
 
 

 

  

Abstract—During the process of protein synthesis, transcription 
of DNA to messenger RNA starts with the binding of the 
transcription factors to the promoter.  One of the issues on the 
prediction of transcription factor binding is that sequences 
corresponding to the binding present variability. In this 
manuscript a method for the detection of binding site is 
proposed, based on a parametric uncertainty measurement 
(Rényi entropy). This measurement is done through an 
estimation of the probability for each nucleotide avoiding any 
numerical representation of the nucleotides. We obtain values 
of the efficiency of the method as Receiver Operating 
Characteristic curves found on ABF1 and ROX1 binding sites 
in chromosome I and XVI of the organism Saccharomyces 
cerevisiae. 

I. INTRODUCTION 
olecular genetics establish that the information 
content in a gene can originate a protein using the 
processes  of transcription and translation. 

Transcription is the process where the genetic information, 
initially as a deoxyribonucleic acid, DNA, results in 
ribonucleic acid messenger, mRNA. This process begins by 
means of the union of RNA polymerase enzyme and the 
transcription factors to the promoter, a nucleotide sequence 
which has the signal to start the transcription. Once the 
different molecules are joined with the promoter, the copy of 
a DNA strand to mRNA is triggered. In the eukaryotic cells, 
transcription and translation stages are not directly 
connected as the nuclear membrane physically separates the 
process. The mRNA obtained must be modified to leave the 
nucleus using the processes of 7-metilguanosina, 
polyadenylation and splicing. After the mRNA has been 
processed, it is translated into an amino acids sequence, 
process known as translation. These polypeptides or proteins 
form structural proteins and enzymes that control the 
metabolic processes in cells [1-2].  
A single transcription factor shows binding among different 
sites, with different sequences. Due to this intrinsic 
variability it is difficult to establish a consensus sequence 
approach for binding detection [3]. Consequently, any 
detection method of binding sites within a DNA sequence, 
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must consider the variability of these ones. This has 
originated several efforts of research, employing different 
methods to detect patterns in bio sequences: probabilistic, 
deterministic and numerical [4].  The probabilistic methods 
are characterized by the need of being trained, to be able 
then, to infer the discovery of patterns. Within this field the 
most representative models are based on Position Weight 
Matrix or PWM. These are based on the frequency of each 
symbol in a specific position of a training group. These 
models generally assume the independence between 
positions. On the other hand, models like Hidden Markov 
Models or HMM, and neuronal nets, assume the dependence 
between positions of a binding site also under probabilistic 
approaches [5], [6], [7], [8]. The deterministic methods are 
based on adjusting a specific sequence to concrete patterns 
[9], [10].  Some others use multivariate models and 
additional information that include the context [11]. 
Information theory has also been used in genetics to 
visualize the information of a sequence set [12], [13], [14], 
[15]. There is a first study about the characterization of a 
sequence set with parametric entropies [16], although there 
are no published results on the use of parametric entropies 
for building a detector. 
In this manuscript we propose to detect binding sites of 
transcription factors using parametrical entropy.  The 
method employs an aligned set of sequences with known 
binding and checks the total information change when the 
candidate sequence is included in the set.  

II. MATERIALS AND METHODS 

A. Method 
The proposed method starts with a matrix of aligned 
sequences with binding evidence.  The transcription factor 
binding sites, TFBS, are detected in a candidate sequence by 
means of the training set information content in a specific 
position [16]. Any new candidate sequence added to the 
training matrix will cause a variation on the order or 
information of set of aligned sequences. For random 
sequences the disorder in the system will increase. For a true 
binding site, the candidate sequence is not expected to 
modify in a significant way the total information of the 
aligned sequence set.  
The classical uncertainty or order measure is the Shannon 
Entropy. In this study, Rényi entropy is employed for this 
measurement which depends on the q parameter which is 
known as the order in the Rényi entropy. This parameter 
modulates the probability of occurrence of each symbol, 
emphasizing/suppressing this value as q decreases/increases. 
This measurement allows us to build a parametric detector 
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with variable sensibility thanks to the q parameter 
considered. 

B. Database description 
The algorithm requires a group of aligned nucleotide 
sequences with binding evidence. These sequences 
correspond to the organism Saccharomyces cerevisiae. 
Saccharomyces cerevisiae was the first eukaryotic organism 
with its genome completed.  This organism contains around 
sixteen million of nucleotides distributed among sixteen 
chromosomes. We have considered the recognizers ROX1 
and ABF1 (Table 1), located in the chromosomes I and XVI 
with chromosome length 948062 and 230208 nucleotides 
respectively. The dataset has been obtained from the data 
base TRANSFAC [17], http://www.gen-
regulation.com/pub/databases.html, using for the extraction 
of DNA sequences, an R library for automatic sequence 
extraction from a transcription factor name.  Finally, these 
sequences have been lined up by means of MUSCLE [18], 
to obtain the different nucleotides involved in each position. 
 

TABLE I 
SUMMARY OF THE RECOGNIZERS ANALYZED 

 

C. Information content measures 
The disorder in a system can be computed using the measure 
of Rényi entropy. The Rényi entropy [19] is considered a 
generalization of the Shannon entropy. With a random 
variable x with N possible states(x1, x2,…,xN) and a 
probability for each state i, given by pi, the Rényi entropy is 
defined as, 

 
q is a positive real number different than 1 (also known as 
alpha parameter in [16]).  Rényi entropy takes its maximum 
value when all possible states show equal probability pi 
=1/N. The opposite case Hq=0 occurs when a particular 
state as full probability. Rényi entropy converges to 
Shannon entropy when q tends to 1. 

 
The normalized redundancy R is defined as,  

max

1
H

HR −=  

where the redundancy is normalized depending on the 
maximum entropy. R decreases with the increase of 
information, and therefore increases with the increase of 
order. For a group of aligned sequences, the measurement of 

the redundancy, Shannon or Rényi, in a specific PWM, 
gives information about the complexity of the nucleotides 
distribution in the conserved sequence. 

D. TFBS detection 
By means of a matrix of aligned sequences we perform a 
measurement of the order in the different positions of the 
binding sites using the Rényi entropy [20]. The values of 
redundancy for very variable positions are close to 0. On the 
other hand, for positions highly ordered redundancy has 
values close to the unity. Using this premise, the algorithm 
developed does a comparison between the redundancy 
profile and the redundancy profile of the matrix when the 
candidate sequence is added to the set. This comparison is 
done position by position using the multiplication between 
both profiles as shown in (4). 
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R[matrix+seq]  measurement determines the order of the system 
when we add the studied sequence. The redundancy profile 
is represented as an n-dimensional vector, where n is the 
total number of positions of the binding site. This creates a 
vector space of redundancies where each axis corresponds to 
a specific position of the binding site. For each vector, the 2-
norm is calculated relative to the origin of coordinates (5). 

 
 

 
 
 
The norm which corresponds to the redundancy vector of 
the training matrix is the maximum norm for this system. 
When we add the candidate sequence to the aligned matrix 
Φ will be equal or lower than the maximum norm. The 
closest the candidate sequence to the training set, the larger 
the value of Φ. This defines an index which allows for the 
discrimination between a random sequence and a sequence 
that belongs to a binding site. 
The developed method, which is based in the criteria defined 
previously, is described next: 
1. For each position within the training matrix, we estimate 

the probability of every nucleotide by means of the 
appearance frequency. We consider the missing values, 
using the expectancy of a random variable, Ω � [A, T, C, 
G], with the probabilities of each nucleotide [21]. 

2. The redundancy profile is calculated from the PWM, 
correcting finite sample effects [22]. 

3. 1 and 2 are repeated, considering the training matrix with 
the new sequence added. 

4. For each redundancy profile obtained from the studied 
sequences, we have to calculate the product between 
profiles and the norm which corresponds to them. 

5. p-value is calculated regarding the null distribution of 
the norm. If p<α, we consider that the sequence belongs 
to a binding site.  

 

ORGANISM RECOGNIZER BASES ALIGNED 

SEQUENCES 

S. cerevisiae ROX1 12 20 

S. cerevisiae ABF1 37 22 
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III. RESULTS 
In the figure 1, we can observe the variability of each 
position of the ABF1 transcription factor by means of the 
correspondent redundancy profile for different q-values. The 
dependence of the entropic profiles with q is also shown.   
The Rényi order modulates the amplitude and the number of 
positions that belong to a binding site, and then we can 
obtain the positions involved to the binding sites.  As q 
increases, the noise in the redundancy signal increases too. 
With low q the redundancy signal also decreases. Therefore, 
the redundancy profile of the transcription factor depends on 
the Rényi order. An optimal q-value is suggested as a trade-
off between the noise included in the redundancy signal and 
the attenuation of the same one. 
The validation of the detector has been realized by means of 
"Leave one-out cross-validation ". Every individual 
sequence is used as a test sequence of training classifier with 
the rest of N-1 sequences. First results have been obtained 
with randomly generated candidate sequences.  A null 
distribution for Φ is obtained by testing 1000 times a 
random sequence on the rest of N-1 sequences. That’s made 
successively for each sequence within the training matrix. 
For the real chromosomes I and XVI from S. cerevisiae, the 
distribution is obtained by testing the rest of the N-1 
remaining sequences on the chromosome, I and the XVI. 
The performance of the detection is shown as a Receiver 
Operating Characteristic (ROC) curve for different q on 
Figure 2.  We observe that the number of TP, true positives, 
and FP, false positives, depend on the TFBS. In the same 
number of TP, the number of FP is bigger in the case ABF1 
than in ROC1.  This is because that the number of positions 
involved in the binding site is bigger in ROC1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the table 2, we observe that the detector has a different 
behaviour depending on the q value. The best learning 
system will be that one which produces a bigger area under 
the convex surface, AUC. If q decreases, the number of 
positions of the transcription factor that we consider 
decreases, but the number of TP and FP increases.  On the 
other hand, if q increases, increases the number positions of 
the transcription factor and also the FP, but the TP 
decreases. Therefore, the Rényi order q does depend on the 
TFBS characteristics and should be adjusted for each 
training sequence set (e.g. by means of cross-validation). 
 

TABLE 2 
AUC FOR ABF1 AND ROX1 FOR RANDOM 

SEQUENCES AND S. CEREVISIAE CR. I AND XVI  
 

 RANDOM  REAL 
 ABF1 ROX1 ABF1 ROX1 

q=0.1 0.9843 0.9992 0.9251 0.9836 
q=0.5 0.9882 0.9992 0.9315 0.9833 
q=1.0 0.9892 0.9988 0.9238 0.9807 
q=2.0 0.9895 0.9989 0.8917 0.9773 

 
Generally, low q values will depress the Redundancy 
profile, turning Φ more selective, whereas large q values 
will promote the redundancy values. Therefore, large q 
values will show large number of true positives at the cost of 
introducing additional noise in the Φ, increasing false 
positives.  Therefore, optimal q is the result of a balance 
between the noise and the attenuation of the redundancy 
signal and it is obtained using on the cost criteria 
established, and considering the AUC maximum. 
 
 
 

Fig.1. Left to right: redundancy for ABF1 and ROX1 binding sites. 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

IV. CONCLUSION 
In this work, we have presented a method to detect the 

binding sites of transcription’s factor, TFBS, based on a 
parametric uncertainty measure such as Rényi entropy on a 
training set sequences corresponding to TFBS. This method 
has been applied onto two chromosomes of the organism S. 
cerevisiae, seeking binding sites corresponding to ROX1 
and ARG1 recognizers. Results suggest that the proposed 
parametrical uncertainty measurement gives additional 
information related to binding site detection than Shannon’s 
entropy based detector (q=1). Rényi’s order, q, has to be 
adjusted for every TFBS by means of cross validation. In the 
process of optimization of the q-value, the redundancy 
profiles mark the possible positions involved in the binding 
process.  

The detection of binding site is done by the information 
contained in the training matrix.   An incorrect alienation 
and  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the lack of information in some positions in the training 
matrix provokes mistakes in the detection of the binding 
sites. Moreover, the method used has considered the 
independence between the positions within the binding site.  
In future studies, a method of optimal selection of the 
alienation parameters must be established. It will be also 
necessary to do a more precise treatment when there’s an 
absence of symbol and it will be possible to consider the 
dependence between the positions in the binding site by 
means of base transition frequency using parametric 
uncertainty measurements [16]. 
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Fig. 2: ROC for ABF1 (left) and ROX1 (right) for random case (up) and S. cerevisiae Cr. I and XVI (down) for different q.  
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