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Abstract— In Metabolic Engineering, the identification of
genetic manipulations that lead to mutant strains able to
produce a given compound of interest is a promising, while
still complex process. Evolutionary Algorithms (EAs) have been
a successful approach for tackling the underlying in silico
optimization problems. The most common task is to solve a
bi-level optimization problem, where the strain that maximizes
the production of some compound is sought, while trying to
keep the organism viable (maximizing biomass). In this work,
this task is viewed as a multiobjective optimization problem
and an approach based on multiobjective EAs is proposed.
The algorithms are validated with a real world case study that
uses E. coli to produce succinic acid. The results obtained are
quite promising when compared to the available single objective
algorithms.
Keywords: Multiobjective Evolutionary Algorithms,
Metabolic Engineering, Flux-Balance Analysis, Systems
Biology.

I. INTRODUCTION

Maximizing production has always been one of the top
goals in any industrial environment, while other concerns
such as environmental costs have been gaining importance in
the last few years. In this context, biotechnological processes
are increasingly used in the production of a number of
valuable products, such as pharmaceuticals, fuels or food
ingredients, replacing traditional chemical synthesis. The
Metabolic Engineering arena has provided promising tools to
select genetic modifications capable of achieving improved
production of the desired products [1][2].

This effort has relied on the development of techniques
for simulating genome-scale models of organisms, that re-
cently suffered major improvements (although they are still
incomplete), enabling researchers with tools to simulate in
silico hundreds or thousands of mutant strains of certain
organisms. Algorithms such as Flux Balance Analysis (FBA)
[3] or Minimization of Metabolic Adjustment (MOMA) [4]
were proposed and quickly became popular.

A bi-level optimization problem can then be formulated,
by adding a layer that searches for the best mutant that
can be obtained by simply deleting a few genes from the
wild type. The idea is to force the microorganisms to
produce the desired product by selected gene deletions and
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simultaneously keep the organism viable. The underlying
optimization problem consists in reaching an optimal subset
of gene deletions to maximize an objective function related
with the production of a given compound (e.g. yield or
productivity). This function typically depends on the values
of two fluxes: the desired product and the biomass or growth.

Several different algorithms have been proposed to address
this problem, namely mixed integer linear programming
(MILP) [5] and more recently stochastic meta-heuristics,
such as Evolutionary Algorithms (EAs) [6][7] and Simulated
Annealing (SA) [8]. Although these approaches have pro-
vided good results, they all share a common drawback: they
provide only one single optimal (or near optimal) solution
to the problem. In many situations, a set of solutions with
different trade-offs between the production of the desired
compound and the biomass production would be desirable.

In this work, an approach based on Multi-Objective Evolu-
tionary Algorithms (MOEAs) is proposed to this problem. In
fact, since the mid-1980’s, MOEAs are being used to solve
all kinds of multiple-criterion problems in distinct scenarios
and the multiobjective nature of the problem suggests that
this is a good candidate for MOEAs. The MOEAs chosen
for this task are two of the most popular algorithms, namely
the SPEA2 and the NSGA-II, widely accepted as two of the
algorithms with best overall performance.

The MOEAs are validated using a case study that consid-
ers the production of succinic acid, using E. coli where a
genome scale metabolic model is available. The results are
compared to previous work [7][8] regarding the same case
study, where single objective EAs and Simulated Annealing
(SA) approaches have been proposed. The results obtained
are quite promising, since the MOEAs were able to find in a
single run, a set of trade-offs between the two optimization
aims that could only be reached by single-objective algo-
rithms with several runs varying a threshold parameter.

II. SIMULATION ALGORITHMS FOR THE PREDICTION OF
METABOLIC BEHAVIOR

The reconstruction of genome-scale metabolic networks
has been one of the most common applications of the
annotated microorganism’s genomes. Through the annotation
and mathematical definition of the reactions obtained it
is possible, to some degree, to simulate the phenotypic
behaviour of these microorganisms. One approach is to write
dynamic mass balances for each metabolite in the network,
generating a set of ordinary differential equations that may
be used to simulate the dynamic behavior of metabolite



concentrations. However, there is still insufficient data on
kinetic expressions and parameters [9].

Therefore, a steady state approximation is generally ap-
plied, where for each metabolite in the network, the sum of
all productions and consumptions will be zero, weighted by
the stoichiometric coefficients. Thus, for metabolite i, where
i = 1, . . . ,M (M is the number of metabolites) the following
constraint is defined:

N∑
j=1

Sijvj = 0 (1)

where Sij is the stoichiometric coefficient for metabolite i in
reaction j and vj is the reaction rate or flux over the reaction
j. It is possible to define a matrix S, composed of the Sij

values, j = 1, . . . , N (N is the number of reactions); v is
the N -dimensional vector of the fluxes of the reactions.

The mass balances are therefore reduced to a set of linear
homogeneous equations. The maximum/minimum values of
the fluxes can be set by constraints in the form αj ≤
vj ≤ βj , that are used to specify both thermodynamic and
environmental conditions (e.g. availability of nutrients).

For most metabolic networks, since the number of fluxes
is greater than the number of metabolites, the set of linear
equations obtained from the application of Equation 1 to the
M metabolites usually leads to an under-determined system,
for which there exists an infinite number of feasible flux dis-
tributions. However, if a given linear function over the fluxes
is chosen to be maximized, it is possible to obtain a single
solution by applying standard algorithms (e.g. simplex) for
linear programming problems. This methodology is known
as Flux Balance Analysis (FBA) [3].

The combination of this technique with validated genome-
scale stoichiometric models [10] allows to simulate the
phenotype of a microorganism under defined environmental
conditions without performing any experiments. The most
common flux chosen for maximization is the biomass, based
on the premise that microorganisms have maximized their
growth along natural evolution, a premise that has been
confirmed experimentally in some cases [11].

III. EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION

A. Multiobjective Optimization

In the real world, the full complexity of many problems
can not be reduced to the matter of a single objective. By
defining multiple objectives, it is possible to describe more
adequately all the features of a given problem. In the last
two decades, multiobjective optimization applications have
been increasing. In a single-objective problem, the search
space is often well defined, but when several conflicting
objectives arise, the simultaneous optimization of all the aims
becomes more complex. In this case, there is no longer a
single optimal solution but rather a set with equivalent, or at
least non comparable quality.

The classical definition of a multiobjective
optimization problem can be written in the form
minimize[f1(x), f2(x), ..., fn(x)] for k objective functions

fi : Rn → R subject to several several equality and
inequality constraints. For x = [x1, x2, ..., xn]T , which is
our vector of decision variables, the task is to determine
from the set F of vectors which satisfy all the constraints,
the particular set of values [x∗1, x

∗
2, ..., x

∗
n] that also yields

the optimum values for all the objective functions [12].
In multiobjective optimization problems, it is very rare to

find a solution that simultaneously optimizes all the objective
functions. Therefore, what we usually look for is the optimal
set of trade-offs rather than a single solution. This clearly
changes the concept of optimality. Nowadays, the adopted
concept of optimality is that proposed by Edgeworth [13]
and later generalized by Pareto [14]. This is known as the
Edgeworth-Pareto optimality.

The definition of dominance is put forward in this context:
when comparing two solutions, one can dominate the other
or the two can be non comparable. A solution a dominates
another solution b, if a is not worse than b in any of
the objectives and it is at least better in one of them. An
optimal solution is one that is not dominated by any other
in the search space. This kind of solutions are called Pareto-
optimal and the entire set of such optimal solutions is called
Pareto-optimal set. The image of the Pareto optimal set
under the objective functions is called the Pareto-front [15].
More formally, a vector of decision variables x∗ ∈ F is
called Pareto optimal if there is no other x ∈ F such that
fi(x) < fi(x∗) for all i = 1, ..., k and fj(x) < fj(x∗) for
at least one j.

B. Why use EAs in multiobjective problems?

The populational nature of EAs, whose main features are
illustrated in Figure 1, provides the algorithm with a set of
solution candidates and the reproduction process creates new
solutions from older ones. This process enables the algorithm
with the capability of finding several possible members of
the Pareto-front in a single run. The selection process decides
which individuals of the current population take part of the
new generation.

Fig. 1. Graphical representation of the generic working procedure of an
Evolutionary Algorithm (EA).

MOEAs can generate and keep sets of solutions that are
all Pareto optimal. The first incursions in developing MOEAs



has been performed by Schaffer in 1985 [16], soon followed
by several other approaches that have been developing more
specialized EAs with better performance in these tasks. One
advantage of using EAs is the few constraints imposed over
the objective function. In fact, they are agnostic to the shape
or continuity of the Pareto-front, they are easy to implement,
very robust and can even be used in a parallel computing
environment. A general idea of MOEAs and the recent
history of the field can be found in [12] and [17]

IV. THE PROPOSED APPROACH

A. Algorithms

In this work, two well known MOEAs were tested: the
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [18] and
the Non-Dominated Sorting Genetic Algortithm II (NSGA-
II) [19]. Both are last generation MOEAs, incorporating
improvements over previous versions. A graphical represen-
tation of their structure is given in Figure 2.

a) SPEA 2: The SPEA2 algorithm is an evolution of
the previous SPEA [20] algorithm. The main improvements
include: (1) a better fitness assignment strategy that takes
into account the number of individuals that each individual
dominates and is dominated by, (2) the use of a nearest
neighbour density estimation technique to guide the search
more efficiently and (3) an archive truncation technique to
help prevent the loss of boundary solutions.

b) NSGA-II: The NSGA-II is also an evolution of the
previous NSGA [21] algorithm. In contrast with the previ-
ous firt-generation algorithm, this one uses elitism. Also, a
crowding comparison operator was introduced to help keep
the diversity of the population. NSGA-II is not archive-based,
its elitism mechanism combines the best parents with the best
offspring obtained.

B. Representation scheme and mutation operator

The problem addressed in this work consists in selecting,
from a set of genes in a microbe’s genome, a subset to be
deleted in order to maximize a set of objective functions
related to the microorganism’s metabolism. The encoding of
a solution is achieved by a set-based representation, where
only gene deletions are represented. Each solution consists
of a set of integer values representing the genes that will be
deleted. Therefore, if the value i is in the set, this means
the i-th gene in the microbe’s genome is knocked out. Each
value in the set is an integer with a value between 1 and N .

The representation scheme used is based on variable-
sized genomes, hence sets with distinct cardinalities can be
encoded and compete in the search process. Two types of
reproduction operators were used: crossover and mutation.
The only crossover operator used was inspired on uniform
crossover and works as follows: the genes that are present
in both parent sets are kept in both offspring; the genes
that are present in only one of the parents are sent to one
of the offspring, selected randomly with equal probabilities.
Regarding mutation, three operators were used:
• Random mutation, that replaces a gene in the set by a

random value in the allowed range.

Fig. 2. Simplified graphical representation of the working procedure of
the SPEA2 (left) and NSGA-II (right) algorithms.

• Grow: consists of the introduction of a new gene into
the chromosome, whose value is randomly generated in
the available range (avoiding duplicates in the set).

• Shrink: a randomly selected gene is removed from the
genome.

C. Decoding and evaluating

The principle considered is a correspondence between the
values in the set and metabolic reactions, i.e., each value
represented in the set represents a particular enzyme that
catalyzes a metabolic reaction. That enzyme is associated
with a particular gene (or genes) that should be deleted for
that reaction to be eliminated. The decoding process works
by taking each value in the set and forcing the flux it indexes
to the value 0, therefore disabling that reaction from the
metabolic model.

The process proceeds with the simulation of the mutant
using FBA. The output is the set of values for the fluxes of
all reactions, that are then used to compute the fitness value,
given by an appropriate objective function. One possible
objective function is the Biomass-Product Coupled Yield
(BPCY) [6], given by BPCY = PG

S , where P stands for the
flux representing the excreted product; G for the organism’s
growth rate (biomass flux) and S for the substrate intake
flux. Besides optimizing for the production of the desired



product, this function also allows to select for mutants that
exhibit high growth rates, i.e., that are likely to exhibit a
higher productivity.

An alternative, is to maximize only the value of the
product’s flux (P ), but imposing a minimum threshold to the
value of the biomass (Gmin). Therefore, a distinct objective
function, denoted as Product Flux with Minimum Biomass
(PFMB), will be defined, where solutions that obtain the
minimum value of G are given as fitness the value of P ;
otherwise, if the minimum threshold is not obtained the
fitness is 0. By varying the value of Gmin a set of different
trade-offs between P and G can be obtained.

When dealing with multi-objective problems, we seek
for solutions maximizing two different objective functions
- (OF1) the product and (OF2) the biomass:
• Objective 1: maximize P
• Objective 2: maximize G

D. Initialization

The initial solution is a set with randomly generated ele-
ments. In this variable size variant, the size of the individual
is randomly created in the range 1 to 12. The same process
is used in all algorithms to initialize each individual in the
population.

E. Pre-processing

In genome-scale models the search space is usually large
enough to cause problems to the optimization algorithms.
Thus, in order to reduce the search space, some operations
were conducted. These are described in detail in [8].

F. Implementation issues

The implementation of the proposed algorithms was per-
formed by the authors in the Java programming language.
This was based on a previously developed platform for
general purpose use of EAs in several optimization tasks.
This strategy allowed a general purpose implementation of
MOEAs and the comparison with single objective EAs using
the same representation and reproduction operators. The
implementation of the MOEAs also used components from
the jMetal [22] implementation. In the implementation of
FBA, the GNU linear programming package (GLPK)1 was
used to run the simplex algorithm.

V. EXPERIMENTS

A. Case study

One case study was used to test the aforementioned
algorithms that considers the microorganism Escherichia coli
and the aim is to produce succinic acid (succinate). Succinate
is one of the key intermediates in cellular metabolism and
therefore an important case study for metabolic engineering
[23]. The knockout solutions that lead to an improved
phenotype regarding its production are not straightforward
to identify since they involve a large number of interacting
reactions. Succinic acid and its derivatives have been used as

1http://www.gnu.org/software/glpk/

common chemicals to synthesize polymers, as additives and
flavoring agents in foods, supplements for pharmaceuticals,
or surfactants. Currently, it is produced through petrochem-
ical processes that can be expensive and have significant
environmental impacts.

The genome-scale model for this microorganism used in
the simulations was developed by Reed et al [24]. This
model considers the E. coli metabolic network, including
a total of N = 1075 fluxes and M = 761 metabolites.
After the pre-processing stages, the simplified model remains
with N = 550 and M = 332 metabolites. Furthermore, 227
essential genes are identified, which leaves 323 variables to
be considered by the optimization algorithms. The proposed
algorithms were compared with the SA proposed in [8] and
with the EAs proposed in [7]. In both cases, the termination
criteria was defined based on a maximum of 50000 fitness
evaluations. For each experimental setup, the process was
repeated for 30 runs and the mean and 95% confidence
intervals were calculated. The SPEA2 archive was set to 100
as well as the population for the NSGA-II.

B. Results

The proposed MOEAs were benchmarked against the
previous single objective algorithms. In the single objective
approaches, the PFMB objective function was used, because
it is more easily comparable with the results obtained from
the multiobjective algorithms. When several runs with differ-
ent values of Gmin are executed, these results become prone
to be represented as Pareto-like curves as shown in Figure 3.
In order to assemble the Pareto fronts for the single objective
alternatives, several values of Gmin have to be considered.
For each algorithm (EA and SA), 30 Pareto sets were created,
each with 11 points that are the result of choosing different
values for Gmin (0% to 100% of the wild type biomass, in
10% steps).

On the other hand, the MOEAs are a more natural ap-
proach to this kind of problem. In order to build the 30
Pareto sets for each MOEA, only 30 runs for each (NSGA-
II/SPEA2) were necessary and 100 points are obtained in
each run.

One dificulty that arises in the comparison is the fact that
the optimal Pareto set is not known a priori. So, it was nec-
essary to generate a reference set that could approximate the
optimal set, given the solutions found by all the algorithms.
This approximated reference set was achieved by aggregation
of all the solutions found by the SPEA2/NSGA-II and all
the best solutions found by the EA/SA. A filtering step
was conducted a posteriori keeping only the non-dominated
and non-repeated solutions. The final reference set contains
774 solutions, resulting in our approximation of the Pareto
Optimal Solution Set (P ). Figure 3 shows the dominance
relation between P and the non-dominated solutions found
for the EA and SA algorithms.

Although the comparison between pareto fronts is neither
an easy nor a straightforward task, some metrics have been
developed enabling to better evaluate the quality of the so-
lutions and compare the performance of the algorithms. The



Fig. 3. Non-dominated solutions found for the EA (blue crosses), SA
(black triangles) and the aggregated Pareto Optimal Solution Set (P )

definition of quality in multi-objective optimization is quite
different, since there are a number of optimization goals:
the distance of the resulting set to the Pareto-optimal front
should be minimized; a good distribution of the solutions
along the front should be obtained; and, the spread of the
front should be maximized, i.e., for each objective, a wide
range of values should be covered. In this work, three well
known Performance Indexes (PIs) were used:
• Generational Distance (GD) [25]: This metric calcu-

lates how far, on average, the experimental pareto front
(PFknown) is from P . It is mathematically defined by:

GD ,
(
∑n

i=1 d
p
i )

1
p

n
(2)

where n is the number of vectors in PFknown, p = 2
and di is the Euclidean Distance (in the objective space)
between each vector and the nearest member in P .

• Hypervolume (HV) [20]: This indicator is defined as
the area of coverage of PFknown with respect to the
objective space (in a bi-objective problem). Its mathe-
matical definition can be interpreted as the sum of all the
rectangular areas (volumes, hypervolumes,...) bounded
by some reference point and (f1(x),f2(x),...,fn(x)) for
a n-objectives problem:

HV ,

{⋃
i

voli|veci ∈ PFknown

}
(3)

where voli is the calculated volume (area, hypervolume,
...) correspondent to each veci contained in PFknown.

• ∆-index (∆) [26]: This is a PI that includes information
about distribution and spread. It is a distance based PI

that has the major drawback of being applicable to bi-
objective problems only. Mathematically it is defined
by:

∆ =
df + dl +

∑|PFknown|−1
i=1 |di − d̄|

df + dl + (|PFknown| − 1)d̄
(4)

where df and dl are the Euclidean distances between
the extreme and boundary solutions of PFknown, d̄ is
the average of all distances di, i ∈ [1, |PFknown| − 1].

The application of these metrics to the results obtained
from the algorithms, allowed the compilation of Table I
where the mean values (of 30 runs) and 95% confidence
intervals for each metric are shown.

TABLE I
MEAN AND 95% CONFIDENCE INTERVALS OF THE PIS FOR THE WHOLE

SET OF ALGORITHMS.

NSGA-II SPEA2 EA SA

GD 0.00395 0.00363 0.02848 0.02673
±0.00067 ±0.00046 ±0.00158 ±0.00127

HV 0.58160 0.58344 0.61486 0.60103
±0.00911 ±0.00626 ±0.00971 ±0.00832

∆-index 0.66429 0.71910 0.43977 0.37232
±0.04375 ±0.03896 ±0.02781 ±0.01722

An initial empirical analysis of this table allows to con-
clude that the best results are yield either by the SPEA2
or the NSGA-II algorithms that also show smaller variance,
showing that the results are more consistent. In this analysis,
keep in mind that for GD and HV a smaller value is better,
while for ∆ a higher value is preferable. An important point
is that the number of non-dominated solutions in a typical
pareto front for the MOEAs comprises a lot more solutions
than the ones obtained by the single-objective algorithms.
Nevertheless, these PIs were selected because they do not
depend on the cardinality of the sets.

The values from the table show that not only the NSGA-II
and SPEA2 are able to find all the best solutions, they are
able to do it in a more efficient way and with a far better
resolution. A comparison between the two does not show
relevant changes. To have a similar resolution in the EA/SA,
it would be necessary to make the Gmin range from 0% to
100% in 1% steps in the Gmin (100 runs of the algorithms).

A good distribution of the solutions along the fitness space
and a good resolution are both important characteristics in
the performance of these algorithms when applied to this
particular problem. In a single run of one of these MOEAs,
a researcher obtains a panoply of solutions representing
possible trade-offs between objectives and is able to easily
focus on those of interest.

The figure below shows a graphical comparison between
the Pareto sets found for each algorithm in all the runs.
In this case, only non dominated solutions found by each
algorithm in the 30 runs were kept, so this shows the best
solutions of each algorithm. Looking at the figure confirms
the conclusions drawn before, showing the ability of both
SPEA2 and NSGA-II to find a good set of non-dominated
solutions that are near the reference set, and well distributed



along the pareto front. Keep in mind that the reference set
can be seen as the line that marks the best solutions over all
algorithms.

Fig. 4. Graphical representation of the Pareto sets obtained by each
algorithm (only non dominated solutions).

VI. CONCLUSIONS AND FURTHER WORK

In this work, a novel approach was proposed to the task
of in silico optimization of mutant strains in Metabolic
Engineering. It was shown that the previous algorithms
(EA, SA) can be replaced by multi-objective EAs with
several advantages, since the researcher gets a more complete
set of results, showing the different trade-offs between the
desired compound production and the viability of the strain
measured by a biomass flux. The experiments conducted on
the proposed case study show that both SPEA2 and NSGA-
II, two state of the art MOEAs, are able to obtain good
results in terms of solution quality and distribution of the
solutions over the Pareto front. Therefore, an interesting tool
for Metabolic Engineering has been provided.

Further work includes the validation in other case studies,
the testing of other MOEAs, as well as the implementation
of these algorithms into a software application that can be
used and made available to biological researchers.
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