
Identification of Active Biological Networks and Common Expression
Conditions

Mio Seki and Jun Sese

Abstract—Biological networks such as protein-protein in-
teraction networks and metabolic pathways are useful in
understanding biological processes within living cells. The fact
that some parts of the networks are activated under specific
conditions, while other parts work continuously, prompts us to
determine the parts and conditions. In this paper, we present
a novel computational approach to simultaneously identify the
locations and the conditions from gene expressions and protein
interaction data. Our approach is based on the determination
of large interaction networks whose genes share expression
or repression conditions. We evaluate our method by using
yeast protein-protein interactions and microarray expression
data. The experimental results show that our method can
extract networks associated with specific conditions; these
networks are closely related to the Gene Ontology categories or
KEGG pathways. Our method identifies the components in a
proteasome complex along with their activating conditions and
the relation between heat shock and cytoskeleton automatically.

I. INTRODUCTION

Recent technological advance allows us to visualize large
biological networks such as protein-protein interaction net-
works and metabolic pathways. Most studies on biological
networks have focused on network topologies [1]. It is
difficult to characterize biological networks that are active
by using conventional techniques. Some networks are highly
active under most stress conditions, while others are activated
only under rare environmental conditions. A study on the
different parts of biological networks will aid in elucidating
the cellular machinery.
In a technique used to identify active networks, gene

expressions are first clustered or biclustered [2] and then the
members of the clusters are associated with a network. In this
technique, the genes might be located far away from other
members belonging to the same cluster on the network. The
constrained clustering methods [3]–[5] yields gene clusters
whose members are close to each other on the network.
However, these methods cannot handle subnetworks that are
activated in a part of the observed environment.
In this paper, we present a novel computational approach

to simultaneously identify active biological networks and
conditions from protein-protein interactions and gene expres-
sion data. Our approach is based on the identification of
large interaction networks whose genes share expression or
repression conditions. An example of the association genes

This work was supported by KAKENHI (Grant-in-Aid for Scientific
Research) on Priority Areas ”Systems Genomics” from the Ministry of
Education, Culture, Sports, Science and Technology of Japan.
M. Seki and J. Sese are with Department of Computer Sci-

ence, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610,
Japan.{seki,sesejun}@sel.is.ocha.ac.jp

{i1,i2,i3,i4}

{i1,i3,i5}

{i1,i2,i4}

{i1,i2,i3,i5}

{i1,i3,i4}

{i1,i5}

v1 v2

v4

v3

v5

v6

GC

GDv1

v2

v4

v3

v5

v6

v1 v2

v4

v3

v5

v6

v1 v2

v4

v3

v5

v6

{i1,i2}

{i1,i3}

Fig. 1. Examples of Common Pattern Graph

with a network is shown in Figs. 1(A) and (B). In Fig. 1(A),
6 genes and 8 protein-protein interactions exist. For example,
in the network, there is an interaction between genes v1

and v2. Fig. 1(B) represents the expression or repression
conditions of genes observed by using microarrays. (For
example, we regard a gene to be expressed when the gene
expression level in a shocked sample is more than twice
that in an unshocked or time-zero sample.) For the sake of
simplicity, we explain only the expression conditions in the
running example. In this example, gene v1 is expressed under
the following four conditions: i1, i2, i3, and i4.

On the basis of the network and the expression condi-
tions, we identify active subnetworks, whose members are
connected to each other and share the expression conditions.
Figs. 1(C) and (D) show two such networks, in which the
connected subgraphs GC and GD, denoted by the bold
lines share the expression conditions {i1, i2} and {i1, i3},
respectively ({i1, i2} implies “i1 and i2”). Thus, the genes
in GC share the expression conditions i1 and i2.

However, it is difficult to identify such subnetworks be-
cause the number of subnetworks and expression conditions
increases exponentially according to the size of a given
network and the number of conditions, respectively. To over-
come this difficulty, we enumerate graphs using depth-first
search (DFS) method and introduce pruning techniques using
expressed conditions size property. We apply our algorithm
to yeast protein-protein interactions and gene expression
profiling. The results reveal the automatic annotation of

the protein interaction network along with the expression
conditions. We confirm the annotation by comparing the
results with the Gene Ontology (GO) [6] annotations and
the KEGG pathways [7]. Our method identifies that the
subcomponents of proteasome are activated under oxidative
stress conditions, and confirms the relation between heat
shock and cytoskeletons.
The rest of this paper is organized as follows. Section

II presents the formal definition of our subnetwork iden-
tification problem and the DFS method along with the
pruning technique. Then, we introduce a novel algorithm d-
COPINE in Section III. Section IV presents the experimental
results obtained using our algorithm in yeast protein-protein
interactions along with the expression data. We conclude the
paper in Section V.

II. METHOD

In this section, we present the formal definition of the
problem and then introduce an effective enumeration tech-
nique.

A. Problem Definition

Let G be an undirected, unlabelled, unweighted graph
whose each vertex has a set of items (an itemset). We
designate this graph as the common-expression graph (CE
graph). Let V (G), E(G), I(G), and I(v) respectively sig-
nify a set of vertices in G, a set of edges in G, a set of
itemsets on vertices in G, and an itemset on v ∈ V (G).
For this description, |G| = |E(G)| is the size of graph
G. Figure 1(A) portrays an example of the CE graph. In
this figure, V (G) = {v1, v2, v3, v4, v5, v6} and E(G) =
{(v1, v2), (v1, v3), . . . , (v4, v6)}. The size of G is eight.
Each vertex in G has an itemset. For instance, I(v1) =
{i1, i2, i3, i4} and I(v2) = {i1, i5}.
Next, we define a graph whose vertices have common

items.
Definition 1: (CPG) Let G′ be a connected subgraph of

the CE graph G. G′ is also a CE graph. Define I(G′) as⋂
v∈V (G′) I(v). We designate I(G′) as a common itemset of

the graph G′. When I(G′) �= φ, we say that G′ is a common
pattern graph (CPG) with I(G′).
We present two examples of CPGs in Figures 1(B) and
(C) as the bold lines, which have common itemsets {i1, i2}
and {i1, i3}, respectively. Note that the common itemset is
determined only using the vertices, and not the edges of the
graph. Therefore, we define I(V (G)) =

⋂
v∈V (G′) I(v) =

I(G).
The last equality is satisfied when I(G1) ⊆ I(G2) or

I(G1) ⊇ I(G2). Only when the inclusion relation between
the itemsets of two graphs exists, we consider that the graphs
are connected. From this definition, GB and GC shown in
Figures 1(B) and (C) are disconnected, although the two
graphs share the vertices v1 and v4, and the edge (v1, v4).
If connected graphs exist, we are interested in the largest

one. The following definitions of a closed CPG (CCPG) and
a maximal CPG enable us to select the CPGs of interest. The

terms, closed and maximal, are inspired from association rule
mining researches.
Definition 2: (CCPG and maximal CPG)

Given a CE graphG. Let G′ be a CPG with I . When no edge
(v1, v2) ∈ G, where v1 ∈ G′ satisfies I(V (G) ∪ {v2}) = I ,
G′ is called CCPG with I . We call CCPG whose size is the
largest as the maximal CPG, and the N largest CCPGs as
the N maximal CPGs.
In the running example, both GB and GC are CCPGs, and
GC is the maximal CPG because |GB | = 3 and |GC | = 4.
With this definition, we formalize the problem of finding

the maximal CPG.
Definition 3: (Finding the N maximal CPGs)

Given a CE graph G, a user-specified values N and θ.
Compute the N maximal CPGs G′ such that |I(G′)| ≥ θ.
When N = 10, the problem of finding the largest CCPG

demands the extraction of the 10 largest subgraphs that share
a set of items. For simplicity, we discuss below only the case
of N = 1. Then, we extend the discussion to handle the case
of N > 1.
Unfortunately, it is difficult to compute the N largest

subgraphs because the number of subgraphs increase expo-
nentially with the size of a graph. In particular, if the size
of CPG is large, we might generate all the subgraphs of
the maximal CPG even when we can avoid the generation
of uninformative subgraphs. To overcome this difficulty, we
introduce a DFS itemset tree and pruning techniques on the
tree.

B. Enumeration of Common Pattern Graphs

For enumeration of subgraphs, two different approaches
exist: April-like generations (breadth-first search) [8]–[10]
and a pattern-growth approach (DFS) [11], [12]. We design a
novel algorithm COPINE using the pattern-growth approach.
In this section, we introduce a DFS itemset tree, which
enables us to prune subgraphs whose common itemset sizes
are less than θ.
In this subsection, we introduce the DFS itemset tree and

the pruning technique using the DFS itemset tree. When
performing the DFS in a graph, we construct a DFS itemset
tree, whose node consists of a vertex of G and an itemset
associated with the graph described by a path from the root
to the node on the DFS tree. The tree is based on a DFS
tree [13] containing all the subgraphs of G according to the
DFS lexicographic order [11]. The DFS itemset tree does
not contain edges because the common itemset of G can be
calculated from V (G) without E(G). Because a large graph
is suitable in finding the largest CCPG, we consider all the
edges between vertices in G.
Definition 4: (DFS itemset tree)We use DFS to enumer-

ate all the subgraphs in a given CE graph G. Let T be a
DFS itemset tree and n1, n2 ∈ T be associated with the CE
graphs G1, G2 ⊂ G, respectively. In addition, n2 is a child
of n1 on T if G2 can be generated by adding a new vertex v
to G1. (at least one edge (v, v′), where v′ ∈ G1, is required.)
In the DFS itemset tree, the node n1 contains v and I(G1).

The root of T is null, and the children of the root represent
single-vertex graphs.
Next, we examine the construction of the DFS itemset tree

in Figure 2 from the graph in Figure 1(A). The starting node
can be chosen randomly. We decide the order, designated by
the symbol ≺, between vertices in advance. In the running
example, we treat vi ≺ vj when i < j. We traverse the
graph starting from the smallest vertex v1. We add a node
n1 containing v1to the DFS itemset tree T as the child of
the root. The node n1 is shown in Figure 2. This node is
also associated with I(v1) = {i1, i2, i3, i4}. Then, we add
n2 containing v2, which is the smallest vertex connected to
v1. n2 contains I(v1) ∩ I(v2) = {i1}.
In this tree, the path from the root to a node represents

the order of visited vertices in the DFS itemset tree. For
example, in Figure 2, the path from the root to n2 is 〈v1, v2〉
and indicates that the edges are visited in the order of v1

following by v2. Define G(P) as a CE graph represented
by a path P , and I(P) as I(G(P)). Let P be 〈v1, v3, v4〉.
E(G(P)) = {(v1, v3), (v3, v4)}, V (G(P)) = {v1, v3, v4}
and I(P) = I(v1) ∩ I(v3) ∩ I(v4) = {i1, i2}.
Property 1: Let path P1 be 〈v1

1 , v1
2 , . . . , v

1
d〉. Let us add

v1
d+1 to P . If an edge (v1

j , v1
d+1)(j = 1, 2, . . . , d) exists, any

edge (v1
j , v1

k)(k = 1, 2, . . . , d) satisfies v1
j ≺ v1

d+1.
Property 2: Let the paths P1 = 〈v1

1 , . . . , v
1
i−1, v

1
i , . . .〉 and

P2 = 〈v1
1 , . . . , v1

i−1, v
2
i , . . .〉. If P1 is traversed before P2,

v1
i ≺ v2

i .
These properties are the specific cases of the DFS lexi-

cographic order introduced in gSpan [11]. These properties
allow us to traverse all the subgraphs by using a unique path.
For example, we can generate graph containing v1, v3, and v4

by using 〈v1, v3, v4〉 or 〈v1, v4, v3〉. However, with Property
1 and the existence of the edge (v3, v4), we construct only
〈v1, v3, v4〉.
Although the ordering of vertices obviates the generation

of duplicate subgraphs, visiting all subgraphs still imparts a
high cost. The following property enables us to prune the
subtree whose common itemset size is less than the user-
specified threshold θ.
Property 3: Given a CE graph G. Let Gp and Gc be CE

graphs, Gp, Gc ⊂ G, and V (Gp) ⊂ V (Gc). Then, I(Gp) ⊇
I(Gc).

Proof: Let V ′ = V (Gc) − V (Gp). For any v ∈ V ′

I(V (Gp) ∪ {v}) = I(Gp) ∩ I(v) ⊆ I(Gp). Therefore,
I(Gp) ⊇ I(Gp) ∩ ⋂

v∈V ′ I(v) = I(Gc). Consequently,
I(Gp) ⊇ I(Gc).
From Property 3, the sizes of itemsets have a monotonic

property of the DFS itemset tree: if the common itemset
size in a node n of the DFS itemset tree is less than θ, the
common itemset size in any descendant node n′ of n is less
than θ.
In the running example, let θ = 2. The itemset on n1 in

Figure 2 is {i1} and its size is 1 < θ. Therefore, the common
itemset size on any descendant of n1 is less than 2. On the
other hand, we must consider the children of n2 because its
common itemset size is 2 ≥ θ.
Even if we can prune subgraphs by using the above

Fig. 2. DFS Itemset Tree (dashed and gray nodes are pruned by Properties
3 and Theorem 1, respectively)

properties, we might traverse the same edge many times.
In the running example, v4 in Figure 1 might be used in the
different paths 〈v1, v3, v4〉, 〈v1, v4, v6〉, 〈v3, v4, v1〉, etc. To
avoid the duplication of traversal, we introduce the following
property.
Theorem 1: Let n1 and n2 be the nodes of the DFS

itemset tree and n1 be generated before n2. If both n1 and
n2 contain v and I(n1) ⊇ I(n2), no CCPG exists in a
descendant of n2.

Proof: Omitted
This property implies that if we visit an already visited

node v and the common itemset of the current path is the
same or a subset of a previously visited itemset on v, we
can prune the subtree rooted by the current node in the DFS
itemset tree. Therefore, this property enables us to avoid
unnecessary subgraph exploration.
In the running example, presume that we visit n5 in Figure

2. I(〈root → n5〉) = {i1, i3} and {i1, i3} is generated at v6.
From Theorem 1, we can prune the subtree rooted by n5.
The subtree rooted by n6 also can be pruned. This pruning
reduces the search space considerably. The gray boxes in
Figure 2 are the nodes pruned by the Theorem 1.

C. Disconnected Networks

The enumerated CCPGs might include overlapped graphs
in which most of the edges and conditions are overlapped.
The overlapping of networks is often caused by the re-
placement between highly correlated items. For example,
suppose that a CCPG is associated with {i1, i2, i3}, and i3
and i4 are highly related sample. In this situation, the CCPG
would be similar to CCPG associated with {i1, i2, i4}. To
select disconnected networks from the computed CCPGs, we
introduce a heuristic.
Let overlap(G1, G2) be defined as

|E(G1) ∩ E(G2)|
min {|E(G1)|, |E(G2)|} × |I(G1) ∩ I(G2)|

min {|I(G1)|, |I(G2)|} ,

where |E(G1)| and |I(G1)| are the number of edges in
G1 and itemset size of I(G1), respectively. When G1 and
G2 have no common edges or samples, overlap(G1, G2)
is zero. On the other hand, when G1 is included in G2,
overlap(G1, G2) is close to 1. We define a new parameter,
the overlap ratio r. We identify that network G1 and G2 is

Algorithm 1 d-COPINE
Require: CE-graph G = (V (G), E(G), I(G)), user-specified

threshold θ and, t
1: V ← V (G)
2: remove nodes from V whose itemset size is less than θ.
3: T ← null // DFS itemset tree
4: N , C ← null // candidate CCPGs and disconnected CCPGs
5: // generate subgraphs from every nodes in V (G)
6: for each v ∈ V do
7: V ′ ← V
8: N ← N∪COPINE-VISIT (V ′, v, root)
9: V ← V − v
10: end for
11: N ← sort N by size in descending order
12: for each N ∈ N do
13: if ∃C ∈ C satisfying overlap(N,C) > r then
14: next;
15: end if
16: C ← C ∪ {N}
17: end for

Algorithm 2 COPINE-VISIT(V , v, n)
1: C ← all v’s neighbors in V
2: if C is null then
3: add a graph associated with n to L
4: return
5: end if
6: for each c ∈ C do
7: next if c does not satisfy DFS lexicographic order
8: I ← generate an intersection of I(c) and I(n)
9: // Pruning using itemset size (Property 3)
10: if |I | < θ then
11: next
12: end if
13: // Pruning with Theorem 1
14: if I(c) is already traversed on c then
15: next
16: end if
17: n′ ← generate new node containing c and add it to n.
18: V ← V − c
19: n′ ← COPINE-VISIT(V , c, n′)
20: end for
21: if n has no child or no child has the same itemset of n then
22: add a graph associated with n to L
23: end if

overlapped when overlap(G1, G2) > r. Using this heuris-
tics, we can identify important networks easily.

III. THE D-COPINE ALGORITHM

Next, we formulate our algorithm called disconnected
COmmon Pattern Itemset NEtwork identification (d-
COPINE), which is based on the DFS on a given graph and
uses DFS itemset tree.
Algorithm 1 sets the pseudo-code of the framework. Lines

1–3 initialize the variables. From line 4 to 9, we shrink
the vertex set V by removing the vertex after all the
subgraphs including the vertex have been searched. Lines
10–16 presents the identification of disconnected CCPGs.
COPINE-VISIT generates the DFS itemset tree recur-

sively. Lines 6–20 are the main generation step of the DFS
itemset tree. We can prune the subgraph whose itemset size

is less than θ at line 10 on the basis of Property 3. At line
14, we check the subtree on the basis of Theorem 1.

IV. EXPERIMENTS

We have investigated the effectiveness and usefulness of
the d-COPINE approach using protein-protein interaction
networks [14]–[16] consisting of 7,564 interactions and gene
expressions including 6,152 genes under 173 types of stress
conditions [17]. We convert the numerical expressions into
Boolean expressions by using thresholds. We denotes E as
the threshold. In all experiments, we have set the overlap
ratio threshold r = 0.1.
To check the expression networks, we use three different

expression thresholds, E = 1.0, 1.5, 2.0. When the value of
the expression is more than E, we consider that the expres-
sion is over-expressed. To detect the repression networks,
we use three different thresholds, E = −1.75,−2.0,−2.25.
When the value of the expression is less than E, we consider
that the expression is repressed. We compute CCPGs having
more than 20 edges for three different minimum condition
(itemset) size, θ = 3, 5 and 7. Table I lists the result including
the number of disconnected networks, edges, and genes for
every parameter. For example, when we compute CCPGs
with E = 1.0 and θ = 3, this table shows us that the result
consists of 20 disconnected networks containing 411 genes
and 559 interactions. This table shows us that d-COPINE
can extract disconnected networks from a real biological
dataset. In contrast with positive threshold of E, when E
is negative, average numbers of genes and edges in the
networks are large. The genes in the large networks are
repressed under heat shock conditions and highly associated
with prune/pyrimidine metabolisms (data not shown).
We next investigate whether d-COPINE can be used

to annotate protein-protein networks correctly. To annotate
time- or temperature-dependent network, we use θ = 3 and
E = 1.0 since groups of time-course samples contain 5 or 10
types of conditions and approximately 5% of the observed
genes and conditions are over expressed when E = 1.0.
To evaluate the performance of d-COPINE, we compare

our network with the GO [6] and KEGG [7] database. We use
second level groups from the root of each GO category (GO
terms are classified into three categories and forms directed
acyclic graph structure). We use the GO terms and KEGG
pathways associated with less than 500 genes.
Table II lists the details of the 5 largest disconnected

CCPGs, which includes the number of edges, number of
genes, conditions of common patterns, GO terms or KEGG
pathways most associated with the network in terms of
binomial tests, and p-value of the binomial test. Visualization
of the networks are shown in Fig. 3. Upper center of the
figure shows all the protein-protein interactions. 5 largest
disconnected CCPGs in Table II are magnified and colored.
Red, green, orange, blue, purple networks are related to 1st
to 5th largest CCPGs, respectively. The figure include five
expression level graphs. Each of the graph associated with
one of the five largest CCPGs. Colors in the expression level
graphs are related to the colors in 5 largest CCPGs. In the

TABLE I

NUMBER OF CLOSED COMMON PATTERN NETWORK WITH YEAST STRESS EXPRESSIONS

Threshold θ = 3 θ = 5 θ = 7
E avg. size # of nets # of genes # of edges # of nets # of genes # of edges # of nets # of genes # of edges
1.0 10.1 20 411 559 13 173 236 5 59 80
1.5 4.78 2 41 41 0 0 0 0 0 0
2.0 2.65 0 0 0 0 0 0 0 0 0
−1.75 4.21 17 587 819 9 285 406 11 227 301
−2.0 3.03 14 338 466 9 198 268 9 148 181
−2.25 2.23 11 232 307 7 119 154 6 86 105

TABLE II

5 LARGEST DISCONNECTED CLOSED COMMON PATTERN GRAPHS (E = 1.0, θ = 3)

Rank # of edges # of genes Common Expression Conditions GO/KEGG p-values
1 66 15 1.5 mM diamide (30 min),1.5 mM diamide (50 min), Proteasome (KEGG) 9.07e-20

1.5 mM diamide (60 min)
2 58 55 Nitrogen Depletion 1 d,Nitrogen Depletion 3 d, Autophagy (GO) 1.07e-08

Nitrogen Depletion 5 d
3 50 48 Heat Shock 17 to 37, 20 min., Heat Shock 21 to 37, 20 min., structural constituent of 6.53e-03

Heat Shock 25 to 37, 20 min. Cytoskeleton (GO)
4 46 11 DBY7286 + 0.3 mM H2O2 (20 min), Proteasome (KEGG) 1.35e-16

DBYmsn2msn4 (good strain) + 0.32 mM H2O2,
DBYyap1- + 0.3 mM H2O2 (20 min)

5 45 13 DBY7286 + 0.3 mM H2O2 (20 min), Proteasome (KEGG) 1.35e-16
DBYmsn2msn4 (good strain) + 0.32 mM H2O2,
DBYyap1- + 0.3 mM H2O2 (20 min)

Fig. 3. Visualization of the 5 Largest Disconnected CCPGs in Table II and Expression Levels of Related Genes

graph, we display average values and standard deviations of gene expression levels. We only show 12 from 173

conditions, which are associated with the 5 largest CCPGs.
For example, this figure indicates that genes in 2nd rank
network colored in green are significantly up-regulated under
three nitrogen conditions.
CCPG ranked 1st containing 15 genes and 66 edges is

related to three diamide conditions. From this result, we infer
that the network is closely associated with a high density of
diamide (a sulfhydryl oxidizing agent). Note that we do not
make groups of conditions in advance. The closely related
conditions are selected by our method automatically. The GO
or KEGG category most closely associated with the network
is the proteasome complex in KEGG. All the 15 genes are the
components of the proteasome protein complex. Proteasome
is one of the well-known complexes responding to oxidative
stress. Therefore, the conditions associated with the network
detected by d-COPINE and the known functions of genes
are in perfect harmony.
In network ranked 3rd, since all the common expression

conditions of the network are heat shocks from low to
high temperature, we can infer that the network would be
associated with heat shock stress. The network is associated
with the structural constituent of the cytoskeleton in the GO
category. In [18] and [19], it has been reported that there is an
association between heat-shock proteins and the maintenance
of actin cytoskeletons. Therefore, the relation between the
network and the GO term can be correct. Graph clustering
methods are difficult to find this functional module network
because the network has low density. Network ranked 2nd
also has low density. From these result, d-COPINE has
possibility to reveal unknown networks.
Note that the common expression conditions of the net-

works ranked 4th and 5th are the same, all of which
are observed under oxidative stress conditions. Because d-
COPINE eliminates connected networks, these two networks
are disconnected. (The networks are blue and purple net-
works in Fig. 3.) We examined in detail the result in the
Saccharomyces Genome Database annotation [20]. seven out
of 11 genes in ranked 4th network are the components of
19S subunit of 26S proteasome. Ten out of 12 genes in the
network ranked 5th are components of 20S subunit of 26S
proteasome. Therefore, the two networks are totally different,
but genes in these networks are expressed under the oxidative
stress conditions.
The networks ranked 1st and 5th share 10 genes. The gene

PRE6/YOL038W is present in the network ranked 1st, but
not in the network ranked 5th; it relocates from cytosol to
the mitochondrial surface due to a kind of oxidative stress.
The d-COPINE result might reveal the the type of stress.

V. CONCLUDING REMARKS

We have presented a novel computational algorithm d-
COPINE, which simultaneously identifies the location and
status of networks. from gene expressions and protein inter-
action data. Our approach is based on the detection of large
interaction networks whose genes share expression or re-
pression conditions. We have evaluated our method by using
yeast protein-protein interactions and microarray expression

data. The experimental results show that d-COPINE can
extract networks associated with specific conditions; these
networks are closely related to the GO categories or KEGG
pathways. d-COPINE has identified the components of a pro-
teasome complex along with its activating conditions and the
relation between heat shock and cytoskeleton automatically.
The incorporation of other protein networks and expression
profiles in GEO [21] can be used to annotate which parts are
activated in cells and when the parts are activated.

REFERENCES

[1] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[2] Y. Cheng and G. M. Church, “Biclustering of expression data,” in
ISMB, 2000, pp. 93–103.

[3] W. Pan, “Incorporating gene functions as priors in model-based
clustering of microarray gene expression data,” Bioinformatics, vol. 22,
pp. 795–801, 2006.

[4] M. Shiga, I. Takigawa, and H. Mamitsuka, “Annotating gene function
by combining expression data with a modular gene network,” vol. 23,
pp. i468–i478, 2007.

[5] E. Zeng, C. Yang, T. Li, and G. Narasimhan, “On the effectiveness of
constraints sets in clustering genes,” in BIBE, 2007.

[6] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al.,
“Gene ontology: tool for the unification of biology. the gene ontology
consortium.” Nat Genet, vol. 25, no. 1, pp. 25–29, May 2000.

[7] M. Kanehisa and S. Goto, “KEGG: Kyoto Encyclopedia of Genes and
Genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000.

[8] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm
for mining frequent substructures from graph data,” in PKDD ’00,
2000.

[9] M. Kuramochi and G. Karypis, “Frequent subgraph discovery,” in
ICDM, 2001, pp. 313–320.

[10] S. Nijssen and J. N. Kok, “A quickstart in frequent structure mining
can make a difference,” in KDD ’04, 2004, pp. 647–652.

[11] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in ICDM ’02, 2002, p. 721.

[12] J. Huan, W. Wang, J. Prins, and J. Yang, “Spin: mining maximal
frequent subgraphs from graph databases,” in KDD ’04, 2004, pp.
581–586.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[14] T. Ito et al., “Toward a protein-protein interaction map of the budding
yeast: A comprehensive system to examine two-hybrid interactions in
all possible combinations between the yeast proteins.” Proc Natl Acad
Sci, vol. 97, no. 3, pp. 1143–1147, 2000.

[15] P. Uetz et al., “A comprehensive analysis of protein-protein interac-
tions in saccharomyces cerevisiae,” Nature, vol. 403, no. 6770, pp.
623–627, 2000.

[16] N. J. Krogan et al., “Global landscape of protein complexes in the
yeast saccharomyces cerevisiae,” Nature, vol. 440, pp. 637–643, 2006.

[17] A. P. Gasch et al., “Genomic expression programs in the response of
yeast cells to environmental changes,” Mol. Biol. Cell, vol. 11, no. 12,
pp. 4241–4257, 2000.

[18] J. Gu, M. Emerman, and S. Sandmeyer, “Small heat shock protein
suppression of vpr-induced cytoskeletal defects in budding yeast,”Mol.
Cell. Biol., vol. 17, pp. 4033–4042, 1997.

[19] B. G. Leicht, H. Biessmann, K. B. Palter, and J. J. Bonner, “Small heat
shock proteins of drosophila associate with the cytoskeleton,” Proc.
Natl. Acad. Sci., vol. 83, pp. 90–94, 1986.

[20] J. Cherry, C. Adler, C. Ball et al., “Sgd: Saccharomyces genome
database,” Nucleic Acids Res, vol. 26, pp. 73–79, 1998.

[21] T. Barrett, T. Suzek, D. Troup et al., “Ncbi geo: mining millions of
expression profiles–database and tools,” Nucleic Acids Res, vol. 33,
pp. D562–D566, 2005.

