
  

  

Abstract— From biochemical reaction principles, a genetic 
regulatory network can be described by a group of nonlinear 
differential equations with time delays.  Previous studies have 
investigated delay-independent stability of genetic regulatory 
networks with time delays. However, if it is delay-
independently stable, a genetic regulatory network loses other 
interesting properties such as oscillation. In this paper, we 
provide a computational method for computing the maximal 
delay interval over which the genetic regulatory network 
maintains stability, and beyond which the network will not be 
stable. Furthermore we prove that when its delay is exactly the 
maximal delay the network is oscillated. In addition, the 
formula for calculating the oscillation period is presented. The 
autoregulatory genetic network in zebrafish is used as an 
example to illustrate the presented method. The oscillation 
period calculated from our method is very close to that 
observed from the real-life of a zebrafish, which indicates the 
effectiveness of our method.   

I. INTRODUCTION 

genetic regulatory network is a dynamic system to 
describe highly complex interactions among two main 

species of gene product: mRNAs and proteins, in the 
interactive processes of transcription and translation. In the 
transcriptional process, mRNAs are synthesized from genes 
by the regulations of transcription factors, which are 
proteins. In the translational process, mRNAs are used as 
templates to produce proteins. These complicated processes 
can be modeled by nonlinear differential equations 
according to biochemical reaction principles [1, 2]. Several 
typical genetic regulatory networks have been modeled and 
studied experimentally and/or theoretically [3, 4, 5, 6], 
separately. One of the key factors affecting dynamics of 
genetic regulatory networks is time delays, which usually 
exist in transcription, translation, and translocation processes 
especially in a eukaryotic cell. Time delays may 
significantly influence the overall properties of a dynamic 
system. Much attention has been paid to delay-independent 
stability of genetic regulatory networks [7-9]. However, if it 
is delay-independently stable, a genetic regulatory network 
loses other interesting properties such as oscillation. 

In this paper we develop a method to compute the 
maximal delay interval over which a genetic regulatory 
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network maintains stable and, beyond which the network 
may become unstable. Furthermore we prove that when its 
delay is exactly the maximal delay the network appears 
oscillated, and present a formula for calculating the 
oscillation period. Section II describes nonlinear differential 
equation models for genetic regulatory networks with time 
delays. The linearized model and its characteristic equations 
are also derived in this section. Using the essential 
properties of genetic regulatory networks, the characteristic 
equations are simplified. In addition, the concept of stability 
of a linear system with time delays is introduced in terms of 
characteristic equations. Section III contains our main 
results. We first develop a method to calculate the maximal 
delay for stability of gene regulatory networks with a single 
time delay. We show that when its delay is the exact 
maximal delay the network appears oscillated. The formula 
for calculating the oscillation period is also presented. Then 
we extend these results to gene regulatory networks with 
multiple time delays. Section IV illustrates the presented 
method by analyzing the autoregulatory genetic network in 
zebrafish. Section V draws the brief conclusion from this 
study. 

II. GENETIC REGULATORY NETWORKS WITH TIME DELAYS 

Genetic regulatory networks with time delays consisting 
of n  mRNAs and n  proteins can be described by the 
following equations [7, 8]: 
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vector functions. Note that )),(( mi tmd τ  is defined as the 
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function of only ),(
imi tm τ , and that in general )),(( pi tpc τ  

is defined as the function of the concentrations of several 
proteins. 

The bottom equation in model (1) describes the 
translational process. Although one mRNA molecule (by 
splicing alternatives) could correspond to multiple proteins, 
this study does not take the splicing alternatives of an 
mRNA molecule into consideration. The definition of 

))(( tmdi  reflects the fact that one mRNA molecule 
presumably corresponds just to one protein. On the other 
hand, one gene or mRNA is generally activated or repressed 
by multiple proteins in the transcriptional process indicated 
in the definition of ))(( tpc . The top equation in model (1) 
describes the transcriptional process. ))(( tpci  represents the 
relative activator or repressor activity of all proteins to gene 
i  as a function of the concentrations )(tp of all proteins.  In 

this paper, we take ))(())((
1

tpctpc j

n

j
iji ∑

=
= , which is called 

SUM logic [10]. That is, each transcription factor acts 
additively to regulate gene i. ijc  is a monotonic function of 
the Hill form [1]. If transcription factor (protein) j is a 
activator of gene i, then  
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If transcription factor (protein) j is a repressor of gene i, 
then 
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where jh  is the Hill coefficient representing the degree of 
cooperativity, jb (j=1,2,…,n) are positive constants, and ija  
(i, j=1,2, …, n) are nonnegative constants 

Assume that ),( pm  is an equilibrium state of model 
(1). That is, they are satisfied the following equations: 
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The linearized system of genetic regulatory network (1) 
around the equilibrium state ),( pm  follows as: 
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where mtmtm −= )()(~  and ptptp −= )()(~  are the 
differences between the state at time t  and the equilibrium 
state ),( pm . 
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Jacobian matrices of vector functions )( pc  and )(md , 

respectively. Note that dJ  is a diagonal matrix because of 
the definition of )(md  in model (1). Further we obtain the 
characteristic matrix equation of linear system (2)  
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where  C∈λ  is the characteristic value of (2), and C  is the 
set of all complex numbers. nI  is an identity matrix, and 

),,( 1 nmmm eediagE λτλτλτ −−− = Λ  and diagE p =−λτ  

),,( 1 npp ee
λτλτ −−

Λ   are diagonal matrices.  

In the following, we simplify the characteristic equation 
(3) by taking the properties of genetic regulatory network 
(1) into account. Since mn KI +λ , pn KI +λ , and mEJd

λτ−  
are nn×  diagonal matrices, by Schur’s theorem equation 
(3) becomes 

   0)))(det(( =−++ − τλλλ JEKIKI pnmn            (4) 

where n
n R∈= ),,( 1 ττ Λτ   is the total delay vector  and 

ii pmi τττ += , and dc JJJ = . Clearly, in equation (4) n2  
delays ),( pm ττ  is reduced to n  delays )(τ . Actually, 
without linearization, delays in regulatory networks  (1) can 
also be reduced to n  delays [6-9], provided that 0)(

)( ≠xd
xddi  

for 0≥x  and ni ,,1 Λ=   

In this study, assume that the values of all delays iτ  
(i=1, … , n) are rational numbers. Therefore there exists a 
maximal positive constant τ and r ( ≤ n) integers kq  (k = 
1,2, …, r) such that ττ ki q= . Let }{max

1 krk
qq
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can rewrite the equation as 
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where each matrix kJ  is derived from matrix J  by 
replacing the i-th row with a zero row vector if ττ ki ≠ . 
Some matrices kJ  may be zero matrices if ττ ki ≠  for all i 
= 1,2,..., n. 

 The local stability of model (1) depends on the roots of 
characteristic equation (5) and can be defined as follows 

Definition [8, 9]: Genetic regulatory network (1) is said 
to be locally stable for some time delay 0≥τ if 
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where }0)Re(,{: >=+==+ αωα sjsC denotes the open 
right half of the complex number plane, +C  denotes its 
closure. Matrix J is calculated at the equilibrium state 

),( pm .   



  

In other words, for a given delay constant 0≥τ , genetic 
regulatory network (1) is locally stable if the characteristic 
equation (6) has no roots in the closed right-half plane. If the 
genetic regulatory network is stable for all 0≥τ , then it is 
said to be delay-independently locally stable. If there exists 
a root with the nonnegative real part, linear system (2) is 
unstable and thus genetic regulatory network (1) is unstable. 

Suppose that genetic regulatory network (1) is locally 
stable for some 0≥τ . By the continuity of roots of equation 
(6), there must exist a neighborhood around τ  such that 
over it network (1) remains locally stable. Knowing that 
network (1) is stable for some 0≥τ , one may naturally ask 
what is the largest interval around τ  over which the 
network remains locally stable. Specifically, in this study, 
assume that genetic regulatory network (1) is locally stable 
for 0=τ , we would like to find an interval ),0[ +τ  such 

that for all ),0[ +∈ ττ  genetic regulatory network (1) is 
locally stable and  over  +> ττ  it is unstable. Furthermore, 
we would also like to study the oscillation of gene 
regulatory network (1) at += ττ  

III. STABILITY AND OSCILLATION 

To derive our results, we need the following lemmas. 

Lemma 3.1: Let ))(()( pnmn KsIKsIsK ++= , mK  and 

pK  be defined as in genetic regulatory network (1). Then 

)(1 sK −  is analytic in +C . 

The proof of this lemma is straightforward [8]. For a 
given matrix nnCM ×∈ , let )(Miλ  denote its i-th 
eigenvalue and )(Mρ  denote its spectral radius. 

Lemma 3.2 [12, 13]: Let nnCsM ×∈)(  be analytic in 

+C . Then its absolute values of n eigenvalues ))(( sMiλ  (i 

= 1, …, n) are continuous and sub-harmonic in +C , and 
therefore equation 1))(( =ωλ jMi  has only a finite number 
of solutions. 

In the following, we first examine a simple case, which 
corresponds to the case 1=q . It will be seen that the results 

for this case can be extended to the case 1>q  in a 

straightforward manner. The case 1=q  biologically means 
that the total delay τ  of the transcriptional and translational 
processes for each gene product has the same value. i.e. 

nn pmpm τττττ +==+≡ Λ
11

. For this case equation (6) 
can be simplified as: 
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From Lemma 3.1, the above equation is equivalent to 
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Theorem 3.1: Assume that genetic regulatory network (1) 
is locally stable for 0=τ . Define +

≤≤

+ = ini
ττ

1
min  and +

iτ  by 

the formulas at the bottom of this page. Then genetic 
regulatory network (1) is stable for any ),0[ +∈ ττ . If 

∞<+τ , the network becomes unstable at += ττ . 

Proof: From [8, 9], if 1))(( 1 <− JjK ωρ , 0>∀ω , the 
genetic regulatory network is delay-independent locally 
stable, that is, ∞=+τ .  Now suppose that ∞<+τ , for any 

),0[ +∈ ττ , we claim that  for 0≥∀ω   
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),0[ +∈ ττ , and thus again inequality (8) is true. This proves 
the claim. As genetic regulatory network (1) is locally stable 
for 0=τ , by continuity of the characteristic roots, we 
establish the local stability of network (1).  
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where )(Miλ stands for the i-th eigenvalues of  matrix M, and )(Mρ  for the spectral radius of matrix M, which is 
defined as the largest absolute value of the eigenvalues of matrix M  
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Hence, genetic network becomes unstable. This completes 
the proof of Theorem 3.1 

To have a bounded delay interval for stability, it is 
necessary that 1))(( *1 ≥− JjK ωρ  for some ),0(* ∞∈ω . 

Actually, only under this condition, there exists ),0( ∞∈i
kω  

such that 1))(( 1 =− JjK i
ki ωλ  for some ni ≤≤1  because of 

Lemma 3.2 and the factor that 0))((lim 1 =−

∞→
JjK ωρ

ω
. 

Therefore, to compute the delay interval for stability, the 
eigenvalues of  JjK )(1 ω− should first be calculated. If 

for 0>∀ω , 1))(( 1 <− JjK ωρ , then one may conclude that 
genetic regulatory network (1) is locally delay-
independently stable. Otherwise computing i

kω  and i
kα , one 

may immediately determine the value of +τ . By Lemma 3.2, 
to find the maximal delay +τ  for stability, only a finite 
number of frequencies i

kω  are required to check. 

From the proof of Theorem 3.1 and the definition of +τ , 
if there exists a unique pair of ),( ++ αω  such that 

+++ = ωατ / , then += ωjs  is the root of the characteristic 
equation 

0)))(det(( =−++
+− τs

pnmn JeKsIKsI              (9) 

As all constants are real numbers, +−= ωjs  is also a root of 
the characteristic equation. Now we have the following 
theorem about the oscillation of genetic regulatory networks. 

  Theorem 3.2: If ),( ++ αω  is a unique pair such that 
+++ = ωατ / , then characteristic equation (9) has two 

simple roots +±= ωjs  and the remaining roots have 
negative real parts. Furthermore, genetic regulatory network 
(1) with time delay +τ  oscillates locally with a fundamental 
period of += ωπ /2T .  

The proof of the first part of Theorem 3.2 has been 
discussed in the previous paragraph. The second part can be 
proved according to the first part and results in [13].  

In the remainder of this section we extend Theorems 3.1 
and 3.2 to the general case 1>q . The strategy in this 
extension to transform the problem to the one similar to the 
case 1=q . 

Theorem 3.3: Assume that genetic regulatory network (1) 
is locally stable for 0=τ . For the case 1>q , define 
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Then genetic regulatory network (1) is stable for any 
),0[ +∈ ττ . If ∞<+τ , the network becomes unstable at 

+= ττ . Furthermore, if ),( ++ αω  is a unique pair such that 
+++ = ωατ / , then genetic regulatory network (1) with time 

delay +τ oscillates locally with a fundamental period of 
+= ωπ /2T . 

Proof: From Lemma 3.1, equation (6) is equivalent to  
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By repeating to use Schur’s complement identity [14], it 
follows that  
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Comparing equations (11) and (7), the proof of Theorem 
3.3 can be completed by following the proof of Theorems 
3.1 and 3.2 in which matrix JsK )(1−  is replaced by matrix 

)(sM .  

IV. ILLUSTRATIVE EXAMPLE 

Lewis [6] proposed the auto-regulatory genetic circuit 
with time delay for both her1 and her7 of zebrafish 
described by the following equation: 
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where )(Miλ stands for the i-th eigenvalues of  matrix M, and )(Mρ  for the spectral radius of matrix M, which is 
defined as the largest absolute value of the eigenvalues of matrix M  
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where )/1/())(( 2
0

2 ppktpf += . km and kp are the decay 
rates (inverse lifetime) of mRNA and protein molecules 
[1/min], respectively,  a is the rate of production new 
mRNA molecules [1/min], k is the number of mRNA 
molecules per diploid cell [1/min], and p0 is the number of 
initial protein molecules. 

For network (12), we have that ))(()( pm kskssK ++= . 
As parameters and variables in network (12) are nonnegative 
real numbers, it has a unique equilibrium state ),( pm = 
(kpu/a, u ) where u  is the unique positive solution of the 
following nonlinear equation 
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At the equilibrium state, we have  
222

0
2
0 )/(2 upukpJ c +−=  and aJ d =  

thus 222
0

2
0 )/(2 upukapJJJ dc +−== , and JjK )(1 ω−  has 

a single eigenvalue  

)])(/[())(( 1
pm kjkjJJjK ++=− ωωωλ            (14) 

and a spectral radius  

))((/))(( 22221
pm kkJJjK ++=− ωωωρ  

    From Theorem 3.1, regulatory network (12) is delay-
independently locally stable if inequality pm kkJ <  holds   

    To have the finite delay for stability, let’s assume that 

pm kkJ > . From equation 1))(( 1 =− JjK ωλ , it follows 

0)( 2222224 =−+++ Jkkkk pmpm ωω  

Solving the above equation for ω , we get the unique 
positive solution 

            2/)(4)( 222222
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⎢⎣
⎡ +−+−= pmpm kkJkkω        (15) 

Substituting the above value of ω into equation (14) leads 

                        )(1 ))(( θπωλ −− = jeJjK  

where ))/()tan(( 2ωωθ −+= pmpm kkkka  and πθ <≤0 .   
Therefore, we have  

                   ωθπτ /)( −=+                               (16) 

and from Theorem 3.2 network (12) with time delay +τ  
should locally oscillate with the fundamental period of  

                       ωθτωπ /22/2 +== +T .                      (17) 

In paper [6], Lewis took the values of parameters in 
network (12) as km = kp = 0.23 molecules per minute, a = 4.5 
protein molecules per mRNA molecule per minute, k = 33 
mRNA molecules per diploid per cell per minute, and p0 = 
40 molecules. Those values were estimated according to the 
real-life regulatory network of a zebrafish. In regulatory 
network model (12), for gene her1 he estimated the values 
of delay between 13.0 and 34.3 minutes, and then estimated 
the period of oscillation as 47 minutes which is far from the 
period of 30 minutes observed in a real-life zebrafish. For 
gene her7 he estimated the values of delay between 7.6 and 
21.8 minutes, and then estimated the period of oscillation as 
about 30 minutes which is the same as the observed period. 
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Figure 1. Simulation of gene regulatory network (12) 

with time delay of 5.55 minutes 

 

However, from our study the values of time delay and 
oscillation period solely depend on the values of parameters 
km, kp, a, k, and p0, seeing equations (13) - (17). Substituting 
the same values of these parameters as used by Lewis [6] 
into equations (13) – (17), we calculate out that the maximal 
time delay for stability of network (12) is 7.55 minutes. By 
Theorem 3.1, when the time delay is less than 7.55 minutes, 
gene regulatory network will be stable. Figure 1 shows the 
simulation of gene regulatory network (12) with time delay 
of 5.55 minutes. It shows that the network is stable and 
converges to the equilibrium state ),( pm  = (8.27, 161.76). 
We also simulate gene regulatory network (12) with time 
delay of 7.55 minutes and show the simulation results in 
Figure 2.  From Figure 2, we can see that network (12) with 
this time delay oscillates around the equilibrium state 

),( pm  = (8.27, 161.76). By using formula (17), the 
oscillation period is calculated as 29.04 minutes, which is 
very close to the observed period. Compared to the results 
from Lewis [6], our method can accurately estimate the 
oscillation period and the time delay from parameters km, kp, 
a, k, and p0.  
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Figure 2. Simulation of gene regulatory network (12) 

with time delay of 7.55 minutes 

V. CONCLUSION 

In this paper, we have developed a method for 
computing the maximal delay interval over which a genetic 
regulatory network maintains stability. Furthermore we have 
proved that the network becomes unstable, but locally 
oscillated when its delay is equal to the maximal delay for 
stability. In addition, the formula for computing the 
oscillation period has been provided. The analysis of genetic 
regulatory network in a zebrafish has illustrated that the 
oscillation period can be accurately calculated by using our 
method. Compared to study in [6], this study is more 
rigorous and more general. The results of this study are 
expected to apply to synthesis of gene regulatory networks, 
which also is one direction of our future work.  
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