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Abstract— DNA replication is one of the most fundamental
processes in the life of every cell. In earlier work a model
to capture the mechanics of the DNA replication process was
developed. The model allowed us to make novel predictions
regarding the mechanisms behind DNA replication based on
experimental data for the fission yeast. One of the difficulties
we had to overcome in the process was tuning of the model
parameters based on experimental data, which, for lack of
better methods had to be done manually. Here we propose
a methodology for systematizing this process, inspired by
techniques for multi-objective optimization.

I. INTRODUCTION

The life of any eukaryotic cell evolves through an or-
dered sequence of events, known as the cell cycle. The
outcome of a successful cycle is the division of a single
cell into two distinct cells, the “daughter cells” (mitosis).
The cell cycle comprises four phases: G1, a cell growth
(gap) phase; S, the DNA synthesis phase; G2, a second
period of growth; and M (mitosis) phase, in which the cell
is divided into two genetically identical cells [1] (Figure 1).
It is important for the well-being of the cell that the four
phases are precisely coordinated and follow one another
in the correct order. Improper execution of the cell cycle
(for example, uncontrolled division, or DNA re-replication)
may lead to genomic instability, a characteristic of cancer
cells [1]. Protein complexes called Cyclin Dependent Kinases
(CDK) are supervising the cell cycle. Cell cycle events, such
as entry into S phase and into M phase, are regulated by the
periodic fluctuations in the activity of CDKs [2] (Figure 2).

DNA replication, the process of duplication of the cell’s
genetic material during the S phase, needs to be executed in a
way that ensures that both daughter cells will have the same
genetic information. DNA synthesis must always be carried
out prior to cell division and within a specified amount of
time. Failure to replicate even a small part of the genome
would disrupt proper segregation of the genetic material to
the two daughter cells during mitosis, leading to genomic
instability.

In earlier work the authors and co-workers proposed a
model to capture the “mechanics” of the DNA replication
process [3]. The model was instantiated based on experimen-
tal data for the fission yeast (Schizosaccharomyces pombe).
Fission yeast is an attractive model organism for studying
DNA replication. As in all eukaryotes, DNA replication in
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the fission yeast initiates from multiple points along the
genome, the so called origins of replication. Moreover, ex-
perimental evidence suggests that these origins are randomly
selected from a pool of potential origins, and the time at
which they initiate replication is randomly selected during
the S phase [4], [5], [6], [7], [8]. This randomness appears
to be a common theme for the DNA replication of higher eu-
karyotes, including humans. In our work [3] in silico analysis
of a fission yeast DNA replication model instantiated based
on the experimental data of [7] led to interesting conclusions
and conjectures about the mechanisms that govern the DNA
replication process.

One difficulty that had to be overcome in the process
was tuning of the model parameters based on experimental
data. The model we proposed contains several parameters,
related to the efficiency with which origins fire during the
S phase, the speed with which the replication forks move
along the genome, the potential presence of low efficiency
origins etc. To ensure that the model is realistic, values
for all these parameters have to be selected to reflect ex-
perimental evidence. This is a rather painstaking process
involving manual tuning and several trial-and-error in silico
experiments. In this paper we propose a methodology for
simplifying this process. The idea is to use tools from multi-
objective optimization to systematically search for parameter
values that “optimally” match experimental data. The key
challenge for doing this is that the model is inherently
stochastic, since it reflects the uncertainty in origin selec-
tion and initiation timing characteristic of eukaryotic cells.
Therefore defining an appropriate notion of optimality is
far from straight forward. In this paper we use empirical
averages from multiple in silico experiments and attempt to
match these to statistical data collected experimentally. Since
the number of unknown parameters is relatively small, the
search for optimal parameter values can then be conducted
by “brute-force” gridding of the parameter space, followed
by exhaustive search. We believe, however, that this approach
can be extended to high dimensional parameter spaces, since
it is straight forward to couple to randomized optimization
methods such as Markov Chain Monte Carlo; for an example
of the use of such methods for parameter identification in an
unrelated biological model see [9].

The work is organized in 4 sections. Section II outlines the
stochastic hybrid model for the DNA replication process. The
parameter identification problem is formulated in Section III
followed by the identification results. Finally, conclusions



Fig. 1. The phases of Cell Cycle

Fig. 2. Quantitative model of cell cycle regulation

based on the results and future objectives are reported in
Section IV.

II. DNA REPLICATION MODEL

In this section a short description of the model for DNA
replication is provided. The reader is referred to [3], [10] for
a detailed description of the model.

A. Biological Background

DNA replication in eukaryotes initiates from multiple
points called origins of replication. In a genome there is a
number of regions that can serve as origins. However, only
some of these potential origins are activated in each cell
cycle. According to recent work [8], active origin selection
is not deterministic. A specific origin will fire in some but
not all cell cycles. Moreover, firing time of an active origin
differs from cell to cell.

Initially, all origins are in the pre-replicative state. When
CDK activity increases over a threshold (Threshold 1 in
Figure 2), origins can initiate DNA replication. When an
origin fires, two replication forks are created and start moving
in opposite directions along the genome. To ensure that
all bases are replicated once and only once a cell should
be able to distinguish replicated from un-replicated regions.
Origins locations that have been replicated (either because

the origin fired or because they were passively replicated by
a replication fork from a neighboring origin) automatically
switch to the post-replicating state and can no longer support
initiation of replication. Only after the end of M phase, when
CDK activity resets to zero, origins can re-acquire the pre-
replicative state. This supervising mechanism inhibits DNA
re-replication.

B. Stochastic Hybrid Model

The DNA replication procedure, as described in the pre-
vious section, is a stochastic hybrid process comprising
discrete transitions between origin states (pre-replicative and
post-replicating), continuous evolution of replication forks
and stochastic origin selection and firing. In earlier work
by the authors and co-workers, a stochastic hybrid model
of DNA replication has been developed to capture all these
diverse elements [3] and has been instantiated using exper-
imental data for the fission yeast [7]; see also [10] for the
mathematical foundations on which the model is based.

The model of [3] contains several parameters, whose
values play an important role in the predictive power of the
model. Here we concentrate on three of these parameters.
• The firing propensity of each origin.
• The speed with which the replication forks move over

different parts of the genome.
• The number and location of low efficiency origins,

that are potentially present but undetectable due to the
limitations of experimental methods.

For the first parameter, experimental evidence suggests
that active origin selection and origin firing time are both
random. To capture this, we assume that the firing time, Ti,
of origin i is randomly extracted according to an exponential
distribution

P[Ti ≥ t] = e−λit . (1)

The parameter λi reflects the intrinsic propensity of origin i
to fire per unit of time. This parameter can be estimated using
the experimentally observed firing probability of the origin
(denoted by FPi), i.e. the fraction of cell cycles in which
the origin is observed to fire [7]. Assuming the exponential
distribution (1) and setting the probability that origin i fires
by a given time Tf equal to FPi we obtain

λi =− 1
Tf

ln(1−FPi). (2)

It is clear from (2) that origins with high experimental firing
probability will have higher values of λ and be more likely
to fire early in the S phase (Figure 3). Firing time is also
related to whether an origin will be activated in a cell cycle
or not. In a given cell cycle, origins due to fire later than the
time when they are passively replicated by a fork emanating
from a neighboring origin will not be active.

Note that the value of Tf is arbitrary in this process.
Roughly speaking, the experimental data allows us to de-
termine the relative propensity of origins to fire, but not
their absolute propensity. A reasonable starting point is to
set Tf = 20 minutes, the expected duration of S phase in S.
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Fig. 3. Exponential distribution for different values of λ .

pombe. The first objective of our parameter tuning method
will be to systematically determine a value for Tf .

The second parameter is the speed with which replication
forks move. This speed will generally depend on the location
of the genome that is currently being replicated. For sim-
plicity, however, we will assume that this speed (denoted by
v) is constant for the entire genome. Experimental evidence
allows us to determine an approximate value for v at different
places along the genome; the work of [7] suggests v≈ 3000
bases per minute. The second objective of the identification
methodology will be to determine a more precise value of v.
Even though this value will still be constant, it will hopefully
help us account better for fluctuations along the genome.

Finally, it has been observed that in addition to “strong”
origins that fire in many cell cycles and are easy to observe
experimentally, there can be many more “weak” origins that
fire in only a small fraction of the cell cycles (less than
10%). The location and firing propensity of each of these
origins are difficult to determine experimentally, since they
are observed very rarely. If there are many of them however,
their cumulative effect may be significant. The last objective
of the methodology outlined in the next section will be to
estimate the number of such low-efficiency origins, denoted
by N below.

III. PARAMETER IDENTIFICATION

A. Problem Statement

Let M(θ) denote our stochastic model of DNA replication,
where θ is a set of input parameters to be determined
by the identification experiments; based on the discussion
above we will consider a 3 dimensional parameter vector
θ = (Tf ,v,N). The objective is to determine the value of
θ that best explains the experimental observations, denoted
by D. In subsequent discussion a 2 dimensional observation
vector D = (Y obs

1 ,Y obs
2 ) will be considered; Y obs

1 denotes the
experimentally observed average S phase duration (generally
accepted to be around 20 minutes) and Y obs

2 denotes the

experimentally observed average number of active origins
per cell cycle (160 according to the data of [7]).

In order to quantify the meaning of “best” in the above
statement we have to determine an evaluation criterion to
rank parameter values. Let J(θ |D) be some cost function
that quantifies how well the prediction of model M(θ) fit
experimental data D; we assume that the lower the value of
J(θ |D) the better the fit. In this context, we want to find the
parameter values θ̂ that minimize the cost function J(θ |D):

θ̂ = argmin
θ∈Θ

J(θ |D) (3)

where Θ is our search space of possible parameter values.
The model for DNA replication comprises randomness

that leads each execution to differ from every other exe-
cution, even for the same parameter values. This reflects
the randomness that is also observed in experimental data.
As a consequence a sole execution is not adequate to fully
characterize a given set of parameter values; instead the aim
of the optimization should be to somehow match the statistics
observed in experiments to those predicted by the model. A
simple way to do this is to compute empirical averages of
the experimentally observed quantities by running multiple
simulations of the model for fixed parameter values. We can
then approximate the optimal parameter values θ ∗ as the
ones whose empirical statistics best match the experimentally
observed average values.

For a fixed value of θ let Y i
1(θ) and Y i

2(θ) for i =
1, . . .M denote the DNA replication completion time and the
number of firing origins predicted by each of M independent
simulations of the model M(θ). The empirical averages of
these M experiments can then be computed as

Y1(θ) =
1
M

M

∑
i=1

Y i
1(θ) and Y2(θ) =

1
M

M

∑
i=1

Y i
2(θ)

We can define now the score function J(θ |D) as:

J(θ |D) = ln
(

1
2

( |Y1(θ)−Y obs
1 |

Y obs
1

+
|Y2(θ)−Y obs

2 |
Y obs

2

))
.

Notice that the score function penalizes normalized devia-
tions from the two experimental observations; the fractions
in the expression can be thought of % error in the model
predictions for each of the two experimentally observed
quantities. The average of the two errors is then taken,
to balance matching one observation against matching the
other. Finally, the logarithm ensures that the score function
is “sharp” around the optimal values, since a good and a bad
match may differ by several orders of magnitude before the
logarithm is taken.

B. Identification Results

Software was developed to solve the optimization problem
outlined in the previous section. The software first creates
a finite optimization problem by imposing a grid on the
parameter space. It then explores the resulting finite space
exhaustively. For each value of the parameters, θ , in this
finite space several simulations (M) of the model M(θ)



TABLE I
OUTPUT RESULTS FOR PARAMETER SETS THAT MINIMIZE THE COST FUNCTION.

Parameters Model Output Cost Function Area of −2
Potential Origins Repl. Speed (Kb/min) Tf (min) Active Origins Completion Time (min) level set (Kb)

863 9 6 166 21.2 −3.02 159.6
1000 9 6 170 20.5 −3.10 141.5
1250 9 8 157 21.4 −3.15 120.6
1500 9 8 167 19.4 −3.30 94.7
2000 9 10 166 19.5 −3.55 68.9
2500 9 12 164 19.9 −4.23 36.6

are executed and the empirical averages Y1(θ) and Y2(θ)
are computed. This gives rise to a score J(θ |D); parameter
values are then ranked according to their score.

The results of the parameter identification are summa-
rized in Table I. Replication speed v was selected from
the set {1,1.5,2,3,4,5,6,7,8,9,12,15,18} (values Kb/min,
where Kb stands for “thousands of base pairs”), time Tf
from the set {1,2,3,4,6,8,10,12,14,16,18,20} (values in
minutes) and the number of potential origins from the set
{863,1000,1250,1500,2000,2500}. For the last parameter,
the origin set for each number includes all the origins
observed in [7] (863 in number), plus additional origins
introduced at genomic regions according to a bioinformatic
analysis of the properties of known fission yeast origins.
Based on this study (and consistent with earlier studies
in the literature) origins were assumed to be concentrated
in inter-genic regions and the maximum AT content of
500 base windows was assumed to be a good predictor of
origin activity. A moving AT content threshold was therefore
used to determine inter-genic regions that were included in
the simulations as weak origins. The firing probabilities of
these additional origins were set to FPi = 8%, below the
experimental threshold of approximately 10%.

The scores in the optimization procedure were computed
based on empirical averages from M = 1000 simulations of
the model M(θ) for each possible triplet of the parameters
θ . Table I summarizes the best parameter sets for each case
of additional origins and the corresponding outputs of the
model. Figure 5 demonstrates the score of the different pa-
rameter values. Recall that the score function is logarithmic,
so a value of 3 indicates a match of the order of 10−3.

Table I suggests that a better match of the experimentally
expected values for the average S phase duration and the
average number of active origins is obtained for larger
numbers of additional, low efficiency origins. The original
origin set of [7] can match the proposed cost function to
within 1/1000 for appropriate choices of replication speed
and the Tf parameter. With a total number of 2500 origins, on
the other hand, the match can be made better than 1/10000.
Superficially this would seem to suggest the presence of
many low efficiency origins, too weak to be detected by the
genome wide methods of [7]. Matching the proposed cost
function is not, however, the end of the story. An additional
consideration one has to take into account is the robustness
of the process (see, for example [11] and the references

therein). Robustness is difficult to quantify in this setting.
Loosely speaking, one would expect small variations in the
parameter values to lead to small variations in the cost and
hence qualitatively similar behavior. In an attempt to quantify
this notion we have computed the area of the level set of
value −2 in the cost function for each of the cases A-F in
Figure 5. That is the area1 of the set

ΘN = {θ | θ3 = N and J(θ |D)≤−2}
for N ∈ {863,1000,1250,1500,2000,2500} (see Figure 4 for
the case N = 2000). This area reflects the range of parameter
values that match the cost function to within 1%, hence a
larger area would suggest a more robust solution. The results
are reported in the last column of Table I. Note that the
trend is opposite from that of the cost: Fewer additional
origins lead to more robust solutions, since larger variations
in the replication speed and Tf can be tolerated with only a
small impact on the average S phase duration and the average
number of active origins.
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Fig. 4. Level set of value −2 for the case N = 1000.

A curious observation is that in all identified optimal
parameter sets replication speed has the same value (9000
bases/minute). Although this value is far from experimental
estimates of 3000 bases/minute [7], this intriguing invariance
should be investigated further experimentally. It may, for
example, reflect the maximum replication speed observed in

1“Area” in this case is measured in units of thousands of base-pairs.



selected parts of the genome characterized by large distances
between potential origins. If this is the case, this could offer
an alternative hypothesis for the correlation between inter-
origin distance and replication speed reported in [12]: Rather
than the replication speed being adjusted to match inter-
origin distance, fewer (or weaker) origins may be placed
in genomic regions where the replication speed tends to be
high, due for example to a simpler chromatin structure.

IV. DISCUSSION

In earlier work, a stochastic hybrid model for DNA repli-
cation has been developed [3]. Our aim here was to develop
a mechanism for tuning the model parameters to “optimally”
match experimental observations. The task is complicated by
the fact that the model is stochastic and therefore matching
experimental data needs to be interpreted in a statistical
sense. We formulated an optimization problem based on
empirical averages collected by simulating the model. The
problem was solved by discretizing all parameter values on
a finite grid. The results show that model estimates for the
resulting optimal parameters are fairly close to the observed
data. It still remains to be seen, however, if these optimal
parameter values are biologically meaningful.

The optimization method proposed here was rather rudi-
mentary, based on gridding the parameter space. This was
adequate for our purposes, since the number of parameters
was rather small. For higher dimensional spaces randomized
optimization methods can be considered for this task. In this
light, the use of empirical averages to reflect statistical match
has an extra advantage, since empirical averages are readily
amenable to estimation by Monte-Carlo simulation methods;
different alternatives along these lines are discussed in [9].

In terms of the DNA replication problem itself, current
work concentrates on investigating how more complex pat-
terns of origin firing, such as coordination of replication
speed with inter-origin distance [12] can be incorporated in
the parameter identification framework presented here.
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Fig. 5. Parameter identification results for 863 (A), 1000 (B), 1250 (C), 1500 (D), 2000 (E) and 2500 (F) potential origins.


