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ABSTRACT

The DCM approach is commonly used to divide the dataset
into smaller subproblems, analyze each subproblem using a
base method to obtain sub-trees, then recombine these sub-
trees to build the final phylogeny over the whole dataset.
In recent years, the new and improved method MrBayes, a
Bayesian Markov Chain Monte Carlo (MCMC) approach
is widely used for phylogeny analysis. In this paper, a
new method for large scale Bayesian phylogeny analysis is
proposed. This new method (DCM3-MrBayes) is an improved
version of Rec-I-DCM3 (Recursive Iterative Disk-Covering
Method), which uses a divide-and-conquer approach and is
designed for large dataset analysis.

To integrate MrBayes with Rec-I-DCM3, we have to deal
with some unique problems and proposed several methods
to tackle these problems. Our improvements include a cache
system that can avoid unnecessary computations and a
method to eliminate weak branches indicated by the Bayesian
analysis to filter out potential bad branches. Our experiments
on simulated datasets shows promising improvement over
the original DCM. One of the most important advantages
of using Bayesian method for phylogeny reconstruction is
being able to calculate the posterior probabilities. A divide-
and-conquer Bayesian method looses its ability to calculate
the posterior probabilities due to the fact that each subprob-
lem generates its own posterior probabilities, which posts
some difficulties for obtaining the posterior probability for
the whole problem. In order to preserve the advantage of
Bayesian approach, we also introduce an algorithm that
calculates the posterior probabilities of the whole phylogeny
from the subproblems’ posterior probabilities.

I. I NTRODUCTION

Phylogenetic reconstruction is a procedure to infer the
evolutionary history among organisms and is one of the
most fundamental problems in biological research. To date,
DNA sequence data is still the most used data type for
phylogenetic reconstruction, and Maximum Parsimony (MP)
and Maximum Likelihood (ML) are commonly used as the
optimization criteria for reconstructing phylogenies.
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In recent years, Bayesian-based inference of phylogeny
found its way into the phylogeny field despite its long tenure
in statistics. Even though Bayesian based methods still use
the same models of evolution as many other reconstruction
methods, it represents a powerful tool that can address many
of the long-standing and complex questions in evolutionary
biology.

One of the most difficult problems facing any phylogenetic
reconstruction method is how to produce accurate phylogeny
trees for large datasets (with thousands of species) within
reasonable time constraints. Since the number of all possible
trees grows exponentially with the number of taxa1, enumer-
ating all trees for several dozens taxa may take more than
several centuries.

One way to remedy this problem is to use a type of divide-
and-conquer approach, in which the set of taxa is decom-
posed into a collection of overlapping subsets, each of which
optimizes some criterion designed to make reconstruction on
the subset as accurate and efficient as possible.

The best divide-and-conquer approach to date is the family
of Disk-Covering Methods (DCM), introduced by Warnow
and her group [6], [5] and since shown in several experimen-
tal studies to produce better results on sequence-based data
than any other distance- or parsimony-based method [8], [9].
Generally speaking, all DCMs proceed in four major phases:
(1) decomposing the dataset into smaller and overlapping
sub-problems, (2) solving the subproblems using some base
methods, (3) using a supertree method to merge the results
from subproblems and form a tree on the whole dataset, and
(4) refining the resulted tree.

Although DCMs are designed and able to work with
any base method, such as the maximum parsimony method
PAUP* [16] and the distance based method Neighbor-
joining [13], integrating them with Bayesian methods poses
some unique problems. For example, during the recombina-
tion step, DCMs do not check if the sub-tree produced from
the subproblem has weak branches, although by applying the
Bayesian approach, each branch will be assigned a credibility
value and branches with weak credibility values should be
filtered out.

On the other hand, in a Bayesian analysis, inferences
of phylogeny is based upon the posterior probabilities of
phylogenetic trees [11]. Such posterior probabilities of the
model can not be obtained by analysis even though it is easy
to formulate, because it involves a summation over all trees,

1Given N taxa, the number of all possible trees is(2N− 5)!! = (2N−
5)× (2N−7)×···×3.



and for each tree, integration over all possible combinations
of branch length and substitution model parameter values.
Current DCM methods do not provide a way to obtain the
posterior probability of the whole phylogeny based on the
probabilities of all sub-trees.

Since Bayesian method can produce accurate phylogeny
trees in a fast fashion [11], using a Bayesian approach
as base method for the Disk-Covering methods is an ideal
approach for building a more robust statistical model.

In this paper, we present our new improvements on Rec-
I-DCM3 (the latest DCM method) to address the above
problems. The paper is structured as following. First we
give necessary background on the Bayesian approach and the
Disk-Covering methods. We then introduce the various tech-
niques we implemented in the new method (called DCM3-
MrBayes). Our experimental results on simulated datasets
show significant improvements on topology correctness, and
the results are shown in section IV.

II. BACKGROUND

A. Bayesian Approach for Phylogenetic Reconstruction

Huelsenbeck and Ronquist introduced MrBayes, a pro-
gram using Bayesian approach to estimate phylogenies from
sequence data [3], [11]. The current version of MrBayes
is v3.1, which is a completely rewritten and restructured
version. The hallmark of the new MrBayes is a powerful
framework for phylogenetic inference under mixed models
accommodating data heterogeneity. This framework will help
the user to specify mixed models and exploit the computa-
tional efficiency of Bayesian MCMC analysis in dealing with
composite data sets.

Unlike MP and ML based methods, using Bayesian
approach of phylogeny reconstruction combines the prior
probability of a phylogeny with the tree likelihood to produce
a posterior probability distribution on trees [11]. In ML or
MP methods, topologies and branch lengths are not treated
as parameters but random variables. In Bayesian analysis, the
best estimate of the phylogeny can be obtained by selecting
the tree with the highest posterior probability, in a way
the posterior probability of a tree can be interpreted as the
probability of that tree being the true tree. Usually all trees
are considered a priori equally probable.

Since the posterior probabilities of the model can not be
obtained by analysis, they have to be approximated by the
Markov Chain Monte Carlo (MCMC) approach [1]. The
principle of the MCMC approach is to build a succession
of states, and once convergence is reached, the consecutive
states are assumed to be drawn from the target probability
distribution. The objective of MCMC when associated with
Bayesian methods is to compute the global optimum of some
posterior probability. Markov chains are used to explore the
posterior probability surface by integrating over the space
of model parameters. Usually the trees are sampled at a
fixed frequency and through those samples, the posterior
probability is approximated.

In general for phylogeny, the MCMC algorithm involves
two steps: first, a new tree is proposed by stochastically per-

turbing the current tree. Second, this tree is either accepted
or rejected with an acceptance probability. Upon acceptance,
the new tree is subjected to further perturbation [2].

The acceptance probability is defined as the minimum of
one or the likelihood ratio times the prior ratio times the
proposal ratio, where the likelihood ratio is the ratio of the
likelihoods of the new state to the old state, the prior ratio
is the ratio of the prior probability of new state to the old
state, and the proposal ratio is the ratio of the probabilityof
proposing the old state to the probability of proposing the
new state [3].

Even though many of the analysis of difficult model are
made possible by MCMC algorithm, it is not a silver bullet,
as Markov Chains can fail to converge to the stationary
distribution for various reasons.

A Bayesian approach on phylogeny can be generalized in
the following formula:

Tree|Data] =
P[Data|Tree]×P[Tree]

P[Data]

the new MrBayes applies the general Bayesian approach
using the following rule:

f (τ,υ,θ|X) =
f (τ,υ,θ) f (X|τ|,υ,θ)

f (X)

whereX is the data matrix,τ is the topology of the tree,υ
is a vector of edge lengths on the tree andq is a vector of
substitution model parameters.f (τ,υ,θ) is the prior, which
specifies the prior probability of different parameter values.
f (X|τ|,υ,θ), is the likelihood function, which describes the
probability of the data under different parameter values.f (X)
is the total probability of the data summed and integrated
over the parameter space.f (τ,υ,θ|X) is the posterior dis-
tribution. MrBayes uses a Metropolis-Hasting Sampler to
update single parameter or blocks of related parameters in
each step.

In general, Bayesian based algorithms avoid the standard
approach of specifying only one hypothesis as the null
hypothesis then asking if the data are strong enough to reject
it. Since the output of a Bayesian analysis is the posterior
probability of any solution, standard probability rules can
still be used as measurement to select the most reasonable
and strong hypothesis. For example, if one hypothesis is
consistent withk different trees from the tree space and
the alternative is consistent with all other tree topologies,
the probability that the first hypothesis is correct is simply
the sum of the posterior probabilities of thek trees. The
Bayesian approach is intuitive and is particularly useful when
the number of alternative hypotheses is huge.

B. Disk-Covering Methods

To date, there are three major DCMs: DCM1 [4],
DCM2 [5] and Rec-I-DCM3 [12]. All DCMs proceed in the
four divide-and-conquer phases described above, but variants
of DCMs come from different decomposition methods: both
DCM1 and DCM2 operate solely from the pairwise distance
matrix of the taxa, whereas DCM3 uses a dynamically



updated guide tree (in practice, the current estimate of the
phylogeny) to direct the decomposition. The last three phases
are identical for all DCMs.

As the latest variant of DCM approaches, Rec-I-DCM3
uses iterations to escape local optima, a divide-and conquer
approach to reduce problem size, and recursions to enable
further localization and reduction in problem size. One of
the improvements is that it tries to avoid dividing the data
into very large subset by applying DCM3 recursively on
subsets that are too large. Another improvement is to use a
dynamically updated guide tree to direct the decomposition,
so that it will produce different decompositions for different
guide trees. In other words, Rec-I-DCM3 iteratively refines
the guide tree and produces better decomposition as the
iteration proceeds. Experiments showed that Rec-I-DCM3
not only reduces the size of the explored tree space, but
also finds a larger fraction of MP trees with better scores
than other methods, and provides more accurate phylogeny
trees [12].

So far, Rec-I-DCM3 has not been offered to work with
any Bayesian method. Although the CIPRES portal2 has a
plan to add such capability, the current release still only
provide Neighbor-joining, RAxML [14] (for likelihood) and
PAUP [16] (for parsimony and likelihood) as base methods.

Our integration of Rec-I-DCM3 and MrBayes (DCM3-
MrBayes) provides an alternative to the traditional ML and
MP approaches. It should be a very powerful tool for
inferring phylogeny, evaluating clade probabilities, detect-
ing selection, detecting sample substitutions, and counting
number of synonymous and non-synonymous changes.

III. DCM3-M RBAYES

In this section, we introduce the various improvements in
our new program DCM3-MrBayes, including a procedure to
eliminate weak branches, a method to compute the posterior
probability of the whole phylogeny based on information
from sub-trees, and a cache system to avoid unnecessary
computations.

A. Eliminating Weak Branches

Our first improvement is to eliminate the weak branches
from the sub-trees MrBayes returns. MrBayes reports two
trees in newick format, one contains the topology, branch
length and probability of the partition indicated by the
branch, and the other one contains information only on the
topology and branch length. Fig. 1 shows the output tree
from MrBayes which displays the topology, branch length
and probability.

The probability, also known as the clade credibility value
is in fact the posterior probability of how likely the given
branch is a true branch. We assume a branch is weak
indicates that it is unlikely to be part of the true tree. Since
DCMs use a majority consensus rule when they integrate
sub-trees to form the final phylogeny, errors introduced
in sub-trees will make the consensus hard to achieve and

2under development with funding from the National Science Foundation
to support large-scale sequence-based phylogenetic analysis

sometime problematic, thus these weak branches should be
eliminated from sub-trees.

Our elimination procedure works as following. Based on
the branch percentage a cut off point is set, any branch that
has less than the cut off percentage will be deleted, its child
node will be connect to the nearest branch as a star. In other
words, this branch is treated as unresolved in this sub-tree.
Fig. 2 shows an example. Since a weak branch indicates
that such branch may be wrong, removing it from the sub-
tree prevents potential conflicts in the recombination stage
of Rec-I-DCM3 and allows stronger branches to dominate
the recombination.
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Fig. 1. MrBayes output tree which displays clade credibility values.
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Fig. 2. Eliminating the weak branch (the one with 75% credibility value)
from the tree shown in Fig. 1.

B. Obtaining Posterior Probabilities

Providing posterior probabilities is one of the advantages
of Bayesian method since posterior probabilities can be
used as easily interpretable alternatives top values. The
original Rec-I-DCM3 might work reasonably well with a
Bayesian method as base method even without eliminating
weak branches, however, there are no previously known
algorithm to generate posterior probabilities for the final
phylogeny of the whole dataset.



In this study, the posterior probabilities are equal to
the clade probabilities. A clade is defined in Cladistics,
which is the hierarchical classification of species based on
their evolutionary ancestry, and the diagrams generated by
cladistics are called cladograms. Fig. 3 shows the clades in
the tree shown in Fig. 1. In a cladogram, a clade is defined as
a taxonomic group comprising of a single common ancestor
and all the descendants of that ancestor. In cladistics, a clade
that is located within another more inclusive clade is said to
be nestedwithin that clade.
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Fig. 3. Example of clades, which are bounded by dashed boxes.

Consider an unrooted phylogeny tree which contains many
clades. A clade can be formed in several ways. The simplest
clade is formed directly by several (minimum two) leaves
(species). A more complicated clade can be formed by one
or more smaller clades with one or more single leaves. For
example, in Fig. 3, the clade containing sequences 5∼ 7 is
an example of a complicated clade, which is composed of
two smaller clades.

The difficulty associated with calculating posterior clade
probabilities for the combined final tree lies in the area of
how to find an algorithm that is statistically meaningful to
combine the posterior clade probabilities of sub-trees.

We made several assumptions here:
• For all of the sub-trees generated by DCM3 during the

decomposition step, they are independent of each other,
even though they must overlap slightly.

• For all clades in one tree, some may contain others,
they are independent to each other, which means, if a
bigger clade has clade probability ofx, and it contains
a smaller clade whose clade probability isy, x and
y are independent of each other. In other words, the
probability of the contained clade does not depend on
its parent clade’s probability, or vice versa.

With this knowledge in hand, an algorithm can be con-
structed by the following steps. Since a clade may appear in
several sub-trees, it is assigned multiple posterior probabili-
ties, one from each sub-tree. We can also assign a weight to

each clade, which determines its importance. If a clade has
more weight, its probability is more important than its copies
that appear in other sub-trees. In this paper, the weight is set
to be 1, so each clade has equal weight in each sub-tree.

Let L be a list of clades,Li denote theith clade in the
list; let LW be an array of weight, andLWim denotes themth
weight of the cladeLi ; let LP be an array of probabilities, and
LPim denotes themth probability of the cladeLi . Also, for
each cladeLi , defineni, the number of sub-trees containing
cladeLi .

All the above lists (L, LW andLP) can be easily obtained
by traversing all sub-trees before the recombination stage
of DCM3. If the ith clade Li appears in the final whole
phylogeny, its posterior probability can be calculated as

Pi =
∑ni

m=0(LPim×LWim)

ni
.

By checking all clades appear in the final tree, we can
easily get the posterior probability of the whole phylogeny
using the above equation.

C. Avoiding Unnecessary Computation

During some preliminary test runs on DCM3-PAUP, one
interesting problem surfaced is that depending on the size
of the datasets (number of sequences), the subproblems
obtained during the iterative decomposing step can not only
overlap each other, but also sometimes identical to each
other. That’s to say, since DCM3 proceeds in an iterative way,
one iteration may contain subproblems that have appeared in
a previous iteration. Rec-I-DCM3 will recognize the identical
subproblems as different ones, thus applies the base method
on the same subproblems every single time it appears. This
unnecessary and undesirable step will hinder the run speed
by doing avoidable computation.

As an effort to trim the potential running time, a compu-
tation saving technique for Rec-I-DCM3 is developed and
applied. The saving technique saves the resulted sub-tree for
each subproblem by creating a cache file and a cache folder,
as detailed in the following steps:

• Each dataset has its own cache directory, which name
is based on the input data file name.

• Each subset will have a unique cache file name based on
the genomes in the subset. To save the checking time,
the genomes are sorted by name when it is passed to
MrBayes or the recursive procedure of DCM3.

• When MrBayes and the recursive DCM3 get the subset,
it will check whether or not the cache file for this subset
exists in the cache directory. If such a file exists, it
copies the file back as the result for DCM; otherwise,
it moves on to compute and cache the result.

With this improvement, the number of subproblem is
reduced by up to 60 percent. Because Bayesian analysis is
very expensive, the computation of subproblems dominates
the whole analysis. As a result, the cache system can provide
considerable speedup, and the time spent on writing and
reading files is negligible. The cache system will be more
effective when the maximum size of subproblems is set to



TABLE I

THE ROBINSON-FOULDS ERROR RATES FROM THE TRUE TREES TO THE INFERRED TREES. AN ERROR RATE OF LESS THAN5% IS CONSIDERED VERY

ACCURATE FOR A METHOD.

number of taxa 100 200 400 800 1000
DCM3-Paup error 0 0.9% 1.75% 2.75% 15.3%

DCM3-MrBayes error 0 0.9% 1.5% 2.75% 8.1%

TABLE II

THE BRANCH SCOREDISTANCES OFDCM3-PAUP AND DCM3-MRBAYES.

number of taxa 100 200 400 800 1000
DCM3-Paup Distance 7 97 289 578 654

DCM3-MrBayes Distance 6 90 200 489 611

TABLE III

PARSIMONY SCORES OF THE TREES RETURNED BYDCM3-MRBAYES AND DCM3-PAUP

number of taxa 100 200 400 800 1000
DCM3-Paup score 740 1185 11000 12343 16835

DCM3-MrBayes score 731 1185 10930 12300 16432

be small (for example, fewer than 20 taxa per subproblem).
Since the duplicated subproblem is created during the de-
composition steps, this technique can be used as a general
fix on DCMs with any base method except fast distance-
based methods.

IV. EXPERIMENTAL RESULTS

We set out to examine the accuracy of our new DCM3-
MrBayes method. We concentrated our experiments on sim-
ulated datasets because topological accuracy can be easily
assessed when the true trees are known.

We used two criterion to measure the topological accuracy
of a method: the Robinson-Foulds error rate and the Branch
Score Distance.

If the true tree has an edge defining a bipartition with
no equivalent in the reconstructed tree, that edge is afalse
negative (FN); conversely, if the reconstructed tree has an
edge defining a bipartition with no equivalent in the true tree,
that edge is afalse positive (FP). The goal of all phylogeny
methods is to obtain both lower false negative and false
positive. The Robinson-Foulds error rate [10] is defined as
the number of false (FP and FN) edges divided by the number
of internal edges of the true tree (N−2 for N taxa).

Another popular measurement for the accuracy of a
phylogeny program is the Branch Score Distance [7]
which uses branch lengths and can be calculated when
the trees have lengths on all branches. A method returns
lower Robinson-Foulds error rate and smaller Branch Score
Distance is generally considered more accurate.

The ROSE (Random Model of Sequence Evolution) [15]
software package is a widely used simulator for sequence
evolution, which implements the HKY85 model of DNA
sequence evolution and allows for insertions and deletions. In
this experiment, we first create random trees and useROSE to
generate sequences on all internal and leaf nodes. All datasets

are tested using both DCM3-MrBayes and DCM3-PAUP to
compare the results.

Tables I and II show the Robinson-Foulds error rates and
the Branch Score Distances of these two methods. These
tables clearly show that for larger dataset size, DCM3-
MrBayes infers more accurate phylogenies than the com-
monly used DCM3-PAUP method.

The quality of the inferred trees is measured by computing
the maximum parsimony scores of these trees. Table III
shows these parsimony scores obtained by these two meth-
ods. Although DCM3-MrBayes does not explicitly seek the
most parsimony trees, this table suggested that the resulted
trees do require fewer number of events than DCM3-PAUP,
which uses the criterion of maximum parsimony to select the
phylogenies.

We also test Paup with its built-in Maximum Likelihood
method. Even DCM3 tries to decompose very small subprob-
lems, the ML method of Paup is just too slow and we many
of the above datasets cannot be finished after several days
of computation. The newly improved RAxML may be fast
enough to work with DCMs, and we will test its performance
against our DCM3-MrBayes in the future.

V. SUMMARY AND CONCLUSIONS

In this paper, we present our new method to handle
phylogeny reconstruction on large dataset and report experi-
mental results on simulated datasets. Our testing confirms
that the new DCM3-MrBayes is more accurate than the
current DCM3 methods. This method also enable us to
reconstruct the posterior probability for divide-and-conquer
based Bayesian approach, which will make the Bayesian
approach more useful in large scale phylogeny analysis.
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