
Optimizing Performance, Cost, and Sensitivity in
Pairwise Sequence Search on a Cluster of PlayStations

Ashwin M. Aji and Wu-chun Feng

Abstract— The Smith-Waterman algorithm is a dynamic
programming method for determining optimal local alignments
between nucleotide or protein sequences. However, it suffers
from quadratic time and space complexity. As a result, many al-
gorithmic and architectural enhancements have been proposed
to solve this problem, but at the cost of reduced sensitivity in
the algorithms or significant expense in hardware, respectively.

This paper presents a highly efficient parallelization of the
Smith-Waterman algorithm on the Cell Broadband Engine
platform, a novel hybrid multicore architecture that drives the
low-cost PlayStation 3 (PS3) game consoles as well as the IBM
BladeCenter Q22, which currently powers the fastest super-
computer in the world, Roadrunner at Los Alamos National
Laboratory. Through an innovative mapping of the optimal
Smith-Waterman algorithm onto a cluster of PlayStation 3
nodes, our implementation delivers 21 to 55-fold speed-up over
a high-end multicore architecture and up to 449-fold speed-up
over the PowerPC processor in the PS3.

Next, we evaluate the trade-offs between our Smith-
Waterman implementation on the Cell with existing software
and hardware implementations and show that our solution
achieves the best performance-to-price ratio, when aligning
realistic sequences sizes and generating the actual alignment.

Finally, we show that our low-cost solution on a PS3 cluster
approaches the speed of BLAST while achieving ideal sensitiv-
ity. To quantify the relationship between the two algorithms
in terms of speed and sensitivity, we formally define and
quantify the sensitivity of homology search methods so that
trade-offs between sequence-search solutions can be evaluated
in a quantitative manner.

I. INTRODUCTION

The Smith-Waterman algorithm determines optimal local
alignments between nucleotide or protein sequences and is
therefore used in a wide range of areas from estimating
evolutionary histories to predicting behaviors of newly found
genes. However, the exponential growth in the nucleotide and
protein databases has made the Smith-Waterman algorithm
impractical to search on these databases because of its
quadratic time and space complexity.1

As a result, this led to innovations on the non-algorithmic
front — specifically, special-purpose hardware solutions on
FPGAs [2], [3], [4] and linear processor arrays [5]. Simul-
taneously, there were also developments on the algorithmic
front that gave rise to heuristics such as FASTA [6] and
the BLAST [7] family of algorithms that sacrificed sensi-
tivity for speed. The above solutions present a multitude
of trade-offs in terms of speed, cost, and sensitivity of the
sequence-search solutions. In contrast, we propose a solution

A. M. Aji is an M.S student from the Dept. of Computer Science, Virginia
Tech, Blacksburg, Virginia 24060, USA aaji@cs.vt.edu

W. Feng is an Associate Professor in the Dept. of Computer Science,
Virginia Tech, Blacksburg, Virginia 24060, USA feng@cs.vt.edu

1Smith-Waterman can be implemented in linear space at the expense of
using more time [1].

that addresses all the above trade-offs simultaneously —
delivering high speed, low cost, and ideal sensitivity via a
novel parallelization of the Smith-Waterman algorithm on
an emergent chip multiprocessing architecture called the Cell
Broadband Engine (BE) from Sony, Toshiba, and IBM (STI).
This parallelization requires explicitly managed parallelism
at different levels of computational granularity in order to
expose the full potential of the Cell BE, an architecture that
drives both the commodity Sony PlayStation 3 game console
and the high-end IBM BladeCenter QS22.2

Previously, we presented an innovative approach to paral-
lelize a single pairwise sequence alignment on a single Cell
BE using Smith-Waterman. Our implementation performed
a complete optimal sequence alignment (i.e., calculating the
score and generating the alignment) using the affine gap-
penalty scoring scheme [8]. In this paper, we extend our
design to exploit the computational power of a cluster of
14 PlayStation 3 nodes to dramatically speed-up sequence
search. Our accelerated implementation delivers 21 to 55-
fold speed-up over a high-end multi-core architecture and up
to 449-fold speed-up over the PowerPC processor in the PS3.

Next, we evaluate the trade-offs between our Smith-
Waterman implementation on the Cell BE platform with
existing software and hardware Smith-Waterman implemen-
tations. The trade-offs are evaluated based on execution
speed, deployment cost of each of the systems, completeness
of the solution (i.e., calculating score and generating align-
ment), and maximum sequence size that can be aligned. Our
solution for the PS3 cluster achieves the best performance-
to-price ratio, when aligning realistic sequences sizes and
generating the actual alignment.

Lastly, we present a formal definition and method to
quantify the ‘sensitivity’ of sequence-search algorithms, by
analyzing the similarities between homology search and
web search methods and their corresponding performance
metrics. As an example, we use this quantifying technique
to measure the sensitivity of the BLAST algorithm relative
to Smith-Waterman and show that although BLAST is much
faster than the Smith-Waterman, it misses a majority of
the significant alignments that are produced by the optimal
Smith-Waterman algorithm. In summary, our low-cost solu-
tion approaches the speed of BLAST while achieving ideal
sensitivity.

The rest of this paper is organized as follows: Section II
describes our experimental platforms. Section III presents
the sequential Smith-Waterman algorithm and our design
to parallelize it for the Cell cluster. Section IV discusses

2As of June 2008, an IBM QS22-based system powered the fastest super-
computer in the world, Roadrunner from Los Alamos National Laboratory. It
also held the distinction of being the first sustained petaflop supercomputer.

and defines the performance metrics for evaluating sequence-
search algorithms. Section V presents our experimental set-
up and methodology and discusses the results. Section VI
concludes the paper.

II. EXPERIMENTAL PLATFORMS

In this paper, we compare the performance of our imple-
mentation of Smith-Waterman on the PlayStation 3, which
hosts the Cell BE, to three other computing platforms:
nVIDIA GeForce GPGPU (General-Purpose Computation on
Graphics Processing Units), TimeLogic’s DeCypher engine,
and a standard PC.

The Cell BE is a hybrid multi-core processor that com-
bines a PowerPC core (also known as the Power Processing
Element or PPE), and eight SIMD-based processors (also
known as the Synergistic Processing Elements or SPEs) [9].
However, the Linux kernel on the PS3 runs on top of a
proprietary hypervisor that disallows the use of one of the
SPE cores, while another SPE core is hardware-disabled.
Thus, we can effectively use only 6 SPE cores for com-
putational purposes. All the cores run at 3.2 GHz. The SPE
cores are tightly coupled with the PPE via a high-bandwidth
Element Interconnect Bus (EIB). The EIB can transmit 96
bytes/cycle for a theoretical memory bandwidth of 204.8
gigabytes/second (GB/s).

Our PS3 cluster platform consisted of 14 PS3 game
consoles, interconnected via Gigabit Etherent and using
MPI [10] for communication. We used the IBM Cell SDK 2.1
to program the individual PS3 nodes, where each node ran
the Linux Fedora Core 5 OS.

We ran the CUDA-compatible Smith-Waterman imple-
mentation, authored by Manavski [11], on the nVIDIA
GeForce 8800 GTS graphics card with 512 MB of memory.

We executed a hardware-accelerated Smith-Waterman on
the TimeLogic-based DeCypher Engine G4 FPGA card with
DeCypher software version 7.6.2. The FPGA card was hosted
by a Sun SPARC V9 machine, running at 900 MHz with
16 GB of available physical memory.

Lastly, we ran the naı̈ve software implementation
of Smith-Waterman on a single core of an Intel
Core 2 Duo E4500 processor, running at 2.2 GHz and having
4 GB of main memory.

III. OPTIMAL LOCAL SEQUENCE ALIGNMENT

A. The Sequential Algorithm

The Smith-Waterman algorithm [12] is an optimal local
sequence alignment methodology that follows the dynamic-
programming paradigm. It can be broadly classified into two
phases: (1) matrix filling and (2) backtracing.

To fill out the dynamic-programming matrix (DP), the
Smith-Waterman algorithm follows a scoring system that
consists of a scoring matrix and a gap-penalty scheme. The
scoring matrix, M , is a 2-dimensional matrix containing
the scores for aligning individual amino acid or nucleotide
residues. The gap-penalty scheme provides the option of
gaps being introduced within the alignments, hoping that a
better alignment score can be generated; but they incur some
penalty or negative score. In our implementation, we consider
an affine gap-penalty scheme that consists of two types of

penalties. The gap-open penalty, o, is incurred for starting
a gap in the alignment, and the gap-extension penalty, e, is
imposed for extending a previously existing gap by one unit.
Using this scoring scheme, the dynamic-programming matrix
is filled out following a wavefront pattern, i.e., beginning
from the northwest corner element and going towards the
southeast corner, the current anti-diagonal is filled after
the previous anti-diagonals are computed, as shown in Fig-
ure 1(a). Moreover, each element can be computed only after
the calculation of its north, west and northwest neighbors are
computed, as shown in Figure 1(b).

The backtracing phase of the algorithm generates the
highest-scoring local alignment. The backtrace begins at
the matrix cell that holds the optimal alignment score and
proceeds in a direction opposite to that of the matrix filling,
until a cell with score zero is encountered. The path, thus
traced, yields the optimal local alignment.

NW N

W

(a) (b)
Fig. 1. The Smith-Waterman wavefront algorithm and its dependencies

B. The Parallel Algorithm
The wavefront pattern of the Smith-Waterman algorithm

forces consecutive anti-diagonals to be computationally de-
pendent, as shown in Figure 1. The elements on the same
anti-diagonal are computationally independent, however, and
can be processed in parallel on separate SPE cores of the
Cell BE. This, in turn, creates high communication overhead
between the cores, which can be avoided by providing more
computation to the individual cores. We achieve this by
grouping matrix elements into blocks of elements and call
each block as a tile. While this strategy does not change the
wavefront pattern of the algorithm, i.e., the algorithm still
advances through the matrix by computing anti-diagonals,
it reduces communication overhead since each anti-diagonal
will be composed of multiple tiles, as shown in Figure 2.
We call this pattern the tiled-wavefront pattern.

In mapping the tiled-wavefront pattern to the Cell, we
process independent tiles on different SPEs because each
core can perform independent asynchronous computations.
For simplicity, we assume that the matrix is divided into
square tiles. The execution starts by processing tile t1, as
noted in Figure 2. After the processing of tile t1 completes,
the two tiles lying on the anti-diagonal t2 are processed in
parallel on two SPEs. The number of SPEs used increases in
the subsequent stages of the tiled wavefront. From the anti-
diagonal t6 onwards, the number of tiles available for parallel
processing is equal to or exceeds the number of active SPEs
on a single Cell BE in the PlayStation 3 (i.e., 6), and all
SPEs can be actively processing tiles.

t
1

t
2

t
2

t
3

t
3

t
3

t
4

t
4

t
4

t
4

t
5

t
5

t
5

t
5

t
5

t
6

t
6

t
6

t
6

t
6

t
7

t
7

t
7

t
7

t
7

t
8

t
8

t
8

t
8

t
8

t
9

t
9

t
9

t
9

t
10

t
10

t
10

t
11

t
11

S
1

S
2

S
3

S
4

S
5

t
12

t
6

t
7

t
7

t
8

t
8

t
8

t
9

t
9

t
9

t
10

t
10

t
10

t
11

t
11

t
11S

6

S
1

S
2

t
12

t
12

t
12

t
13

t
13

t
13

t
14

t
14

t
15

Fig. 2. Tiled wavefront

Our scheduling scheme allows static cyclic assignment of
tiles to the SPEs, The SPE that is labeled S1 computes the
topmost row of tiles, S2 computes the row of tiles below it,
and so on. This static scheduling policy achieves perfect load
balancing among the SPEs and enables complete utilization
of the Cell BE.

We further leverage the above parallelization strategy to
search for an unknown DNA sequence in a known DNA
sequence database by using a cluster of Cell nodes (i.e.,
PS3 game consoles). We first partition the known DNA
sequence database into as many fragments as the available
PS3 consoles, and then distribute the fragments within the
cluster such that each PS3 is responsible for searching
roughly equal-sized and exclusive partitions of the database.
Each Cell node then repeatedly aligns the unknown sequence
with every sequence in its local database fragment. Thus,
we simultaneously explore two levels of parallelism: coarse-
grained parallelism, where different portions of the database
are searched independently by different PlayStations, and
fine-grained parallelism, where 6 SPE cores of a single
PS3 are utilized to speedup the process of aligning a single
sequence pair.

The resulting alignment set from each node in the cluster is
then collected by the root node, and the collective alignment
set is given to the user.

IV. PERFORMANCE METRICS

Sequence-search algorithms can be measured along many
dimensions such as execution time (or speed), millions
of cell updates per second (MCUPS), deployment cost,
and sensitivity. While measuring the first three metrics is
straightforward, there is no existing definition that clearly
defines and quantifies the ‘sensitivity’ of a sequence-search
algorithm.

A. Sensitivity

Previous work defined and measured sensitivity in an
unconvincing and informal fashion [13], [14]. To address
this, we propose a formal definition for sensitivity in the
following way. Homology search methods are similar to web-
search algorithms. In the web-search domain, an input query

or keyword is searched against a large known document
collection. The output will be a set of relevant web pages
that are sorted by closeness or rank. Similarly, in the realm
of homology search, an input query sequence is searched
against a large known sequence database. The output will be
a set of relevant sequences similar to the query, which are
sorted by the alignment score or corresponding statistical
quantifiers such as E-Value and P-Value of the alignment.
Given the analogy between the homology search and web-
search methods, we first explore one of the many definitions
and metrics that have been proposed to measure the per-
formance of information retrieval systems. We analyze its
relevance to sequence search and then modify and adapt this
definition in order to quantify sensitivity. The information
retrieval metric that is of interest is as follows:

Among all the documents that are relevant to a query, the
fraction of the documents that is successfully retrieved is
termed as recall and can be represented by Equation (1). It
gives an indication of the percentage of false negatives that
are not included in the final result set of the search. In other
words, recall denotes the power of the search algorithm to
retrieve all the relevant documents.

recall =
|all relevant docs.

⋂
retrieved docs.|

|all relevant docs.|
(1)

With respect to sequence-search algorithms, the universal
relevant document group or the absolute result set corre-
sponds to all the sequence alignments that are generated by
the optimal Smith-Waterman algorithm, for a given threshold
score. Different threshold scores generate different absolute
result sets of sequence alignments. False negatives can be
generated by those heuristic algorithms, which are willing
not to output some high-scoring (relevant) sequences in order
to obtain large speed improvements. This is typically the case
with heuristics such as BLAST, FASTA, and PatternHunter,
for example. Thus, we consider ‘recall’ as a relevant metric
to compare homology search methods. With this background,
we can now define and quantify the term sensitivity.

Among the sequence alignments generated by the Smith-
Waterman algorithm for a given threshold score, the fraction
of the alignments that is successfully generated for the same
threshold score by the algorithm under test is denoted as the
sensitivity of that algorithm for that threshold score.

Let χ represent the set of scores of all the statistically
significant alignments3 that are generated by the Smith-
Waterman algorithm. If we consider each element of the set
χ as a potential threshold score, then the sensitivity of the
test algorithm at the different threshold scores in χ can be
represented by the Equation (2):

sensitivityi =
|Si

⋂
Ti|

|Si|
(2)

where i ∈ χ are the set of threshold scores, sensitivityi
is the sensitivity at the threshold score i, Si is the result
set generated by SW with alignment scores ≥ i, and Ti is
the result set generated by the test algorithm with alignment
scores ≥ i.

3The statistical significance of an alignment can be inferred by examining
the corresponding E-values and P-values.

Since no sequence-search algorithm generates false pos-
itives, the result set generated by the test algorithm is
contained in the absolute result set generated by Smith-
Waterman, i.e. Ti ⊆ Si. Therefore, Equation (2) becomes

sensitivityi =
|Ti|
|Si|

(3)

Sensitivity is therefore a function of the threshold score.
To assign a unified sensitivity value to a sequence-search
algorithm, we take the mean of sensitivity values at all the
threshold scores in χ, as shown in Equation (4). Empirical
results from Section V-B show that the sensitivity values for
different threshold scores have very low variance, and thus,
their mean value provides a good estimate of the sensitivity
of the algorithm.

Sensitivity =

∑
i∈χ

sensitivityi

|χ|
(4)

Hence, the target for any sequence-search algorithm is
to provide a result set that is identical to that of Smith-
Waterman, thereby achieving a perfect sensitivity of 1. If the
sensitivity is less than 1, it means that the sequence-search
algorithm has missed generating significant alignments.

V. EXPERIMENTS

A. Set-Up and Methodology
To test our Smith-Waterman design, we conduct exper-

iments to search for a single (potentially unknown) DNA
sequence (query) against a known DNA sequence database.

The performance of Smith-Waterman depends only on the
size of the sequences that are being aligned and not on their
contents. So, we can conveniently choose synthetic or real
biological sequence data in our experiments, without any
change in the execution times of the application. Hence, each
character in the query sequence was generated independently
and uniformly at random from the alphabet A, C, G, T. We
choose 6 different DNA sequences as 6 independent queries,
their sizes ranging from 256 to 3584 characters, respectively.
Given that 95.66% of the sequences in the NCBI NT database
are 5000 characters in size or less [15], we evaluate our
parallel design by using realistic sequence sizes.

We search the 6 chosen unknown sequences against the
Drosophila NT database (downloaded from the NCBI site),
which contains 1170 known DNA sequences that include
approximately 3.5 million symbols.

To assess the scalability of our design, we executed it on
our 14-node PS3 cluster and varied the number of nodes in
the cluster from 1 to 14.

Using the performance metrics from Section IV, we com-
pare Smith-Waterman performance on different platforms:
our implementation on the Cell BE (PS3) cluster, Manavski’s
solution on the nVIDIA GeForce GPGPU, Smith-Waterman
on the TimeLogic card, and the canonical Smith-Waterman
on a general-purpose PC. We define two types of Smith-
Waterman implementations: partial and complete. We define
partial solutions as those that only calculate the alignment
scores. These implementations do not perform the back-
trace operation to generate the optimal alignments. On the

other hand, complete Smith-Waterman solutions calculate the
alignment scores and generate the optimal alignments.

Manavski’s GPGPU implementation delivers a partial so-
lution. TimeLogic provides a partial solution on their FPGA
accelerators (referred to as TimeLogic-only) but then can
use these results to perform a complete alignment on the
host servers (referred to as TimeLogic + CPU server). We
provide complete Smith-Waterman solutions on the PS3 and
PC platforms.

We then compare the performance of our PS3 implemen-
tation of Smith-Waterman against BLAST executed on the
PC. The blastall program was executed with the following
parameter list:

blastall –p blastn –d <database file> –i <query file>
–o <output file> –F F –S 1 –e 100

The parameter list denotes that the blastn program is being
executed by switching off the query sequence filtering, and
only the top query strands are being searched against the
database. The threshold expectation value (E-value) of the
output alignments is set at 100.

For the experiments in this section, we chose a gap-open
penalty of −5 and gap-extension penalty of −1 and allotted
3 points for a character match and −1 for a mismatch.

B. Results
Below we present our results in three parts. First, we

discuss the speedup of parallel Smith-Waterman on the Cell
platform. Second, we compare the performance of parallel
Smith-Waterman on the Cell cluster to other implementations
discussed in previous sections. Finally, we show that our
solution approaches the speed of BLAST but maintains ideal
sensitivity.

1) Speedup of Smith-Waterman on the PS3 Cluster: In [8],
we concluded that the tiled-wavefront scheme, which was
also discussed briefly in Section III-B, scales linearly within
the Cell architecture, i.e., if more cores were available on
the Cell chip, then we might have seen a larger speedup
for aligning a single pair of sequences. Here we execute
our extended parallel Smith-Waterman implementation on
a PS3 cluster having 14 nodes. The sizes of the 6 query
sequences range from 256 to 3584 characters and are named
as Query 256 through Query 3584, respectively. Figure 3
shows that we achieve a 21 to 55 times maximum speedup
over the canonical Smith-Waterman implementation on the
PC. Also, the scalability of our implementation is close to
linear for all the query sizes, i.e., we get better performance
as we employ more PS3 nodes and our design is highly
scalable for larger clusters.

We measure a 449-fold speedup of our parallel algorithm
over the sequential implementation when the PPE was the
basis of calculation. But we note that the PPE has very
limited computational capabilities, and thus, using the PPE
core as a basis for speedup calculation artificially inflates our
results without much benefit.

2) Smith-Waterman on PS3 vs. Others: We compare the
various Smith-Waterman solutions based on their perfor-
mance per dollar or MCUPS/$, as shown in Figure 4.

Figure 4 presents the multitude of trade-offs, based on the
completeness of the Smith-Waterman implementation (i.e.,

Platform of

Execution

Cost of

Deployment (U.S.

Dollars)

Sequence sizes

256 512 1024 2048 3072 3584 > 3584 (5120)

MCUPS

MCUPS

per $

(scaled)

MCUPS

MCUPS

per $

(scaled)

MCUPS

MCUPS

per $

(scaled)

MCUPS

MCUPS

per $

(scaled)

MCUPS

MCUPS

per $

(scaled)

MCUPS

MCUPS

per $

(scaled)

MCUPS

MCUPS

per $

(scaled)

SW on PC 800 8.07 1 8.03 1 7.81 1 7.75 1 7.77 1 7.69 1 5.43 1

SW on CUDA 1170 833 70.54 901 76.69 940 82.27 960 84.66 N/A N/A N/A

SW on TimeLogic 20000 3613 17.90 5657 28.17 7257 37.15 8798 45.39 8928 45.98 9390 48.82 9676 71.32

SW on TimeLogic +

CPU
20000 194 0.96 209 1.04 219 1.12 137 0.71 224 1.15 227 1.18 148 1.09

SW on PS3 5586 167.33 2.97 272.92 4.87 342.97 6.29 399.89 7.39 415.41 7.66 421.74 7.85 N/A

Fig. 4. Table comparing the performances of the various existing Smith-Waterman (SW) software and hardware solutions. The italicized grey fonts in
the table mean that the solutions are partial, i.e., they only calculate the scores without generating the alignment. The other entries in the table indicate
complete SW solutions, i.e. they calculate the scores as well as generate the alignments. Performances are measured in MCUPS and MCUPS/$. For the
purpose of insightful performance comparison, all the MCUPS/$ values are scaled such that the value of the naı̈ve solution of SW on PC is 1.

30

40

50

60

S
p

e
e

d
u

p

Query_256

Query_512

Query_1024

0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

S
p

e
e

d
u

p

Number of PS3 Nodes

Query_1024

Query_2048

Query_3072

Query_3584

Fig. 3. Speedup chart for the PS3 cluster.

partial or complete), the maximum sequence size that can be
aligned, MCUPS and the cost of deployment (represented as
MCUPS per dollar) of each of the systems.

The TimeLogic-only solution clearly offers the highest
MCUPS, but the hardware is expensive. The CUDA solution
on the GPGPU is the best in terms of MCUPS/$, but it
cannot align sequences whose lengths are 2048 characters,
and thus, it does not align a significant amount of realistic
sequences (refer to Section V-A). Moreover, the previous two
solutions provide only a partial Smith-Waterman solution
(i.e., no backtrace). While the TimeLogic + CPU Server and
the PC implementations can align all the realistic sequence
sizes, they have very low MCUPS/$.

Among all the complete Smith-Waterman solutions, our
design for the PS3 cluster is arguably the best – we have the
highest MCUPS/$, and we align realistic sequences sizes.

Why are the partial solutions much faster than the com-
plete ones? The backtrace operation requires the entire matrix

to be present in the physical memory beforehand. If the appli-
cation is not performing the backtrace, many clever heuristics
can be performed to pipeline the matrix-filling phase without
having to store the entire matrix. Also, the smaller memory
requirement for the partial solutions means that multiple
pairwise sequence alignments can simultaneously fit into the
limited memory resources, thereby increasing the MCUPS.

3) Speed vs. Sensitivity: Here we show that our solution
on the PS3 cluster approaches the speed of BLAST but at
ideal sensitivity. To measure the sensitivity values of Smith-
Waterman and BLAST, we first assume the sensitivity of
Smith-Waterman to be 1 and measured the sensitivity of
BLAST relative to that, using the equations from Section IV.
We first list the scores and E-values of each sequence align-
ment that was generated by BLAST and Smith-Waterman.
All the alignments generated by Smith-Waterman had E-
values ≤ 100, and we chose their corresponding alignment
scores as the set of significant threshold scores, χ, as
shown in Figure 5(a). Using Equation (3), we calculated
the sensitivity of BLAST for each threshold score in χ. We
repeated the above procedure for each of the input query
sequences, and from all the sensitivity values, we found that
the mean sensitivity value was 0.36 with a very low variance
of 0.01 on an average, across all input query sequences.
The consistent empirical results across a variety of input
query sequences and threshold scores led us to formulate
Equation (4), and we therefore chose 0.36 as the sensitivity
of the BLAST algorithm.

Figure 5(b) shows that BLAST is faster than all the Smith-
Waterman implementations, but the sensitivity value of 0.36
relative to Smith-Waterman indicates that BLAST misses
about 64% of the significant alignments on average. On
the other hand, the parallel Smith-Waterman implementation
on the PS3 cluster is an order-of-magnitude faster than
the conventional sequential version, and its performance

approaches that of BLAST but with perfect (ideal) sensitivity
of 1. The lower right part of the Figure 5(b) is the ideal point
for sequence search, i.e., high sensitivity and low execution
time should be the target for all future sequence-search
solutions.

0.4

0.6

0.8

1

S
e

n
si

ti
v

it
y

 o
f

B
LA

S
T

0

0.2

11

(E-Value: 100)

12 13 14 15 16

(Max. Score)

S
e

n
si

ti
v

it
y

 o
f

B
LA

S
T

Significant Threshold Scores

Query_256 Query_512 Query_1024 Query_2048

Query_3072 Query_3584 Mean Sensitivity Ideal Sensitivity

(a)

SW on PC

800

1000

1200

1400

1600

1800

E
x

e
cu

ti
o

n
 T

im
e

 (
se

co
n

d
s)

BLAST on PC
SW on PS3

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

E
x

e
cu

ti
o

n
 T

im
e

 (
se

co
n

d
s)

Sensitivity

(b)
Fig. 5. (a) Sensitivity versus threshold scores and (b) sensitivity versus
execution time.

VI. CONCLUSIONS

This paper addresses one of the hardest computational
problems in the bioinformatics community — executing
optimal sequence search algorithm quickly on inexpensive
hardware. Our efforts have been directed to contribute novel
schemes to design, implement, and optimize an optimal local
sequence-alignment algorithm, Smith-Waterman, to execute
on the powerful Cell BE that drives the inexpensive Sony
PlayStation 3. Through an innovative mapping of the optimal
Smith-Waterman algorithm onto a cluster of 14 PlayStation 3
nodes, our implementation delivers 21 to 55-fold speed-up
over a high-end multicore architecture and up to 449-fold
speed-up over a non-accelerated PS3. Also, the scalability of
our implementation is nearly linear, and thus, our design is

highly scalable for larger clusters. We compare our solution
to the other existing software and hardware solutions and
show that we achieve the highest execution speed per U.S
dollar. Moreover, we align realistic sequences sizes and
generate the actual alignment. Finally, we formally define
the term ‘sensitivity’ of homology search methods. We used
this definition to quantify the sensitivity of BLAST and
found that it missed many significant sequence alignments.
Having quantified the relationship between Smith-Waterman
and BLAST in terms of speed and sensitivity, we show that
our inexpensive solution on the PS3 cluster approaches the
speed of BLAST but at ideal sensitivity.

As future work, we intend to investigate the integration
of the parallel Smith-Waterman for the Cell into sequence
alignment toolkits. Also, we intend to explore the challenges
of mapping other sequence-search algorithms, such as the
popular BLAST onto powerful, yet inexpensive, general-
purpose computing hardware like the Cell BE and the
GPGPU.

REFERENCES

[1] Myers, Eugene W. and Miller, Webb, “Optimal alignments in linear
space,” Bioinformatics, vol. 4, no. 1, pp. 11–17, 1988. 10.1093/bioin-
formatics/4.1.11.

[2] D. Lavenier, “Dedicated hardware for biological sequence compari-
son,” vol. 2, no. 2, pp. 77–86, 1996.

[3] TimeLogic Biocomputing Solutions, “DeCypherSW,”
URL: http://www.timelogic.com/downloads/decyphersw.pdf.
Accessed: 2008-02-02.(Archived by WebCite at
http://www.webcitation.org/5VK0AyWiI).

[4] Y. Yamaguchi, T. Maruyama, and A. Konagaya, “High Speed Homol-
ogy Search with FPGAs..”

[5] R. Hughey, “Parallel hardware for sequence comparison and align-
ment,” 1996.

[6] D. J. Lipman and W. R. Pearson, “Rapid and sensitive protein
similarity searches.,” Science, vol. 227, pp. 1435–1441, March 1985.

[7] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool.,” J Mol Biol, vol. 215, pp. 403–
410, October 1990.

[8] A. M. Aji, W. Feng, F. Blagojevic, and D. S. Nikolopoulos, “Cell-
SWat: Modeling and Scheduling Wavefront Computations on the Cell
Broadband Engine,” in Proc. of the ACM International Conference on
Computing Frontiers, May 2008.

[9] J. A. Kahle and M. N. Day and H. P. Hofstee and C. R. Johns and T.
R. Maeurer and D. Shippy, “Introduction to the Cell multiprocessor,”
in IBM Journal of Research and Development, pp. 589–604, Jul-Sep
2005.

[10] Dan Nagle, “MPI – The Complete Reference, Vol. 1, The MPI Core,
2nd ed., Scientific and Engineering Computation Series, by Marc Snir,
Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra,”
Sci. Program., vol. 13, no. 1, pp. 57–63, 2005.

[11] Svetlin A Manavski and Giorgio Valle, “CUDA compatible GPU
cards as efficient hardware accelerators for Smith-Waterman sequence
alignment,” BMC Bioinformatics, 2008.

[12] T. Smith and M. Waterman, “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, pp. 195–197.

[13] B. Ma, J. Tromp, and M. Li, “Patternhunter: faster and more sensitive
homology search,” 2002.

[14] M. Li, B. Ma, D. Kisman, and J. Tromp, “PatternHunter II: Highly
sensitive and fast homology search,” 2003.

[15] M. K. Gardner, W. Feng, J. Archuleta, H. Lin, and X. Ma, “Parallel
genomic sequence-searching on an ad-hoc grid: Experiences, lessons
learned, and implications,” Supercomputing, 2006. SC ’06. Proceed-
ings of the ACM/IEEE SC 2006 Conference, p. 22, 11-17 Nov. 2006.

