
  

  

Abstract— A hybrid approach combining the Self-
Organizing Map (SOM) and the Hidden Markov Model 
(HMM) is presented. The Self-Organizing Hidden Markov 
Model Map (SOHMMM) establishes a cross-section between 
the theoretic foundations and algorithmic realizations of its 
constituents. The respective architectures and learning 
methodologies are blended together in an attempt to meet the 
increasing requirements imposed by the deoxyribonucleic acid 
(DNA), ribonucleic acid (RNA), and protein chain molecules. 
Addressing many of the most intriguing biological sequence 
analysis problems is achieved through its automatic raw 
sequence data learning mechanism. Since the SOHMMM 
carries out probabilistic sequence analysis with little or no 
prior knowledge, it can have a variety of applications in 
clustering, dimensionality reduction and visualization of large-
scale sequence spaces, and also, in sequence discrimination, 
search and classification. A comprehensive series of 
experiments based on the globin protein family demonstrates 
SOHMMM’s sophisticated characteristics and advanced 
capabilities. 

I. INTRODUCTION 
HE advent of novel and efficient experimental 
technologies, primarily genome sequencing, microarrays 

and mass spectrometry, has led to an exponential growth of 
linear descriptions of protein, deoxyribonucleic acid (DNA) 
and ribonucleic acid (RNA) chain molecules requiring 
automated analysis. Altogether, these high-throughput 
technologies are capable of rapidly producing terabytes of 
data that are too overwhelming for conventional biological 
approaches. As a response scientists use algorithms, 
statistics, and other mathematical techniques to decipher the 
language of DNA [1]. 

Conventional computer science algorithms and trite 
statistical techniques have been useful, but are increasingly 
unable to address many of the most interesting sequence 
analysis problems. This is due to the inherent complexity of 
biological systems, brought about by biological tinkering, 
and also, due to our lack of comprehensive theory of life’s 
organization and function at the molecular level. Neural 
Networks (NNs), Hidden Markov Models (HMMs), 
Bayesian networks and similar machine learning 
approaches, on the other hand, are ideally suited for domains 
characterized by the presence of large amounts of data, 
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complex structures and the absence of general theories [2]. 
The fundamental idea behind these approaches is to learn the 
theory automatically from the data through a process of 
inference, parameter adaptation, model fitting, or learning 
from examples. 

In order to overcome the limitations of HMMs, attempts 
have been made for combining HMMs and NNs to form 
hybrid models that contain the expressive power of artificial 
NNs with the sequential time series aspect of HMMs [3]. A 
type of (labeled) clustering has been achieved by training 
several HMMs (components) in parallel and using some 
form of competitive/unsupervised learning to construct a 
composite HMM [4]. According to this approach the Baum-
Welch learning algorithm [5] has been used in its purest 
form to automatically partition the sequences of a single 
protein family into clusters (subfamilies) of similar 
sequences. 

The Self-Organizing Hidden Markov Model Map 
(SOHMMM) is the offspring of a crossover between the 
Self-Organizing Map (SOM) algorithm [6], [7] and the 
HMM theory [8], [2]. The SOHMMM’s core consists of a 
novel unified/hybrid SOM-HMM algorithm. Both 
components’ corresponding architectures are intimately 
fused. The model is coupled with a raw sequence data 
training method, that blends together the SOM unsupervised 
learning and the HMM dynamic programming algorithms. 
The ultimate objective is to merge and strengthen the 
advantages of the two algorithms that constitute the 
SOHMMM, while, at the same time, minimizing and going 
beyond any possible drawbacks. Epigrammatically, the 
SOHMMM approach: is based on a very rich probabilistic 
framework; proves ideal for analyzing sequences derived 
from chain molecules; integrates the clustering, 
dimensionality reduction and visualization disciplines in a 
unified scheme; provides procedures for sequence 
discrimination, search and classification; covers an extended 
set of distributions which represents the input sequence 
space in a more faithful manner. 

II. BACKGROUND AND PREREQUISITES 

A. Hidden Markov Model 
The present section is based on the approach in [8]. 

Consider an alphabet S = {s1, s2, …, sN} and a sequence of 
random variables qt, t ∈ ℵ* assuming values in S. S is 
usually called the state space whereas the symbols sn in the 
alphabet are called states. Let the sequence of random 
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variables { }∞
=1ttq  be a Markov chain. The conditional 

probabilities (for t>1) 
 

ija  = )|( 1 itjt sqsqP == − , 1≤i≤N, 1≤j≤N (1) 
 
are assumed to be independent of t, are called (stationary) 
one step transition probabilities, and they obey standard 
stochastic constraints. Such a Markov chain with stationary 
transition probabilities is called homogeneous. Consequently 
a transition matrix A = }{ ija  with these properties is called a 
stochastic matrix. At time t = 1 the state q1 is specified by 
the initial state probability distribution π = {πj} where 
 
πj = )( 1 jsqP = , 1≤j≤N. (2) 
 
Let { }∞

=1ttY  be a random process with a finite state space V = 
{v1, v2, …, vM}, where M need not equal N. The processes 
{ }∞

=1ttq  and { }∞
=1ttY  are for any t≥1 related by the conditional 

probability distributions 
 
bj(k) = )|( jtkt sqvYP == , 1≤j≤N, 1≤k≤M. (3) 
 
We set B = {bj(k)} and we shall call this the emission 
probability matrix. This is also another stochastic matrix. 

Suppose O = o1o2…oT is an observation sequence where 
each observation ot assumes a value from V, and T is the 
number of observations in the sequence. We obtain the joint 
probability of O as a marginal distribution by summing over 
all possible paths of the state sequence. Thus 
 
P(O | A, B, π) = )()...()(
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It should be noted that, in certain cases, the indexes of the 
transition, initial and emission probabilities are denoted as qt 
and/or ot, and not as i and/or j and/or k. Such an approach is 
followed whenever the exact states and/or exact observation 
symbols are insignificant for the formulation/calculation 
under consideration, even though these values are 
considered to be given and specific. 

Consequently, a complete specification of a HMM 
requires specification of the cardinalities of the two state 
spaces (namely N and M), specification of the observation 
symbols, specification of the stochastic matrices A and B, 
and specification of the initial probability distribution π. 
Henceforth, we may use the compact notation for the model 
 
λ = (Α, Β, π). (5) 
 

A procedure that facilitates all computational thinking 
with a HMM is known as the forward-backward algorithm. 

Consider the forward variable αt(i) as the joint probability of 
the observation sequence up to time t≤T and of the hidden 
Markov chain being in state si at time t, given the model λ 
 
αt(i) = P(o1o2…ot, qt = si | λ). (6) 
 
Also, consider the backward variable βt(i) as the probability 
of the observation sequence from time t+1 till the end T 
conditioned on the hidden Markov chain being in the state si 
at time t, given the model λ 
 
βt(i) = P(ot+1ot+2…oT | qt = si, λ). (7) 
 
A recursive solution for αt(i) and βt(i) is the following: 
 
α1(i) = πibi(o1), 1≤i≤N (8) 
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The forward-backward algorithm presented above allows the 
evaluation of the probability (4), so that the computational 
requirement is linear to the sequence length 
 

P(O | λ) = ∑
=

N

j
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B. On-line Gradient Descent Algorithm for HMMs 
In the present study, we are interested in parameter 

estimation, that is, finding the best possible ΗΜΜ λ = λ(x) 
that minimizes the posterior -logP(λ(x) | O) or possibly the 
likelihood f(x) = -logP(Ο | λ(x)). Whenever a function f(x) is 
differentiable, one can try to find its minima by using one of 
the oldest optimization algorithms, gradient descent [9], 
[10]. Gradient descent is an iterative procedure, where the 
parameter of interest, say x, is adjusted according to the rule 
 
xnext = xnow- nowxx

xf
=

∇ )(η  (13) 

 
where η is the learning rate, which can be fixed or adjusted 
during the learning process. The gradient descent equations 
on the negative log-likelihood can be derived directly by 
exploiting a useful reparameterization. We reparameterize 
the HMM using normalized exponentials, in the form 
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with wij, rjt, uj as the new variables [11]. 

It is obvious that the new variables wij, rjt, uj can also be 



  

arranged in a series of matrices, namely W = {wij}, R = {rjt} 
and U = {uj}. Correspondingly, a complete specification of a 
HMM requires specification of the cardinalities of the two 
state spaces (namely N and M), specification of the 
observation symbols, and specification of the matrices W, R 
and U. Henceforth, we may use the compact notation for the 
model 
 
λ = (W, R, U). (15) 
 

An algorithm for on-line gradient descent on the negative 
log-likelihood, with wij, rjt, uj as parameters to be estimated, 
can be derived from (13)-(15) 
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Similarly, 
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With the use of lengthy and extensive analytic/algebraic 
calculations (partially based on the analysis in [8]), the on-
line gradient descent equations on the negative log-
likelihood are 
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The right hand sides of (19)-(21) are evaluated at the current 
estimates of the HMM’s parameters (namely W, R, and U). 

III. THE SELF-ORGANIZING HIDDEN MARKOV MODEL MAP 

A. General Overview of the SOHMMM 
Studies conducted during many years by a great number 

of researchers have convincingly shown that the best self-
organizing results are obtained if the following two partial 
processes are implemented in their purest forms [6]: 
1) decoding of that neuron that has the best match with the 

input data pattern  (the so-called “winner”); 
2) adaptive improvement of the match in the neighborhood 

of neurons centered around the “winner.” 
The SOHMMM may be described formally as a 

nonlinear, ordered, smooth mapping of observation 
sequence data onto the elements of a regular, low-
dimensional array. The mapping is implemented in the 
following way, which resembles the two afore mentioned 
processes. Assume first O is an observation sequence. With 
each element e in the SOHMMM array we associate a HMM 
λe. Considering the probability of O given λe (likelihood), 
denoted P(O | λe), the image of an input observation 
sequence Ο on the SOHMMM array is defined as the array 
element that matches best with O. This array element has the 
index  
 
c = { })|(maxarg ee

OP λ  (22) 

 
or, equivalently, 
 
c = { })|(logminarg ee

OP λ− . (23) 

 
Our task is to define the HMM λe in such a way that the 

mapping is ordered, descriptive and representative of the 
distribution of O. Consider, as in Fig. 1, a two-dimensional 
ordered array of nodes, where each node has a HMM λe 
associated with it. Moreover, consider the neighborhood set 
NBc around the model λc, which matches best with O. Here 
NBc consists of all neurons up to a certain radius on the grid 
from neuron c. The next task is to adjust the parameters of 
all HMMs within NBc to minimize -logP(O | λe), that is, to 
gain some knowledge from the same input O. Actually, we 
attempt to optimize the parameters of every λe∈NBc so as to 
best describe how a given observation comes about. This is 
achieved by employing the smooth on-line learning 
algorithm detailed previously. 

B. The SOHMMM Prototype 
Let O = o1o2..oT be an observation sequence where each 

observation ot assumes a value from the alphabet F = {f1, f2, 
…, fG}, and T is the number of observations in the sequence. 
In addition, let Λ be a class of HMMs such that the 
corresponding observation symbols (V = {v1, v2, …, vM}) 
constitute a superset of the alphabet F (F⊆V). A further 
assumption is that two distinct HMMs λε, λe ∈ Λ, in general, 
have different cardinalities of the corresponding state spaces 



  

(namely Ν(ε) ≠ Ν(e) and Μ(ε) ≠ Μ(e)), different observation 
symbols (V(ε) ≠ V(e)), and different matrices W, R and U 
(difference with respect to a matrix refers to nonidentical 
dimensions and/or nonidentical values of corresponding 
elements). 

 
Fig. 1.  A paradigm of the SOHMMM, and an example of topological 
neighborhood (y1<y2). 
 

The SOHMMM displayed in Fig. 1 defines a mapping 
from the input observation sequence space onto a two-
dimensional array of neurons. With every neuron e, a HMM 
λe∈Λ, also called reference HMM, is associated. The lattice 
type of the array can be defined to be rectangular, hexagonal 
or even irregular. In the simplest case, an input observation 
sequence O is connected to all HMMs in parallel. In an 
abstract scheme it may be imagined that the input O, by 
means of some parallel computing mechanisms, is compared 
with all the λe and the location of the best match, with 
respect to the negative log-likelihood, is defined as the 
location of the response. Actually, the exact magnitude of 
the response need not be determined; the input is simply 
mapped onto this location, like in a set of decoders. We may 
then claim that the SOHMMM is a nonlinear projection of 
the input observation sequence onto the two-dimensional 
display. Thus, the definition of the best matching HMM, 
indicated by the subscript c, is given by (23). 

During learning, or the process in which the nonlinear 
projection is formed, those HMMs that are topologically 
close in the array up to a certain geometric distance will 
activate each other to learn something from the same input 
O. This will result in a local relaxation or smoothing effect 
on the parameters of HMMs in this neighborhood, which in 
continued learning leads to global ordering. In order to 
adjust the HMMs’ parameters to minimize the 
corresponding negative log-likelihoods (-logP(O | λe)), we 
follow a hybrid approach by fusing intimately the original 
incremental SOM training algorithm and the on-line gradient 
descent algorithm for the negative log-likelihood (19)-(21). 
The resulting SOHMMM unsupervised learning algorithm is 
an iterative procedure, where the parameters of interest, 
namely W(e), R(e) and U(e), are adjusted according to the rules 
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where y = 0, 1, 2, … is an integer, the discrete time 
coordinate. The function η(y) plays the role of a scalar 
learning rate factor (0<η(y)<1), and, usually, is decreasing 
monotonically in time (at least during the ordering process). 
In the relaxation process, the function hce(y) has a very 
central role: it acts as the neighborhood function, a 
smoothing kernel defined over the lattice points. For 
convenience, it is necessary that hce(y) → 0 when y → ∞. 
Usually hce(y) = ( )yh ec ,δδ − , where δc, δe ∈ ℜ2 are the 
location vectors of HMMs λc and λe on the array. With 
increasing ec δδ − , hce → 0. The width and form of hce 
define the stiffness of the elastic surface to be fitted to the 
input data. 

In the literature, two simple choices for hce(y) occur 
frequently. The simpler of them refers to a neighborhood set 
of array points around HMM λc (Fig. 1). Let their set index 
be denoted NBc, whereby hce(y) = 1 if e∈NBc and hce(y) = 0 
if e∉NBc. It is a common practice that the radius of NBc(y) is 
decreasing monotonically in time (at least during the 
ordering process). Another widely applied, smoother 
neighborhood kernel can be written in terms of the Gaussian 
function 
 
hce(y) = ( ))(2exp 22 yec σδδ −−  (27) 
 
where the parameter σ(y) defines the width of the kernel, and 
corresponds to the radius of NBc(y) above. σ(y) is a 
monotonically decreasing function of time, too. 

The SOHMMM on-line gradient descent unsupervised 
learning algorithm, detailed in the present section, is only 
representative of many possible alternative forms and, 
certainly, can give rise to a number of variants and different 
implementations.  



  

IV. EXPERIMENTS AND APPLICATIONS 
The focus of experiments will be on globins. Globins form 

a well-known family of heme-containing proteins that 
reversibly bind oxygen, and are involved in its storage and 
transport. The globin protein family is a large family which 
is composed of subfamilies. From crystallographic studies, 
all globins have similar overall three-dimensional structures 
but widely divergent sequences. The globin sequences used 
here were extracted from the iProClass protein 
knowledgebase [12], a database that provides extensive 
data/information integration of over 90 biological databases. 
In total, 560 proteins belonging to the three major globin 
subfamilies were retrieved (namely hemoglobin α-chains, 
hemoglobin β-chains, and myoglobins). The resulting globin 
data set’s composition is 194 α-globins, 216 β-globins, and 
150 myoglobins. Consequently, for all the following 
experiments the twenty-letter amino acid alphabet of 
proteins should be considered. 

All series of experiments were conducted on training sets 
consisting of 75 protein sequences picked at random from 
each one of the three main protein subfamilies. Thus, each 
training set contained 225 protein sequences, in total. The 
remaining 335 globins were withheld in order to study and 
test the SOHMMM on sequence data not used during the 
training process. The SOHMMM employs a rectangular 9x7 
array of 63 HMM neurons, each of which incorporates state 
space cardinalities of size 11. To test SOHMMM’s 
capabilities and performance, several experiments, with 
various/diverse learning rate and monotonically decreasing 
neighborhood functions, were conducted. Also, the 
maximum duration of both the ordering and tuning phases 
was set to 20 epochs. In the present study, the mean value of 
accurately clustered globin sequences is employed as a 
statistical performance measure (by taking into consideration 
all 560 protein sequences, both those used for training the 
SOHMMM and those not used in the learning process). An 
estimate of this measure, averaged over 10 replications of 
identical experiments, is 94.22±0.54%. Fig. 2 illustrates the 
results of a representative scenario after the completion of 
the SOHMMM on-line unsupervised learning algorithm. 
The SOHMMM succeeds in capturing the important 
statistical properties of globins, and manages to divide the 
training data set into three clusters of similar globin 
sequences. The examination of the illustrated results 
confirms that these clusters, which are formed during an 
automated unsupervised procedure, are distinct and coherent 
with well-defined boundaries. 181 hemoglobin α-chains, 
205 hemoglobin β-chains, and 141 myoglobins are assigned 
to HMMs that form the clusters of their respective globin 
subfamilies. Thus, the vast majority of protein sequences are 
correctly clustered by being associated to HMMs that 
represent certain domains of the protein subfamilies’ spaces. 
Only few protein sequences (33 strictly speaking) are 
assigned to HMMs lying at the boundaries of the clusters. 
These HMMs demonstrate a tendency to describe/represent 

globins belonging to two different protein subfamilies, thus, 
obstructing the accurate clustering of specific protein 
sequences. Nevertheless, such phenomena should be 
considered justifiable and expected from the moment 
SOHMMM produces a smooth mapping of the protein 
subfamilies on a low-dimensional display (in the form of 
adjacent clusters), and the HMMs under consideration are 
located at the boundaries of the three clusters. 

An attempt to automatically discover subfamilies of 
globins using a competitive learning approach is described 
in [4]. The proposed methodology yields a composite HMM 
consisting of component HMMs. Eventually, each 
individual cluster is represented by a single component 
HMM. Seven non-empty clusters representing protein 
sequences from known globin subfamilies were constructed. 
Four of the clusters contained varied sequences which 
belonged to different globin subfamilies or to specific 
organisms. The entire number of α-globins, β-globins, and 
myoglobins was distributed to the remaining three (largest) 
clusters. Cluster 1 contained almost exclusively alpha, α-
type, and α-like globins. Nearly all beta, β-type, and β-like 
globins were included in cluster 2. Finally, the subfamily of 
myoglobins was assigned to cluster 3. In essence, these 
results are in agreement with the findings of the series of 
experiments mentioned before. Such unified unsupervised 
learning-HMM hybrid approaches are able to discriminate 
and subsequently cluster the three major globin subfamilies 
correctly. 

The present experimental setup, which is based on the 
globin protein family, establishes certain properties of the 
SOHMMM and further confirms some of its advantages. 
Evidently, the SOHMMM devises a mechanism for handling 
discrete symbol sequential data (of variable lengths) written 
in alphabets of arbitrary cardinalities, such as the twenty-
letter amino acid alphabet of proteins. Also, the SOHMMM 
is able to access and exploit the latent information hidden in 
the spatial dependencies/correlations of protein chain 
molecules. The exact values of the training parameters 
(albeit inaccurate and sketchy) do not seem to affect the 
SOHMMM’s efficiency and robustness. As has been shown, 
rough estimates of these parameters (i.e. the learning rate 
factor and neighborhood function) prove more than 
adequate. Moreover, even a small number of training cycles 
(20 epochs at maximum) is usually sufficient to ensure 
stability and convergence. 

By implementing the self-organization and competitive 
strategies in their purest versions, the SOHMMM has 
succeeded in contriving higher abstractions (symbolisms) 
that build upon the probabilistic attributes of topologically 
neighboring HMMs. The SOHMMM approach was able to 
capture the important statistical properties of the globin 
protein family by covering a larger set of distributions, and 
consequently, by expressing relations inaccessible to single 
uncorrelated HMMs. Thus, it accomplished the tasks of 
identifying the three major globin subfamilies, and of 



  

partitioning all protein sequences into the three clusters that 
represented these subfamilies. A matter of significant value 
is that both tasks have been carried out along a 
straightforward process of learning from protein chain 
molecules, without requiring any kind of prior or posterior 
knowledge. The SOHMMM reached a generalization level 
that eliminated overtraining phenomena, and, at the same 
time, clustered accurately the landslide of globins that had 
been used for training and testing. In this case, the 

 
Fig. 2.  The SOHMMM plane after the completion of the training process. 
Each hexagon represents a HMM neuron. HMMs assigned to protein 
sequences from each one of the three globin subfamilies are distinguished 
by distinct grayscale shades. 
 
SOHMMM appears to be rather independent of the number 
of input protein sequences, something which became evident 
from the fact that less than half of the available globins 
sufficed to form the final model. 

One of SOHMMM’s main objectives is to produce 
simplified descriptions and summaries of sequence data sets. 
As has been shown, it projects globin subfamilies (which are 
high-dimensional/complex sequence data) as points on a 
two-dimensional display. These projections represent the 
input protein sequences in a lower-dimensional space in 
such a way that clusters and relations between globins are 
preserved as faithfully as possible. In addition, each cluster’s 
constituent HMMs develop into decoders of their respective 
protein sequence domains. The globins which are assigned 
to a SOHMMM neuron are actually described/represented 
by a probabilistic model in a process resembling 
dimensionality reduction. Finally, an issue of significant 
importance is that once a SOHMMM has been successfully 
derived from a family of protein sequences, all HMM nodes 
can be labeled according to the assigned proteins’ categories 
or annotate information, as in Fig. 2. Since the best matching 
neuron of any given unknown/unlabeled protein chain 
molecule can be computed, this protein can be classified as 
belonging to the cluster represented by the labeled HMM 
node. Processes based on this strategy can be used in 
discrimination tests, database searches and classification 
problems. If well-established class-specific training sets for 
protein families were available SOHMMMs could be 
derived (based on them), and, subsequently, be employed for 
similarity searches across protein databases. Inter alia, this 

series of experiments demonstrates an exemplar 
classification task according to which each one of the 335 
globins, not used for training, was classified as belonging to 
the cluster/subfamily represented by the labeled HMM 
neuron that returned the highest probability. 

V. CONCLUSION 
In this paper, the theory of the SOHMMM framework has 

been briefly presented and the behavior of the model has 
been studied through experiments. The experimental 
approach that has been followed constitutes a first step in 
studying and analyzing important aspects of the SOHMMM. 
Also, attempts have been made to illustrate certain 
applications of the SOHMMM to characteristic problems, in 
an effort to point out how these techniques could be applied 
to more advanced/complex problems. 

In real-case applications we need to consider more 
complex SOHMMM architectures, employing HMMs with 
many more states and typically sparser connectivity. The 
design or selection of such architectures is highly problem 
dependent. In biological sequences the linear aspects of the 
sequences are captured by the so-called left-right 
architectures, the most basic and widely used of which is the 
standard linear architecture. Hence, a potential expansion 
could involve the integration of left-to-right HMMs into the 
SOHMMM. 

Finally, a subject of substantial significance is putting into 
practice the ideas of the SOHMMM in realistic applications. 
The efficiency of the SOHMMM framework, in a practical 
sense, will be proved if it succeeds in coping efficiently with 
a wide gamut of diverse real-case problems. 
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