
  

  

Abstract—A ‘systems-level’ computational modeling 
approach is implemented to study the mechano-regulation of 
bone at cellular level. Issues addressed using this approach 
include - determining the intra-cellular response of bone cells 
to mechanical stimulus, bone response to different mechanical 
loading conditions, the role of intra-cellular feedback 
regulation in bone remodeling, and the link between reduced 
mechanical loading and decreased bone mass. An inter-
connected network of signal transduction pathways in 
osteoblasts and osteoclasts is considered for modeling. The 
salient features of this modeling technique are systems biology 
based network modeling to simulate the temporal dynamics of 
the signaling proteins, parameter estimation based on 
evolutionary computing, and control systems theory to model 
feedback in the signaling network. The results indicate that 
signaling networks respond uniquely to different mechanical 
stimuli, the stimulus signal is gradually attenuated in the 
signaling cascade, and the disruption of intra-cellular feedback 
regulation leads to decreased bone formation in osteoblasts and 
increased bone resorption in osteoclasts. This results in low 
bone mass, a phenomenon generally observed in reduced 
loading conditions. It is deduced that reduced mechanical 
loading leads to disruption in the feedback to result in low bone 
mass. The results of these simulation studies are expected to 
serve as useful guidelines for planning relevant experimental 
work to study the effect of mechanical loading on bone at 
cellular level. 

I. INTRODUCTION 
HE process of converting physical forces into 
biochemical signals and integrating these signals into 

physiological responses is referred to as 
mechanotransduction [1]. In bone, mechanical forces 
regulate the rate of bone formation and resorption. Increased 
loading enhances bone formation, while decreased loading 
increases bone resorption. In vitro and in vivo studies        
[2] – [6] conclude that the bone mechanotransduction 
response involves changes in cellular physiology, like cell 
proliferation, gene expression, protein synthesis, apoptosis, 
or cell differentiation. This is because a number of 
secondary messenger pathways and local mediators 
generated in response to secondary messenger activation, 
like cAMP, cGMP, PI3K, intracellular Ca2+, Adenylate 
cyclase, ERK, PKA, JNK, PKC, Akt, and NF-κB are affected 
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in the load transduction of osteoblasts and osteoclasts.  
Current studies on this transduction mechanism preclude 

investigations on the dynamics of these signaling molecules. 
Understanding the signaling dynamics is expected to explain 
how different loading conditions regulate bone mass, how 
bone responds to different types of forces like fluid shear 
stress or pulsatile fluid flow, the role of feedback regulation 
in the intra-cellular signal transduction network, and the link 
between reduced mechanical loading and decreased bone 
mass.  

In this paper, we present a ‘systems-level’ computational 
modeling approach to address the above issues on intra-
cellular signaling dynamics. An inter-connected network of 
eight major signaling pathways in osteoblasts and seven in 
osteoclasts, which are initiated as part of the intra-cellular 
response of bone to mechanical stimulus, are modeled as a 
system of differential equations based on Michaelis-Menten 
enzyme kinetics to simulate the temporal dynamics of the 
signaling proteins in these two networks. Parameter 
estimation, based on evolutionary computing, is used to 
estimate the rate constants of the kinetic models of the 
networks. Control systems theory is used to model feedback 
in the signaling networks. This computational modeling 
approach is implemented in MATLAB®’s SIMULINK® 
environment. As the network behavior is simulated and 
analyzed at the intra-cellular systems level and not at the 
individual signaling pathway level, the models are referred 
to as systems-level computational models.  

II. METHODOLOGY 
 

This section describes the four steps used in developing 
the systems-level computational models of the osteoblast 
and the osteoclast intra-cellular signal transdudction 
pathways.  

 

A. Determining the signaling networks 
Literature [7] - [18] indicates the activation of eight major 

signaling cascades in osteoblasts when bone is subjected to 
mechanical stimuli. These signal transduction pathways 
(JNK, Akt, ERK, NFkB, CREB, PKC, PKA, and Wnt), as 
shown in Fig. 1, induce the osteoblast response to stimuli. 
This response includes gene expression, cell proliferation, or 
differentiation. Studies show that inhibition of even a single 
component in any of these pathways can alter the 
mechanotransduction response [3], indicating inter-
connectedness among these signal transduction pathways.  
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Fig. 1.  Block diagram representation of the osteoblast signaling network  
 
 

Osteoclasts respond to mechanical stimulus either directly 
or through osteoblasts. Osteoblasts release RANKL and/or 
OPG seconday messengers on applied stress.  Receptor 
activator of NF-kB Ligand (RANKL) binds to RANK (its 
receptor) to drive osteoclast development from 
haematopoietic progenitor cells as well as to activate mature 
osteoclasts. Osteoprotegerin (OPG) negatively regulates 
RANKL binding to RANK and therefore inhibits bone 
turnover by osteoclasts [19] - [20]. Recent studies [21] - [24] 
have shown that RANKL-RANK induced intracellular 
signaling cascades engage in multiple cross-talk to effect 
osteoclastogenesis, osteoclast activation and proliferation. 
The corresponding signal transduction pathways (Akt, PKC, 
JNK, p38MAPK, ERK, NFAT, and NFkB) are mapped out 
in Fig. 2. Some pathways, like JNK, ERK, NFkB and Akt, 
are common in both osteoblast and osteoclast networks as 
they are essential for cell proliferation and apoptosis.  

 
Fig. 2.  Block diagram representation of the osteoclast signaling network  

 

B. Michaelis-Menten Kinetic Modeling 
Figures 1 and 2 are the block-diagram representations of 

osteoblast and osteoclast signaling networks respectively. 
Investigating the temporal dynamics of signaling pathway 
involves determining unknown variables like the 
concentration, expression level, amplitude, and duration of 
activation of each of the signaling components at a given 
time. Hence, the interactions between the components are 
modeled as a system of differential equations, as such 
equations describe the rate of change of a variable over time.  

In this work, Michaelis-Menten kinetics is used as the 
basis for differential equations [25] – [27] because activation 
of signaling components parallels closely with such enzyme 
kinetics. The enzyme kinetics model expresses rate of 
change of substrate and product over time, the kinetics 
follows the conservation law and assumes quasi-steady state 
conditions to derive the reaction rate, and the reaction rates 
are scalable to include competitive inhibition and 
uncompetitive upregulation.  

A system of Michaelis-Menten  based rate equations is 
developed for the signaling networks of osteoblasts and 
osteoclasts. One such rate equation is reproduced below for 
the ERK pathway (no feedback considered). EGF protein is 
taken as the stimulus –  
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In the above equation, EGFR  refers to the total EGFR 
present in the system (both activated and deactivated).  

When feedback is considered, the rate equations of the 
affected variables are modified to reflect the positive or 
negative feedback. The equations for the unaffected 
variables remain the same. For example, in the ERK 
pathway (Fig.1), EGFR complex is negatively regulated by 
ERK and Raf is positively upregulated by PKC. Hence, the 
corresponding rate equations are –  
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Here, KP  and KN  are constants that define the strength of 

the positive feedback and negative feedback respectively. 
The above two equations are framed using the concepts of 
control theory, as described in [25]-[27].  

C. Parameter estimation using evolutionary computing 
In the rate equations, there are a total of 292 rate constants 

(considering both osteoblast and osteoclast networks). 
Literature on enzyme kinetic experiments was surveyed to 
derive the relevant rate constant values. But sufficient data 
was not available from the studies conducted till date, most 
likely due to the limited experiments taken up in this 
direction. Hence, in this work, parameter estimation was 
implemented to overcome these limitations to determine the 
rate constants. Parameter estimation has been successfully 
applied in many domains, like Bayesian model learning, 
geometric curve fitting, and control of large dynamical 
systems [28]. 

The estimation is based on evolutionary computing, and is 
implemented as follows –  

(i) With a total of N proteins in the signaling pathway, 
the total number of parameters to be estimated is 
4N: 2N rate constants (k) and 2N Michaelis-Menten 
constants (Km).  

(ii) The minimum and maximum values of the 
parameters considered are as shown in Table I. 
Protein concentration is considered in percentage 
values as the actual estimates are not known.  

(iii) Mp sets of parent parameters [k1, Km1, k2, Km2… 
kN, KmN] are initialized. The values of these 
parameters should fall within the boundaries 
decided in step (ii).  

(iv) Each set of parent parameters is substituted into the 
mathematical model and solved. 

(v) The cost function for each set of parent parameters 
is computed. Cost function is a measure of the 
goodness of the fit of the model. Denoting the 
simulated protein concentrations as SP1(t)-SPN (t) 
and the experimental results as EP1 (t)-EPN (t), the 
cost function J can be written as - 
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(vi) Two parents from the Mp sets of parent parameters 
are randomly selected for recombination to form a 
set of Mc child parameters.  

(vii) In the next step, known as mutation step, the value 
of each parameter is adjusted by an amount equal 
to a Gaussian random variable multiplied by its 
variation.  

(viii) Mc sets of child parameters are substituted into 
the mathematical model and solved. Cost function 
is computed to give a total of Mc cost values 

(ix) With Mp sets of parent parameters and Mc sets   
            of child parameters, there would be a total of Mp  
            + Mc cost values and Mp + Mc sets of   
            parameters. From these, Mp sets of parameters   
            with the lowest cost values are selected to be the  
            parent parameters.  

(x) Steps (iv) to (ix) are repeated till the RMS error 
value of the successive parameters equals zero. 

 
TABLE I 

             CONSTANTS USED FOR THE PARAMETER ESTIMATION ALGORITHM  
Constants Values 

Total number of proteins, N Depends on 
Equations  

Minimum value of rate constant, kmin 0.1 s−1  [27] 
Maximum value of rate constant, kmax 3.0 s−1 [27] 
Minimum value of Michaelis-Menten 
constant, Kmmin 

0.1 nM [27] 

Maximum value of Michaelis-Menten 
constant, Kmmax 

20.0 nM [27] 

Variation of rate constant, k 0.001 s−1 [27] 
Variation of Michaelis-Menten 
constant, Km 

1 nM [27] 

Number of sets of parent parameters, 
Mp 

30.0 

Number of sets of child parameters, 
Mc 

20.0 

Number of generations  100.0 
Value of feedback constant, KP =  KN   9 nM [27] 
Minimum value of activated protein 
concentration (at time 0 unit) 

0% 

Maximum value of activated protein 
concentration (at time 200 units) 

100% 

 
Based on the parameter estimation algorithm, we derived 

the rate constants for osteoblast network and osteoclast 
network respectively. 

 

D. Simulations 
Two states of intra-cellular bone response are assumed for 

the simulation studies – a steady state, where feedback is 
present in the signaling network, and an unsteady state in 
which feedback is not present in the signaling network. 
These assumptions are made to verify the role of feedback. 
Three different types of mechanical stimuli are modeled to 
perturb the network to investigate the network behavior in 
each case - fluid shear stress as a step signal (of step time 1), 
oscillatory fluid flow as a sine wave signal (amplitude -1, 
frequency – 1Hz), and periodic substrate stretch as a pulse 
generator signal (amplitude -1, period – 2s). These stimuli 
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are considered based on the literature [29] - [33]. 
Simulations are generated in SIMULINK® [34]. The main 
reason for using this environment to simulate systems level 
models is due to its support of modular and scalable 
architecture for systems robustness and sensitivity.  

 

III. RESULTS 
 

  The simulation results shown in this section illustrate the 
dynamic concentration profiles of signaling components of 
ERK and PKA pathways in the osteoblast network. These 
profiles allow us to determine the rate and duration of 
activation of the components for the given stimuli. 

A. Response to mechanical stimuli 

 
        Fig. 3.  Activation profile of EGFR complex in ERK pathway 
Fig. 3 indicates the activation profile of the EGFR 

complex of ERK pathway in osteoblast network over time. 

We can observe dissimilar activation rates to different 
stimuli, thus indicating unique cell response to loading 
conditions. As EGFR complex in negatively feedback 
regulated, its steady and unsteady states show different 
profiles.    

B. Feedback regulation 

 
Fig. 4.  Activation profile of GPCR complex in PKA pathway 

 
Fig. 4 indicates the activation profile of the GPCR 

complex of PKA in osteoblast network over time. In contrast 
to EGFR (in Fig. 3), the steady and unsteady profiles share 
similar response to the input stimulus. This is because 
GPCR is not regulated by feedback, whereas EGFR is 
negatively feedback regulated by ERK.  

C. Attenuation of stimulus signal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Activation profile of ERK in ERK pathway 
 
In contrast to the oscillatory behavior of the EGFR 

complex to the sinusoidal input stimulus, as shown in Fig. 3, 
ERK shows a smooth activation profile in both steady and 
unsteady states (Fig. 5). EGFR complex and ERK are the 
first and last signaling components of the pathway. This 
indicates that the stimulus signal is attenuated as it 
propagates along the pathway.  

 

EGFR Profile (step)

0

20

40

60

80

100

1 182 363 544 725 906 1087 1268 1449 1630 1811 1992 2173 2354 2535 2716 2897

Time (in units)

Co
nc

en
tra

tio
n 

(in
 %

)

Steady Unsteady

EGFR Profile (sine)

-2

-1

0

1

2

3

4

5

6

1 179 357 535 713 891 1069 1247 1425 1603 1781 1959 2137 2315 2493 2671 2849

Time (in units)

Co
nc

en
tra

tio
n 

(in
 %

)

Steady Unsteady

EGFR Profile (pulse)

0

20

40

60

80

100

1 2347 4693 7039 9385 11731 14077 16423 18769 21115 23461 25807 28153 30499

Time (in units)

Co
nc

en
tra

tio
n 

(in
 %

)

Steady Unsteady

GPCR Profile (sine)

-2

-1

0

1

2

3

4

5

1 2304 4607 6910 9213 11516 13819 16122 18425 20728 23031 25334 27637 29940

Time (in units)

Co
nc

en
tra

tio
n 

(in
 %

)

Steady Unsteady

ERK Profile (sine)

0
20

40
60

80
100

1 21 41 61 81 101 121 141 161 181

Time (in units)

Co
nc

en
tra

tio
n 

(in
 %

)

Unsteady Steady



  

IV. DISCUSSION 
In the context of mechano-regulation of bone, a few 

salient inferences are derived from these simulations –  

A. Network sensitivity 
Dissimilar activation profiles to the three input stimuli - 

step signal, sine wave signal, and pulse generator signal, are 
observed in the results. This indicates that bone cell 
responds uniquely to different input stimulus. A likely 
inference for such observation is that the cell responds 
dynamically to the input stimulus and relays activation 
signal downstream to its signaling network. The network 
uniquely adapts to this signal and hence results in a unique 
physiological response.  

 

B. Role of feedback 
Different activation profiles are observed in steady and 

unsteady states for NFkB, ERK and JNK signaling factors. 
This indicates higher activation rate of factors in the 
unsteady state compared to the steady state. NFkB, ERK or 
JNK cause cell proliferation and matrix synthesis in 
osteoblasts, and are responsible for osteoclastogenesis in 
osteoclasts. Hence, these factors are regulated by feedback 
to check for unwanted proliferation.  

As described in the methodology section, feedback 
regulation is assumed to be disrupted in the unsteady state, 
while it is kept intact in the steady state. This implies that 
higher activation rate is caused due to disruption in the 
feedback regulation. Higher activation rate in the profiles 
indicates increased proliferation rate of osteoblasts and 
osteoclasts. In osteoblasts, unchecked proliferation 
ultimately leads to maturation of osteoblasts into osteocytes, 
eventually resulting in decreased bone formation. In 
osteoclasts, it causes extended family of osteoclasts. 
Maturation of osteoclasts transforms them to macrophages, 
which engage in bone resorption. More osteoclasts at a 
given stage indicate increased bone resorption. Hence, it is 
inferred that disruption of the feedback causes decreased 
bone formation in osteoblasts and increased bone resorption 
in osteoclasts.  

 

C. Link between reduced loading and low bone mass  
Low bone mass is a phenomenon observed during 

decreased mechanical loading conditions. The simulation 
studies indicate that low bone mass is a possible result of 
disruption of feedback in intra-cellular signaling network. 
From this, it can be deduced that reduced loading conditions 
and feedback disruption might be related. Reduced loading 
conditions imply weaker input stimulus sensed by the 
mechanotransduction sensing factors in the cells. This 
implies weaker signal propagation inside the cell. Weak 
signal strength inside the cell may imply that the signaling 
proteins might not be fully active to carry out the dual 
functions of activating downstream signaling cascade and 

feedback regulation on proteins in other pathways. This 
means that one of these two regulatory functions might be 
compromised during reduced loading conditions. When the 
feedback regulation is not carried out, cell proliferation 
becomes unchecked. This might lead to decreased bone 
formation and increased bone resorption, i.e. reduced bone 
mass. Hence, it is deduced that decreased mechanical 
stimulus causes disruption in the feedback regulation to 
result in low bone mass. Illustrating this deduction - 

 

 
Fig. 6.  The link between reduced loading and low bone mass  
 

V. CONCLUSION 
 

In this paper, we implemented a systems-level 
computational modeling approach to address specific issues 
in the mechano-regulation of bone. We determined the intra-
cellular response of bone cells to mechanical stimulus, 
simulated the response to different loading conditions, 
investigated the role of feedback regulation in bone 
remodeling, and inferred a link between reduced mechanical 
loading and decreased bone mass.  

The major contribution of this work is the systems level 
approach to simulate the signaling dynamics of bone cell 
response and the implementation of parameter estimation to 
estimate the Michaelis-Menten rate constants of the kinetic 
models of the networks.  

The results of these simulation studies can serve as useful 
guidelines for planning relevant experimental work to study 
how reduced loading conditions can lead to low bone mass 
and to investigate the dynamic affect of the mechanical 
environment on bone cells in vivo. Potential areas of 
application include tissue engineering and degenerative 
disease (like Osteoporosis) therapeutics.   
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