emotional state using signal processing and pattern recognition techniques involving 
sequential feature selection, Fisher dimensionality reduction and linear discriminant analysis. Discrete 
emotions significant to Russell’s arousal/valence circumplex are classified with an average recognition rate 
of 90%. 

1 INTRODUCTION 

Emotion classification based on external data 
collection schemes, such as speech analysis and 
facial-expression recognition from images has been 
studied extensively.  The literature offers numerous 
examples of relatively acceptable recognition rates 
(Black et al., 1995; Lyons et al., 1999; Bartlett et al., 
1999; Ververidis et al., 2004). However, because 
these systems require sensors, such as cameras or 
microphones, focused directly on the subject, they 
are restrictive in terms of movement and problematic 
in terms of signal interference from other devices. 
Moreover, video analysis methods tend to encourage 
exaggerated physical expressions of emotion that are 
often artificial and uncorrelated with the actual 
emotion being experienced by the individual. 

In contrast, biosignal analysis, based on skin 
surface sensors worn by the user, may be a more 
robust and accurate means of determining emotion.  
This is because the signals correspond to internal 
physiology, largely related to the autonomous 
nervous and limbic systems, rather than to external 

expressions that can be manipulated easily. 
However, emotional state recognition by means of 
biosignals analysis is also problematic. This is due in 
part to the movement sensitivity of physiological 
sensors to such signals as electrocardiograms (ECG) 
and galvanic skin response (GSR). Muscle 
contractions are induced by electrical neural 
impulses, which in turn are picked up by the devices 
designed to measure differences in electrical 
potential.  These may cause noise in the form of 
signal fluctuations.  Furthermore, despite the 
evidence from psychophysiology suggesting a strong 
correlation between human emotional states and 
physiological responses (Watanuki et al., 2005; 
Cacioppo et al., 1990), determining an appropriate 
mapping between the two is nevertheless non-trivial. 

Our interest in these techniques differs 
significantly from previous work. Rather than 
recording and classifying how people respond to 
external stimuli such as culturally meaningful 
images, sounds, film clips, and text, we are in the 
process of developing a biometrically driven 
multimedia instrument, one that enables a performer 
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to express herself with artistry and emotional 
cohesiveness. The goal is to provide a rich, external 
manifestation of one’s internal, otherwise invisible, 
emotional state. With training, it is our hope that the 
resulting system, one that is coupled to the 
performer’s emotional intentionality rather than to 
external gestures, can become as expressive and 
responsive as a fine musical instrument.  Thus, 
rather than attempt to recognize and label human 
emotional states, our goal is to investigate the 
mapping of these states to expressive control over 
virtual environments and multimedia instruments.  

From an artistic perspective, the instrument 
interface should support the articulation of emotion 
in a meaningful manner, with acuity and subtlety, 
allowing it be played with sensitivity and nuance. 

We see the development of this instrument as a 
two-stage process. The first phase, described in this 
paper, deals with the question of emotion capture, 
that is, extracting meaningful data from the range of 
sensors available to us.  

The second stage, which we discuss briefly in 
Section 5, relates these signals to the output of the 
instrument and how it is designed to be used in a 
performance setting.  Because the instrument is 
ultimately a highly enriched biofeedback device, a 
performer's response to anything and anyone she 
encounters, including the audience, instantly 
manifests all around her.  To bring it under her 
control, she must first compose herself. This 
involves using the instrument as a feedback device 
to return to a neutral state from which all emotions 
are potentially accessible.  Once she has done so, she 
can put the instrument to its true use, directing her 
emotions outward in the act of creative composition.  

The remainder of this paper is organized as 
follows. Our emotion elicitation method, used to 
gather the physiological data, is described in Section 
3.  Next, the recognition engine, including feature 
selection, reduction and classification, is described 
in Section 4. Finally, Section 5 concludes with a 
discussion of some future avenues for research. 

2 RELATED WORK 

Ekman’s emotion classification scheme (Ekman, 
2005) included six principal, discrete and universal 
classes of affect: anger, joy, fear, surprise, disgust 
and sadness. Russell’s arousal/valence circumplex 
(Posner et al., 2005) introduced a continuous, analog 
mapping of emotions based on a weighted 
combination of arousal intensity and emotional 
valence (negative to positive). Figure 1 depicts this 

two-dimensional space with an example set of 
emotions. 

For our purposes, both types of representations 
are useful for “playing” the instrument represented 
by the high-level schematic of Figure 2: discrete 
states serving as coarse control, with the analog 
input driving fine-tuned and subtle variations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Russell’s arousal/valence circumplex 
(reproduced from Posner et al., 2005). 

Previous studies have demonstrated that 
emotional arousal and valence stimulate different 
brain regions (Anders et al., 2004) and in turn affect 
peripheral systems of the body. Significant 
physiological responses to emotions have been 
studied, showing, for example, measurable changes 
in heart rate and phalange temperature in fearful, 
angry and joyful states (Ekman et al., 1983). 

Emotional state recognition using physiological 
sensors has been investigated by others. Picard 
(Picard et al, 2001) obtained good recognition 
results (81.25% accuracy) on eight emotions using 
one subject stimulated with personally selected 
images and four physiological sensors: blood 
volume pulse (BVP), galvanic skin response (GSR), 
electromyograph, and respiration). Our results, 
restricted to four emotions, are similar, but the 
critical difference between our approaches is the 
elicitation process. While Picard uses images to 
elicit emotion, we focus on an involved self-
generation of affective states.  This, we believe, has 
important implications for real-world theatrical 
performance, where emotions are continuously 
varying as opposed to discrete. Capturing the subtle 
dynamics of emotion is vital to attaining the 
cognitive and emotive skills required for mastering 
control of the instrument. 
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Figure 2: Biosignals-driven Emotional-Imaging Generator. 

3 EMOTION ELICITATION 

As noted above, we are primarily interested in how 
self-generated emotional states can be mapped 
through biosignal analysis to the proposed 
instrument. Clearly, the performer must be skilled in 
the art of accessing and articulating emotion. Just as 
with learning any musical instrument, feedback must 
be provided that connects her meaningfully both 
with the appropriate skill level and emotional 
experience. 

As a first step in investigating these issues, we 
want to capture biosignal data of maximum possible 
validity. Gaining access to the ground truth of 
human emotion remains an elusive goal.  
Nevertheless, we can obtain a better labelled set of 
input than that available through generic stimuli, as 
used by other researchers.  To do so, we interact 
directly with the experimental subject to generate 
the stimuli. This avoids the potential problems, 
articulated by colleagues, of subjects not responding 
to a particular stimulus as expected, or verbally 
expressing an emotion “they think the stimulus is 
supposed to evoke.” 

Of course, this necessitates that the stimulus 
be highly personalized and subjective.  The benefit 
is the potentially greater physiological validity of the 
recorded data that is then used for training (or 
calibrating) our system. As seen in the results of 
Section 4, we succeed in obtaining an encouraging 
correct classification result over four emotions of 
90%. 

3.1 Experimental Subject 

To maximize the validity of our experimental data, 
we worked with a professional method actor, who 
was guided by one of the authors (Deitcher), an 
experienced theatre director.  Our subject has had 
the opportunity to methodically investigate an 
extraordinarily wide array of characters and 
situations. Effective emotional solicitation from 
someone with this kind of experience and flexibility 
requires the sensitivity to anticipate relevant 
emotional connections.  It also requires the ability to 
ask the questions and define the exercises that will 

allow these emotions to emerge.  In the broadest of 
terms, by having the actor play scenes, sing songs, 
follow guided visualizations and remember events 
from her own life, we were able to elicit a large and 
complex range of emotional landscapes. Her focused 
intentionality was responsible for engendering a 
high degree of confidence in the collected 
physiological data. 

3.2 Experimental Data Collection 

Experiments were conducted in a quiet, comfortable 
lab environment. The subject either remained seated 
or standing and was instructed to limit her body 
movement to minimize motion artefacts in the 
collected signals. The biosignals were recorded 
using Thought Technology’s ProComp Infiniti 
biofeedback system using five sensor channels: 
GSR, ECG, BVP, phalange temperature and 
respiration, all sampled at 256 Hz. Each trial was 
also videotaped with a synchronization signal to 
align the video recording with the biosignals. 

3.3 Data Types 

Two types of data were recorded: discrete emotional 
states and the responses to complex emotional 
scenarios. Typical trial times of 60 and 300 seconds 
were used for each type of data, respectively. A 
fifteen-minute break was taken between each trial so 
that the subject could return to her baseline, 
emotionally relaxed state. 

The discrete class of data afforded a simple 
labelling of emotions, as expressed by the subject 
during each trial. These were used primarily for 
classifier training and validation. During these 
experiments, the subject was asked to experience 
four emotional states in turn (joy, anger, sadness, 
pleasure), while vocalizing what she was feeling. A 
post-trial questionnaire was used to determine a 
subjective assessment of the intensity of the sensed 
emotion, on a numeric scale from one to five. 
Twenty-five trials of each of the four emotions were 
recorded. 

For the complex scenarios, data segments were 
recorded while the subject acted out “scenes” of 
fluid and varying emotional states. Such experiments 
will be used to study the body’s psychophysiological 
responses during emotional transitions. These 
scenarios are theatrically dynamic, and thus 
meaningful in investigating the performance 
possibilities of our proposed instrument. 
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4 RECOGNITION ENGINE 

Our preliminary investigations deal only with the 
classification of discrete emotional states to validate 
our paradigm of emotion elicitation, described in the 
previous section. The recognition engine comprises 
two main stages: biosignals processing and 
classification, both implemented in Matlab. 

The emotional state recognition system utilizes 
five physiological signals: electrocardiogram (ECG), 
GSR, BVP, respiration and phalange temperature. 
We employ digital signal processing and pattern 
recognition, inspired by statistical techniques used 
by Picard. In particular, our use of sequential 
forward selection (a variant of sequential floating 
forward selection), as used by Picard, choosing only 
classifier-optimal features, followed by Fisher 
dimensionality reduction, are similar. For the 
classification engine, however, we implemented 
linear discriminant analysis rather than the 
maximum a posteriori used by Picard. 

4.1 Biosignal Processing 

The raw, discrete biosignals go through four steps to 
produce classifier-ready data, as shown in Figure 3. 

Figure 3: Biosignal processing engine. 

4.1.1 Pre-Processing 

Emotionally relevant segments of the recordings that 
are free of motion artefacts are hand-selected and 
labelled with the help of the video recordings and 
responses to the questionnaire. High-frequency 
components of the signals are considered to be noise 
and filtered with a Hanning window (Oppenheim, 
1989). 

4.1.2 Feature Extraction 

We extract six common statistical features from each 
type of the noise-filtered biosignals, of size N 
( [ ]NnX n ...1, ∈ ), and its first and second 
derivatives: 
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 represents the normalised signal 
(zero-mean, unit variance): 
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In addition to the previous features, used for 

each biosignal, other signal-specific characteristics 
are computed.  These include, for example, heart 
rate mean, acceleration/deceleration and respiration 
power spectrum at different frequency bands. 
Combining the statistical and signal-specific 
characteristics, a total of 225 features are thus 
computed from the five types of biosignals. 

4.1.3 Automatic Feature Felection 

Feature selection is a method widely used in 
machine learning to select a subset of relevant 
features in order to build robust learning models. 
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The aim is to remove most of the redundant and 
irrelevant features from the data to alleviate the 
often detrimental effect of high dimensionality and 
to improve generalization and interpretability of the 
model. 

The greedy sequential forward selection (SFS) 
algorithm is used to form automatically a subset of 
the best n features from the original large set of m (n 
< m). SFS starts with an empty feature subset and on 
each iteration, exactly one feature is added. To 
determine which feature to insert, the algorithm 
tentatively adds to the candidate feature subset one 
that is not already selected and tests the accuracy of 
a k-NN classifier built on this provisional subset. A 
feature that results in the highest classification 
accuracy is permanently included in the subset. The 
process stops after an iteration where no feature 
addition causes an improvement in accuracy. The 
resulting feature set is now considered optimal. 

The k-NN classifier used here classifies a novel 
object r by a majority of “votes” of its neighbours, 
assigning to r the most common class among its k 
nearest neighbours, using the Euclidean distance as 
metric. This type of classifier is chosen because it is 
a simple and efficient performance criterion for 
feature selection schemes and is considered more 
robust than using a single measure of distance, as is 
the case for many feature selection schemes. It was 
found through iterative experimentation 
using [ ]9,1∈k , that a value of k = 5 resulted in the 
best possible selected feature subset. 

4.1.4 Feature Space Reduction 

Fisher dimensionality reduction (FDR) seeks an 
embedding transformation such that the between-
class scatter is maximized and the within-class 
scatter is minimized, resulting in a low-dimension 
representation of optimally clustered class features. 
FDR is shown to produce optimal clusters using c – 
1 dimensions, where c is the number of classes. 
However, if the amount of training data or the 
quality of the selected feature subset is questionable, 
as is the case in many machine learning applications, 
the theoretically optimal dimension criterion may 
lead to an irrelevant projection which minimizes 
error in the training data, but performs badly with 
testing data (Picard et al., 2001). In our case, a two-
dimensional projection resulted in an overall best 
classification rate using linear discriminant analysis 
(LDA) to sequentially test with 
dimensions [ ]3,1∈d . Figure 4 demonstrates the 
class clustering of four emotional states: joy, anger, 
sadness, pleasure (JO, AN, SA, PL), projected on a 

2D Fisher space during one of the validation steps. 
The four emotions were chosen given that they lie in 
different quadrants of Russell’s arousal/valence 
circumplex (Figure 1). 
 

Figure 4: 2D Fisher projection (4 classes). 

4.2 Biosignal Classification 

Three popular classification schemes were tested to 
classify the four emotional states: LDA, k-NN 
( [ ]9,1∈k ) and multilayer perceptron (MLP). LDA 
was found to outperform both the best k-NN (k = 7) 
and MLP by 4% and 11%, respectively. LDA builds 
a statistical model for each class and then catalogues 
novel data to the model that best fits. We are thus 
concerned with finding which discriminant function 
best separates the emotion classes. LDA finds a 
linear transformation Φ of the x and y axes (8) that 
yields a new set of values providing an accurate 
discrimination between the classes. The 
transformation thus seeks to rotate the axes with 
parameter v so that when the data is projected on the 
new axes, the difference between classes is 
maximized. 
 

yx 21 vv +=φ  (8) 
 

Due to the small feature dataset size, leave-one-
out cross-validation was used to test the 
classification scheme. This involves using a single 
item of the set as the validation data, and the 
remaining ones as training data. This process is 
repeated until each item in the dataset is used once 
as the validation data. At each iteration, SFS and 
FDR are applied to the new training set and the 
parameters found (selected features and Fisher 
projection matrix) are applied to the test set. The 
mean classification rate is computed using the result 
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produced at each step. Using this method, our 
biosignal classification system produced an average 
recognition rate of 90% on the four emotional states. 
Table 1 shows the confusion matrix for the 
classification. 

Table 1: LDA classifier confusion matrix. 

I/O JO AN SA PL % 

JO 0.96 0 0 0.04 96 

AN 0 1.00 0 0 100 

SA 0.04 0 .92 0.04 92 

PL 0.12 0 0.16 0.72 72 

5 CONCLUSIONS 

A novel emotion elicitation scheme based on self-
generated emotions is presented, engendering a high 
degree of confidence in collected, emotionally 
relevant, biosignals.  Discrete state recognition via 
physiological signal analysis, using pattern 
recognition and signal processing, is shown to be 
highly accurate. A correct average recognition rate 
of 90% is achieved using sequential forward 
selection and Fisher dimensionality reduction, 
coupled with a Linear Discriminant Analysis 
classifier. 

We believe that the high classification rate is due 
in part to our use of a professional method actor as 
test subject. It is speculated that normal subjects 
would lead to lower rates because of the high 
variability of emotion expressivity across a large 
population pool. It is an avenue of research for us to 
test the generalization of this type of machine-based 
emotion recognition. 

Our ongoing research also intends to support 
real-time classification of discrete emotional states.  
Specifically, continuous arousal/valence mappings 
from biosignals will drive our emotional-imaging 
generator for multimedia content synthesis and 
control in a theatrical performance context.  In 
addition, we are exploring the therapeutic and 
performance training possibilities of our system. 
Because what we are building is fundamentally an 
enriched biofeedback device, we anticipate 
applications ranging from stress reduction for the 
general population to the generation of concrete 
emotional expression for those with autism or other 
communication disorders. 
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Abstract:  In this paper the software algorithms necessary to analyze the signal provided by a first-aid sensor system 
that detects pulse and respiration at a single point are described. In an opinion poll four of five 
inexperienced first responders were interested in using this kind of system as support in emergency 
situations. Especially the intelligent detection of respiration is hardly popular today and in most cases only 
possible offline. The software also controls several visual indicators that assist the first aider in quickly 
determining the state of the patient.

1 INTRODUCTION 

In emergency situations like an accident a first aider 
has to decide immediately if resuscitation of the 
victims needs to be initiated. The know-how of 
many first aiders is not sufficient or their uncertainty 
too great to be able to make this often vitally 
important decision quickly (Sefrin, 2006). Our aim 
is to develop a cheap and portable sensor system that 
is easy and fast to use to support the first-aider with 
their vital decision. It detects if pulse and respiration 
of the victim work normally and provides the first 
aider with a visual aid. The sensor has to be placed 
on the neck of the victim and after a few seconds it 
starts to display information about pulse and 
respiration. 

2 SIGNAL PROCESSING 

2.1 Medical Concept 

It is our aim to develop a sensor which measures not 
only the pulse but also the frequency of respiration, 
that is why the detection of electrical body signals 
e.g. like an ECG is not sufficient. One solution is to 

measure mechanical changes of the tissue surface 
which are caused by both pulse beat and respiration. 
As possible measuring point for the sensor a point 
near the clavicle is estimated to deliver the best 
results because that point is close to both the 
subclaviar artery and the trachea. This point is 
shown in Fig. 1. 

 

 

Figure 1: Possible measuring point for the sensor. 

2.2 Signal Acquisition 

The measuring of changes in the tissue surface is 
mainly done by detecting changes in distance 
between the sensor and the tissue surface. Normally 
the measuring of distances can be achieved by using 
an LC oscillator. Due to capacitive coupling the 
resonance frequency of the oscillator changes if the 
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distance to any organic object in- or decreases. This 
change in resonance frequency is reflected in a 
change of voltage. This principle is used in homes in 
the form of touchless switches. However, since the 
changes in the tissue surface caused by pulse beat 
and respiration are very small, the use of classical 
LC oscillators is - apart from a few exceptions - not 
possible. Therefore a new nonlinear oscillator has 
been developed. With its help it is possible to 
measure changes in submillimeter range. Because of 
this high sensitivity even little muscle contractions 
will be detected by the sensor. As some of these 
minor contractions do belong to neither pulse nor 
respiration they have to be eliminated. It is 
necessary to filter and process the signal to eliminate 
these artifacts. An example for the measured signal 
is shown in Fig. 2. For more technical information 
please refer to (Jaeger, 2007). 
 

 
Figure 2: Signal measured by the sensor. 

2.3 Algorithms 

First the signal is band-filtered with hard coded cut-
off frequencies covering the whole spectrum of 
possible pulse and respiration frequencies. In the 
next step a low resolution FFT of this filtered signal 
is performed. In extreme cases the respiration 
frequency can be higher than the pulse frequency. 
Due to this there are four possible frequency bands 
(Fig.3): 

- the whole frequency band from the lowest 
possible frequency of the respiration to the 
highest possible frequency of the pulse (WF) 
- the lower frequency band of respiration 
from the lowest possible frequency of the 
respiration to the lowest possible frequency of 
the pulse (LF), 
- the upper frequency band of pulse, from 
the highest possible frequency of the respiration 
to the highest possible frequency of the pulse 
(HF) 
- and the overlapping band from the lowest 
possible frequency of the pulse to the highest 
possible frequency of the respiration (MF). 
By calculating relations between the different 

amplitudes, the frequency parts with high intensity 

can be discerned.  Normally there will be only two 
frequency parts with high intensity representing 
pulse and respiration. 

  
Figure 3: Spectrum of the filtered signal with four 
frequency bands. 

If there are more than two such frequency parts, 
there has to be a measurement error. If no error is 
detected the frequency parts defined above can be 
analyzed further. If there is a frequency part of high 
intensity in the lower frequency band of respiration, 
there may be only one such frequency part in the 
overlapping band - the one of the pulse. If such a 
frequency part is additionally detected in the upper 
frequency band of the pulse there cannot be any in 
the overlapping band. As soon as these conditions 
are met, the frequencies for pulse and respiration are 
approximately determined. With the detected 
frequencies it is possible to define narrow cut-off 
frequencies for pulse and respiration. With these 
cut-off frequencies the input signal is filtered again, 
once for pulse and once for respiration. 

After this step there are two rather clear signals 
which are relatively free of errors. With these 
filtered signals it is possible to determine more exact 
frequencies for pulse and respiration. Therefore the 
filtering is designed to adapt which means that the 
cut-off frequencies of the fine filters are always 
readjusted using the frequencies determined by the 
fine filtered signals. Additionally the approximated 
frequencies of pulse and respiration gained from the 
roughly filtered input signal are used to validate the 
adjustment of the cut-off frequencies for the fine 
filters. The determination of the frequency of the 
fine filtered signal works as follows: On the one 
hand zero-crossings are counted using a hysteresis, 
on the other hand a high resolution FFT for the 
filtered signals is processed. Both results undergo a 
plausibility check. 

The frequency determination by counting zero-
crossings is done by using hysteresis. A zero-
crossing is only interpreted as such if the signal does 
not only drop below a lower hysteresis border but 
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then also rises over an upper hysteresis border. The 
point in time in which the signal rises over the upper 
hysteresis border is used as zero-crossing. The time 
difference between two such points can be 
interpreted as the periodic time of the signal. The 
reciprocal of this periodic time is the frequency of 
the signal. To get a more stable frequency value the 
last two periodic times determined in this way are 
averaged. If the signal does not pass a hysteresis 
border for a certain period of time its quality is 
assumed to be insufficient and the frequency value 
will be set to zero.  

When the frequency is determined by using a high 
resolution FFT the frequency part with the highest 
amplitude is used as result. To get a more reliable  
value the algorithm averages out the last five 
determined frequency values.  

 

 
Figure 4: Logical organization of the plausibility check. 

To eliminate remaining errors a plausibility 
check is done using the determined frequency values 
by counting zero-crossings and FFT. Fig. 4 shows 
the logical organization of the plausibility check. 

As soon as both methods - counting zero-
crossings and FFT - calculate approximately the 
same frequency value the signal is assumed to be 
free of errors and the value calculated by FFT will 
be indicated as final result. If this value deviates too 
much from the previous shown result an error will 
be assumed. In this case the last correct value prior 
to the error is indicated until both methods once 

again calculate an approximately equal value. If the 
value determined by counting zero-crossings drops 
below a predetermined border, the signal is assumed 
to be too weak and the final frequency value will be 
set to zero. 

Fig. 5 shows the chronological sequence of 
possible results of the two methods counting zero-
crossings and FFT and the corresponding result of 
the plausibility check (frequency line in Fig. 5). 

 
Figure 5: Possible chronological result of the plausibility 
check. 

2.4 Visualization 

The sensor uses LEDs to indicate the state of a 
patient. For both pulse and respiration there is a 
LED showing if the respective function works 
normally. If either pulse or respiration are abnormal, 
it will be shown by an additional LED. A fourth 
LED indicates that the sensor system is working 
correctly to avoid any delay due to unrecognized 
malfunctions. The sensor with its LEDs is shown in 
Fig. 6. 

 

 
Figure 6: The Sensor with the four LEDs. 

If the LEDs indicate that pulse and/or respiration 
does not work normally and the patient does not 
show any reactions to external stimulation the first 
aider has to initiate cardiopulmonary resuscitation 
(CPR). 
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3 APPLICATION 

The following diagram (Fig. 7) shows the sequence 
from the arrival of a first aider at an accident up to 
the corresponding action he has to take. 
 

 
Figure 7: First aider mode of operation. 

4 RESULTS 

The developed algorithms have been tested with 
several signals recorded by the sensor. The time it 
took the software to detect each the pulse and the 
respiration signals has been put in relation to the 
overall time of the measurement. The results are 
shown in Table 1. The sensor is able to detect pulse 
in 91.15% and respiration in 81.15% of the time the 
sensor is active. The timeframe during which pulse 
and respiration are not detected is mostly at the 
beginning of the measurement because at least one 
or two cycles are necessary to calculate useful 
values. The lower percentage for respiration 
detection can be explained with the lower breathing 
frequency due to which the initial cycles take longer 
to complete. 

Table 1: Test cases for pulse and respiration. 

  Signal 
length in s

Pulse detected 
in % 

Respiration 
detected in %

75.txt 132,92 92,33 87,71 
84.txt 191,55 97,49 92,69 
87.txt 97,90 95,86 85,41 
90.txt 80,63 94,51 78,69 
137.txt 76,13 96,69 79,64 
190.txt 119,59 97,12 71,99 
carotis.txt 29,22 83,06 57,56 
kieferwinkel.txt 169,61 97,70 91,16 
sternoclaido.txt 199,36 83,74 82,68 
subclavia.txt 74,99 73,00 84,00 

5 DISCUSSION 

The results shown in Table 1 are not satisfying 
because they were not verified by comparing them 
to actual pulse and respiration data detected by other 
means. In addition the sensor has to be tested in 
extreme situations for instance on board of rescue 
helicopters and ambulances again while comparing 
the sensor data to actual pulse and respiration data. 
According to these test results - like possible 
deviations of the sensor detected data from the 
actual pulse and respiration - the algorithms will 
have to be improved. The main task in the future 
will be to find ways to correct inaccuracies caused 
by small movements. This could be done for 
example by integrating a neural fuzzy system into 
the software that can use additional criteria to 
ascertain that the calculated values are correct.   

Another possibility is to include an acceleration 
sensor in the system that is able to detect certain 
movements and to correct the data accordingly. 
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Abstract: Red-eye is a highly objectionable defect that often occurs in digital images taken with a flash by modern 
small cameras. Although many red-eye reduction algorithms were proposed and equipped in most of the 
digital cameras, none of these algorithms is effective enough.  In this paper, an algorithm for automatic de-
tection and correction of red-eyes is proposed.  The color detector based on uniform color metric is devel-
oped to locate regions of major colors including red-eye color and skin tone.  The structure of major colors 
is adopted to locate candidate red-eye regions.  The geometric relationship between the dimension of the 
human pupil and binocular distance is employed to eliminate most false positives (image regions that look 
like red-eyes but are not).  More than one pairs of red-eyes snapped in different view angles are detected by 
the proposed algorithm.  Detected red-eyes are then corrected by modifying chroma, hue angles and lumi-
nance of the associated pixels such that red color is removed while maintaining a natural look of the eye.  
Simulation results show that the proposed algorithm is pretty robust and effective. 

1 INTRODUCTION 

Red-eye is a common problem in digital photogra-
phy.  When an image is captured with flash illumi-
nation by a camera that has an illumination source 
very close to the camera lens, the bright flash light 
reflected from the blood vessels on the retina, giving 
the human eyes in the image an unnatural red hue.  
Red-eye is a hardly acceptable defect that signifi-
cantly reduces the value of an image. 

For this reason, many efforts have been made to 
prevent it from occurring, or to detect and correct it 
in the post-capture processing.  A straightforward 
way of preventing red-eye is to increase the distance 
between the illumination source and the camera lens.  
Another solution for red-eye prevention is the use of 
a pre-exposure flash that decreases the size of the 
subject’s pupil followed by a second flash for cap-
turing the image.  The drawback of this approach is 
the great consumption of power that shortens the 
battery life.  Moreover, this approach sometimes can 
only reduce, but not eliminate, the red-eye artifacts.  
Many research results have been developed and im-
plemented as software products such as “Picture 
Maker” from Eastman Kodak Company and 

“iPhoto” from Apple.  These products require man-
ual manipulation to outline the red-eye region for 
correction.  It is obviously impractical and ineffi-
cient to process a large number of images manually.  
A fully automatic red-eye detection and correction 
algorithm is therefore needed.  Furthermore, it is 
highly expected that this automatic algorithm can be 
realized as a piece of hardware and planted in digital 
cameras.  Recently, a number of researches on 
automatic red-eye detection and correction have 
been conducted (Schildkraut and Gray, 2002)-
(Zhang, Sun, Li, and Zhang, 2004).  The AREA al-
gorithm proposed by Eastman Kodak Company uses 
features based on red-eye defects to automatically 
detect only a pair of red-eyes in each image  
(Schildkraut and Gray, 2002).  In (Matthew and 
Robert, 2002), the face must be successfully de-
tected before the red-eye detection where the infor-
mation of color, intensity and dimension is utilized.  
In (Ioffe, 2003), a learning-based face detector is 
also adopted for the detection of red-eye defects.  In 
these approaches, the face detection itself is another 
challenging problem to be solved (Xin, Xu, and Du, 
1998).  In (Zhang, Sun, Li, and Zhang, 2004), a heu-
ristic algorithm is used to detect candidate red-eye 
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regions, and then an eye classifier is utilized to con-
firm whether the candidate region is a red-eye. 

Color is important information to the detection 
and correction of red-eye artifacts.  In this paper, 
color classifiers based on uniform color metric are 
first designed to detect colors of red-eyes, skin tones 
and colors without red hue.  The relationship among 
these colors and the geometric constraints inherent 
in pairs of human eyes are exploited to eliminate 
false positives.  Finally, the information of hue, 
chroma and luminance is utilized to restore the red-
eye color to a natural tone. 

2 UNIFORMITY OF THE CIELAB 
COLOR SPACE 

Color is a visual perception of the light in the visible 
region of the electromagnetic wave spectrum inci-
dent on the human retina.  By the theory of trichro-
macy, any color in a color space can be represented 
by a triple of numbers called tristimulus values (CIE, 
1986), (Sangwine and Horne, 1998).  However, col-
ors in many color spaces, such as RGB, XYZ, YUV, 
and YCbCr, are not uniformly distributed in a sense 
that the same perceptual color difference does not 
correspond to the same distance enumerated in the 
tristimulus space (Sangwine and Horne, 1998), 

(Sharma and Trusell, 1997).  If a color space is per-
ceptually uniform, the perceptual difference between 
any two colors can be ideally represented as the 
Euclidean distance between their coordinates.  The 
CIELAB color space is such a color space to over-
come the non-uniform color metric that had been 
discussed by MacAdam (MacAdam, 1943).  In this 
paper, the color transformation to CIELAB color 
space is  

3 THE PROPOSED RED-EYE 
DETECTION ALGORITHM 

The functional block diagram of the proposed red-
eye detection algorithm is shown in Figure 1.  The 
color image is first transformed to CIELAB color 
space.  Through the uniformity in the CIELAB, the 
red-eye color and skin color are roughly extracted.  
According to the database containing all kinds of 
red-eye samples, a more precise red-eye color filter 
is then developed by the method of K-mean cluster-
ing and just-noticeable color difference in the 
CIELAB color space.  The correlation between the 
size of the human eyeball and binocular distance is 
finally employed to eliminate most false positives 

Through statistically analyzing the manually ex-
tracted red-eye color pixel and skin color pixel from 
various color images, the distribution of red-eye 
colors and skin colors in CIELAB color space can be 
found.  For each pixel in the color image, the tris-
timulus values of red-eye color pixels in CIELAB 
color space satisfy  

⎪
⎩

⎪
⎨

⎧

<<
<<

>

5025-
  8020

       30  L

b
a

, (1) 

and the tristimulus values of skin color pixels in 
CIELAB color space satisfy 
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In this paper, the skin color is the reference informa-
tion that is used to delete image regions that look 
like red-eyes but are not.   

The method of K-means clustering is used to cal-
culate the centroid in the red-eye set as the major 
red-eye color.  Clustering in pattern recognition is 
the process of partitioning a set of pattern vectors 
into subsets called clusters.   In this paper, the num-
ber of centroids found by the clustering method is 32.  
As described in Section 2, the perceptual difference 

Transform an image into 
CIELAB color space 

Roughly red-eye 
color filtering 

Precisely red-eye color 
filtering by MRCR 

Noise reduction by 
morphological process 

Locate red-eye candidates 

Find the geometric 
relationship between each 
pair of red-eye candidates 

Skin color 
segmentation

Test if the geometric 
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Test if the red-eye 
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Red-eye correction 
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candidates 
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Figure 1: The function block diagram of the proposed 
red-eye detection algorithm. 
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Figure 2: Binocular geometric relationship between a 
pair of red-eyes. 
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between any two colors can be ideally represented as 
the Euclidean distance between their coordinates in 
the CIELAB color space, and loci of colors which 
are perceptually indistinguishable from a particular 
color form a sphere centralized at this color’s coor-
dinate.  In this color space, two colors are considered 
perceptually distinguishable if the Euclidean dis-
tance between these two colors’ coordinates exceeds 
a threshold of just-noticeable color difference 
(JNCD).  That is 

( ) Lab
21222 JNCDbaLE ≥Δ+Δ+Δ=Δ  (3) 

where JNCDLab has been found around 3.0.  There-
fore, the major red-eye color region (MRCR) can be 
defined as a sphere for each major red-eye color.  
The colors locating in the MRCR of each centroid 
are selected as the color pixel in the red-eye.   

In previous detection steps, some noises occur in 
the preliminary red-eye segmentation area.  To re-
duce the noise, morphological process is utilized.  In 
this paper, two morphology operations, including 
dilation “D” and erosion “E”, are used.  The former 
operation adds pixels to the object boundaries, while 
the later operation removes pixels on object bounda-
ries in an image.  The two operations are combined 
to build a higher order opening operation “O” for 
removing noises from the red-eye segmentation area 
while preserving the shape and size of this red-eye 
segmentation area in the image. 

O(I, BE, BD)=D(E(I,BE ), BD ) (4) 

where I is the binary image that marks the location 
of selected red-eye pixel, BE  the structuring element 

for erosion, and  BD  the structuring element for dila-
tion.  The structuring element of dilation is smaller 
than that of erosion such that the morphological 
process can reduce noises that occur in the red-eye 
segmentation area and avoid losing the red-eye can-
didates.   

By using color information and morphological 
process, red-eye candidates are located. However, 
many detected image regions that look like red-eyes 
but are not.  The color pixels in such regions are 
called false positive candidates.  Hence, geometric 
relationship between each pair of red-eye candidates 
is considered.  Since the distance between a pair of 
red-eyes is useful to eliminate the false positive can-
didate, binocular geometric relationship is used to 
develop binocular geometric constraint for removing 
false positives.  For a red-eye candidate shown in 
Figure 2, the green circular region centralized at this 
candidate is used to test whether its red-eye counter-
part locates in this region.  From the statistical 
analysis of a large number of data sets, the range of 
the green circular region is constrained by  

R1 > 4Dw1, (5) 

R2 < 10Dw1. (6) 

The pair of red-eye candidates is further tested if its 
width and height can satisfy 

0.75 < Dw2/Dw1 < 1.30, (7) 

0.75 < Dh2/Dh1 < 1.30. (8) 

If the width and height of the pair of red-eye candi-
dates cannot satisfy Eq. (7) and (8), the pair of red-
eye candidates will be removed.   

Finally, the pair of red-eye candidates that pass 
through the binocular geometric constraint is tested 
if it is surrounded by pixels of skin color tones.  The 
surrounding skin color pixels of red-eye candidates 
are simply defined as two areas as shown in Figure 3.  
The width and height of the area are 1.5Dh and 3Dw, 
respectively.  The area is recognized as skin color if 
the amount of skin color pixels, Nskin, that satisfy Eq. 
(2) is high enough, or 

Nskin /(1.5Dh × 3Dw) >0.8. (9) 

4 RECOVERY AND COLOR 
CORRECTION OF RED-EYES  

Since some red-eye color pixels are removed from 
the red-eye candidates in the previous processes, it is 
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Figure 3: The surrounding skin color pixels of red-eye 
candidates. 
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Figure 4: The color relationship between red-eye and 
its natural appearance on color-opponent ab plane. 
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therefore required to retrieve the lost red-eye color 
pixels.  The region of the red-eye candidate is sim-
ply extended by its neighboring red-eye color pixels.  
That is, the boundary of the red-eye candidate region 
centered on its center location is enlarged pixel by 
one pixel to form a perfectly retrieved region of the 
candidate.  

Once the location and size of the red-eyes have 
been detected, color correction of red-eyes is applied 
to the detected red-eyes to obtain the natural appear-
ance of the pupil.  To maintain the natural appear-
ance of the pupil at the location of red-eyes, the 
value of luminance (L component) of the detected 
red-eye is slightly adjusted and the values of hue and 
chroma (a and b components) are adjusted based the 
color relationship between red-eye and the corre-
sponding natural appearance of pupils on color-
opponent ab plane.  For simplicity, the adjustment 
for color correction is to scale down the value of a 
component of red-eyes by a factor of 0.1 and to scale 
down the value of b component of red-eyes by a 
factor of 0.2 as shown in Figure 4.  The value of 
luminance of the detected red-eye is adjusted by a 
factor of 0.9.  That is,  

Lcorrected = 0.9 × Lr (10) 
acorrected = 0.1 × ar (11) 
bcorrected = 0.2 × br (12) 

where (Lr, ar, br) and (Lcorrected, acorrected, bcorrected) are 
tristimulus values of the detected red-eye color pixel 
and its corrected color pixel, respectively. 

5 SIMULATION RESULTS AND 
CONCLUSIONS 

To evaluate the performance of the proposed algo-
rithm, the simulation of the red-eye detection algo-
rithm that is applied to red-eye digital images with 
different size and quality is conducted.  In Figure 5, 
the “Pinksisters” image that has more than one pairs 
of red-eyes is also detected and corrected by using 
the proposed algorithm.  In our experiments, over 
200 red-eye digital photographs are tested and more 
than 80% red-eyes are efficiently detected.  The ex-
perimental results show that the proposed algorithm 
is robust and effective under a variety of shooting 
conditions and backgrounds.  

In this paper, a fully automatic red-eyes detection 
and correction algorithm is proposed.  In the pro-
posed algorithm, a robust color classifier for detect-
ing red-eye color and other major colors in digital 
images with red-eyes is developed and a multi-stage 
criterion for detecting each single red-eye is de-

signed.  The detected red-eyes are successfully cor-
rected by modifying chroma, hue angles and lumi-
nance of the associated pixels such that red color is 
removed while maintaining a natural look of the eye.  
The proposed system has very low false detection 
rate.  Simulation results show that more than 80% of 
red-eyes can be detected and only 5% are false 
alarm. 
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Figure 5 (a): “Pinksisters” image with red-eyes, (b) the 
image after correcting red-eye colors. 
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Abstract: Biometrics systems have gained in popularity for the automatic identification of persons. The use of the voice
as a biometric characteristic offers advantages such as: is well accepted, it works with regular microphones, the
hardware costs are reduced, etc. However, the performance of a voice-based biometric system easily degrades
in the presence of a mismatch between training and testing conditions due to different factors. This paper
presents a new speaker recognition system based on decision fusion. The fusion is based on two identification
systems: a speaker identification system (text-independent) and a keywords identification system (speaker-
independent). These systems calculate the likelihood ratios between the model of a test signal and the different
models of the database. The fusion uses these results to identify the couple speaker/password corresponding
to the test signal. A verification system is then applied on a second test signal in order to confirm or infirm the
identification. The fusion step improves the false rejection rate (FRR) from 21,43% to 7,14% but increase also
the false acceptation rate (FAR) from 21,43% to 28,57%. The verification step makes however a significant
improvement on the FAR (from 28,57% to 14.28%) while it keeps constant the FRR (to 7,14%).

1 INTRODUCTION

Biometric recognition systems, which identify a per-
son on his/her physical or behavioral characteristics
(voice, fingerprints, face, iris, etc.), have gained in
popularity among researchers in signal processing
during recent years. Biometric systems are also use-
ful in forensic work (where the task is whether a given
biometric sample belongs to a given suspect) and law
enforcement applications (Atkins, 2001). The use of
the voice as a biometric characteristic offers the ad-
vantage to be well accepted by users whatever his cul-
ture. There are two categories in voice-based biomet-
ric systems: speaker verification and speaker identifi-
cation. In identification systems, an unknown speaker
is compared to the N known speakers stored in the
database and the best matching speaker is returned
as the recognition decision. Whereas in verification
systems, an identity is claimed by a speaker, so the
system compares the voice sample to the claimed
speaker’s voice template. If the similarity exceeds a
predefined threshold, the speaker is accepted, other-
wise is rejected. For each system two methods can be
distinguished: text-dependent and text-independent.
In the first case, the text pronounced by the speaker is

known beforehand by the system, while in the second
case the system does not have any information on the
pronounced text (Kinnunen, 2003).

It is well known that the performances of voice-
based biometric systems easily degrade in the pres-
ence of a mismatch between the training and testing
conditions (channel distortions, ambient noise, etc.).
One method that can be used to improve the perfor-
mances of these systems is to merge various infor-
mation carried by the speech signal. Several studies
on information fusion were led to improve the per-
formances of automatic speakers recognition system
(Higgins et al., 2001)(Mami, 2003)(Kinnunen et al.,
2004). However, the results are less successful com-
pared to biometric systems based on other modalities
(fingerprint, iris, face, etc).

In this paper a new fusion approach is proposed
by using two kinds of information contained in the
speech signal: the speaker (who spoke ?) and the key-
word pronounced (what was said ?). The aim of this
method is to use a first test signal to identify a couple
speaker/password corresponding to this signal. This
step is done by combining two identification systems
based on likelihood ratio approach: a speaker identi-
fication system (text-independent) and a speech iden-
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Figure 1: Components of a speaker recognition system.

tification system (speaker-independent). The speaker
identified by this fusion is then verified by a classi-
cal verification text dependent system using a second
test signal. In practical situations, the two test sig-
nals can be viewed as a composed password. The
system provides good improvements on the two types
of error usually computed for biometric systems: the
false rejection rate (FRR) and the false acceptation
rate (FAR). The experiments presented in this study
use the platform ALIZE developed by the LIA labo-
ratory (Bonastre et al., 2005).

This paper is organized as follows. Section 2 pro-
vides a general description of a speaker recognition
system. Section 3 presents the proposed fusion sys-
tem. The experiments are discussed in Section 4, fol-
lowed by conclusions in the last section.

2 SPEAKER RECOGNITION
SYSTEM

Figure 1 shows the structure of an automatic speaker
recognition system. This system operates in two
modes (training and recognition) and can be used for
both identification or verification tasks. In the training
mode, a new speaker (with known identity) is enrolled
into the system’s database, while in the recognition
mode an unknown speaker gives a speech input and
the system makes a decision about the speaker iden-
tity.

2.1 Feature Extraction

Feature extraction is the first component in an auto-
matic speaker recognition system (Furui, 1997). This
phase consists of transforming the speech signal in
a set of feature vectors called also parameters. The
aim of this transformation is to obtain a new repre-
sentation which is more compact, less redundant, and
more suitable for statistical modeling and calculation
of distances. Most of the speech parameterizations
used in speaker recognition systems relies on a cep-
stral representation of the speech signal (Lee et al.,
1996).

2.1.1 MFCC and LFCC Parameters

The Mel-frequency cepstral coefficients (MFCC) are
motivated by studies of the human peripheral audi-
tory system. Firstly, the speech signal x(n) is di-
vided into Q short time windows which are converted
into the spectral domain by a Discret Fourier Trans-
form(DFT). The magnitude spectrum of each time
window is then smoothed by a bank of triangular
bandpass filters (Figure 2) that emulate the critical
band processing of the human ear.

Figure 2: Mel filter bank.

Each one of the bandpass filter H(k,m) computes
a weighted average of that subband, which is then log-
arithmically compressed:

X ′(m) = ln

(
N−1

∑
k=0
|X(k)|H(k,m)

)
(1)

where X(k) is the DFT of a time window of the
signal x(n) having the length N, the index k, k =
0, . . . ,N−1, corresponds to the frequency fk = k fs/N,
with fs the sampling frequency, the index m, m =
1, . . . M and M << N, is the filter number, and the fil-
ters H(k,m) are triangular filters defined by the center
frequencies fc(m) (Sigurdsson et al., 2006). The log
compressed filter outputs X ′(m) are then decorrelated
by using the Discrete Cosine Transform (DCT):

c(l) =
M

∑
m=1

X ′(m)cos(l
π

M
(m− 1

2
)) (2)

where c(l) is the lth MFCC of the considered time
window. A schematic representation of this procedure
is given in Figure 3.

There are several analytic formulae for the Mel
scale used to compute the center frequencies fc(m).
In this study we use the following common mapping:

B( f ) = 2595log10(1+
f

700
) (3)

The LFCC parameters are calculated in the same
way as the MFCC, but the triangular filters use a linear
frequency repartition.
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2.1.2 ∆ and ∆∆ Parameters

After the cepstral coefficients have been calculated
and stored in vectors, a dynamic information about
the way these vectors vary in time is incorporate. This
is classically done by using the ∆ and ∆∆ parameters,
which are polynomial approximations of the first and
second derivatives of each vector (Kinnunen et al.,
2004).

2.2 Speaker Modeling

The training phase uses the acoustic vectors extracted
from each segment of the signal to create a speaker
model which will be stored in a database. In au-
tomatic speaker recognition, there are two types of
methods that give the best results of recognition: the
deterministic methods (dynamic comparison and vec-
tor quantization) and statistical methods (Gaussian
Mixture Model - GMM, Hidden Markov Model -
HMM), these last ones being the most used in this do-
main. In this paper, we have chosen to use a system
based on GMM-UBM. This choice was motivated by
two reasons: modeling by GMM is very flexible with
regard to the type of the signal and using the GMM
gives a good compromise between performances and
the complexity of the system.

2.2.1 GMM-UBM

In this research, the method used for speaker mod-
eling is the GMM using the universal background
model (UBM). The UBM has been introduced and
successfully applied by (Reynolds, 1995) in speaker
verification. This model is created by using all record-
ing speech of the database, the aim being to have a
general model of speakers which will be then used to
adapt each speaker model.

The matching function in GMM is defined in
terms of the log likelihood of the GMM (Bimbot et al.,
2004) given by:

p(X |λ) =
Q

∑
q=1

log p(xq|λ) (4)

where p(xq|λ) is the Gaussian mixture density of the
qth segment in respect to the speaker λ:

p(xq|λ) =
G

∑
i=1

pi f (xq|µ
(λ)
i ,Σi) (5)

with the mixing weights constrained by:
G

∑
i=1

pi = 1 (6)

In these expressions xq is the D-dimensional
acoustic vector corresponding to the qth time window
of the input signal, pi, µ(λ)

i and Σi (i = 1, . . . ,G) are
the mixture weight, mean vector, and covariance ma-
trix of the ith Gaussian density function (denoted by
f ) of the speaker λ, while G denotes the number of
GMM used by the model.

The speaker model λ is thus given by:

λ =
{

pi,µ
(λ)
i ,Σi|i = 1, . . . ,G)

}
(7)

the UBM model having the same form:

UBM =
{

pi,µ
(UBM)
i ,Σi|i = 1, . . . ,G

}
(8)

The mean vectors of speaker model µ(λ)
i are

adapted to the training data of the given speaker from
the UBM, i.e. µ(UBM)

i , by using the Maximum a Pos-
teriori (MAP) adaptation method (Gauvain and Lee,
1994), the covariance matrices and mixture weights
remaining unchanged.

2.3 Pattern Matching and Decision

Given a segment of speech, Y , and a hypothesized
speaker, S, the task of speaker recognition system is
to determine if Y was spoken by S. This task can be
defined as a basic hypothesis test between{

H0: Y is from the hypothesized speaker S
H0: Y is not from the hypothesized speaker S

To decide between these two hypotheses, the opti-
mum test is a likelihood ratio given by:

p(Y |H0)
p(Y |H1)

{
≥ θ Accept H0
< θ Re ject H0

(9)

where p(Y |Hi) is the probability density function for
the hypothesis Hi evaluated for the observed speech
segment Y , also referred to the likelihood of the hy-
pothesis Hi. The decision threshold for accepting or
rejecting H0 is θ. A good technique to compute the
values of the two likelihoods, p(Y |H0) and p(Y |H1)
is given in (Doddington, 1985).

3 PROPOSED SYSTEM

In this paper a new method for automatic speaker
recognition based on fusion information is proposed.
The architecture of this method is described in Fig. 4.
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Figure 4: Global system architecture.

This system is composed by two blocks, the first
one made up by two classifiers (speaker and password
classifiers) and the second one made up by a verifica-
tion system using the decision result of the first block.
Each speaker is identified by two passwords: the first
one is used by both speaker and password identifica-
tion systems, while the second one by the verification
system. In practical situations, these two passwords
can be viewed as a composed password.

The identification systems (speakers and pass-
words identification) are used in open-set (no infor-
mation available on the possible speakers and pass-
words). Both systems calculate the likelihood ratio on
a first test signal by using equation (4). We used here
a normalization model UBM, as presented in section
2.2.1. This means that during the creation of the mod-
els (speaker, password), each model is adapted by the
MAP method to the UBM model.

The verification system is a classical speaker veri-
fication system which is used to confirm or infirm the
speaker identified previously by using a second test
signal (the second password).

Figure 5 shows the fusion between speaker and
speech (password) identification systems.

After sorting the log likelihood ratios (for the
first test signal) calculated with regard to the speak-
ers model LLK(X |Spi), i = 1,N (N is the number of
speakers stored in the database) and to the passwords
model LLK(X |Pswi),i = 1,N (N is the number of
passwords stored in the database), a first test consists
of comparing the most likely speaker given by the
speaker classifier with the first three identified pass-
words given by the password classifier. If his pass-
word was found between the three identified pass-
words, a couple (speaker/password) was thus identi-
fied. A second test consists of comparing the most
likely password with the first three identified speak-

ers. If this password belongs to one of them, another
couple (password/speaker) is identified. In the cases
where two couples are identified, the couple with the
biggest likelihood ratio (Lk Sp + Lk P) is retained.
The system can reject directly a recording if there are
no identified couples.

Once the first test signal is associated to a speaker,
a classical verification is then launched using the sec-
ond test signal pronounced by the speaker identified
previously. If the likelihood ratio of this verification
is smaller than the smallest likelihood ratio of the first
two recordings used in the training phase, the identity
of the speaker is confirmed, otherwise the speaker is
rejected.

4 EXPERIMENTS

4.1 Data Base

In order to evaluate the proposed system a corpus of
specific keywords has been recorded. This corpus
contains the recordings of 15 isolated words (French
language) and 11 numbers (from 0 to 10).
The recordings were stored in WAV format, with a
sampling rate fs = 16 kHz. The parameterization
was realized by using MFCC parameters for the pass-
words identification system and LFCC for speaker
identification and verification systems. We have opti-
mized the acoustic parameter for this application; all
the 8 ms the signal is characterized by a vector made
up of 16 ceptrals coefficients c(l) (see Eq. (2)) and
their derivative ∆∆.

4.2 Training and Test Data

For both identification systems (speaker and pass-
word) the first password recording is used for the

Likelihood
Ratio sorted

In descending
order

Fusion

1st signal 

Speakers
Model

Passwords
Model

Lk_Spn

Lk_Sp4

Lk_Sp7

Lk_Sp1

Lk_Pswn

Lk_Psw9

Lk_Psw3

Lk_Psw1

Sp1 Sp2 Spn Psw1 Psw2 Pswn

Identification

Figure 5: Fusion system architecture(Module 1).
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training mode. The verification system uses the sec-
ond password for the training mode. The speakers
database is divided into two equals groups: 7 clients
and 7 impostors. Therefore, in the test stage the num-
ber positive and negative tests are equals.

1. The speaker identification system (text-
independent) uses two recordings of 14 words
of the 7 clients for the training phase. For the
recognition phase, the system uses one recording
of 14 words of the 7 clients and 3 recordings of
14 words of 7 impostors.

2. The password identification system (speaker-
independent) uses two recordings of 7 clients for
the training phase. For the recognition phase, the
system uses one recording of 7 clients and all
recordings of the impostors.

3. The verification system uses two recordings of the
second passwords of every client for the training
phase and a recording of 7 clients as well as all
the recordings of 7 impostors for the recognition
phase.

4. The reference system uses for the training phase 7
speakers, two recordings of 14 words. For recog-
nition phase we used a recording of 14 speak-
ers passwords and 3 recordings of 14 impostors
words.

4.3 Reference System

The results obtained by the global system are com-
pared to a classical verification system (Bimbot et al.,
2004). In the training phase of the reference system
a speaker model is created from the feature vectors
(16 LFCC + ∆∆) using two recordings of all the pass-
words to model speakers; However the recognition
phase uses all passwords of the speakers pronounced
by impostor and other words.
We have optimized the number of GMM for this ap-
plication; the optimal value is G = 16.

4.4 Results and Discussion

Table 1 shows the false rejection rate (FRR) and the
false acceptation rate (FAR) of the reference system,
the first module of the new system and the global
system proposed.

The best equal error rate obtained for the refer-
ence system is 21.43%, which is high enough but can
be justified by the small size of the database. After
the fusion of the results between the speaker identifi-
cation system and the password identification system,
we notice that the FAR increases to 28.57% (that is

Table 1: performances of different systems.

Systems FRR FAR
Reference System

21.43% 21.43%text dependent
(16 LFCC + ∆∆)

Fusion System between

7.14% 28.57%
speakers identification

(16 LFCC+∆∆)
and passwords
identification

(16 MFCC + ∆∆)
Verification after fusion 7.14% 14.28%

(16 LFCC + ∆∆)

due to the password identification system which in-
creases the chance of impostors to be accepted be-
cause the password is well recognized), while the
FRR decreases to 7.14%. By using a verification sys-
tem, which uses the results of this fusion, we improve
the FAR (from 28.57% to 14.28%) while the FRR
remains the same one (7.14%) because the verifica-
tion system was adapted to recognize the clients. The
global system thus makes an improvement of 43.47%
of the FRR and 65.69% of the FAR. Note again that
these values are high enough due to the small size of
the database.

5 CONCLUSIONS

In this paper, we presented several experiments to
improve the performances of a voice-based biomet-
ric system using decision fusion. The fusion of the
speaker identification and the passwords identifica-
tion was firstly proposed. We show that the fact of
modeling the passwords pronounced by the speakers
brings improvements in the false reject rate but in the
same time it increases the number of the impostors
accepted by the system. The second experience pro-
poses an automatic speaker verification using the re-
sult (speaker identified) of the first experience. The
aim here is to confirm the results returned by the fu-
sion of speaker and password classifiers. This second
experience allows us to reduce the number of impos-
tors accepted by the system and improves the results
of the fusion by decreasing the FAR from 28.57% to
14.28%. So the global system improves the perfor-
mances in term of FAR and FRR with regard to the
reference system. This study encourages us to con-
tinue the experimentation on a corpus with more im-
portant size and to consider other kind of fusion such
as weigthed ranks.
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Abstract: The psychophysical evaluation of the sensibility of the thin and thick fibers with sinusoidal current 
stimulation was proposed in the 80s. After that, researches observed that 5 Hz stimulus would be related to 
the thin unmyelinated fiber. This work aims a quantitative analysis of the cerebral cortex response to 5 Hz 
stimulus, through the identification of the latency components of the evoked potential (EP) that were 
estimated by the coherent mean after remove the stimulus artefact by using the Independent Component 
Analysis. Electroencephalography (EEG) signals were collected at Cz electrode (10-20 International 
Standard System) of 5 volunteers. The EP estimated with 5 Hz stimulus using the Second Order Blind 
Identification associated with Robust Orthogonalization (SOBI-RO) associated with the coherent mean 
presented the following components: N1 = 104 ms (one volunteer), P1 = 179 ms (four volunteers) and 
N2 = 234 ms (three volunteers), P2 = 280 ms (three volunteers) and N3 = 493 ms (all volunteers). The SOBI-
RO techniques can be a very useful tool in artefacts and noise reduction on the EP estimation. 

1 INTRODUCTION 

Our knowledge about the world is built over 
different sensations. The perceptions begin at 
receptors cells and are transmitted to the central 
nervous system through primary afferents fibers .In 
the somatic system, these fibers have different 
diameters and transmit different sensations to the 
spinal cord: thin fibers transmit pain and 
temperature, and thick fibers transmit the sense of 
touch. An instrument of psychophysical sensibility 
evaluation, proposed in the 80’s, is based on the 
principle that activation of different diameters fibers 
depends on frequency of sinusoidal currents: 5 Hz to 
non-myelinic fibers (Masson et al., 1989; Ro et al., 
1989), 250 Hz to thin myelinic fibers and 2 kHz to 
thick myelinic fibers. 

The evoked potential (EP) by electric stimulus 
can be obtained using the coherent mean (Misulis, 
1994; Regan, 1989). When a sinusoidal current of 
5 Hz is used to stimulate, a strong level of artefact in 

this frequency is collected in the EEG electrodes. 
The 5 Hz artefact damage the EP and the extraction 
of this artefact (synchronised to the stimulus) is very 
difficult because of is into EP frequencies. In this 
case, alternative tools can be used. In this context, 
the use of statistics tools can help us. The Second 
Order Blind Identification associated with Robust 
Orthogonalization -SOBI-RO (Belouchrani et al., 
1997; Belouchrani and Cichocki, 2000) can be a 
useful technique where the stimulus artefact is 
presented in the same frequency band of the EP. It 
can be applied in EEG electrodes that are spatially 
located in the scalp where each electrode is 
considered like a linear mixture of blind brain 
sources.  

In the present work, the SOBI-RO was used to 
detect and remove independent components 
associated with the artefact and rhythm that difficult 
the analysis on Cz channel. The reconstructed 
signals would present the epochs without the 
artefacts, and then, the ERP could be better 
identified using the coherent mean. 
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2 MATERIALS AND METHODS 

The EEG signals were collected in 5 normal 
volunteers with closed eyes, without neurological 
disease or medication. The experimental protocol 
was performed in the Clinical Neurophysiology 
laboratory on UNIFESP and was approved by the 
Local Ethic’s Committee. The electrodes of 
stimulation (10mm diameter gold electrodes) were 
placed in the medial and lateral surfaces of the distal 
phalanx, of the second finger of the left hand with a 
thin amount of conductive gel. The 5 Hz sinusoidal 
current stimulus with twice the sensibility threshold 
was applied by the Neurometer Current Perception 
Threshold (CPT)-USA. The Electroencephalogram 
(EEG) signals were collected in the Cz channel and 
the reference was A1+A2 (connected ear). In 
addition, the stimulus signals were collected on left 
wristband (Pi). These signals were used for 
synchronization of the epochs. Six sessions with one 
hundred of epochs (20s each, followed by 10s 
without stimulation) were recorded with a sample 
rate of 500 Hz by the NeuroScan SymAmpsTM – 
USA. In each epoch were extracted two seconds 
before and six after the stimulus where it expects to 
find the EP. The 100 epochs of 8 seconds were 
applied in the SOBI-RO algorithm labelled ICALAB 
2.5 for MATLAB (ICALAB 2004). 

2.1 The SOBI-RO 

The SOBI-RO (Second Order Blind Identification 
with Robust Orthogonalization) is a statistic tool of 
ICA (Independent Component Analysis). This tool 
considers the measured signals like a linear 
combination of unknown sources (Hyvrinen et al, 
2001). In this context, the epochs x can be expressed 
like: 
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Or can be represented as: 

 
   A.sx =    (2) 

 
Where X is the epochs collected in Cz channel 

and synchronized whit the stimulus. A is an 
unknown mixing matrix that make the data x a linear 
combination of the unknown sources s. 

A pre step in the ICA is the Whitening. It is used 
to represent the data in a new space, where the 
signals are decorrelated with exhaustion. 
Belorachrin and Cichocki (2000) presented a robust 
technique applied in the whitening process called 
Robust Orthogonalization that can give us a better 
estimation of the coefficients of the whitening 
matrix W.  

In the Robust Whitening, a set of covariance 
matrices of x at different lags is used to estimate the 
whitening matrix: 

 
HAARR )()]-(tE[x(t).x )( S

*
x τττ ==  (3) 

Where τ=1,...,K 

The method uses an optimization algorithm that 
estimate a linear combination of evaluated 
covariance’s matrices RX: 
 

∑
=

=
K

X
1

)(ˆ
τ

τ τα RC    (4) 

The eigen value decomposition (EVD) of C is 
performed: 

T
CnC diag UUC ],...,[ 22

1 λλ=   (5) 
 

And the whitening matrix is: 
 

T
Cndiag UZ 1

1 ],...,[ −= λλ   (6) 
 

The whitened data z is expressed like: 
 

xAWxWZ ..== .    (7) 
 

W.A is a unitary matrix U. In this context, the 
objective of SOBI is to discover this matrix U. For 
this, a cost function called join diagonalyzer -JD 
(Belouchrani et al., 1997) is used.  For that, a set of 
covariance matrices of the data z is taken at different 
lags: 
 

TWRWR XZ
ˆ)(ˆˆ)(ˆ ττ =    (8) 

 
Using second order information for theses 

matrices it is possible to find the matrix U by an 
optimization method of search. 

Then, the mixing matrix A and the sources can 
be estimated by: 
 

UWA ˆˆˆ #=     (9) 
 

)(ˆˆ)(ˆ tt H xWUs =    (10) 
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a)

b)

a)

b)

where # is a pseudo-inverse matrix and H is a 
Hermitian matrix. 

2.2 Application of SOBI-RO 

After the SOBI-RO detection, the independent 
components passed by a visual inspection, and the 
components related with the 5Hz stimulus were 
deselected. The new epochs were reconstructed and 
the coherent mean applied. But in this average, the 
alpha rhythm was strongly present. Thus, in a 
second approach, the SOBI-RO was applied to 
remove frequency components of 8-10Hz that can be 
associated with spontaneous EEG.  

3 RESULTS 

The EP for volunteer #1, obtained with the original 
EEG signal at Cz channel (Figure 1a), presents high 
level of the 5 Hz artefact that difficult the analysis. 
After removing this 5 Hz artefact with SOBI-RO, 
the EP can be seen most clearly in the Figure 1b. 
The power spectral density (PSD) shows the 
attenuation of the 5 Hz frequency and odd 
harmonics of 5 Hz (Figure 2).  

A rhythm into 8-10Hz frequencies is also 
presented, but before and after stimulation (Figure 
1.b). The new EP shows the attenuation of this band 
(Figure 2a and 2b). The components identified in 
this EP (Figure 3, Table 1) were: P1 = 188 ms, 
N1=234 ms, P2 = 268 ms and N2 = 441 ms. The 
grand-average of the five volunteers EP’s presented 
components at N1 = 109 ms, P1 = 200 ms, 
N2 = 230 ms, P2 = 279 ms and N3 = 441 ms 
(Table 1).  
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Figure 1: EP of Cz channel (volunteer #1), (a) before and 
(b) after SOBI-RO removing 5Hz component. Time 0 s 
represents the beginning of the stimulation. 
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Figure 2: PSD of EEG signals (volunteer #1) (a) before 
and (b) after SOBI-RO. 
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Figure 3: The EP after removing the artefact and 8-10Hz 
related IC’s.  

4 DISCUSSIONS 

During the process to remove the 5Hz artifact with 
SOBI-RO, the IC that represents this frequency was 
clearly identified and removed. We can see in the 
PSD (Figure 2) that the 5Hz stimulus artifact and 
odd harmonics were completely removed. This 
shows that the SOBI-RO was efficient in this step. 
However, on the process for identifying of IC’s 
related to the 8-10Hz band (possibly, associated with 
the spontaneous alpha rhythm during closed eyes) 
was more difficult. For each volunteer, ten or more 
IC’s related with this band were founded. Some IC’s 
showed a variation of the amplitude with the 
stimulus .This fact does doubtful their removals and 
suggests the necessity of a better method of 
detection based on the statistical information of the 
IC’s.  In this work, the procedure was repeated ten 
times (using 70 epochs randomly selected each time) 
for evaluating the experimenter bias (due the visual 
selection of the IC’s). The results were similar in all 
cases. 

SOBI WITH ROBUST ORTHOGONALIZATION TO REMOVE THE ARTEFACT STIMULUS IN EVOKED
POTENTIAL - 5Hz Current Sinusoidal Stimulus
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The EP identification was only possible after 
SOBI-RO pre-processing. The N1 component was 
only identified in the EP of volunteer #2. This 
component will be confirmed in future researches, 
with more experiments. In the other hand, the 
components P1, N2 and P2 were present in a great 
number of volunteers. All volunteers presented the 
N3 component (between 441ms and 604 ms). The 
grand average also shows the N1, P1, N2, P1 e N3 
components (Table 1). 

Table 1: Components of the EP of five volunteers and 
Grand Average after applying SOBI-RO. 

Volunteer 
N1 

(ms)

P1 

(ms) 

N2 

(ms) 

P2 

(ms)

N3 

(ms)

#1 - 188 234 268 441 

#2 104 206 - - 424 

#3 - 139 237 283 562 

#4 - 181 230 290 434 

#5 - - - - 604 

Mean 104 179 234 280 493 

Standard deviation - 28 4 11 84 

Grand Average 

 109 200 230 279 441 

5 CONCLUSIONS 

This work presented a useful application of SOBI-
RO with the objective of removing the 5 Hz 
sinusoidal current artefact and spontaneous activity 
in the 8-10 Hz band. The conventional filtering can 
not remove theses frequency bands without remove 
information of the EP.  

Research with SOBI-RO can be very useful in 
signals where the artefact stimulus frequency is in 
the same band of the EP. 
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Abstract: The work presents a clinical outline of stature defects and scoliosis as well as the contemporary 
methodology behind the thorax, spine and leg bone radiogram measurements. In order to increase the 
repeatability of the results and to create computer records which support monitoring records of scoliosis, an 
algorithm for the process of radiological image was developed. It automatises the time consuming process 
of measuring and processing data by the doctor.  The image processing is initiated by an interactive 
procedure where key points of biological structures are marked with a cursor. Other measurements are done 
automatically. The algorithm is also an attempt to use the author’s modification for measuring the geometry 
of the spine and thorax, which increases precision when compared to the methods by Cobb, Fergusson and 
Gruca. Results of radioplan-metric investigations compared with a system for analysing the trajectory of 
respiratory motion and the asymmetry weight distribution system in the foot have been presented. A 
mathematical analysis of thorax and bone radiogram geometry combined with the results of thorax 
trajectory movement enable the creation of individual patient symmetry indices with a description of the 
monitoring process of the disease.   

1 INTRODUCTION 

Side curvatures of the spine are a huge individual 
and social problem. The frequency in which this 
problem occurs is different in various populations 
and alternates between 3-15% of children and young 
people. During the last several years there has been a 
clearly increasing tendency in the number of people 
suffering from this disease. Scoliosis is a severe 
impediment of posture, which is accompanied by 
secondary alterations in the blood circulation and in 
the respiratory system. The alteration of the 
aforementioned systems leads to the limitation of the 
general efficiency of the patient. Finally it can cause 
early disabilities and can also shorten one’s life. 

Be advised that papers in a technically unsuitable 
form will be returned for retyping. After returned the 

manuscript must be appropriately modified. The 
three-dimensional body system in the standing 
position, which functions as a biomechanism with a 
wide range of freedom, protects against gravitation 
in the conditions of unstable equilibrium, and it 
should be considered in a dynamic sense. As a 
starting point it is necessary to consider the degree in 
which the body’s physiology in terms of bones, 
joints and ligaments has been fulfilled. The correct 
build of the skeleton, passive stabilisation and 
proper movement in the range of individual 
elements, are essential. These elements create 
merely potential possibilities of taking on and 
maintaining the correct posture, however its image 
depends on the function and efficiency of the central 
nervous system. Currently it is claimed that 
assuming and sustaining the correct position is the 
same motion task as any other movement activity. 
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Producing and establishing a proper unconditioned 
co-ordination reflex requires even millions of 
conditions to be fulfilled; however the quality of 
created habits depends on conscious action and 
inborn predispositions. Gradually worked out, more 
simple movement abilities create a base for the 
following predispositions, which are built-in into 
more complex movement patterns. An established 
system of individual segments of the body, as well 
as balance do not form a static condition, but one 
that oscillates around the balance point, with a 
tendency to optimisation. Secondary disturbance of 
posture control is caused by a slightly different 
mechanism. It is probable that as a result of 
disturbance of brain functions, deviation of posture 
from the pattern recognised as a correct can occur. It 
should be noticed that while comparing the results of 
the application of advanced technology with a 
system of a few relatively connected simple methods 
supplemented by computer techniques, a 
significantly higher acuteness and peculiarity, than 
in the case of expensive novelties is achieved. 
Taking into account the unfavourable financial 
realities of Polish science there is a growing interest 
concerning the low-outlay adaptations of more 
simple methods. A system of mathematical 
correlation between different methods, which 
describe a chosen phenomenon, uncovers a new 
multidimensional space of description, characterised 
by a higher level of specificity. 

One of the methods used in many centres as 
a parameter, which monitors the development of 
scoliosis, is the spirometer experiment. 
Unfortunately, from the bioengineering point of 
view it can be noticed that the two lung spaces 
coupled by an angle of scoliosis are the source of an 
averaged volumetric parameter and can be described 
as a compensatory structure. The increase in the 
value of the angle of scoliosis leads to a decrease of 
volumetric space on the chord site and a 
proportional increase of volume on the curve site. 
Proportions are preserved best with a slight 
scoliosis, which does not exceed 15-180. In such a 
situation equilibrium is established. The pressure of 
the lung is compensated by the emphysema of the 
second lung. During the increase in the angle of 
scoliosis the summative volumetric parameter 
decreases. Therefore, cases where a spirometric 
parameter represents an angle of scoliosis the case is 
usually so advanced that it should be treated 
surgically. The non-invasive character of simple 
postural-metric methods and precision of      
planimetric radiography are connected by a method, 
which consists of a multi-segmental system for 

evaluating the trajectory of thorax movement. A 
system of tapes and transducers braiding the thorax 
enables the estimation of movement in all of its 
areas. Based on the knowledge of motion 
biomechanics’ index values which are dependant on 
the scoliosis angle, rib movement and activity of 
respiration muscles, a quantified body symmetry 
image can be obtained. Clinical cases linked with the 
occurrence of certain movement asymmetries can be 
induced through various illness mechanisms such as 
limb shortening, shoulder syndrome and the like. 
The application of an integrated system, which 
evaluates the basic parameters of geometry of the 
thorax by the planimetric method and repeated bio-
engineering (Dyszkiewicz at all 1999) and 
spirometry provide effective and credible 
supervision in every stage of the disease. The image 
is made at the beginning of research. An analysis of 
the images of a patient’s body carried out by means 
of a neural net implemented into the computer 
provides geometry (mainly symmetry) indicators of 
selected parameters. Based on these parameters the 
parameters of a three-dimensional trajectory of the 
respiratory system are compared. Monitoring the 
capacity of expiration in scoliosis is of a particular 
diagnostic importance when the parameter values 
fail to increase proportionally to age. This happens 
when a limiting value of scoliosis is achieved which 
is qualified to surgical treatment.  

2 THE AIM OF THE STUDY 

The aim of this compilation is to find a practical 
application of contemporary measurement methods 
of the side curvature of the spine to construct a 
practical algorithm and easy to use multipart 
software. The following questions were posed: 

1. Does using methods (LAF, PAF, FAF, CA, FA, GA, LCC) 
make it possible to differentiate between the 
parameters of healthy and scoliotic people ? 

2. Are the new, planimetric coefficients LAF, 
PAF, FAF (in scoliosis) well correlated with 
the traditional, measurement systems CA, FA, 
GA (Cobb, Fergusson, Gruca) ? 

3. Are the planimetric coefficients LAF, PAF, 
FAF, CA, FA, GA (in scoliosis) better 
correlated with the traditional, spirometry test 
LCC or breath asymmetry analysing system 
(produces breath asymmetry factor BAF) ? 
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2.1 Group of Patients 

Patients suffering from thorax and spine trauma, 
hypertension, collagen and asthmatic disease, 
diabetes, taking vascular medication, having 
frostbites and after injury to upper extremity were 
excluded from the study. The examinations were 
carried out in the following group of patients: (1) 
Examined group (A) - consisted of 16 women, 
average age 32,9±4,6 years and 9 men aged 34,7±6,3 
years, with right-thorax scoliosis. (2) Control group 
(B) - consisted of patients with normal spine (treated 
in hospital for gastric illness), 15 women and 9 men, 
average age 35,7±5,8 years 

2.2 Methods 

In the first part the measurement algorithm conducts 
geometrical measurements according to Cobb’s and 
Ferguson’s recommendation. In the second part the 
author’s own modification of the process is used. It 
is based on measuring the torsion and angle of 
scoliosis on the level of every vertebra with results 
projected on two vertical charts placed on both sides 
of the radiogram (Dyszkiewicz at all. 2001) The 
proposed method enables a partial observation of 
scoliosis on the background of averaging 
parameters. The analyser of the radiograms works 
with a spirometer and a device to evaluate the 
trajectory of the respiratory system in the thorax. 
The obtained multi-parameter of patients after long-
term observations significantly helps to achieve a 
more accurate evaluation of the progression or 
regression of a disease (fig. 2, 3).  

 

 
Figure 1: Expert program automatically detecting bone 
modification in scoliosis: (1) vertebrae torsion angle modo 
Gruca, Cobb, Fergusson, (2) cuneiform vertebrae 
deformations, (3) geometry and bone density distribution, 
(4) hip geometry, (5) sacro-iliac joint geometry. 

The researchers used a prototypical diagnostic 
device, consisting of 4 elastic tapes embracing the 
chest, connected with converters of the path and an 
analogue-digital converter enabling the transmission 
of data through a parallel port to the “respiratory 
path” software which made it possible to monitor the 
oscillatory motion of the right and left lungs. 

2.3 Results 

Results of investigations (asymmetry coefficients 
CA, FA, GA, LAF, BAF, PAF, FAF, LCC) included 
in tab. 1. Patients described by asymmetry 
coefficients CA, FA, GA, LAF, BAF, PAF, FAF, 
LCC) show completely different values in group of 
sick patients (A) and in control group (B). While 
analysing table 1 we can clearly notice that in 
scoliosis the level of asymmetry  of newly inserted 
coefficients LAF, BAF, PAF and FAF is 
comparative with coefficients based on Cobb’s, 
Fergusson’s, and Gruca’s methods and clearly 
higher than the coefficient based on the LCC breath 
volume of  lungs. Moreover, it can be observed that 
LCC in group (A) is much different from the value 
in the group of healthy people (B). 

 

 
Figure 2: Asymmetry area of lungs measurement. 

 
Figure 3: Graphs of ungs area. 
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Table 1: Asymmetry coefficients. 

 

Cobb 
angle 
CA 

Fergusson 
angle 
FA 

Gruca 
Angle 
GA 

lung 
asymmetry

factor 
LAF 

breath 
asymmetry 

factor 
BAF 

pelvic 
asymmetry

factor 
PAF 

foot 
asymmety 

factor 
FAF 

lungs 
capacity 

coefficient 
LCC 

Group A 
(n=25) 

0,684 
± 0,175 

0,616 
± 0,168 

0,651 
± 0,181 

0,752 
± 0,121 

0,711 
± 0,176 

0,764 
± 0,193 

0,694 
± 0,185 

0,876 
± 0,214 

Grop B 
(n=24) 

0,973 
± 0,181 

0,955 
± 0, 114 

0,949 
± 0,136 

0,813 
± 0,164 

0,922 
± 0,178 

0,875 
± 0,187 

0,935 
± 0,135 

0,821 
± 0,189 

CA (A - B) P < 0,01 GA (A - B) P < o,o1 BAF (A - B) P < 0,01 
FA (A - B) P < 0,01 LAF (A - B) P < 0,05 PAF (A – B) P < 0,05 

FAF (A – B) P < 0,01 LCC (A – B) P < 0,5   
 
Table 2: Correlation table of Fergusson angle with Cobb angle, Gruca angle and FAF, BAF, PAF, LAF, LCC in decreasing 
relation. 

 

3 CONCLUSIONS 

1. The methods (LAF, PAF, FAF, CA, FA, GA, LCC) used in 
this investigation make it possible to clearly 
differentiate between the parameters of healthy 
and scoliotic people 

2. New, planimetric coefficients LAF., PAF, FAF 
(in scoliosis) have good correlations with 
traditional measurement systems CA, FA, GA 
(Cobb, Fergusson, Gruca)(tab. 2). 

3. The planimetric coefficients LAF, PAF, FAF, 
CA, FA, GA (in scoliosis) have better 
correlations with breath asymmetry analysing 
factor BAF in comparison with traditional, 
spirometry test LCC (tab. 2). 

4 DISCUSSION 

The contemporary diagnosis and monitoring of the 
evolution of scoliosis in cheap screening evaluation 
is based on a physical test assisted with plumb-line, 
measure tape and a goniometer. Tests of averaged 
spirometric parameters, which have been 
administered for many years, have pointed to a 
phenomenon where the loss of capacity of one lung, 
which is the result of hypopnoe, is counteracted by 
hyperpnoea of the other lung often leading to tests 
producing normal values. It is often only after the 
angle of curvature passes the 30’ mark that evident 
pathology is registered. Displaying a child on an x-
ray, with the aim to determine a single angle of 

curvature seems very controversial. The main aim of 
this work was to expand the range of methods used 
for defining patients with scoliosis by adding to the 
already known methods CA, FA and GA – the new 
planimetric coefficients of the chest LAF, pelvis 
PAF, load decay of the foot test FAF and breathing 
track BAF. These tests were carried out on a small 
group of patients and have to be treated tentatively; 
nevertheless it is possible to notice a significant 
difference in the results between sick group (A) and 
control group (B). The correlation between CA, FA, 
GA / LAF, PAF and CA, FA, GA / FAF, BAF was 
also very good and clearly higher from the 
correlation with the traditional spirometric test 
which produced a result of only 0.41.The study 
results distinctly recommend inserting some extra 
LAF and PAF determinants to estimate standard 
radiological photos and to expand their range by a 
simple FAF podoscopic test and breath asymmetry 
analyses system estimating BAF. It can be clearly 
seen that an assessment of the breath asymmetry 
truck of the chest reveals more sensitivity than a 
traditional evaluation of the breath-volume. 
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Abstract: Cryptobiosis represents the state of a living organism when it shows no visible signs of metabolic life, but 
maintains a capacity to return to an active, metabolic state. This peculiar state, although known from a wide 
variety of organisms, has received little attention from a theoretically biological perspective. A description 
based on a Petri net setting and a time based security model is proposed. In order to protect against a 
prolonged exposure time, the pathways for chemical reactions involved must fulfil their actions during a 
limited detection and response time to fulfil the protected state of entering/leaving cryptobiosis. 

1 INTRODUCTION 

Within biology the term cryptobiosis, or hidden life, 
represents the state of an organism when it shows no 
metabolic signs of life, while still maintaining a 
capacity to return to normal metabolic activity 
(Keilin 1959, Clegg 2001). Organisms with a 
capacity to enter cryptobiosis are found in a variety 
of prokaryote, plant, and animal taxa, and has 
evolved as an adaptation to survive under temporally 
hostile conditions, e.g., in very dry or cold 
environments (Alpert 2005). One of the most 
common environmental agents inducing cryptobiosis 
is desiccation, leading to a variant of cryptobiosis 
called anhydrobiosis. The cryptobiotic state is 
characterised by temporally arrested metabolism, 
growth, reproduction and senescence (Keilin 1959, 
Crowe 1971). The lack of metabolism during 
cryptobiosis can be described as temporary “death” 
representing a unique biological state between life 
and death, a potentially reversible death (Neuman 
2006).  

The biochemical and physiological mechanisms 
allowing cryptobiotic organisms to survive in an 
ametabolic and (in the case of anhydrobiosis) more 
or less completely dry state remain poorly 
understood (Schill et al. 2004, Watanabe et. al. 2002, 
Guppy 2004). Also, the problems connected with 
extreme desiccation and a complete shut-down of 
the metabolic machinery have rarely been analysed 
theoretically. However, some criteria are necessary 
to fulfil for successful cryptobiosis to take place. For 

instance, the organism must either prevent cellular 
damage at the entrance of cryptobiosis and during 
the cryptobiotic state, or be able to repair the 
damage that is potentially expressed when 
reactivated. It must also be able to respond to one or 
more triggering signals connected with the 
cryptobiotic period. We will here describe a possible 
approach to a protection system during an induction 
phase, a dormancy phase and a reactivating phase of 
cryptobiosis. 

In order to return to an active life, an organism in 
cryptobiosis needs to interpret signals from the 
environment including reactivating itself from the 
ametabolic state, i.e. recovering original biological 
functions despite the lack of basic metabolic 
machinery. The organism must be “raised from the 
dead”, by responding to an environmental signal 
announcing favourable life conditions, e.g. a drop of 
water for a dehydrated organism. It has been 
suggested that cryptobiosis entails reversible 
computation with a bootstrapping involving a 
recursive hierarchy (Neuman 2006). This is similar 
to models within computer science including 
creating more complex tools from simple tools 
(bootstrapping), sub and superclasses within object 
oriented programming (hierarchies), and logic 
programming using recursive functions. We will 
here use a Petri net as a tool for describing the 
reversible processes of cryptobiosis, without going 
into the details of the metabolic pathways involved. 

Biological systems modelled by Petri nets 
were introduced by Reddy et al (1993). By using 
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Petri net it was possible to dynamically model the 
intrinsic behaviour of e.g. metabolic pathways 
within a cell.  In Heiner et al (2004) the metabolic 
pathways conducting an apoptosis (genetically 
programmed cell death) is modelled using a 
qualitative Petri net.  

In section 2 the different phases of 
cryptobiosis are outlined followed by a description 
of a time based protection system. Next, a Petri net 
is introduced for modelling metabolic protection and 
finally a discussion and concluding part sum up the 
proposed description. 

2 CRYPTOBIOSIS 

Cryptobiosis may be induced by several 
environmental factors e.g. low temperature 
(cryobiosis), lack of oxygen (anoxybiosis) or lack of 
water (anhydrobiosis). All of these factors may force 
the organism to an arrested metabolism. Here, we 
will use anhydrobiosis as an example to describe 
cryptobiosis within a Petri net setting using a time 
based security model. 

 
Figure 1: An idealized figure of changes in metabolism 
during the induction, dormancy, and reactivating phases of 
cryptobiosis. A more realistic curve would likely involve 
non-linear patterns of metabolic changes during induction 
and reactivation.  

Figure 1 shows the three general phases 
connected with cryptobiosis, where the induction 
phase prepares the organism for an ametabolic state 
as a result of e.g. desiccation. Note that the factor 
inducing changes in metabolic rate, e.g. reduced 
hydration level, is not shown in Figure 1. During the 
dormancy phase the organism is inactive due to a 
lack of metabolic activity, but continued desiccation 
may occur because metabolism will stop well before 
the animal is completely dehydrated. The 
reactivating phase involves both the reverse 
processes of the induction phase and a repair process 

depending on damages arisen during the induction 
and dormant phases. 

The pattern of water loss at the induction of 
cryptobiosis as a result of dehydration 
(anhydrobiosis) has been well documented (Wright 
1989, Wharton 1996). Initially the evaporation of 
water is high, but at some point the organism has 
mobilised a first protection mechanism (mainly 
based on morphological changes) which 
dramatically reduces the rate of further dehydration. 
Wright (1989) termed this point the “permeability 
slump”. After this point, the rate of dehydration is 
much reduced. The remaining time, until the 
organism has lost so much of its water that 
metabolism is arrested, is decisive of whether the 
organism will enter a cryptobiotic state or die. 
During this time, the organism must mobilise the 
mechanisms that should protect it as it approaches 
the dry anhydrobiotic state. Figure 2 describes the 
temporal change in hydration level of an 
anhydrobiotic organism exposed to a desiccating 
agent.  

 
Figure 2: Patterns of water loss over time in an 
anhydrobiotic organism exposed to a desiccating agent, 
with phases of detection (D) and responses (Ri), creating a 
state of cryptobiotic protection (P). 

In both computer science and in cryptobiotic 
organisms, a detection mechanism must recognize 
the attack or stress input, after which different 
response mechanisms must be activated (R1 and R2 
in Figure 2). In cryptobiotic organisms these 
preventing mechanisms together form the protection 
system which must be activated before the 
metabolism disappears.  

3 A TIME BASED PROTECTION 
SYSTEM 

To describe, in general terms, a cryptobiotic 
protection system, a time based security model 
(Schwartau 1999) may be used, where a protection 
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mechanism is successful only as long as the sum of 
the time needed by the detection mechanism and the 
response mechanism does not exceed the time limit 
of the protection.  

In this model the amount of exposure time E, 
which may be positive or negative, determines the 
outcome of an external attack. The exposure time 
defines a time period under which the organism is 
exposed to the environmental stress without a 
mobilized protection system. The exposure time is 
determined by three factors; a protection system P, a 
detection mechanism D, and a response mechanism 
R, see Figure 2. The purpose of a protection system, 
independent of being within computer science or life 
science, is to protect involved assets. This is valid 
for a certain amount of time, i.e. the involved assets 
lose their values or an organism loses the 
opportunity to enter a cryptobiotic state. If detection 
and response time is short enough, depending on the 
current attack strength, the protection system will 
not be invaded or exposed. So a negative exposure 
time means that the protection mechanism manages 
to keep the system secured during the time when 
detection and responses are established. 

Let ∆P denote the duration of protection of a 
system caused by an attack with strength a starting 
at time t0 and with protection strength s. Let ∆D 
denote the time it takes to detect an attack with 
strength a under given circumstances. Finally, let ∆R 
denote the time it takes to implement sufficient 
measures to eliminate the negative consequences of 
the attack with strength a after the signal has been 
detected. Then 
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Equation (1) captures exposure time ∆E(a,s,t0,t) 
as a relation between the three mechanisms above 
and the time intervals t0 and t where t>t0. The 
system will be safe if and only if , i.e., if the 
system is not exposed to an attack without a 
protection system.   

0<ΔE

As already pointed out in Figure 2, a protection 
system consisting of detection, responses and 
protection are outlined for the induction phase. 
During the first period of time (t0 to t1) the organism 
has not yet started to lose its internal water, but a 
detection mechanism (D) recognizes the presence of 
a stress signal. This may be, e.g., the evaporation of 
surrounding water. In the next interval (t1 to t2), the 
organism starts to lose its body water and a first 
response mechanism (R1) is mobilised. When the 
establishment of this mechanism is completed (at t2), 
the rate of dehydration is much reduced, but 
continues until the organism has reached a level of 
hydration at which metabolism stops. Since 

metabolism is arrested well before the organism is 
completely dry (Clegg 1986), the loss of water may 
continue also after the cryptobiotic state has been 
reached. In the interval between t2 and t3 the second 
response (R2), representing the biochemical 
preparations for the dry cryptobiotic state, takes 
place. If these preparations are successful, i.e., if the 
second protection system has been established 
properly, the organism enters cryptobiosis. The time 
available for the necessary actions (detection + 
responses) will be determined by the rate of 
desiccation from t0 to t3, influenced in part by the 
strength of the desiccation agent, and in part by the 
ability of the organism to reduce the effect of this 
agent. If detection or response is delayed the 
protection system will not be ready, and the 
organism will die or be damaged before reaching a 
state of cryptobiosis. Equation (2) formalizes this 
organism system:  
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  (2) 

The organism will enter a state of cryptobiosis if 
∆E is negative, i.e. if the time needed to establish the 
protection mechanism ∆P exceeds the sum of the 
time for the detection ∆D and response mechanism 
∆Ri. The main difference in the interpretation of Eq. 
(1) (representing a computer science model) and Eq. 
(2) (representing a biological model) is that in the 
former model the protection system is present 
already at the beginning, with an expected time of 
function. In the biological model, the protection 
system is not described as present from the start, but 
is established only after the stress agent is detected, 
with an expected time of establishment (∆P). 
However, from the perspective of P, the responses 
R1 leads to an intermediate protection system 
(activated at the “permeability slump”) that 
conceptually resembles that of computer systems, 
since its location in Figure 2 defines a remaining 
time within which the R2 responses must take place. 

Processes during the reactivating part must 
include both activating the reversible processes of 
the induction phase, and repairing of damage caused 
by positive exposure time during induction and 
dormancy phases. 

4 USING A PETRI NET FOR 
MODELLING METABOLIC 
PROTECTION 

A Petri net consists of nodes and arcs where nodes 
are of two types; places pi and transitions ti. Tokens 
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represent activity of the sequence of transitions. 
Places, represented by circles, are passive system 
elements while transitions represented by boxes are 
active system elements, e.g. in a metabolic setting 
chemical compounds and chemical reactions. Arcs 
connect nodes of different type. The activity of a 
Petri net is a flow of tokens over the pathways of the 
net 

To start with, the organism must detect the state 
of stress, or cryptobiosis stimuli, which in the case 
of anhydrobiosis is represented by the initiation of 
desiccation (loss of water), and the intensity of the 
stress factor. If the humidity surrounding the 
organism is very low the process towards a dry and 
cryptobiotic state will be more rapid, and the 
organism then has less time to prepare itself before 
metabolism ceases. Preparations for the dry state 
therefore often involve morphological changes that 
reduce the rate of water loss (e.g., Wright 2001). 
Previous research has shown that this is a critical 
phase, where the cell must be able to mobilize the 
necessary metabolic changes that allow it to 
maintain structural integrity and enter a dry state 
without lethal damage. These changes, or set of 
places pi and transitions tj in a Petri net setting, are 
represented as different pathways in Figure 3.  

 
Figure 3: Induction phases of cryptobiosis. The dotted 
circles and squares indicate examples of metabolic 
pathways. 

The dynamics of a Petri net allows transitions to 
split between multiple places or places requires more 
than one transition to enter a state. The number of 
places and transitions are not known nor are the 
structures of the pathways. When two arcs arrive at a 
place it is a synchronisation step - only when the 
tokens from the converging pathways have both 
arrived at the place, does the transition on the 
outgoing arc fire. 

Examples of pathways are molecules (e.g., 
sugars, Crowe 2002) that replace structural water in 
cell membranes, and molecular chaperones (stress 
proteins) that prevent aggregation of proteins (Goyal 
et al. 2005).  All the details involved are outside the 
scope of this work, but several pathways that slow 
down or disappear during transforming from R1 to 
R2 are involved. 

Thus, the protection system allowing 
cryptobiotic survival includes several protection 
parameters, the induction of which relies on 
metabolic activity. Note that this has to be done 
before entering the cryptobiotic state, i.e. the 
protection system must act proactively.  

Compared to the induction phase and the 
reactivating phase, which normally amounts to 
minutes or hours, the dormancy phase may be much 
more extended in time and may last for weeks, 
months or years (Guidetti and Jönsson 2002, 
Watanabe 2006).  

The reactivation from the anhydrobiotic state 
also provides a challenge for the organism, the 
physiological details of which has yet to be 
described. At some point in time the metabolism 
must restart as a reaction to changed conditions, e.g., 
to rehydration. In principle this is the reverse 
function of the induction phase restarting the 
protection system. All the necessary biochemical 
components for starting up the system are present, 
and some of the protection components may be used 
for energy production or for repairing DNA and 
other parts of the cell.    

In principle the protection system needs to be 
restored to its pre-conditions with one major 
addition, damaged parts or processes must be 
repaired. This is part of the existing pathways or 
added as new pathways enlarging the Petri net. The 
protection system will not be restored without 
successful repair facilities and, in order to have a 
functioning repair mechanism, some restored 
protection mechanisms must be present.  Meanwhile 
there should be a replacement process where water 
is tied to the organism again. Finally, when the 
metabolism is restored to 100 percent, we are back 
to a fully active organism.    

5 DISCUSSION AND 
CONCLUSION 

As pointed out by Neuman (2004), cryptobiosis 
involves reversible computation with a suggested 
bootstrapping involving a recursive hierarchy. As a 
model for analysing the behaviour of cryptobiotic 
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systems, we propose using a Petri net, initiated by 
one or more input signals, computing a number of 
pathways for the induction and reactivating phases. 

 In computer science bootstrapping refers to a 
process where an initial system activates a more 
constant system maintaining fundamental skill. The 
initial process may be simple, activating a complex 
system step by step. Activating metabolism in a 
cryptobiotic organism may cause a chain reaction 
that step by step brings back the organism to its 
initial conditions. To model cryptobiosis both a Petri 
net setting and a time based security model is used, 
i.e. the chemical reactions involved and time for 
accomplishing the involved tasks. 

The input stress to which cryptobiotic organisms 
are exposed could be seen as an “attack” against a 
system. The organism must first detect the attack 
and then respond to it in order to protect the system. 
Organisms with a fast enough detection and 
response will fulfil the protection mechanism’s 
conditions. In a dynamic environment, where 
varying environmental conditions are presupposed, 
the robustness of the protection system may be 
modelled. This robustness is dependent of the 
strength of stress factor, possible threshold functions 
connected Petri net pathways, detection time and the 
success of all responses during a limited amount of 
time.  

Currently the biological phenomenon of 
cryptobiosis lacks comprehensive models for 
describing involved processes, both at a general 
level and within more specific system. Such models 
may be found within computer science. Petri net 
settings may describe the different biological aspects 
and processes connected with cryptobiosis, and 
allow simulation of them. By putting more realism 
into the models, a future progress of both models 
and simulation tools may result in a better 
understanding of resource control within protection 
systems, an important issue both within life science 
as within computer science.   
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Abstract: This paper presents simulations of a conductance-based neural network implemented on a mixed hardware-
software simulation system. Synaptic connections follow abio-realistic STDP rule. Neurons receive correlated
input noise patterns, resulting in a weights convergence ina confined range of conductance values. The
correlation of the output spike trains depends on the correlation degree of the input patterns.

1 INTRODUCTION

The first neurophysiology experiments on synaptic
plasticity were largely inspired by Hebb’s postu-
late (Hebb, 1949). Today, this postulate is often
rephrased in the sense that modifications in the synap-
tic transmission efficacy are driven by correlations in
the firing activity of pre- and postsynaptic neurons.
Spike-timing-dependent plasticity (STDP) describes
the adaptation temporal mechanisms (depression, po-
tentiation, saturation, ...) at the level of individual
spikes (Markram et al., 1997; Bi and Poo, 1998; Ab-
bott and Nelson, 2000; Feldman, 2000; Roberts and
Bell, 2002; Kepecs et al., 2002). Synapses with that
kind of plasticity were found in the cortex (Markram
et al., 1997), in hippocampus cells (Magee and John-
ston, 1997) and in cultured cells (Bi and Poo, 1998).
First studies showed the existence of Long Term Po-
tentiation (LTP) and Long Term Depression (LTD)
dependence, as functions of the synaptic weights to
the time difference between the pre- and postsynaptic
spikes.
More complex models were developed considering
phenomenons such as previous spikes effect for the
same neuron (Froemke and Dan, 2002), or the ef-
fect of synapse location (Rumsey and Abbott, 2003;
Froemke et al., 2005). STDP models can also have
different rules depending on the synaptic strength (Bi
and Poo, 1998; van Rossum et al., 2000). These
models are inspired by biophysical features. Con-
cerning functional aspects, STDP is known to en-
hance the connections strength for synchronized neu-
rons (van Rossum and Turrigiano, 2001; Song and
Abbott, 2001) and is supposed to play a role in neural
assembly synchronization (Singer and Gray, 1995).

Depending on the shape of the STDP model, the net-
work behavior can change, as the ratio between LTP
and LTD influences the weights convergence (Song
and Abbott, 2001).
Noise is considered as an interesting input in bio-
realistic neural networks as it helps modeling the
irregularity of real neuronal activity. Simulations
showed also the impact of noise inputs on the synap-
tic strength evolution when driven by STDP. In (Song
and Abbott, 2001), synaptic weights convergence is
bimodal. STDP is applied on synapses connecting
input noise spike patterns to a single spiking neuron.
These input spike trains can be cross-correlated and
have a Poisson distribution. With a different STDP
rule, where the potentiation (LTP) depends on the
synaptic strength, synaptic weights convergence is not
bimodal but confined in a limited range (van Rossum
et al., 2000).
Here we propose to explore, in a small neural net-
work, the effect of correlated input noise patterns
(one pattern per neuron) when a STDP rule is ap-
plied on synapses. The effect is evaluated on synap-
tic (between neurons) conductance distribution and
on correlation in neurons’ spike trains. Every neu-
ron is attacked by an input noise pattern. These noise
patterns have different levels of correlation. We use
conductance-based model of cortical neurons.
STDP features are usually explored in large scale
spiking neural networks, or in only one single spiking
neuron. In this work, we use a 6 neurons network
with a complex neuron model based on the Hodgkin
and Huxley formalism (Hodgkin and Huxley, 1952).
Neurons are implemented on analog VLSI circuits,
and the whole simulation system is a mixed hardware-
software instrumentation tool (see section 2). These
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same neural chips have already been successfully
used to simulate neural networks with STDP (Zou
et al., 2006b). The advantage of analog VLSI for
neural simulation is the speed of execution, it ensures
simulations in a biological real time. Furthermore,
hardware environment provides an electronic noise as
in biology living cells are in a noisy environment and
emulates in a way biological dispersion. In subsec-
tion 2.3, we present the STDP model we use and in
subsection 2.4 the method for correlating input noise
patterns. Then, in section 3, we show how hardware
parameters are related to biophysiological values. In
section 4, we present the simulation configuration,
tools to observe the distribution of synaptic weights
and the correlation of spikes, and we show results and
analysis of experiments. Finally, we discuss the spec-
ifications and the results of these experiments.

2 THE SIMULATION PLATFORM

We used for the simulation a hardware implementa-
tion of a conductance-based neuron model following
a Hodgkin and Huxley formalism. The implementa-
tion is done on analog VLSI circuits; the neural net-
work connectivity is driven by a custom hardware-
software system named PAX (Renaud et al., 2007).
This system is embedded on a computer through a
PCI interface board.

2.1 The Neurons Models

Analog VLSI circuits, model the neurons ionic cur-
rents, as described in the Hodgkin and Huxley for-
malism. An external capacitor connected to the cir-
cuits provides a voltage that is equivalent to the mem-
brane potential and ionic currents channels modulate
this potential. Four voltage-dependent ionic currents
are implemented:INa+ , IK+ , ILEAK and a modulating
slow voltage-dependent potassium currentIM. The
modeled neuron is the glutamate excitatory regular
spiking neuron (Connors and Gutnick, 1990). Hard-
ware neurons are characterized by their static pa-
rameters as time kinetics, potential offsets, conduc-
tance values (table 1), and by their functional fea-
tures as f(I) curves and spike-frequency adaptation
(see section 2.2). The neurons model parameter are
listed in table 1. m, n, mm in case of activation
and h in case of inactivation are state variables (s),
describing the state of ionic channels, defined by:
τ(VMEM)ds(t)

dt = s∞(VMEM)− s(t) with s∞(VMEM) =
1

1+exp(±
VMEM−VOFFSET

VSLOPE
)
.

The synapses conductance-based model is the kinetic

synapse model presented in (Destexhe et al., 1994).
It describes the synaptic strength as the duration of
postsynaptic receptors opening (AMPA receptors for
excitatory synapses). A pulse length represents the
conductance increase due to the release of transmit-
ters (Zou et al., 2006a).

Table 1: Ionic channels parameters for the implemented
model, relative to a membrane area of 0.00022cm2.

Leak ILEAK = gLEAK(VMEM −VEQUI)
gLEAK = 33nS, VEQUI = −80mV

Na INa = gNam3h(VMEM −VEQUI)
gNa = 11µS, VEQUI = 50mV
m : VOFFSET= −37mV, VSLOPE= 7.2mV
h : VOFFSET= −42mV , VSLOPE= −4.6mV

τ(m) = 0.03ms, τ(h) =
{

3.00msif VMEM>0
0.25msif VMEM<0

K IK = gKn4(VMEM −VEQUI)
gK = 1.1µS, VEQUI = −100mV
n : VOFFSET= −37mV, VSLOPE= 11.38mV
τ(n) = 3ms

Mod. IM = gMm(VMEM −VEQUI)
gM = 10nS, VEQUI = −100mV
mm: VOFFSET= −35mV , VSLOPE= 11.4mV

τ(mm) =
{

300msif VMEM<0
8msif VMEM>0

2.2 Neurons Functional Features

In the PAX system, values of stimulation currents
are electronic values that can differ from one neuron
to the other to trigger a same frequency. This phe-
nomenon is due to the mismatch and variations in the
VLSI circuits fabrication process. We use the f(I)
curves to benchmark the circuits and tune the simu-
lation parameters. The measured f(I) curves match
the software simulations of the corresponding model.
Differences exists concerning origin and scale val-
ues for the current range of the f(I) curves. Spike-
frequency adaptation shape observed on raster-plots
is consistent with biological data. These results are
detailed in (Lewis et al., 2006).

2.3 The Neural Network Connectivity

The STDP algorithm used is based on (Badoual et al.,
2006) biophysical model equation:

+(ω ji −ωLTD)∑
l

Q[t − t̃i(t)]δ(t − t j ,l)
]

(1)

whereω ji is the synaptic weight from neuron j (presy-
naptic) to i (postsynaptic).ti,k and t j ,l are respec-
tively the sets of post- and presynaptic spikes times.
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P and Q are respectively the amount of LTP (potenti-
ation) and LTD (depression) change and are given by:
P(t) = A+exp(−t/τP) andQ(t) = A−exp(−t/τQ). εk
are functions taking into account spikes history of a
neuron and are given byε j = 1−exp[−(t− t̃ j(t))/τε j ]
andεi = 1−exp[−(t − t̃i(t))/τεi ]. ωLTP is the maxi-
mal soft bound whileωLTD is the minimal soft bound.
t̃ j(t) is the neuron j last spike time andt̃i(t) is the neu-
ron i last spike time.
The STDP equation (1) is based on a precise biophys-
ical model. Parameters for exponential constants are
A+ = 0.1 concerning potentiation andA− = 0.005 for
depression. Time constants areτP = 14.8ms for po-
tentiation exponential of P andτQ = 33.8ms for de-
pression exponential for Q. The eligibilityε (influence
of previous spikes of a same neuron), has an expo-
nential time constant for the presynaptic neuronτε j =
28ms and for the postsynaptic neuronτεi = 88ms
(Froemke and Dan, 2002). This takes into account
features as frequency dependence and spike triplets.
The STDP algorithmic implementation and parame-
ters are detailed in (Zou, 2006).

2.4 Correlated Input Noise Patterns

The noise inputs applied to neurons are coded as pat-
terns generated from a Poisson distribution and cor-
related with a defined degree. The Poisson distribu-
tion X is obtained as follows:X = {x1, ..xn}/xi =

N(0,1).
√

m−1/2+m where N(0,1) is a normal dis-
tribution, m the average. X is converted in an absolute
time pattern Y:X = {x1, ..xn}→Y = {y1, ..yn}:

Y : yi =
i

∑
j=1

x j (2)

Noise input patterns are generated with one event
around each Y event. The time-lap between the event
Y and the pattern event is given byε:

ε = N(0,1).(α−1).
T
6

(3)

where N(0,1) is a normal distribution, T is the average
period andα ∈ [0,1] is the correlation coefficient.

3 FIXING HARDWARE/BIOLOGY
EQUIVALENCES

The stimulation currents applied to neurons are not
directly linked to the biophysical values. The possi-
ble values are in the range 0 to 4095. We have the
same inconvenience with synaptic conductances. In
the hardware, the values are coded as integers that

can vary from 0 to 255. To find for each VLSI neu-
ron the correspondence with biophysical values, we
developed a neuron model using the software NEU-
RON (Hines and Carnevale, 1997) corresponding to
the VLSI neuron model. The morphology of the neu-
ron is a cylinder of 1 section, diameter 96 nm and
length 73 nm. Having equivalent models, we devel-
oped a protocol to define the biophysical equivalent
to the digital parameters values used in PAX.

3.1 Determining Synaptic
Conductances in the Pax System

We extracted from the measurements on the PAX sys-
tem a rule for converting a PAX synaptic strength
value in a biophysical corresponding conductance
value and conversely. We created a two neurons net-
work (figure 1). Neuron A was stimulated by a cur-
rentIA that implies oscillations at about 8.5 Hz. Neu-
ron B is stimulated by a currentIB that implies os-
cillations at about 3 Hz. Then an excitatory synapse
ωAB is created connecting A to B with A presy-
naptic to B. The synaptic strength increases from 0
to 255 for PAX, 0.02µS for NEURON. For each
weight, neurons frequenciesfA and fB are measured
( fA doesn’t change for NEURON and is near con-
stant for PAX with standard deviation equal to 0.4
and mean value 8.7 Hz). Equations (f (ω) = a.ω +
b) of the straight line fitting the experiments points
are calculated for both measurements on PAX and
on NEURON. The rules (ωPAX = a.ωNEURON+ b ;
ωNEURON = a′.ωPAX + b′) give the correspondence
between the biological model and the hardware pa-
rameter. Results are:ωNEURON = (0.0943ωPAX +
3.0562)/1070.33 andωPAX = (1070.33ωNEURON−
3.0499)/0.0943 .

Figure 1: Network of two neurons A and B stimulated by
constant currents, respectivelyIA andIB. ωAB is the synaptic
strength of the excitatory synapse connecting A to B.

3.2 Determining Stimulation Currents
in the Pax System

The aim here is to extract from measurements a cor-
respondence between a PAX stimulation current value
and its biophysical equivalent. The principle is to ex-
cite a neuron B by a presynaptic neuron A. A is stim-
ulated as in previous section with a static current. The
weight of synapse connecting A to B is also constant.
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The B stimulation current varies in a range such that:
the lowest value doesn’t make B oscillating and the
highest value synchronizes B to A firing. Data col-
lected for each neuron B’s stimulation currentIB are
frequency of B fB and A’s frequencyfA (constant).
IA was chosen to have a frequencyfA = 8.5Hz. Us-
ing PAX this frequency is approximate (for 10 trials:
m=8.7, SD=0.4) due to electronic noise. The simu-
lations duration is 30 s. Frequencies are calculated
between 2 s and 29 s. The equivalent synaptic weight
is calculated using the rule defined in subsection 3.1.
The correspondence is not exactly linear between fre-
quency and current, but the rule that we establish pro-
vides a good approximation of the biophysical val-
ues corresponding to PAX parameters. This process
has to be repeated for every neuron because of their
intrinsic variability. We obtain for every PAX neu-
ron, a correspondence rule:IPAX = a.INEURON+band
INEURON= a′.IPAX+ b′. For instance, the rule giving
the PAX neuron number 2’s biophysical current value
is: INEURON= −0.01625IPAX+36.363.

4 EXPERIMENTS AND RESULTS

4.1 Experiment: STDP Simulation with
Correlation

The PAX system, including the VLSI neurons’ was
used for the experiments. The system is embedded
in a computer, through a PCI interface, that computes
plasticity algorithms. The computer features are: pro-
cessor Intel Pentium 4R©, dual core, 2.6GHz, cache:
512 Ko, SDRAM: 1Go. The operating system is the
UbuntuR© Linux system. We ran a series of simula-
tions with STDP as described in section 2.3 and noise
input patterns as described in subsection 2.4. The sim-
ulated neural network comprises six excitatory neu-
rons with all-to-all connectivity. All connections fol-
low a STDP rule.ωLTP is fixed in order to have all
neurons presenting a non-bursting activity bursts. The
experiment will help evaluating the STDP effects in
this small excitatory network when correlated noise
patterns are stimulating the neurons.

Network and Neurons Features. The neurons are
stimulated by constant currents chosen from f(I)
curves to maintain the membrane potential under the
firing threshold. Each neuron receive additional stim-
ulation: an input noise pattern (rate 5Hz) tuned in or-
der to trigger an oscillating frequency lower than 5Hz
(mean value 3Hz). All currents are in the biological
range [0.4nA-0.5nA].

Initial synaptic weights are either null or randomized
using an uniform law. Corresponding randomized
conductances values, using the correspondence rules
determined in section 3.1, are in the range [0nS-20nS]
which corresponds to numerical values in the range
[0-180]. Furthermore, a neuron receives synaptic in-
puts from all other neurons and projects its output to
all synapses of the other neurons. The simulation lasts
360 seconds. When a neuron spikes, all the related
synaptic weights are recalculated using the STDP al-
gorithm. For data analysis, each weight change is
recorded together with the timing. For each neuron,
all the timing of its spikes are also recorded for further
analysis.

4.2 Analysis Tools

Weight Histogram. The method used to assess
weight convergence is the building of a histogram of
weights distribution (see top line of figure 2). For this
experiment, the encoded maximum weight value is
180. We divide the weight axis into 36 bins, thus each
section corresponds to an interval of 5. The weights
distribution is then calculated at the end of the simu-
lation and normalized.

Spike Correlation Histogram. To evaluate the cor-
relation between the neurons output firing patterns, a
correlation histogram is defined (see bottom line of
figure 2). The method is to divide the time axis into
sections, each section corresponding to 10 ms. Spikes
occurring in each time section are accumulated. As
we have 6 neurons, the maximum count per section
is 6 if every neuron spikes in that 10 ms window, ex-
cept if a neuron spikes 2 times in the same window.
We don’t consider that exception here. For every pos-
sible spikes count (here from 1 to 6), the number of
sections having this value is calculated. Both axis are
then normalized. This provides a graph showing the
spikes distribution relative to a minimal time window.
If the spikes of different neurons are well correlated
in that time window, distribution tend to 1, whereas
distribution will be closer to 0 for uncorrelated activ-
ity.

4.3 Results Analysis

As we can see on the bin histogram of figure 2A,
the weights after STDP are distributed in a limited
range when the correlation of input patterns is weak
(α < 0.5, α from equation 3). When the input cor-
relation grows, extrema values of the weights appear
(e.g. withα = 0.6 figure 2C). When the input correla-
tion is maximum (α = 1) then the weights distribution
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Figure 2: Simulation of input correlation’s effect on the synaptic weights convergence and the spikes correlation. Time
simulation lasts 360 s with initial weights randomized and afrequency of input noise around 5Hz.Top line: Weight histograms
for a simulation with input correlation of 0.35 (A), 0.6 (C) and 1 (E).Bottom line: Correlation histograms for a simulation
with a time window of 10 ms. The input correlations are 0.35 (B), 0.6 (D) and 1 (F).

is bimodal (figure 2E). At the same time, the correla-
tion histogram shows that correlation of output spikes
in a window time of 10 ms is weak when correlation
input hasα < 0.8 (figure 2B and D), grows whenα
is higher. Up to a high correlation whenα = 1 (fig-
ure 2F).
In (van Rossum et al., 2000), where the STDP rule
has no soft bound (ωLTP andωLT D) and where LTP
depends on the synaptic strength (ω ji ), the weights
always converge in a limited range. In (Song et al.,
2000), where the soft bound is introduced but with
no LTP depending onω ji , the weights systematically
show a bimodal convergence.
Our STDP model was simulated in (Zou and Des-
texhe, 2007) in single neuron configuration. In that
case, all weights converge into a limited range.
The experiments we presented showed that this same
STDP rule applied to a 6-excitatory neurons network
lead to more complexe figures, mixing bimodal and
range limited weights convergence.

5 DISCUSSION AND
CONCLUSIONS

Using analog VLSI circuits for computational neuro-
science is a performant solution for running simula-
tions at biological real time. The system used can also
be interfaced with real biological neurons to create a
hybrid neural network (Le Masson et al., 2002). One
inconvenient, as seen in section 3, is that the tuning of
some parameters depends on the fabrication for pa-
rameters. The correspondence rules developed pro-
vides an estimation of biophysical values and only

in a short range because of non-linearities. However,
benchmarks showed us the network patterns were re-
spected by such a simulation tool (Zou et al., 2006a).
In our experiments, we showed that the weights dis-
tribution convergence depends on correlation of input
noise patterns. This convergence mixes bimodal con-
vergence and range confinement convergence. This
phenomenon is not covered by other STDP rules. We
also showed that the input correlation degree influ-
ences the correlation in neurons spikes. For the next
PAX system generation, STDP computation will be
embedded in the hardware system. A more important
number of neurons will be available with available in-
hibitory neurons. Experiments will be continued on
more complex neural networks.
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Abstract: This is the second article in a two-part series in which we briefly review state-of-the-art research in 
communications and computing inspired by insect sensory systems. While the previous article focuses on 
the biological systems, the present one briefly reviews the status of insect-inspired communications and 
computing from the engineering perspective.  We discuss three major application areas: wireless sensor 
network, robot and micro aerial vehicle (MAV), and non-cooperative behaviours in social insects and their 
conflict resolution. Despite the enormous advances in insect vision and mechanosensory inspired robot and 
MAV, micro-flight emulation, motion detection and neuromorphic engineering, etc., the potential 
inspiration from insect sensory system is far from being fully explored. We suggest the following promising 
research topics: (1) A new grid computing architecture emulating the neuronal population such as the visual 
neurons that support the compound eyes, the PN (Projection Neurons) in AL (Antennal Lobe) or the ORN 
(Olfactory Receptor Neurons) from insect sensory organs (sensilla). This may be further integrated and 
enhanced with the dendritic neuronal computing. (2) New generation of multimodal wireless sensor and ad-
hoc networks that emulates insect chemosensory communication. The inspiration of multimodalities in 
insect sensory systems also implies that there are multiple parallel networks operating concurrently. 
Furthermore, the insect chemosensory is significantly robust and dependable with built-in anti-interference 
mechanisms. (3) Non-cooperative behaviours in social insects may offer insights to complement swarm 
intelligence (inspired by cooperative behaviours) or to devise new optimization algorithms. It may also 
provide inspiration for proposing survival selection schemes in evolutionary computing. We suggest using 
evolutionary game theory to model conflict resolution in social insects, given its success in modelling 
conflict resolution of other animals. 

1 INTRODUCTION 

Organisms interact with each other and with their 
environments through sensory and motor systems; 
so do the engineered systems. Their stability and 
control depend on continuous sensing and actuation 
(Miesenbock and Kevrekidis, 2005).  This argument 
shows the universal significance of sensory systems 
to both biological and engineered systems, which is 
particularly true to insects given insect sensory 
systems are one of the top four reasons contributing 
to their status as the most abundant organisms on 
earth (Ma and Krings, 2007). 

Two terms often appear in bio-inspired 
computing: biomimetic and biomorphic. The former 
is more common and emphasizes the mimic or 
emulation of nature and the latter is more of a 
metaphor (Lodding, 2004). The applications we 
survey below largely fall into one of the two 

categories, but in reality, the distinction is rarely 
clear-cut.  In some occasions, a biologically inspired 
approach is recursively applied to solve biological 
problems (e.g., biosensoring in section 3).  

To harness the biological inspirations from insect 
sensory systems, being familiar with the biological 
aspects is necessary. We refer to the following 
excellent monographs (Christensen 2005, 
Drosopoulos and Claridge 2006), both of which are 
dedicated to insect sensory systems. An excellent 
and up-to-date monograph, rightly acclaimed by 
reviewers as providing “a remarkably holistic yet 
detailed view” on insect physiological systems 
including the sensory systems, should be an ideal 
reference for studying insect sensory system in more 
comprehensive context (Klowden, 2007). General 
knowledge on insect sensory systems can be found 
in an entomology textbook such as Gullan and 
Cranston (2005). Numerous proceedings from 
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symposiums and conferences on bio-inspired 
computing have been published since the 1990s and 
a significant amount of research is inspired by 
insects (e.g., Detrain et al. 1999, Dressler and 
Carreras 2007). A possible starting point, which 
provides an article-level review of the insect sensory 
systems from the perspectives of inspiring 
communications and computing, could be the Ma 
and Krings (2007).  Given the extensive existing 
literature, which continues to accumulate faster than 
ever, we choose a significantly narrow scope in this 
article to focus on insect sensory system related 
topics. Even with the narrowed-down scope, it still 
seems impossible for us to present a comprehensive 
review in such a short article. Therefore, we choose 
to focus on three research areas and exclude the 
others. In addition, priority was given to the state-of-
the-art review papers, monographs, and research 
papers representing a major category of studies 
(often limited to one per topic). Consequently, we 
have to regrettably omit a number of excellent 
research papers.  As a minor remedy to the excluded 
fields, in section 3, the other topics, we mention five 
areas and a few review references about them.     

2 INSECT SENSORY SYSTEMS 
INSPIRED COMMUNICATIONS 
AND COMPUTING   

2.1 Wireless Sensor Networks  

It seems that insect sensory systems may inspire the 
design of wireless sensor networking on both the 
node (sensor node vs. individual) level and network 
level (sensor network vs. insect population).  

The inspiration at the individual sensor node level 
is the most obvious. Essentially, a robot emulation 
of insect vision and navigation provides a typical 
example for this kind of research, where each 
individual insect is mapped to an engineered sensor. 
Many of the neural sensory mechanisms in insects 
can be emulated in individual sensor design. In 
particular, multimodality capability is very desirable 
in sensor networks (Ma and Krings, 2007). 

From the population perspective, potentially two 
types of “mappings” can be construed. The first type 
is the neuron population or the group of neurons 
behind a sensory organ such as antenna or 
compound eyes. This type of neuron population 
forms a grid computing infrastructure (similar to the 
cellular computing paradigm). The populations of 
ONRs (olfactory neural receptors) and PNs 
(projection neurons) in the olfactory system are 

examples of this type (Ma and Krings, 2007).   
The other type of population organization 

mapping can be the population of insect individuals 
vs. population of wireless sensor nodes, i.e. wireless 
sensor network. An insect population that distributes 
over habitat space forms an information network. 
This network may depend on infochemicals (in 
chemosensory system) or vibrations (in audition) as 
"packets" communicating via air, water, or other 
types of substrate medium. Indeed, the 
infochemicals-based wireless communication 
network is probably more complex than electron-
based networks. Several categories of infochemicals 
are involved, e.g., pheromones are utilized in intra-
specific communications and allelochemicals 
(allomones, kairomones, and synomones) in inter-
specific communications (Ma and Krings, 2007).  
What may be even more inspiring is that there are 
several parallel communications networks—visual, 
olfactory, auditory, etc.—in an insect population, or 
the so-called multimodality sensory.  All of the 
sensory networks are wireless except for the taste 
sensory network. This is essentially the 
demonstration of multiple modalities at the 
population level.  

In terms of sophistication and functionalities, no 
other organisms may match insects in the 
chemosensory systems. The differences between the 
insect chemosensory wireless network and the 
engineered wireless network lie in message 
encoding (infochemicals vs. radio frequencies) and 
computing node (insect brain vs. microchip). The 
research of insect sensory systems may inspire the 
engineering of reliable and secure wireless sensor 
networks. Obviously, the insect sensory wireless 
network is operated under heterogeneous and 
unstable natural environments. The network has to 
deal with possible exploitations by other species, 
which may be their competitors or natural enemies. 
For example, the natural enemies may try to find 
their prey by following the infochemicals, and the 
insects may release interference infochemicals to 
confuse their competitors. This is similar to 
malicious intrusions in computer networks.    

2.2 Insect-Inspired Robots and Micro 
Aerial Vehicle (MAV)   

The study of the aerodynamics of insect flight was 
conducted as early as the 1950s.  Grasshoppers and 
flies seem to be the most common model insects.  
Both walking (including crawling) and flying robots 
based on insects have been developed.  Insect 
sensory systems, mainly vision and 
mechanosensory, have offered inspiration for those 
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designs.  It can be said that the research of insect-
inspired flight has been the most intensive and 
extensive field studied among all insect-related 
engineering studies. 
 Micro Aerial Vehicles (MAV), also known as 
Mini Aerial flight Vehicles, have been studied for 
over a decade.  An MAV is based on UAV 
(Unmanned Aerial Vehicle) technology, but there 
are significant differences.  According to DARPA's 
definition, an MAV has a wingspan of less than 15 
cm. It turned out that the 15 cm is an interesting 
threshold to separate two types of flights: flapping 
flight (micro-flight, used by insects) vs. fixed wing 
soaring flight (Pornsin-sirirak et al. 2001).   
 At least seven laboratories started insect-inspired 
robots research in approximately the same period 
about a decade ago.  The Biomimetic Millisystem at 
U.C. Berkeley has been developing the so-called 
minimally-invasive flying robots, weighing 0.1g, 
using insect-inspired wing kinematics (Wood et al. 
2005, Steltz 2005). The group at CalTech’s 
(Pasadena, CA) Micromachining Lab focused on the 
design and manufacturing of flight wings for MAV. 
For example, they developed the first MEMS-based 
(Micro Electro Mechanic Systems) wing technology 
with titanium-alloy metal as wingframe and 
parylene-C as wing membranes (Pornsin-sirirak et 
al., 2001).  The "Entomopter" is a multimode 
(flying/crawling) robot designed by the joint team of 
Georgia Tech Research Institute (GTRI) and 
Cambridge University. The effort has been made to 
develop an Entomopter-based Mars surveyor 
(Michelson, 2002).  The Biorobotic Vision 
Laboratory at the Australia National University has 
focused on the insect vision-driven behaviors and 
their inspiration for machine vision, as well as 
visually guided robots (Srinivasan et al., 2001, 
2003).  Their researchers, in cooperation with the Jet 
Propulsion Laboratory at Cal-Tech and NASA, have 
developed robots for Mars exploration based on the 
study of ocelli of dragonflies.  The design of Mars 
exploration robots has taken inspiration from the 
unique skills of dragonflies in navigation, hazard 
avoidance, altitude hold, stable-flight, terrain-
following and smooth deployment of payload 
(Thakoor, 2003).  The Center for Intelligent 
Mechatronics at Vanderbilt University studied 
Mesoscale Crawling Robots based on insect model 
(Lobontui et al., 1999).  CAVIAR is a European 
Commission funded project to develop a multi-chip 
vision system based on Address-Event 
Representation (AER) communication of spike 
events (http://www.ini.uzh.ch/~tobi/caviar/). This 
system emulated biological visual pathways (Liu et 
al. 2002). Fly-by-Sight-Microrobots is a project 

headed by Nicolas Franceschini in France.  His team 
developed neuromimetic robots by emulating the 
fly's compound eyes (www2.cnrs.fr/en/582.htm).  
 Besides the previous groups' comprehensive 
research projects, quite a few researchers have 
conducted relatively ad-hoc studies in the field.  
Motamed & Yan (2005) is a review of insect-
inspired micro-flight.  Ma and Krings (2007) 
reviewed more case studies in insect-inspired robots 
and MAV.  

2.3 Non-Cooperative Behaviours in 
Social Insects — Conflicts 
Resolution 

Non-cooperative behaviors in social insects are 
contrary to the cooperative ones that have inspired 
swarm intelligence and similar algorithms, also 
referred to as ants colony optimization algorithms. 
The reason we single out this type of insect behavior 
is an intuitive argument: If the solution for the 
opposite side of a problem is inspiring, one may be 
able to get the solution by conducting inverse 
transformation. This is often true in optimization.  

The society of social insects, like any society, is 
never a perfect world. The dominant organization of 
the insect societies such as bees, ants and termites is 
the caste system, and individual rights are often not 
fully protected. Two major conflicts exist in social 
insects: (1) direct reproduction rights and (2) the 
manipulation of fellow colony members. Ratnieks 
and Foster et al (2006) reviewed five major 
reproductive conflicts in insect societies, including: 
(1) sex allocation, (2) queen rearing, (3) male 
rearing, (4) queen-worker caste fate, and (5) 
breeding conflicts among totipotent adults.  These 
reproductive conflicts exist widely in the colonies 
and sometimes have dramatic effects on the 
colonies. Three essential mechanisms: kinship, 
coercion, and constraint typically jointly limit the 
effects of conflicts and often the reproductive 
conflict is resolved totally. The inclusive fitness 
theory has been proposed to explain both 
cooperation and conflict. Essentially some 
individuals of a colony relinquish their direct 
reproductive rights to help rear and defend the 
offspring of other colony members.  A major factor 
in conflict resolution is the kinship, since the great 
relatedness suppresses the incentive to be selfish. 
Whether or not the pheromones, which play crucial 
roles in cooperative behaviors, are involved in 
conflict resolution is still unknown, and neither are 
the genes affecting conflict resolution (Ratnieks and 
Foster et al. 2006). There has been no modeling 
research of the conflict resolution in social insects.  
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Whether or not pheromones are involved in the 
conflict resolution is really not important for their 
potential inspiring in devising new computation 
strategies or extending the existing swarm 
intelligence. (The latter is based on pheromone-
regulated cooperative behaviors.)  We see three 
potentially rewarding explorations. (1) Extending 
swarm intelligence. In real world populations, both 
cooperative and non-cooperative (conflict 
resolution) mechanisms exist simultaneously and the 
successful resolution of conflict may enhance 
cooperation. Therefore, introducing conflict 
resolution into swarm intelligence algorithms should 
make the algorithms match biological mechanisms 
more consistently.  Cooperative behavior is 
essentially a positive feedback mechanism, and non-
cooperative behavior often acts as the negative 
feedback mechanism. A system should become more 
stable with both types of feedback regulations. 
Certainly, what we suggest here is just a conjecture. 
(2) The mechanisms of conflict resolution may be 
inspirational for designing survival selection 
mechanisms in evolutionary computation, or 
extending the existing survival selection schemes. 
(3) Mathematical modeling of the conflict resolution 
in social insects has not yet been explored. Given the 
dominant role of evolutionary game theory in 
modeling conflicts resolution in other animals 
(Maynard-Smith 1982), it makes great sense to 
apply evolutionary game theory first. Obviously, the 
studies of (2) and (3) should be compared to inspire 
each other, since the topic of (2) is essentially an 
evolutionary computation issue and that of (3) 
belongs to evolutionary biology.  

3 THE OTHER TOPICS 

Insect Vision Inspired Motion Detection and 
Neuromorphic Engineering. This topic was 
addressed in the first article of this two-part series 
(Ma and Krings 2007), since it was more convenient 
to discuss it in the context of insect vision sensory 
systems. Given its extreme importance, we include 
the following brief summary.    
 
 One field that has made enormous progress in 
recent years is the motion detection of insect eyes 
and their applications to bio-inspired robot sensors. 
This is one area of neuromorphic engineering. 
Parallel and analog are two trademark properties of 
insect neural systems. It is now possible to design 
and manufacture a fully integrated neuromorphic 
olfaction chip (Liu et al. 2002, Stocker 2006, 
Koickal et al. 2007). A possible reason for the 

advancement is that motion-detection neurons are 
some of the largest in insect vision systems and easy 
to observe (Rind, 2005). Rind (2005) summarized 
three types of contributions where man-made vision 
systems are based on insect vision system: (1) Bio-
inspired circuits embedded in the control structure of 
mobile robots.  Examples are the Lobula Giant 
Movement Detector (LGMD) for collision detection 
based on locust eyes (Blanchard et al., 2000) and 
flying motion detectors. (2) Neuromorphic chips 
based on fly eyes (Harrison, 2000) and VLSI retinal 
circuits (Liu and Kramer et al., 2002), and (3) Bio-
inspired behavioral strategies (Srinivasan et al 
2001).  In these insect vision-inspired designs, the 
goal has been to make fast, robust, lightweight and 
low-power vision systems.  Another feature is that 
analog-VLSI has been the dominant choice in insect-
vision-based chips.  Ruffer and Franceschini (2004) 
have designed neuromorphic eyes for a mini-UAV 
with eye weights of only 0.8g and a weight of only 
100g for the entire rotorcraft.  Tests reveal that these 
artificial vision chips (even the most flexible analog-
VLSI fly eye) still have significant gaps with real 
insect visions systems upon which the chips are 
based.  This indicates that a better understanding of 
insect eye motion detection has to be gained to make 
further breakthroughs (Rind, 2005). More recently, 
Fife and Archibald (2007) applied FPGA approach 
to support real-time vision processing for the small 
UAV.   

Neural Network Modelling and Dendritic 
Neuronal Computing.  It is interesting to note that 
recent advances in neural biology may change our 
thinking about modeling neural networks, perhaps 
including the ANN (Artificial Neural Network). 
Vogels and Rajan et al. (2005) present an excellent 
critical review on neural network dynamics, and 
they call for the models that go beyond describing 
and adapting to the input-output dynamics. The 
mathematical modeling has to address the 
fundamental property of the brain, that is, the neural 
circuits perpetually generate complex activity 
patterns of extraordinarily rich spatial-temporal 
structure, yet they remain highly sensitive to sensory 
inputs. London and H¨ausser (2005) offered the 
perspective from the computation capability of 
single neuron, the so-called dendritic computation. 
They argue that the computing "tool kit" of dendrites 
may play roles well beyond currently acknowledged 
properties. Ma and Krings (2007) suggested that the 
neuronal population in insect sensory system such as 
the visual neurons that support the compound eyes, 
the PN (Projection Neurons) in AL (Antennal Lobe), 
or the ORN (Olfactory Receptor Neurons may be 
emulated to develop a new grid computing 
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architecture.  It seems that the integrated model of 
grid computing with dendritic computing may offer 
new insights. That is, a grid-computing 
infrastructure is supported by tool kits from dendritic 
nodes.    

Biosensoring.  A biosensor is an integrated device 
that combines a biological component with a 
physicochemical detector component that converts a 
biological response to specific substances being 
monitored into an electrical signal. An annual 
review has been published by Rich and Myszka 
since 1999 (Rich and Myszka, 2005).  

Cellular Computing, Agent-based Computing 
and Swarm Intelligence. Amos et al.  (2004) and 
Dogaru (2003) presented two of the latest review on 
cellular computing. Ma and Krings (2007) 
contrasted cellular grids in cellular computing vs. 
neuron populations in insect sensory systems. The 
latter can be the visual neurons that support the 
compound eyes, the PN (Projection Neurons) in AL 
(Antennal Lobe), or the ORN (Olfactory Receptor 
Neurons) from insect sensory organs (sensilla).  This 
neuronal population can be emulated to develop a 
new grid computing architecture.  

Agent computing is another field where insect 
model plays a significant inspirational role. The 
most well- known paradigm should be Swarm 
intelligence (Bonabeau et al. 1999, Dorigo and 
Stützle 2004), which is inspired by ants pheromone-
modulated cooperative behaviors. This is in contrast 
with the non-cooperative behavior we discussed in 
subsection 2.3.  Lodding’s (2004) biomorphic 
software and the design patterns of Babaoglu and 
Canright et al. (2006), and Dobson and Massacci's 
(2006) are more examples of agent-based adaptive 
computing. 

Molecular Networks and System Biology. A 
biological cell is a complex "network of networks" 
from the information processing perspective. 
Physiologically, it is an integrated device consisting 
of several thousands of types of interacting proteins.  
Molecular network is often used as a generic term to 
refer to the networks involved in cell biology (Alon, 
2007). The gene regulatory networks and various 
molecular networks in cells involved extremely 
complex yet robust networks, which is one of the 
focuses of the newly emerged system biology. There 
are enormous opportunities for computer scientists 
to contribute and to learn from the fields. The 
following are a few review references: on genome 
project by Ideker and Galitski et al. 2001, the bio-
mimetic nano-scale reactors and networks by 
Karlsson et al. (2004), molecular networks by 

Galitski (2004), gene regulatory networks by 
Davidson (2006).  

4 PERSPECTIVE  

In the following, we mention some promising 
research topics that seem not yet being explored. In 
various previous sections and Ma and Krings (2007), 
we briefly discussed them in corresponding context; 
the following is simply a list of summary statements. 
(1) The new grid computing architecture that 
emulates neuronal population such as vision neurons 
for insect compound eyes. This neuronal population 
architecture may be further integrated and enhanced 
with dendritic computing (2) Wireless sensor 
networks that emulate the insect chemosensory 
networks and the multimodal architecture that has 
several parallel networks concurrently in operation 
(such as audition, vision chemosensory, etc.). In 
addition, the bio-robustness mechanism in these 
insect sensory networks should be captured. (3)  The 
implications of non-cooperative behaviors in social 
insects to swarm intelligence, evolutionary 
computing, and to devising new optimization 
algorithms. (4) Insect audition, which was 
considered as less developed in insects until 
recently, is recognized now as underestimated in 
entomology (Drosopoulos and Claridge, 2006). Still 
the field of insect audition has received little 
attention from the bio-inspired perspective. It is 
interesting to note that insects audition truly 
resembles the engineered wireless communications. 
(5) The integration of technologies that are 
developed for sensors, robots, MAVs, and 
neuromorphic technologies, in particular, the multi-
modality integration may provide better solutions for 
the sophisticated MAV flights control, especially in 
unstable and hostile military operations 
environments. 

In the recent report on "Computing and Biology" 
from the US National Academy of Sciences 
(National Research Council, 2005), the ants colony 
optimization and neural-inspired sensors, together 
with hundreds of other research topics, were 
recommended as fields of strategic scientific and 
technological significances. However, the majority 
of topics on insect sensory systems, such as those 
discussed in this series of articles, were omitted. 
There was significant coverage (nearly 4 pages) on 
ants colony optimization in the National Academies' 
report. This coverage may also indicate the 
significance of the areas omitted in the report, 
which, in our opinion, should prove to be as 
promising as the ants colony optimizations, if not 
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more.  
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Abstract: It is widely understood that mental stress produces various physiological changes. Though the relationship 
between mental stress and physiological response has been extensively reported, few reports have tried to 
clarify the relationships between various physiological responses and the intensity level of stress. In this 
study, we investigated autonomic nervous system activities to find a physiological index based on which we 
can evaluate the intensity of mental stress. As a result, we found that there were different response patterns 
for each physiological index. We consider that each physiological index shows different feelings and/or 
situations related to mental stress. 

1 INTRODUCTION 

In our country, the increase in psychiatric disorders, 
such as depression and schizophrenia, is noted. The 
number of suicides per year has been steadily high in 
recent years, with more than 30,000 people a year 
since 1998. This increase in psychiatric disorders 
and high rate of suicide are serious problem in 
Japan.  

It is believed that these daily stresses play a role 
in a number of psychiatric disorders. If we can 
evaluate daily stress quantitatively and determine 
our own or other people mental state, this could 
contribute to the prevention of various diseases 
caused by mental stress.  

It is widely understood that physiological 
changes induced by mental stress are related to the 
autonomic nervous system, and can affect the heart 
rate, blood pressure and plethysmogram. The 
relationship between mental stress and physiological 
feedback has been extensively reported (Takatsu et 
al., 2000, Mishima, Kubota and Nagata, 1999). 

We also consider that establishing a quantitative 
evaluation method for mental stress will help 

prevent diseases caused by mental stress. It is 
necessary to examine the intensity of stress to realize 
a quantitative evaluation of mental stress. However, 
few reports have tried to clarify the relationships 
between physiological responses and the intensity of 
stress. In this paper, we investigated the autonomic 
nervous system activity in the three conditions for 
the intensity of mental stress.  

2 METHOD 

We used a mental arithmetic task as the mental 
workload and measured the physiological and 
subjective responses. 

2.1 Task 

A target three-digit number, several two-digit 
numbers and an OK button were displayed on a 
computer screen. The participants were required to 
select the combination of three two-digit numbers 
whose sum is equal to the target number and click 
the OK button. Whenever a participant clicked the 
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OK button, the sum of the selected numbers was 
shown on the screen. If the sum was equal to the 
target number, the next arithmetic question was 
displayed. The participant could choose different 
combinations of numbers until the right one was 
chosen. The elapsed time and the number of correct 
answers were also displayed on the screen. The task 
screen is shown in Figure 1. 

The three conditions were used for the intensity 
of mental stress. The conditions were as follows: 

TASK1 (High level): The number of two-digit 
number is ten.  
TASK2 (Medium level): The number of two-
digit number is eight. 
TASK3 (Low level): The number of two-digit 
number is five. 

 

 
Figure 1: Mental arithmetic task screen of high level. 

2.2 Physiological Measurements and 
Subjective Assessment 

We measured the electrocardiogram (ECG), 
plethysmogram (PTG), blood pressure (BP), tissue 
blood pressure (TBV) and skin potential levels 
(SPL). These signals were recorded in a PC at a 1-
kHz sampling rate. Also, stroke volume (SV) and 
cardiac output (CO) were obtained every heartbeat. 

The R-R interval (RRI), LF/HF ratio, systolic 
blood pressure (SBP), diastolic blood pressure 
(DBP), mean blood pressure (MBP=DBP+(SBP-
DBP)/3), baroreceptor reflex sensitivity 
(BRS=square root of (LF of SBP/LF of RRI)),  
amplitude of the PTG and total peripheral resistance 
(TPR=MBP/CO) were calculated. 

The National Aeronautics and Space 
Administration Task Load Index (NASA-TLX), 
Profile of Mood States (POMS) and the semantic 

differential method (SD method) were used to obtain 
the subjective responses. 

The NASA-TLX is a widely used subjective 
workload assessment technique (Hart and Staveland, 
1988). The WWL value was calculated. The POMS 
consists of 65 adjectives and assesses six mood 
states dimensions. We used 24 adjectives related to 
Tension-Anxiety (TA), Vigor (V) and Fatigue (F) 
for reducing the participant’s burden. The SD 
method comprising seventeen items was used to 
assess the participants’ emotions. 

2.3 Procedure 

The participants were familiarized with what to 
expect during the task before the start of the 
experiment. Each participant underwent the 
experiment procedure once. 

The experimental procedure was as follows: 

1. Rest1 (6 min: PRE1) 
2. High level arithmetic (6 min: TASK1) 
3. POMS, NASA-TLX and SD method 
4. Rest2 (6 min: PRE2) 
5. Medium level arithmetic (6 min: TASK2) 
6. POMS, NASA-TLX and SD method 
7. Rest3 (6 min: PRE3) 
8. Low level arithmetic (6 min: TASK3) 
9. POMS, NASA-TLX and SD method 
10. Rest4 (6 min: POST) 

The participants were instructed to provide at 
least fifteen correct answers in six minutes and not 
to give up until the six-minute run was finished. If 
the participants completed the task (i.e. gave the 
minimum number of correct answers) before the 
deadline, they were required to continue giving 
correct answers. After six minutes, the run was 
finished, and the participants were asked to cease the 
mental arithmetic activity even if they had not 
completed the task. The number of correct answers 
was displayed on the screen to let the participants 
know when the task was completed. 

2.4 Participants 

Sixteen healthy male graduate students aged 21 to 
32 (average: 23.8 yrs.) participated in this study. All 
participants gave their written informed consent. 
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3 DATA ANALYSIS

3.1 Statistical Analysis 

The data were divided into seven 6-minute blocks 
(PRE1, TASK1, PRE2, TASK2, PRE3, TASK3 and 
POST). All parameters were standardized for each 
participant. 

The results were analyzed by repeated 
measures of analysis of variance (ANOVA) using 
SPSS 11.0J. The degree of freedom was adjusted 
using the Greenhouse-Geisser correction. Tukey’s 
honestly significant difference (Tukey’s HSD) test 
was used in the post-hoc analysis. 

3.2 Subjective Assessment 

Three factors (FACTOR1, FACTOR2 and 
FACTOR3) were obtained from the seventeen items 
of the SD method using Factor Analysis. The factor 
scores, NASA-TLX scores, POMS scores and all 
physiological indices were standardized for each 
participant. The correlation coefficients of 48 pairs 
of subjective assessments and physiological indices 
were calculated. 

4 RESULTS AND DISCUSSION 

4.1 Differences in Physiological 
Response 

The WWL value of Task3 was significantly low 
(p<0.05). The results of the multiple comparison 
revealed that there were no significant differences in 
WWL value between Task1 and Task2. This result 
indicated that the condition of Task3 was simpler 
than the conditions of the other two tasks. 

There were two patterns for each physiological 
response in both different cases: task periods and the 
resting periods. Figure 2 shows the averages of the 
SPL and the amplitude of the PTG for all the 
participants. Both parameters were significantly 
lower in TASK1 and TASK2 comparing with resting 
periods. The SPL values indicated that the changes 
during the task were smaller when the difficulty 
level became low. The RRI, SBP, DBP, BRS and 
TPR showed a tendency similar to that of the SPL. 
The amplitude of the PTG indicated that the 
responses after the completion of the task (during 
rest) were smaller when the difficulty level became 
low. The TBV, CO and SV showed a tendency 

similar to the amplitude of the PTG. There was no 
discernible tendency in the LF/HF ratio. 

In a previous study, we found that there were 
different recovery patterns for each physiological 
index (Soga, Miyake and Wada, 2007). In this study, 
there were also different recovery patterns for the 
various physiological indices. These results suggest 
that each physiological response corresponds to 
different feelings and/or situations. A difference in 
response during the task might correspond to 
“Executing task” and the feeling of “Tension.” A 
difference in response after the task might 
correspond to “Task performance” and the feeling of 
“Regret.” 
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Figure 2: The average changes in the physiological 
responses for each block. The bars indicated the standard 
errors of the mean. 

4.2 Correlation Coefficient between the 
Subjective Measurements and the 
Physiological Indices 

There were significant correlation between the 
FACTOR1 score and the DBP (r=-0.340; p<0.05), 
MBP (r=-0.312; p<0.05) and SPL (r=0.506; 
p<0.001). There were significant correlation 
between the FACTOR2 score and the SPL (r=0.322; 
p<0.05). The FACTOR3 score significantly related 
to the SBP (r=-0.350; p<0.05), DBP (r=-0.378; 
p<0.05), MBP (r=-0.364; p<0.05), BRS (r=0.415; 
p<0.01), RRI (r=0.433; p<0.01) and SPL (r=0.312; 
p<0.05). The FACTOR1 consisted of the following 
items: “Difficult-Easy,” “Troublesome-Smooth,” “I 
felt the task duration was short-I felt the task 
duration was long,” etc. Therefore we consider that 
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the FACTOR1 relates to the degree of difficulty of 
the task. The FACTOR2 consisted of the following 
items: “Dislike-Like,” “Boring-Interesting” and “I 
want to execute the task-I don’t want to execute the 
task.” The FACTOR3 was as follows: “Respond 
randomly-Respond after proper calculation.” We 
consider that the FACTOR2 relates to the 
participants’ concentration and the FACTOR3 
relates to the participants’ attitude. 

The NASA-TLX revealed that there were 
significant correlation between the TD and SPL (r=-
0.676; p<0.001), and the OP and the amplitude of 
the PTG (r=-0.324; p<0.05). The POMS showed that 
there were significant correlation between V and the 
SPL (r=-0.381; p<0.05), and F and the amplitude of 
the PTG (r=-0.308; p<0.05). 
 Although some physiological indices seemed to 
correlate with the subjective assessments because 
the correlation values were small, there were only 
three blocks for standardization, and all the data 
were pooled. At least, we consider that each 
physiological response corresponds to different 
feelings and/or situations. This suggests that the 
classification of physiological responses according 
to the results of the subjective assessment is helpful 
in investigating the complex information contained 
in each physiological index. In our past study, we 
found that the SPL related to the time pressure (Soga, 
Miyake and Wada, 2007). In this study, the SPL 
results showed a tendency similar to that found in 
our past study. Therefore we consider that the SPL is 
a sensitive index for the estimation of mental stress. 

5 CONCLUSIONS 

We found that there were two patterns for each 
physiological response of the autonomic nervous 
system during the task periods and the resting 
periods at three different difficulty levels (high, 
medium and low). Significant difference in PTG 
amplitude between task and after task resting period 
was disappeared in the last two blocks (TASK3 and 
POST). In addition, we found that there were 
significant correlation between the physiological 
changes and the subjective assessments.  

These results suggest that each physiological 
response corresponds to different feelings and/or 
situations related to mental stress. Further 
experiment should be done to confirm this result. 
Our final aim is to establish a quantitative evaluation 
method for mental stress. 
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Abstract: The simulation of soft tissue deformations has many practical uses in the medical field such as diagnosing 
medical conditions, training medical professionals and surgical planning. While there are many good 
computational models that are used in these simulations, carrying out the simulations is time consuming 
especially for large systems. In order to improve the performance of these simulators, field-programmable-
gate-arrays (FPGA) based accelerators for carrying out Matrix-by-Vector multiplications (MVM), the core 
operation required for simulation, have been proposed recently. A better approach, yet, is to implement a 
full accelerator for carrying out all operations required for simulation on FPGA. In this paper we propose an 
FPGA accelerator tested for simulating soft-tissue deformation using finite-difference approximation of 
elastodynamics equations and conjugate-gradient inversion of sparse matrices. The resource and timing 
requirements show that this approach can achieve speeds capable of carrying out real-time simulation.  

1 INTRODUCTION 

Some of the most common procedures in clinical 
practice (e.g. the insertion of subcutaneous needles 
in the tissue for biopsy of deep-seated tumors) are 
extremely sensitive to guiding algorithms and initial 
placement of the needle. One of the current trends in 
this field is the development of virtual simulators for 
tissue deformation. Realistic simulation of tissue 
deformation undergoing needle insertion is the 
bottleneck of all virtual simulators.  

The deformation of soft tissue is determined by 
elastodynamic partial differential equations (PDEs) 
(Fung, 1987), defined over irregular domains 
(human organs).  A solution to these PDEs cannot be 
obtained analytically due to their nonlinearity and 
irregular shape of the domain.  In order to solve 
these equations we need one of commonly used 
discretizaion techniques: the finite-difference 
method (FDM) and the finite-element method 
(FEM). In both methods, the domain of interest is 
discretized and the corresponding PDEs are 
transformed into linear equations. The resulting 
linear system is then solved using numerical 
methods such as Newtons method, conjugate-
gradient method (CGM) etc.  

Most of the resent work done in this area focused 
on speeding up numerical methods by implementing 
efficient matrix-by-vector multiplier units (MVU) on 

FPGA. In (Ramachandran, 1998) the author 
investigated the performance effects of using an 
FPGA based MVU to carry out an MVM. The MVU 
was able to achieve a performance of 36 MFLOPS 
with a matrix generated using the Finite-Element 
method. In (Zhuo et. Al, 2005) the authors also 
developed an MVU for MVMs that involved sparse 
matrices. Their method involved using only the non-
zero elements of a matrix to carry an MVM. The 
design in (Zhuo et al, 2005) attained a performance 
of 350 MFLOPS for all their test cases. This is a 
900% increase in performance when compared with 
results in (Ramachandran, 1998). Note however, that 
as of 2005, FPGAs were capable of higher clock 
frequencies than in 1998, which most likely was one 
of rather important factors for such improvement. 

In this paper we propose an FPGA platform for 
real-time simulation of tissue deformation using 
FDM model and CGM for solving the corresponding 
linear system. We will implement the CGM, a full 
numerical method, in hardware on an FPGA. We 
will also exploit the fact that the “stiffness” matrix is 
sparse and band-limited. Our preliminary results 
indicate that we can achieve sufficiently high 
computational rate even with larger size meshes. 
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2 BACKGROUND 

        
            A                                    B 

Figure 1: Connection Pattern Models. 

We model the soft tissue as a three-dimensional grid 
of uniformly distributed nodes (material points) 
connected together by springs that model the elastic 
properties of the tissue.  To model the connection 
between two material points we use two connection 
patterns shown in Figure 1.  Using a quasi-static 
approach when an external force acts on a certain 
node, it causes a change in the length of the springs 
connected to that node. This also creates opposing 
forces in these springs so as to keep the system of 
connected springs in equilibrium. This relationship, 
for a given direction d at a node i,j,k, is given in (1) 
by the function f i, j,k

d .  

1 1 1

, , , ,
1 1 1

         d d d
i j k i l j m k n

n m l
f k u + + +

=− =− =−

= ∑ ∑ ∑ (1) 

Assembling these nodal equations for every node 
yields a set of linear simultaneous equation that 
describes the system in direction d . These equations 
can be represented in matrix form as shown in (2), 
where d,K d , f d are the displacement vector, 

                                        d df K d= (2) 

characteristic (“stiffness”) matrix, and load vector 
respectively, in the direction of d . To solve the 
equation in (2), for each direction d , we utilize the 
CGM, which is an iterative technique that can be 
carried out amenably on FPGA at speeds capable of 
real-time simulations. 

3 CGM ACCELERATION  

The CGM consists of a series of one or more MVM 
and vector-by-vector multiplication (VVM). Since 
MVMs are more computationally intensive than 
VVMs, the effective bottleneck of this numerical 
method are the MVMs. The acceleration of the 
CGM involves designing hardware optimised for 
carrying out operations needed by the CGM (CGM 
Accelerator), and the speeding up of MVMs. 

Speeding up MVMs involves dividing the 
multiplying matrix K and vector v into smaller 
appropriately dimensioned sub-matrices and sub-
vectors. Each of these sub-matrices and sub-vectors 
are then used by a series of MVUs working in 
parallel, to carry out the required MVM. Each of 
these sub-matrices must be stored in separate 
memory blocks, one for each of the MVUs that will 
be working in parallel.  

The CGM accelerator consists of a series of 
MVU for carrying out MVMs, and a Scalar-Vector 
Unit (SVU) for carrying out the remaining scalar 
and vector operations in the CGM. 

3.1 SVU Design 

As mentioned earlier, the SVU carries out all the 
required operations in the CGM except for the 
MVM. In Figure 2, we show the set-up that carries 
out these operations. Most of the operations in the 
CGMs main loop (shown below) are dependent on 
each other hence; they must be carried out 
sequentially in the order of dependence. For 
example α must be updated before x or r is updated, 
and r must be updated before β is updated. The 
updating of x and r are, however, independent of one 
another, so they can be carried out simultaneously. 
However, the amount of time, one clock cycle, that 
is saved is not justified when considering that the  
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Figure 2: SVU Design. 
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amount of resources that is required to update x and 
r will be doubled. However, we can double the size 
of the system that the SVU can handle by allowing 
an extra clock cycle. The completion time for the 
SVU is always fixed, unlike the MVU were the 
completion time will vary with the size of the matrix 
that it uses for the MVM.  

As seen in Figure 2, the three main modules used 
in the SVU data-path are a Divider, a Vector ALU 
(VecALU), and an Accumulator. The operations 
performed by these modules are described next. 
Divider: This module is used to calculate α and β, 
which are used by VecALU. 
VecALU: This is an arithmetic logic unit (ALU) 
that specifically carries out vector-vector or vector-
scalar operations. The residual r, search direction g, 
and deformation x are updated here. The module 
uses previous values along with α and β to generate 
new values. The new value of r is passed to the 
Accumulator.  
Accumulator: This module basically sums the 
elements of the register r2 reg. The result of this 
summation is the 2-norm of vector r. Hence, each 
element of register r2 Reg is the square of the 
corresponding element in r. The divider uses this 2-
norm value in the calculation of α and β.  

The SVU-Control controls the flow of 
information among the registers and modules in the 
SVUs data-path. As seen in Figure 2, there are three 
registers, shown by dashed lines, one for the 
multiplying vector, while the others are for the MVU 
results. These are the three registers used to pass 
information between the SVU and the MVU. The 
multiplying vector register g Reg is used for passing 
the direction vector to the MVU, while the result 
registers, pTKp Reg and Kp Reg, are used for 
receiving the MVU results (pTKp and Kp). 

3.2 MVU Design 

This MVU is designed specifically for MVMs, of 
the form Kp and pTKp, which may involve sparse 
matrices. The design, shown in Figure 3, requires 
only the non-zero elements of the matrix to be stored 
in the memory. The non-zero elements are stored in 
memory as part of a simple 32-bit instruction format, 
shown below, that was designed for the MVU. 
Further, these non-zero elements are stored in 
memory using fixed-point format. 

a(1bit) b(1bit) c(9bits) d(21bits) 
      a  1st bit determine s end of matrix. 
      b  2nd bit determine s end of row. 
      c  3rd to 11th bits used to determine the column of    
          the nonzero value. 
      d  last 21 bits give the nonzero value. 

 
Figure 3: MVU Design. 

The MVU data-path is pipelined and divided into 
three modules, namely, Instruction Fetch module 
(IFetch), Instruction Decode module (IDecode), and 
Execute module (IExecute). 
IFetch: This module just fetch’s the next instruction 
from memory and forwards it to IDecode for use. 
The instructions are read sequentially with the 
addresses gotten from a sequential counter. 
IDecode: The instruction is decoded here using the 
format described earlier. It is determined here if the 
end of the current row or column (ERC) or the end 
of matrix (EM) has been reached. The address of the 
next vector element needed for the next 
multiplication is also determined here. 
IExecute: This module basically performs the 
traditional MVM (i.e. taking the inner product of 
each row and the multiplying vector, starting with 
the first row) using a set of multipliers and 
accumulators. The calculation of pTKp and Kp are 
done concurrently, with the appropriate values 
stored in the appropriate result registers. 

The MVU-Controller controls the flow of 
information among the registers and modules in the 
MVU data-path. As discussed earlier, the MVU 
result registers, and multiplying vector register are 
used for passing information between the SVU and 
MVU. 

4 RESOURCE USAGE AND 
PERFORMANCE 

FPGAs contain three main resources namely, 
multipliers, logic elements and registers. Of these 
three, the multipliers are of least abundance. This 
makes them the bottleneck of any design for 
applications that are heavily dependent on the usage 
of multipliers. For this reason, we use the multiplier 
usage as the primary measure of our designs 
resource usage, as it is the deciding factor in the 
maximum size of the system that can be solved on 
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one FPGA. Figure 4 shows the multiplier usage of 
our CGM accelerator implementation for different 
number of MVUs and problem sizes n (number of 
nodes). We implemented the CGM accelerator on 
Altera’s DE2 development board using the Quartus 
II development software. The implementation can be 
clocked at speeds up to 133MHz. 

The completion time for one iteration of the 
CGM is given by (5), the sum of the completion 
times for the SVU and MVU. Of these two, TMVU  

                       MVU SVUT T T= +  (3) 

is the only time that can be improved on by using the 
technique described in section 3. Minimizing TMVU  
effectively reduces the to time to carry out the CGM. 
Hence T  is a good measure of performance for our 
CGM accelerator. We used a two-pronged approach 
to test for the timing performance of the CGM 
accelerator. Firstly, we used Quartus II simulator to 
get preliminary test results for the CGM accelerator. 
Secondly, we will verify these simulation results 
with test results from the hardware implementation 
of the CGM accelerator. These tests are done at 
100MHz. In Figure 5 we show the preliminary 
results for the computation time, T , of one iteration 
of the CGM as a function of number of MVUs and 
problem size n.  

MFLOPS, given by (4), is another common 
measure of performance. MFLOPS is a measure of 
the number of floating point operations per second.  
n  is the size of the problem and m is the of average 
number of nonzero elements per row. In Figure 6, 
we show the MFLOPS performance as a function of 
problem size for systems generated using connection 
pattern B in Figure 1. Our CGM accelerator was 

#  / .
 / .

2 3 2                

Total of flops iterMFLOPS
compute time iter
mn n

T

=

+ +
=

 (4) 

 

 
Figure 4: Multiplier Usage. 

 
Figure 5: Computation time. 

 
Figure 6: MFLOPS Performance. 

able to achieve more than 540 MFLOPS with 5 
MVUs working in parallel. As you can see in Figure 
6, the performance of the system plateaus as n gets 
larger. This is mainly due to the fact that the number 
of MVUs is fixed. However, for better performance, 
we can use more MVUs in parallel. Note, however, 
that the use of more than one MVU in parallel 
means that fewer multipliers are available for use by 
the SVU, as the number of multipliers available on 
the FPGA is fixed. Hence, the amount of resources 
available determines the optimal number of MVUs 
that can be used in parallel, and size of problems that 
can be solved. 

5 CONCLUSIONS 

We proposed and implemented an FPGA based 
CGM accelerator for carrying out real-time 
simulation of tissue deformation. Our design does 
not require any information on the sparsity of the 
stiffness matrix. Further more, we gave a brief 
discussion on improving the speed of MVMs using 
parallel computing. We then looked at the resource 
requirements and the performance of the CGM 
accelerator. Our preliminary performance results 
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show that developing FPGA accelerators for use in 
real-time simulation is feasible. Our next step is to 
verify these results as described in section 4. 
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Abstract: Our final goal is to develop a portable display which will enable the deaf-blind to character on the palm 
through the use of tactile sensations. We propose the use of thermal stimulation as the tactile sensation, 
because in this way small-sized and lightweight devices can be developed. However, it might still be 
impossible to capture continuous movement, which is necessary to recreate characters on the palm. In past 
research, we found that thermal perception is dependent on the palm position. Therefore, in this study, we 
investigated the cause of this position dependence by comparing the skin’s thermal perception and its 
mechanical characteristics.  

1 INTRODUCTION 

Since the deaf-blind suffer from both visual and 
auditory impairment, it is easy to understand the 
communication difficulties that arise due to this 
affliction.  

In this research, we tried to create a device that 
can facilitate effective communication among the 
deaf-blind and the non-disabled.  

Since schools throughout Japan teach both the 
deaf and the blind to write phonetic symbols known 
as “kana,” most Japanese deaf-blind are familiar 
with this standard Japanese writing system. Then, 
some deaf-blind use a communication method which 
is writing characters on the palm of their hand using 
a finger. Therefore, we thought this could provide 
the basis for a communication device that can be 
used among deaf-blind.  

Generally speaking, a person's finger moves 
continuously when a kana is written on the palm. 
Needless to say, it will be easy to transmit a shape of 
kana by using a kind of pin tactile display for the 
blind (Itoh, Sakai and Sakajiri, 2003). However, we 
think the stroke order of writing kana is important to 
let the deaf-blind know kana. Then, our goal is to 
develop a portable display which enables a person to 
write kana on the palm through the use of tactile 
sensations (Wada and Wada, 2003.). Although this 

finger movement can be reproduced by using a XY-
stage, it is not possible to carry such a stage because 
of its size and weight. To resolve this drawback, we 
surmised that a portable display can be realized by 
making use of a Peltier element, which is both small 
and light. However, even if the elements were 
arranged, it might still be impossible to recreate 
continuous movement of tactile stimulation on the 
palm. Instead, we supposed that continuous 
movement can be realized using the apparent motion 
phenomenon.  

In previous research (Horio and Wada, 2005), we 
investigated the optimal condition under which 
thermal stimulation of a Peltier element causes 
apparent motion. However, some subjects could not 
perceive the apparent motion. We hypothesized that 
this was due to the individual differences in the 
characteristics of thermal stimulation reception. 
Incidentally, it was difficult to measure the thermal 
stimulation reception while it was easy to measure 
mechanical characteristics of skin. Therefore, we 
would like to make a model by which thermal 
stimulation perception will be able to be estimated 
by mechanical characteristics.  

In this study, we chose response time to cold 
sensation and mechanical impedance as a parameter 
of thermal stimulation perception and mechanical 
characteristics, respectively. Then, we investigated a 
relationship between the response time and 
mechanical impedance.  
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2 MEASUREMENT OF 
RESPONSE TIME  

2.1 Experimental Setup  

Figure 1 illustrates the outline of our experimental 
setup. Peltier elements (8.3 mm*8.3 mm* 2.4 mm) 
were used to induce thermal stimulation. These 
elements were connected to a computer through a 
D/A converter and an amplifier. The thermal 
stimulation was controlled by the computer. Two 
thermocouples were used to measure the 
temperature: one was attached to the Peltier element 
to measure its temperature, while the other was 
attached to the palm to measure the skin surface 
temperature. The thermal data from the 
thermocouples was directly inputted into the 
computer through an A/D converter.  

 
2.2 Experimental Procedure  

The right palm was thermally stimulated. The palm 
length and hand breadth were measured, and the 
palm was divided into 16 parts (Fig. 2). The 
assigned number and alphabet indicates the place 
where thermal stimulation was induced. Figure 3 
shows the thermal stimulation pattern. The vertical 
axis indicates the temperature of the Peltier element, 
while the horizontal axis indicates the elapsed time. 
Before the start of the experiment, the temperature 
of the Peltier element was adjusted to the same 
temperature as the subject's skin surface. The 
environment temperature was between 25 and 28 
degrees Celsius. The subjects were six males, 22 to 
25 years of age. The trial was repeated 10 times for 
each subject. The subjects wore earplugs and 
eyeshades in order not to hear environmental noise 
and see.  

When the Peltier element surface reached the same 
temperature as the palmar skin surface, the element 

was placed on the palm. After a while, the 
temperature of the Peltier element decreased. The 
ratio of temperature decrease of the Peltier element 
was -5.5 degrees Celsius per second. 

The subjects were asked to push a switch when 
they felt that the Peltier element had become cold 
(“Stop” in Fig. 3), after the temperature of the Peltier 
element started to decrease (“Start” in Fig. 3). The 
time interval between “Start” and “Stop” was 
measured. This time interval was named the 
“Response time.”  

 
Figure 2: Stimulation points. 

 

2.3 Results and Discussion  

Figure 4 shows the average results for all subjects. 
The vertical axis shows the response time in seconds 
while the horizontal axis shows the stimulation 
points.  

As Figure 4 shows, the response time was different 
for each stimulation point and about 1 second. Next, 
we calculated the deviation value for all response 
time in order to standardize the data. Table 1 shows 
the results for the deviation value of response time. 
When the response time was mean, the standardized 

Figure 3: Stimulation pattern. 
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Figure 1: Experimental setup. 
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value was 50. If the value was larger than 50, it 
meant the response time was longer than the mean 
and vice versa.  

 
Figure 4: The response time. 

Table 1: Standardized response time. 

1 2 3 4
a 47.9 38.2 34.7 40.7
b 53.7 38.6 41.1 40.3
c 44.4 45.6 45.2 53.3
d 53.5 54.0 42.9 34.8  
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Figure 5: The standardized response time in contour graph. 

Figure 5 shows the contour graph of standardized 
response time. From figure 5, it was found that the 
response time was short on position “a” and central 
area of palm. And it was also found that the response 
time was long on peripheral area of palm.  

3 MEASUREMENT OF 
MECHANICAL IMPEDANCE 

3.1 Experimental Procedure  

The palmar mechanical impedance can be found 
from the power and the acceleration caused when 

the palm is vibrated at various frequencies. 
Therefore, we devised an experimental setup capable 
of inducing the vibration of the skin. We used a 
small vibrator, and measured the power and 
acceleration by means of an impedance head. The 
mechanical impedance of the skin was measured 
with the measurement setup shown in Figure 6. The 
vibrator outputted a sine wave vibration, and the 
vibration was relayed to the palm through the 
impedance head and the contactor pin. We used 15 
measurement frequencies: 80, 100, 150, 200, 250, 
300, 350, 400, 450, 500, 600, 700, 800, 900 and 
1000 Hz. A touch sensor was used to confirm that 
the palm touched the contactor pin. The same 
subjects in chapter 2 participated in this experiment. 
The subjects touched the pin with the palm of the 
right hand. When the pin touched the palm, the 
vibrator made the skin vibrate. The subjects were 
asked to control the pressure of their palm on the 
contactor pin by watching the output of the load cell. 
The power with which the skin pushed the pin was 
set to 50 gf. During the experiment, the subjects 
were asked to simply place their palm onto the 
contactor pin. The impedance of the palm was 
measured by the impedance head, and the data were 
inputted into a computer. The measurement was 
made as described in chapter 2 (Fig. 2). 

 
Figure 6: Mechanical impedance measurement device. 

3.2 Results and Discussion  

From the analyses of mechanical impedance, we 
divided them into two categories. The typical 
patterns of each category were shown in Figures 7 
and 8. Figures 7 and 8 show the average results for 
all subjects at stimulation point a2 and d2, 
respectively. The vertical axis shows the impedance. 
The horizontal axis shows the frequency in Hz. The 
lower part of those graphs shows the imaginary part 
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of the impedance. The upper part shows the real part 
of the impedance.  
Figure 7 shows that the value of imaginary part 
increased as the frequency increased. We called this 
pattern #1. On the other hand, the value of imaginary 
part increased and decreased as the frequency 
increased in figure 8. We called this pattern #2. 
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Figure 7: The impedance change (pattern #1). 
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Figure 8: The impedance change (pattern #2). 

Table 2 shows the categorized results for all 
stimulation points. One-asterisk shows that pattern 
#1 change was obtained in the stimulation point, 
while two-asterisks shows pattern #2. From table 2, 
it was found that the pattern #2 was obtained on 
peripheral palm where the hand was relatively thick 
and the pattern #1 was obtained on relatively thin 
part.  

Table 2: Position dependence of impedance change. 

 

3.3 Comparison between Response 
Time and Mechanical Impedance 

Figure 9 shows the combination between figure 5 
and table 2. From figure 9, it was found the response 
time was relatively short at the area of pattern #1, 
while the response time was relatively long at the 
area of pattern #2. There seemed to be a relationship 
between response time and mechanical impedance. 
Therefore, we hypothesized that the response time 
could be obtained by using mechanical impedance.  
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Figure 9: Comparison between response time and 
mechanical impedance. 

4 CONCLUSION 

We investigated the relationship between response 
time and mechanical impedance in this paper. In the 
near future, we are planning to make an energy 
conductive model by using mechanical 
characteristics in order to estimate thermal 
stimulation response.  
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