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Abstract— The Kullback-Leibler (KL) divergence used in
conjunction with the unsupervised Self-Organizing Map (SOM)
algorithm has been previously shown to be effective for the gene
clustering problem: the patterns of the gene clusters obtained
were found to be superior to those obtained by the hierarchical
clustering algorithm using the uncentered Pearson correlation
measure. Motivated by this initial finding, in this research we
study the effectiveness of the KL-divergence in a more general
setting where the data points are not necessarily projected to the
unit simplex but to a parallel simplex in the positive orthant.
Two novel hard and soft clustering algorithms based on the
so-called generalized KL-divergence are proposed. We tested
the algorithms on both gene and sample clustering problems.
Experimental results on real microarray datasets with known
class labels (for genes or samples) show that the generalized
KL-divergence based algorithms produce comparable or better
results to those obtained by similar algorithms based on popular
distance measures for microarray data clustering, such as the
squared Euclidean distance and the Pearson correlation. Two
validation indices, namely the Adjusted Rand Index and the
newly developed Variation of Information metric, have been
used to validate the results.

I. INTRODUCTION

Clustering is one of the most important data mining tech-
niques used to extract useful information from microarray
data. The aim of clustering is to group together similar
objects (genes or tumor samples) thus allowing biologists
to identify potential relationship between objects. For a
clustering method to work well the choice of a suitable
similarity (or dissimilarity) measure plays a very important
role. The definition of similarity is domain specific and for
the gene clustering problem, the similarity is often taken to
be the similarity in shape between the two gene profiles.
Genes with similar profile patterns often have similar func-
tions, participate in a particular pathway or respond to a
common environmental stimulus and thus should be grouped
together [4]. For microarray data analysis, popular choices of
distance metric are the squared Euclidean distance, the cosine
similarity or correlation coefficients such as the Pearson
correlation. The latter two measures have been found to
work quite well on microarray data ( [9], [21]). The squared
Euclidean distance on the other hand often fails to spot
genes with very similar patterns but with large differences in
magnitude. The situation is demonstrated in fig. 1(a) where
genes 2 and 3 are closer than are genes 1 and 2, although
genes 1 and 2 have more similar pattern profiles. One of the
normalization procedures often applied to microarray data is
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to make each gene profile have unit norm and zero mean.
With this data normalization scheme, several distance and
similarity measures, such as the squared Euclidean distance,
the cosine similarity and the Pearson correlation coefficient
essentially coincide and depend only on the dot product of
the normalized gene profiles. We shall refer to the unified
measure as the normalized squared Euclidean distance. The
effect of data normalization is illustrated in fig. 1(b) where
similar gene patterns are placed closer together.
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Fig. 1. Unnormalized and normalized gene expression profiles: after
normalization, genes with more similar patterns are placed closer together

The relative entropy or Kullback-Leibler (KL) divergence
has been previously shown to be effective for gene clustering.
Kasturi et al. [13] have shown that when gene profiles are
projected to the “probability space”, i.e., the unit simplex,
the KL-divergence is able to effectively detect the pattern
dissimilarity between gene profiles. KL-divergence when
used in conjunction with the Self-Organizing Map (SOM)
algorithm produce better result compared to the hierarchical
clustering algorithm with the uncentered Pearson correlation
measure (the cosine similarity). This initial finding reported
in [13] is encouraging, however in our opinion there are
still several concerns. First, the paper compared the SOM, a
partitional clustering algorithm, with the hierarchical cluster-
ing algorithm, which is not optimized to generate partitional
clusters. Meanwhile, all the clustering validation indices used
therein require partitional clustering as input. In the case of
using the same SOM algorithm with the KL-divergence and
the uncentered Pearson correlation, the relative performance
of the two measures was not clear. Second, the internal
validation method used, the Davies-Bouldin index, made
use of the Euclidean distance. As shown in [18] internal
validation methods also need to employ a certain distance
measure and thus may favor that distance measure over
others. Hence a different comparison method need to be
performed to ensure fairness. Finally the KL-divergence was



applied in a rather ad hoc manner without much theoretical
insight given. Since the work in [13], to our knowledge,
no more work has been done to further evaluate the KL-
divergence for gene clustering.

In this research we study the effectiveness of a more
general type of divergence that we call the generalized
Kullback-Leibler (gKL) divergence when compared to the
more popular normalized Squared Euclidean (nSE) distance.
Since both the gKL-divergence and the nSE-distance are
instances of a large class of divergences namely the Bregman
divergences, we used the hard and soft Bregman clustering
algorithms [3] as the framework for comparison. In addition
to the gene clustering problem, the potential usefulness of
the gKL-divergence for the sample clustering problem is also
studied for the first time.

II. BREGMAN DIVERGENCE AND BREGMAN CLUSTERING

A. Bregman divergences

Definition: Let φ: S 7→ R be a strictly convex function
defined on a convex set S ⊆ Rd such that φ is differentiable
on the relative interior of S (denoted by ri(S)), assumed to be
nonempty. The Bregman divergence dφ: S× ri(S) 7→ [0,∞)
is defined as: dφ(x, y) = φ(x) − φ(y) − 〈x − y,∇φ(y)〉,
where ∇φ(y) represents the gradient vector of φ evaluated
at y.

A wide variety of distortion functions such as the Eu-
clidean distance, Mahalanobis distance, Itakura-Saito dis-
tance and KL-divergence (relative entropy) fall into the class
of Bregman divergences. These distortion functions have
been used widely for clustering in various fields [3].

B. Normalized Squared Euclidean distance

Consider the following strictly convex function φE =
‖x‖2 on Rd. The corresponding Bregman divergence of φE

is the Squared Euclidean distance: dφE (x, y) = ‖x − y‖2.
If the data is mapped to the manifold SR = {x : ‖x‖ =
R,R > 0} by the scaling operation x ← Rx/‖x‖ then
dφE

(x, y) = 2R2 − 2〈x, y〉, which we shall refer to as the
normalized Squared Euclidean (nSE) distance. A special case
is when R = 1 all the data points will have unit norm (and so
equal variance) which is a common normalization step for
microarray data analysis. It is noted that in practice, gene
profiles are also often shifted to have zero mean prior to
norm-normalization ( [6], [7], [14], [16]). In our experiments
the mean-normalization step is also performed for the nSE-
distance based algorithms.

C. Generalized KL-divergence

Consider the following strictly convex function φKL =∑d
j=1 xj log xj on Rd

+. The corresponding Bregman diver-
gence of φKL is the Generalized I-divergence:

dφKL
(x, y) =

d∑

j=1

xj log(
xj

yj
)−

d∑

j=1

(xj − yj) (1)

If the data is mapped to the manifold Sα = {x :
∑d

i=1 xi =
α, α > 0} then dφKL

(x, y) =
∑d

j=1 xj log(xj/yj). We shall

call it the generalized KL (gKL) divergence. A special case
is when α = 1 we get the well known KL-divergence.

Since microarray data naturally contain only positive nu-
meric values, either in the form of absolute gene expression
level (as with one color microarray) or in the form of ratio
(as with two color microarray), the gKL-divergence will be
naturally applicable. The data normalization process is just
a scaling operation x ← αx/

∑d
j=1 xj so that each gene (or

sample) profile will not change direction but just magnitude
and will lie on the same manifold Sα.

D. Bregman hard clustering

Let {xi, i = 1 . . . n} be the set of gene profiles. We need
to find the k cluster centers µ = (µ1; µ2; . . . ;µk) so that
the following total Bregman divergence objective function is
minimized:

fφ(µ) = fφ(µ1; µ2; . . . ; µk) =
n∑

i=1

min
l=1..k

dφ(xi, µl) (2)

The following heuristic K-means type Bregman hard clus-
tering algorithm [3] can be used to solve the problem. The
algorithm loops through the following two steps until no
further improvement can be made, i.e., no data point can
change membership:

1) The membership assignment step: each data point is
assigned to the nearest cluster. Let Xh be the set of
indices of points that belong to the cluster with the
corresponding center µh then Xh = {i : dφ(xi, µh) =
minl=1...k dφ(xi, µl)}

2) The center adjustment step: the cluster centers are
relocated to the gravity center of its new members:

µl =

∑
i∈Xl

xi

|Xl| , l = 1 . . . k (3)

Since in this research all the data points are normalized to
the same manifold, either SR or Sα, it is natural to require
that all the cluster centers also lie on the same manifold as
the data. It can be seen that for the hard gKL-clustering
algorithm, this requirement is automatically satisfied, i.e.
all the centers defined by (3) will lie on Sα. For the hard
nSE-clustering, the additional constraints {‖µh‖ = R, h =
1 . . . k} need to be added to the optimization problem (2)
and the center adjustment step in (3) will be consequently
changed to µl = R(

∑
i∈Xl

xi)/‖
∑

i∈Xl
xi‖, l = 1 . . . k.

This variant of the algorithm has already been known in
the literature under the name of “Spherical K-means” (since
the data points lie on a sphere) and has been demonstrated
to be efficient for clustering directional data such as text or
microarray data [8]. In this research we take the Spherical
K-means as the counterpart of the hard gKL-clustering
algorithms.

E. Bregman soft clustering

It has been shown that there is a bijection between reg-
ular Bregman divergences and regular Exponential families
[3]. Thus for each Bregman divergence dφ there exists an
exponential probability distribution of the form p(x) =



exp(−dφ(x, µ))bφ(x) where µ is the location parameter
and bφ(x) is a function independent of µ. The Bregman
soft clustering problem is defined as that of learning the
maximum likelihood parameter Θ = {µh, πh}k

h=1 of a
mixture model of the form:

p(x|Θ) =
k∑

h=1

πh exp(−dφ(x, µh))bφ(x) (4)

Θ̂ = arg max
Θ

n∑

i=1

log
k∑

h=1

πh exp(−dφ(xi, µh))bφ(xi) (5)

Finding the global solution for the above optimization prob-
lem is hard, thus the iterative EM algorithm is often applied
to find a local optimizer. The iterations for EM are:

E − step : p(h|xi, Θ(l)) = π
(l)
h exp(−dφ(xi,µ

(l)
h ))∑k

h′=1 π
(l)
h′ exp(−dφ(xi,µ

(l)
h′ ))

(6)

M − step : π
(l+1)
h = 1

n

∑n
i=1 p(h|xi, Θ(l)) (7)

µ
(l+1)
h = (

n∑

i=1

p(h|xi, Θ(l))xi)/
n∑

i=1

p(h|xi,Θ(l)) (8)

Again for the soft gKL-clustering and soft nSE-clustering,
it is preferable to require that all the cluster centers lie on
the same manifold as the data points. For the soft gKL-
clustering, the requirement is automatically satisfied, i.e.
all the centers defined by (8) will lie on Sα. For the soft
nSE-clustering problem, the introduction of the additional
constraints {‖µh‖ = R, h = 1 . . . k} to the optimization
problem (5) will result in an additional norm-normalization
step after (8): µ

(l+1)
h ← Rµ

(l+1)
h /‖µ(l+1)

h ‖ as shown in [17].
This slight variant of the soft nSE-clustering algorithms has
been shown to be effective for the gene clustering problem
[17] and will be taken as the counterpart for the soft gKL-
clustering algorithms.

F. Choosing the normalization constant α and R

Suppose that we have normalized our data to the manifold
Sα and SR. Now consider the effect of mapping the data to
some other manifolds Sβα and SβR with β > 0. We shall see
that the hard gKL-clustering and nSE-clustering algorithms
are not affected by the scaling coefficient β. This is because
the K-means type hard Bregman clustering algorithm used
a piecewise linear decision function based on the distance
matrix D = [dφ(xi, µh)]h=1...k

i=1...n . With the introduction of β
the new distance matrices are just linear scaled versions of
the old distance matrices, i.e. βD and thus the decision taken
at each step will be unchanged. The situation is however
totally different for the EM-type soft clustering algorithm
where the soft decision at each step is taken based on the
soft membership matrix P = [p(h|xi, Θ(l))]h=1...k

i=1...n . The
introduction of β will change the soft membership matrix
nonlinearly and thus will affect the decision at each step.

Two extreme values of β can be noted: when β →∞ the
posterior probability in the E-step takes values in {0, 1} and
hence the soft EM algorithm becomes the hard clustering
algorithm. Another extreme is when β → 0. In this case all
the posterior probabilities p(h|xi) will tend to 1/k, all the

mixture proportions πh will tend to 1/k and the algorithm
will converge to the degenerate solution where all the cluster
centers coincide and equal to µo =

∑n
i=1 xi/n. Neither

of the two extremes is of interest when using the soft
clustering algorithms. A suitable value in between which
retains a suitable level of fuzziness is of interest. However,
parameter tuning is more an art than a science. Similar to the
problem of choosing the learning rate for the SOM algorithm,
the fuzzy parameter for the fuzzy C-means algorithm, the
temperature parameter for the Simulated Annealing algo-
rithm and the cross over and mutation probability for the
Genetic algorithms, the best knowledge can only be in
the form of general recommendation. In some rare cases,
recommendation can be in the form of explicit formulae as
in [6] but no theoretical foundation of such choice could be
given. Optimal values for the normalization constant R and
α for the soft nSE-clustering and gKL-clustering algorithms
are also data dependent. We have empirically found that
choosing α in the range [50, 300] and R in the range [4, 20]
would give reasonably good clusterings for typical gene
clustering problems with a few hundred genes.

III. COMPARISON METHOD

Microarray data clustering has attracted much research ef-
fort. This is reflected by the large number of new algorithms
that have been developed specifically for microarray data.
Also a number of existing clustering algorithms have been
applied into this new area. With a variety of currently avail-
able algorithms, there is a great need for clustering algorithm
evaluation methods. In this section we first summarize some
of the clustering validation indices. These indices measure
the goodness of a clustering and serve as the basis for
comparing clustering algorithms. We then choose a suitable
comparison method to assess the performance of the gKL-
divergence and nSE-distance based algorithms.

A. Comparing clusterings when external knowledge is avail-
able

The external knowledge here is the number of classes
in the data and the class label for each data point (gene
or sample). For the sample clustering problem external
knowledge might be quite reliable (as the number of classes
and the number of samples are often small, thus can be
efficiently investigated by human experts). For the gene
clustering problem the situation is quite different. Since the
number of classes might be large and the number of data
points might be huge, it is hard to obtain the correct class
label for every gene. As a result external knowledge for
the gene clustering problem (especially for large datasets)
should not be considered as the “absolute gold standard” for
comparing clustering algorithms but rather a guideline. Also
when comparing clustering algorithms, a decent number of
data sets is required for the comparison to be statistically
meaningful. However in our observation, available (and
reliable) data of this kind via publications in the area are
not so abundant.



We summarize here two validity indices that can be em-
ployed to assess clusterings goodness when external knowl-
edge is available, one is the popular Adjusted Rand Index and
another is the recently developed Variation of Information.
Let C be the true clustering with k clusters C1, C2, . . . , Ck

and ni be the number of points in cluster Ci,
∑k

i=1 ni = n.
Suppose C ′ is a clustering result given by some clustering
algorithm with k′ clusters C ′1, C

′
2, . . . , C

′
k′ and n′i is the

number of points in cluster C ′i,
∑k′

i=1 n′i = n.
1) Adjusted Rand Index (ARI): [2], [11] Let a, b, c and d

respectively denote the number of gene pairs belonging to the
same cluster in both C ′ and C, the number of pairs belonging
to the same cluster in C ′ but to different clusters in C, the
number of pairs belonging to different clusters in C ′ but to
the same cluster in C, and the number of pairs belonging
to different clusters in both C ′ and C. The Adjusted Rand
Index assessing the concordance between the two clusterings
is defined as follows:

ARI(C, C ′) =
2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)
(9)

2) Variation of Information (VI): [15] This is an informa-
tion theoretic criteria for comparing clusterings. The entropy
associated with the clustering C (and similarly for C ′) is:
H(C) = −∑k

i=1 P (i) log P (i), where P (i) = ni/n. The
mutual information between two clusterings C and C ′ is:

I(C, C ′) =
k∑

i=1

k′∑

i′=1

P (i, i′) log
P (i, i′)

P (i)P ′(i′)
(10)

where P (i, i′) = |Ci ∪C ′i′ |/n represents the probability that
a point belongs to Ci in the clustering C and to C ′i′ in C ′.
The Variation of Information between two clusterings C and
C ′ is then defined by:

V I(C, C ′) = H(C) + H(C ′)− 2I(C,C ′) (11)

The VI is a metric on the space of clusterings. It measures
the “distance” between the two clusterings C and C ′. Both
the ARI and VI have certain advantages and disadvantages
as discussed in [15]. In this research we use both indices
with the VI chosen as the primary index.

B. Comparing clusterings when external knowledge is un-
available

In the case where external knowledge is unavailable, some
internal validity indices such as the Silhouette index, the
Davies-Boudlin index, the Dunn index or the FOM (Figure
Of Merit) index can be employed to compare clusterings.
Those indices however, require the definition of a distance
measure (normally the Euclidean distance is employed) and
thus may be inappropriate for comparing clustering algo-
rithms which are based on different distance measures. For
example, the FOM has been previously shown to be biased
toward the Euclidean distance [18]. For this reason in this
research we used only data sets with external knowledge
to assess the performance of the gKL-divergence and nSE-
distance based algorithms.

C. Summary of comparison method

In order to ensure a fair evaluation of the two measures,
a comparison method has been carried out as follows:
• Distance measures do not stand alone but are always

coupled with a certain clustering algorithm prototype to
form a complete algorithm. In this research, a common
algorithm prototype based on the hard and soft Bregman
clustering algorithms has been chosen as the framework
for comparison.

• To minimize the effect of parameter tuning (α and R),
each soft algorithm is tested with multiple parameter
values (normally in the range [5,20] for R and [50,300]
for α) for a certain data set. For each parameter value,
an algorithm is run 100 times with random initialization
and the averaged values for VI and ARI are recorded.
The algorithm instance that gives highest averaged VI
value is then reported.

• For the hard clustering algorithms where no parameter
fine tuning is needed, the algorithms are simply run 100
times with random initialization and the averaged values
for VI and ARI are recorded.

• Data sets with external knowledge are used, i.e., the
number of clusters and the class label of each gene or
sample.

IV. GENERALIZED KL-DIVERGENCE FOR THE GENE
CLUSTERING PROBLEM

The experiment was performed on 3 real microarray data
sets for which external knowledge is available.

A. Data sets

1) Yeast cell cycle data: The yeast cell cycle data studied
by Cho et al. [5] showed the fluctuation of expression level of
more than 6000 genes over two cell cycles (17 time points).
Following [25] we use two different subsets of this data
with independent external criteria (known class label for each
gene):

- Set 1 - 384 genes: This set consists of 384 genes whose
expression level peak at different time points corresponding
to the five phases of cell cycle.

- Set 2 - 237 genes: This set consists of 237 genes corre-
sponding to four categories in the MIPS database. The four
categories (DNA synthesis and replication, organization of
centrosome, nitrogen and sulphur metabolism and ribosomal
proteins) were shown to be reflected in clusters from the
yeast cell cycle data. These four functional categories form
the four classes in the external criterion for this data set.

2) Yeast galactose data: A subset of 205 genes from the
yeast galactose data set of Ideker et al. [12] has been used
by Yeung et al. to assess the performance of various clus-
tering algorithms [24]. The expression patterns reflect four
functional categories in the Gene Ontology (GO) listings. We
use the same subset in this study.

B. Results

To assess the ability of the gKL-divergence to group genes
with similar profile patterns we first visually inspect the



clustering results. Fig. 2, 3 and 4 are typical clustering results
for the above three data sets using the soft and hard gKL-
clustering algorithms starting with random initialization. It
can be observed that the clusters created are quite coherent
and of distinct temporal patterns, confirming that the gKL-
divergence is able to effectively detect the dissimilarity in
shape of gene profiles. To qualitatively assess the algorithms,
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Fig. 2. Cho’s yeast data set 1: clusters created with the gKL-divergence
soft clustering algorithm with k = 4 and α = 50.
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Fig. 3. Cho’s yeast data set 2: clusters created with the gKL-divergence
hard clustering algorithm with k = 5.

experiment method as described in section III-C has been
carried out. Results for the 3 data sets are summarized in
Table I with the best values of VI(the lowest) and ARI(the
highest) in bold. The VI and ARI are quite concordant with
each other, albeit not perfectly. It can be observed that all
four algorithms produced clusterings with quite comparable
average quality while the soft gKL-clustering algorithm
seems to create clusterings with slightly better quality. We
thus conclude that the gKL-divergence is efficient for the
gene clustering problem. The soft and hard gKL-divergence
based clustering algorithms thus can be added to the current
repertoire of gene clustering algorithms.
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Fig. 4. Galactose yeast data set: clusters created with the gKL-divergence
hard clustering algorithm with k = 4.

TABLE I
GENE CLUSTERING RESULTS

Data set Algorithm VI ARI

Cho’s yeast data set 1

Spherical K-means 1.49 0.51
nSE soft clustering, R = 5 1.47 0.51
gKL hard clustering 1.54 0.40
gKL soft clustering, α = 50 1.38 0.49

Cho’s yeast data set 2

Spherical K-means 1.52 0.43
nSE soft clustering, R = 5 1.52 0.43
gKL hard clustering 1.55 0.41
gKL soft clustering, α = 60 1.49 0.43

Yeast galactose

Spherical K-means 0.38 0.86
nSE soft clustering, R = 8 0.36 0.86
gKL hard clustering 0.42 0.80
gKL soft clustering, α = 80 0.34 0.87

V. GENERALIZED KL-DIVERGENCE FOR THE SAMPLE
CLUSTERING PROBLEM

A. Connection with the multinomial distribution

In [3], Banerjee et al. have shown that there is a bi-
jection between regular exponential families and Bregman
divergences. The corresponding exponential family for the
generalized KL-divergence is the multinomial distribution.
The Multinomial mixture model has been successfully ap-
plied in text clustering [19] where documents are represented
using a bag-of-word model: each document is represented as
a high-dimensional vector which merely stores the counts of
each word in the document. The documents will be clustered
together based on the relatively higher frequencies of certain
keywords distinct for each group. In the microarray sample
clustering problem we notice a similar criterion for grouping
samples: each microarray experiment (sample) can be con-
sidered similar to a document and the mRNA corresponding
to each gene can be considered as a word. The number of
mRNA will be counted(measured) and reported as the gene
expression level. The samples will be then grouped based on
the relative expression level of the genes just like documents
are grouped based on the relative frequency of the words.
Therefore we can expect a reasonably good performance of
the hard and soft gKL-divergence based algorithms when
applied to the sample clustering problem.



B. Results

We tested the algorithms on four real microarray data sets
with known sample class labels:

Leukemia data: we use the training data set published by
Golub et al. [10]. The data set consists of 38 bone marrow
samples with 27 acute lymphoblastic leukemia (ALL) and
11 acute myeloid leukemia (AML) samples. Each sample
contains the expression level of 6817 human genes. We used
all these 6817 genes in our experiments. Since the original
data set contains some negative expression values (due to the
normalization/background substraction process), we shifted
the whole data set so that the smallest expression value is 1
before performing data normalization for the gKL-divergence
based algorithms.

Colon data: this data set contains expression level of more
than 6500 genes with samples of 40 tumors and 22 normal
colon tissues. We used the publicly available subset of 2000
genes with highest minimal intensity across samples [1].

NCI60 data: published by Ross et al. (2000) [20], the
data set contains gene expression for nearly 8000 genes in 60
human cell lines obtained from various tumor sites: 7 breast,
5 Central Nervous System (CNS), 7 colon, 6 leukemia, 8
melanoma, 9 NSCLC, 6 ovarian, 2 prostate, 9 renal and
1 unknown. We excluded the 2 prostate and 1 unknown
samples to form 8 classes with sufficient size. Genes with
missing values were filtered out, resulting in a reduced data
set of 57 samples × 6189 gene expression profiles.

Pediatric acute leukemia data: the original data set
consisted of 327 samples of pediatric acute lymphoblastic
leukemia [23]. We use a subset of 248 samples formed by
6 well defined subclasses namely BCR-ABL (15 samples),
E2A-PBX1 (27 samples), Hyperdiploid > 50 chromosomes
(64 samples), MLL (20 sampels), T-ALL (43 samples) and
TEL-AML1 (79 samples). A simple variation filter as de-
scribed in [22] was used to filter out genes that do not show
a relative variation of 5 and an absolute variation of 500.
The reduced data set contains 248 samples × 1347 genes.

TABLE II
SAMPLE CLUSTERING RESULTS

Data set Algorithm VI ARI

Leukemia data

Spherical K-means 0.84 0.16
nSE soft clustering, R = 15 0.79 0.21
gKL hard clustering 0.80 0.24
gKL soft clustering, α = 100000 0.74 0.34

Colon data

Spherical K-means 1.04 0.21
nSE soft clustering, R = 7 0.82 0.40
gKL hard clustering 1.02 0.20
gKL soft clustering, α = 80 0.92 0.36

NCI60 data

Spherical K-means 2.05 0.24
nSE soft clustering, R = 8 1.96 0.26
gKL hard clustering 1.94 0.21
gKL soft clustering, α = 100 1.81 0.21

Pediatric leukemia

Spherical K-means 2.41 0.17
nSE soft clustering, R = 8 2.40 0.16
gKL hard clustering 1.45 0.48
gKL soft clustering, α = 300 1.22 0.57

Experimental results for the 4 data sets are summarized in
Table II. It can be observed that for the first 2 data sets where
the number of classes is small, all the algorithms produce

clusterings with quite comparable quality on average. For the
Leukemia data set, all the algorithms can produce clusterings
as good as without any or only 1 misclassified sample. This
result is quite interesting as we did not use any unsupervised
feature selection procedure but worked directly with the
original data set. As the soft gKL clustering algorithm did
not produce an acceptable result with µ ∈ [50, 300], we tried
some larger value for µ until the algorithm produced quite
good result at µ = 10000. On the Colon data set, all the
algorithms can produce similarly effective clusterings with a
minimum of 5 misclassified samples. We noticed that those
5 samples had also been previously often misclassified by
clustering/classification algorithms as reported in [1], [16],
[17].

TABLE III
PEDIATRIC LEUKEMIA DATA SET: GKL-DIVERGENCE HARD

CLUSTERING MATCHING MATRIX, VI=1.09
XXXXXXXXClass

Cluster 1(55) 2(39) 3(47) 4(17) 5(52) 6(38)

BCR-ABL (15) 1 0 2 11 0 1
E2A-PBX1 (27) 0 0 6 0 0 21
Hyperdiploid (64) 54 0 7 2 0 1
MLL (20) 0 0 3 2 0 15
T-ALL (43) 0 39 3 1 0 0
TEL-AML1 (79) 0 0 26 1 52 0

TABLE IV
PEDIATRIC LEUKEMIA DATA SET: NSE-DISTANCE HARD CLUSTERING

MATCHING MATRIX, VI=2.09
XXXXXXXXClass

Cluster 1(30) 2(7) 3(83) 4(54) 5(14) 6(60)

BCR-ABL (15) 0 1 8 2 0 4
E2A-PBX1 (27) 4 0 0 8 0 15
Hyperdiploid (64) 5 2 47 10 0 0
MLL (20) 2 2 0 2 2 12
T-ALL (43) 0 1 0 2 11 29
TEL-AML1 (79) 19 1 28 30 1 0

For the last 2 data sets where the number of classes is
larger, it can be observed that the gKL-divergence based
algorithms gradually provide better clustering quality over
the nSE-distance based algorithms. The difference is quite
noticeable in the Pediatric leukemia data set. Closer in-
spection of the result reveals that for the NCI60 data set,
most of the clusterings created by the four algorithms are
not of high quality. This is due to the inherent difficulty
in clustering this data set which contains a rather limited
number of samples (57) but with a relatively large number
of classes (8). The Pediatric Leukemia data set on the other
hand contains a relatively large number of samples (248)
with a relatively smaller number of classes (6) and therefore
we should expect a better performance of all the clustering
algorithms on this data set. The result however shows that
the gKL-divergence based algorithms produce on average
relatively better clusterings compared to the ones obtained by
the nSE-distance based algorithms. Tables III and IV show
the Matching matrices (or contingency tables) for the best
clusterings created by the hard gKL-divergence and nSE-
distance clustering algorithms respectively. It can be ob-
served that the clusters created by the hard gKL-divergence



clustering algorithm are considerably more coherent than the
ones created by the nSE-distance clustering algorithms. The
experimental result suggests that the gKL-divergence and the
underlying mixture of multinomial distributions might be a
good choice for the sample clustering problem as discussed
earlier in this section. Again it is interesting to note here
that we did not use any sophisticated unsupervised feature
selection scheme but only the quite basic variation filter.
Nevertheless the results obtained with the gKL-divergence
based algorithms are very promising.

VI. DISCUSSION AND CONCLUSION

In this work we have assessed the usefulness of the
generalized KL-divergence for microarray data clustering
including both the genes and samples clustering problems.
Two novel hard and soft gKL-divergence based clustering
algorithms have been introduced. For the gene clustering
problem, experimental results showed that gKL-divergence
based algorithms produce clusterings of very comparable
quality in terms of the Variation of Information metric
and the Adjusted Rand Index to those obtained by similar
algorithms based on the more popular normalized Squared
Euclidean distance. For the sample clustering problem, gKL-
divergence based algorithms produce better clustering results
on data sets with large number of classes. The two validation
indices used in this research, namely the Adjusted Rand In-
dex and Variation of Information metric, are quite concordant
with each other albeit not perfectly. It is left for future work
to study the suitable value for the normalization constant
α as well as the effect of unsupervised feature selection
on the gKL-divergence based algorithms. Also, the study
of gKL-divergence in conjunction with the other popular
algorithms for microarray data clustering is an interesting
research direction.
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