
Parallel Integration of Heterogeneous Genome-Wide Data Sources

Derek Greene, Kenneth Bryan, and Pádraig Cunningham
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Abstract— Heterogeneous genome-wide data sources capture
information on various aspects of complex biological systems.
For instance, transcriptome, interactome and phenome-level
information may be derived from mRNA expression data,
protein-protein interaction networks, and biomedical literature
corpora. Each source provides a distinct “view” of the same
domain, but potentially encodes different biologically-relevant
patterns. Effective integration of such views can provide a
richer, more informative model of an organism’s functional
modules than that produced on a single view alone. Existing
machine learning strategies for information fusion largely focus
on the production of a consensus model that reflects patterns
shared between views. However, the information provided by
different views may not always be easily reconciled, due to
the incomplete nature of the data, or the fact that some
patterns will be present in one view but not in another.
To address this problem, we present the Parallel Integration
Clustering Algorithm (PICA), a novel cluster analysis approach
which supports the simultaneous integration of information
from two or more sources. The resulting model preserves
patterns that are unique to individual views, as well as those
common to all views. We demonstrate the effectiveness of PICA
in identifying significant patterns corresponding to functional
groupings, when applied to three genome-wide datasets.

I. INTRODUCTION

In many domains there will naturally exist multiple dif-
ferent ways to describe the same set of data objects. For
instance, we can describe open reading frames (ORFs) based
on their mRNA expression profile, the physical interaction of
their protein products (where applicable), or with associated
terms gathered from a body of literature such as PubMed.
This leads to the availability of multiple distinct representa-
tions or “views” that encode patterns relevant to the domain
[5]. The question then arises, how can we integrate these
representations in a way that allows us to effectively identify
and explore these patterns?

For some data exploration applications, we may have
access to a set of views that are entirely compatible – the
same patterns will occur across all views. The problem then
becomes the identification of a single consensus model de-
scribing the patterns common to the views [4]. In the context
of unsupervised learning, this is conceptually similar to the
problem of feature-distributed ensemble clustering, which
involves finding a single consensus solution by combining
a set of clusterings obtained from partial views of the data
[21]. In other applications, patterns may exist in some but
not all of the representations available to the researcher. In
addition, some data objects may be present in one view, but
entirely absent from another. For instance, some ORFs in a
gene expression dataset may not code for proteins, and will

therefore be absent from a related protein-protein interaction
(PPI) dataset. The problem of reconciling discordant models
from different views has recently been referred to as learning
in “parallel universes” [3]. This concept emphasises the
idea of sharing information between views in order to learn
superior local models for the views, which can subsequently
be combined to provide a comprehensive global model of
the patterns present in the domain. An important point here
is that local models produced on different views do not
necessarily need to group all possible objects in the domain.

In this work, we address the problem of integrating
information from diverse biological data sources, with a
particular focus on three commonly-used data types: gene
expression microarray data, biomedical text literature, and
binary protein-protein interaction networks. The concept of
learning in parallel universes is relevant here, as it is clear
that certain patterns (e.g. functional modules) may be evident
in one data source, but not another. Another concern is
that many genes will naturally belong to multiple functional
groups. To address these issues, we propose the Parallel
Integration Clustering Algorithm (PICA), a new two-stage
approach for performing cluster analysis in domains where
two or more heterogeneous data sources are available. Firstly,
PICA employs multiple cumulative voting procedures [2] in
parallel to aggregate a set of previously produced clusterings
to produce a set of local models, one for each available
view. These models are constructed in a way that supports
the sharing or “mixing” of information between views. The
second stage of the algorithm involves combining the local
models to produce a global model, in the form of a set
of overlapping clusters that preserve the patterns present in
one or more of the views. We empirically investigate the
effectiveness of the proposed algorithm on views provided
by three yeast-related genome-wide datasets, and demon-
strate its improved ability to identify meaningful patterns
corresponding to functional groupings, when compared with
standard clustering algorithms applied to individual views.

This paper is organised as follows. Section II provides
a brief overview of existing techniques for fusing data from
different sources, with an emphasis on techniques previously
applied to biological data. In Section III we define the
parallel integration problem, and describe the proposed PICA
algorithm in detail. In Section IV we present our experimen-
tal results. The paper finishes with some conclusions and
suggestions for future work in Section V.



II. RELATED WORK

A. Ensemble Clustering

A variety of algorithms have been proposed to aggregate
a collection of different clusterings to yield a more accurate,
informative clustering of the data. These algorithms gener-
ally consist of two distinct phases: a generation phase in
which a collection of “base” clusterings is produced (i.e. the
members of the ensemble), and an integration phase where
the ensemble members are aggregated to produce a single
consensus clustering. To produce a diverse set of cluster-
ings, common generation strategies include using unbiased
random sampling to produce clusterings on different parts
of the same dataset [9], and clustering on randomly-selected
feature subspaces [10].

To integrate an ensemble of clusterings, a number of
authors have proposed cumulative voting schemes, which
are based on the assumption that there will be a direct
relationship between individual clusters across all the base
clusterings. Since finding a mapping between the clusterings
in a single pass will generally be intractable, Dimitriadou
et al. [6] proposed a heuristic approach where, for each
base clustering, the clusters are mapped to those already
present in the current consensus clustering. This mapping
is performed by matching each pair of clusters that have the
highest fraction of objects in common. The matched cluster
assignments may then be viewed as “votes” indicating associ-
ations between the data objects and the clusters in the current
consensus clustering. A key assumption here is that there
will always be a mapping between the clusters occurring
in each base clustering. To produce a final non-overlapping
clustering from the vote counts, Dudoit & Fridlyand [8]
proposed using a plurality voting scheme, where each object
is assigned to the majority cluster label. A probabilistic
cumulative voting scheme was proposed in [2] for combining
base clusterings containing different numbers of clusters.

B. Learning from Multiple Views

Blum & Mitchell [5] initially proposed the application
of machine learning techniques in a multi-view setting, a
problem which arises in domains where the data objects will
naturally have several different, independent representations.
While theoretical work in this area has largely focused on su-
pervised learning problems, researchers have also considered
the problem of producing clusterings from several different
data sources. For instance, Bickel & Scheffer [4] proposed
multi-view extensions of existing partitional and agglomer-
ative clusterings algorithms. These algorithms were applied
to the problem of clustering web pages, as represented by
both textual information and hyperlinks.

Muslea et al. [18] considered the problem of applying su-
pervised techniques in situations where multiple, potentially
incompatible views are available – that is, where disagree-
ments exist between the target concepts in the views. The
problem of reconciling inconsistent models from different
views was recently formalised by Berthold & Patterson
[3], who introduced the concept of learning in parallel

universes. This involves a process that differs from previous
definitions of multi-view learning: a local or “partial” model
is constructed for each view or “universe”, in such a way
that information is shared among the views during the model
construction process. By merging the local models, a superior
global model is constructed for the domain. An important
point is that the local models do not necessarily need to
group all possible samples in the domain. A parallel mapping
between data objects is sufficient to produce the global
model. To implement this concept, the authors proposed an
approach for identifying potential cluster centres in small
neighbourhoods, which can naturally be extended to the
problem of locating clusters across several different views.

C. Information Fusion in Bioinformatics

The integration of biological data from multiple diverse
data sources has recently been used to build improved
models in both supervised and unsupervised settings. In
some cases many functional labels may be available, as in
Saccharomyces cerevisiae, and there may be some overlap
between modelling based upon object similarities and label
prediction.

In this area, Pavlidis et al. [19] made the distinction
between three general integration strategies: early integration
involves the direct combination of data from several views
into a single dataset before learning; intermediate integration
involves computing separate similarity matrices on the views
and producing a combined pairwise representation which is
then passed to the learning algorithm; and late integration
involves applying an algorithm to each individual view and
subsequently combining the results. The authors considered
the application of each combination strategy with SVMs
to learn gene functional classes from gene expression and
phylogenetic profiles.

As interest has increased in the problem of information
fusion, researchers have begun to focus primarily on strate-
gies based on intermediate and late integration. For example,
Troyanskaya et al. [24] used a Bayesian framework derived
from domain expertise to integrate pairwise co-associations
within clusterings from gene expression, protein interaction,
and transcription factor binding site data. Sequential late
integration approaches have been proposed, where informa-
tion from one view is used to “constrain” the behaviour
of a learning algorithm in another view. Ideker et al. [12]
employed simulated annealing to search for “active sub-
networks” representing connected sets of ORFs, derived from
their protein interaction data, which also contained high
levels of differential expression. In this approach precedence
was given to the model provided by the interaction data,
with significant structures only emerging when they were
corroborated by a high differential expression.

A semi-supervised formulation of the multi-view learn-
ing problem was proposed by Zeng et al. [25], where in-
formation between multiple views is passed through the
use of explicitly-defined pairwise “must-link” and “cannot-
link” constraints. These constraints were generated from
an ensemble clustering of biomedical literature, and were



subsequently used to improve quality of clusters produced on
gene expression data. The authors observed that inconsistent
constraint sets, which could arise from incompatible views,
can considerably reduce clustering accuracy.

Previous integration approaches, such as those listed
above, generally prioritise conserved relationships between
views to build a single, consensus model which is poten-
tially more accurate than models produced on the original
views. As both the scale and diversity of experimental
datasets increase, such approaches may be viewed as being
overly conservative in terms of omitting patterns present
in individual views only. Consequently, patterns uncovered
in one view that have no corresponding, or only partially
corroborating structures, in another view, would tend to be
ignored. However, in biological datasets it will often be the
case that the presence of a pattern exclusive to one source
or type of data may be legitimately expected.

III. METHODS

In this section we describe the Parallel Integration Clus-
tering Algorithm (PICA), a new approach for performing
cluster analysis in domains where two or more heterogeneous
data sources are available. This approach can be regarded as
sharing certain similarities with late integration techniques,
as we seek to combine clusterings produced independently
on each view. However, motivated by the parallel universes
concept [3], PICA differs from standard fusion approaches
in that it combines all of the following goals:
• Not all data objects from the domain need to be present

in each view. PICA only assumes that there is some
intersection between the objects in each pair of views.

• It does not require access to the original feature space
for each view. The only input to the process is a
collection of one or more clusterings for each view,
which may be produced on either feature-based or
relation-based data.

• It allows for the fact that patterns may be present or
detectable in one view, but not in another. Rather than
producing an aggregated model that focuses solely on
patterns common to all views, PICA can conserve those
that are present in a subset of views.

• It supports a degree of interaction or “mixing” between
different views prior to the production of the final global
model.

• The final global model produced by PICA supports the
representation of overlapping patterns (i.e. data objects
can belong to more than one cluster).

A. Overview

Based on the goals given above, we formally describe
the clustering problem. Firstly, let X denote the set of all
possible data objects in our domain. In this domain, we have
access to a set of v views, where Xl ⊆ X denotes the subset
of objects present in the l-th view. These objects may either
be represented explicitly in a feature space, or implicitly in
the form of a pairwise relation-based representation. Next,
let us assume that we can generate a collection of base
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Fig. 1. Overview of the Parallel Integration Clustering Algorithm (PICA).

clusterings for each view, where Cl denotes the collection
of clusterings generated on the view Xl. These may be
generated using any appropriate algorithm (e.g. a partitional
algorithm such as k-means, or a hierarchical algorithm where
a suitable cut-off strategy has been employed), with the only
requirement being that they are “hard clusterings” (i.e. not
a soft or fuzzy clustering, although such clusterings can
naturally be thresholded to produce a hard clustering). We
denote the complete set of base clusterings for all views by
C = {C1 ∪ · · · ∪ Cv}.

Given this problem definition, PICA follows a two-stage
process:

1) Produce a set of local models {L1, . . . , Lv}, where
Ll represents a model, in the form of an overlapping
clustering, produced on the view Xl, with some con-
tribution or “mixing” from the other views.

2) Combine the local models to produce a global model
G, which merges the common aspects of the individual
local models, while preserving those clusters that are
unique to each local model.

The complete PICA algorithm is outlined in Figure 1, and
specific details are provided in the remainder of this section.

B. Cumulative Voting Aggregation

Before describing our approach for constructing local and
global models, we first introduce a variation of previous
ensemble cumulative voting methods that we will use to
build these models. Given a collection of base clusterings
Cl = {C1, . . . , Ct}, we initialise the aggregate clustering L
by selecting the base clustering from Cl with the highest
information content. Specifically, we calculate the average
normalised mutual information (ANMI) [21] for each base
clustering in Cl. This measures the amount of information
shared between a single clustering and the other clusterings
in the collection. We select the base clustering with the
highest ANMI score as our initial aggregate clustering L.



For each subsequent base clustering Cj , we attempt to
match each of its clusters with a cluster in the current
aggregate clustering L. The optimal match may be found
by solving the minimal weight bipartite matching problem
using the Hungarian method [15]. We measure the similarity
between a pair of clusters using the binary overlap coeffi-
cient, which defines the agreement between sets (A,B) as:

over(A,B) =
|A ∩B|

min(|A|, |B|)
(1)

A value of 1 indicates that one cluster is fully contained
within, or identical to, another cluster. A value of 0 indicates
that there is no overlap between a pair of clusters. If the best
match between the base cluster and an existing aggregate
cluster in L yields a value for Eqn. 1 that is above a threshold
value θ ∈ [0, 1], the match is performed and the clusters
are merged. In practice we found that a value of θ = 0.5
was suitable for the datasets used in our evaluation (see
Section IV). This signifies that an object should belong to
a cluster in at least 50% of the occurrences of that cluster
across all the clusterings in Cl. Unlike previous cumulative
voting ensemble techniques, the use of thresholding here
means that not all clusters from the base clusterings will
be used in the aggregated model – for instance, noisy or
irrelevant base clusters will not make a contribution. If a
suitable match is found, the base cluster is merged with
the matched aggregate cluster. The aggregate cluster is now
defined as the set of all objects that have been assigned to at
least a fraction µ ∈ [0, 1] of all those base clusters that have
previously been merged with it. On the other hand, if there
is no suitable match for a base cluster, it is discarded.

This matching-merging procedure is repeated until all base
clusterings from the set Cl have been processed, at which
time L is deemed to be the final aggregate clustering.

C. Local Model Construction

We now extend the cumulative voting aggregation ap-
proach described above to the case where two or more related
views are available. For each of the v views, we maintain an
aggregate clustering Ll which represents the local model for
that view. Each of these aggregate clusterings is initialised by
selecting the clustering with the highest ANMI from the set
of base clusterings Cl constructed only on the corresponding
view Xl.

We subsequently attempt to match each remaining base
clustering from the complete set C with all of the local
models (i.e. not simply the model corresponding to the view
on which that clustering was generated). This has the effect
of supporting mixing between the views, where information
provided by a base clustering from one view Xa can inform
the model constructed for another view Xb. Note that the use
of the thresholding in the matching process is particularly
appropriate in this context – clusters from Xa that do “fit
well” into the model for Xb are not included in that model.
When merging clusters, we set the membership threshold
µ = 1/v, which signifies that an object will be belong to an
aggregated cluster if it is consistently present in that cluster

in at least one view. Once all base clusterings in C have been
processed, the resulting v aggregate clusterings provide the
set of local models {L1, . . . , Lv}.

D. Global Model Construction

At this stage we have constructed v local models. These
may be of interest in their own right, but for ease of
interpretation and evaluation, we would like to “join” these
partial models to produce a single global model providing
a more complete view of the domain. This is achieved by
performing an additional matching procedure at this level,
where similar clusters from each local model are merged, so
that redundant patterns are combined, while unique patterns
are preserved. Specifically we consider each pair of clusters
across all local models, and merge those pairs with an
overlap coefficient value (1) of greater than the matching
threshold θ. This is equivalent to perform complete-linkage
agglomerative clustering on the local model clusters, with
the cut-off threshold set to θ. This results in a single global
model G produced from all v views, where the number of
clusters in this model is |G| ≤

∑
(|L1|+ . . . |Lv|). The

clusters in G represent patterns that were unique to views,
as well as those that were present in two or more views
(i.e. clusters from the local models that were merged during
the final matching procedure).

IV. EXPERIMENTAL EVALUATION

A. Datasets

We now perform an evaluation on three views pertaining
to the eukaryotic model organism Saccharomyces cerevisiae
or budding yeast. Our first view is a gene expression dataset
(the Rosetta Compendium) containing genome-wide mRNA
in measurements over 300 diverse mutations and chemical
treatments [11]. Profiles defined as ‘dubious’ by the Sac-
charomyces Genome Database (SGD) and those with 25%
or more missing values were removed, leaving a subset of
5596 expression profiles. Any remaining missing values were
imputed via kNN missing value estimation [23].

Our second view comprises a text corpus mined from
biomedical literature. Following the approach discussed by
Zeng et al. [25], we retrieved a set of 38,661 yeast-related
MEDLINE abstracts, corresponding to the references enu-
merated in the SGD literature curation database1 (May
2008). Since the database provides links between references
and genes, we can form a “meta-document” for each gene
consisting of the concatenation of all abstracts annotated as
pertaining to that gene. From this we constructed a bag-of-
words model, represented in the form of a term-gene matrix.
To pre-process the data we removed dubious ORFs, and ap-
plied standard stop-word removal and stemming techniques
to the abstracts. We subsequently removed terms occurring
in less than three documents, and applied log-based TF-
IDF normalisation to the term vectors. Our final dataset,

1ftp://genome-ftp.stanford.edu/pub/yeast/
data download/literature curation/
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Fig. 2. Significance of each MIPS top level category in the clusters returned by PICA, compared to the mean significance scores achieved by the base
clusterings produced by k-means on each of the views: mRNA expression, text and PPI. Significance is given in terms of the over-representation of each
category, as measured by -Log(P -value).

consisting of 6013 ORFs and 62,859 terms, is freely available
online2 in matrix form.

Our third view is a protein-protein interaction dataset
constructed from the Database of Interacting Proteins (DIP)3,
a resource which documents the experimentally determined
protein-protein interactions for the yeast proteome. At the
time of download (May 2008), this database described
17,491 interactions between 4392 proteins. These three
datasets represent connected views between which objects
and patterns are partially shared – in total 6427 genes were
present in the combined set, with an intersection of size 4547.

B. Base Clustering Generation

As noted previously, PICA can be applied to any set of
clusterings containing “hard” clusters. Ensemble methods are
most effective when combining a set of accurate, diverse
clusterings. Similarly, we apply PICA to collections of clus-
terings from different views, where each collection provides
a reasonable trade-off between diversity and accuracy. It was
shown in [13] that the level of diversity among the clusterings
can be increased by varying the number of clusters in each
base clustering, such as by randomly selecting a value ki

from a predefined range [kmin, kmax]. This range simplifies
the model selection problem involved in applying partitional
clustering algorithms, and will generally be informed by
knowledge of the specific data type.

For each view, we generated 1000 base clusterings as
follows. In the case of the text data, we applied standard k-
means with cosine similarity to the term-gene matrix, with
the number of clusters k ∈ [15, 20]. To encourage diversity
we randomly sub-sample the data without replacement, with
a sampling rate of 80%, and back-fit out-of-sample objects
as described in [9]. For the gene expression data, we again
use k-means, but calculate similarities based on the Pearson
correlation measure, and use the range k ∈ [25, 35] which
is in line with the number of clusters suggested in [22].

2http://mlg.ucd.ie/datasets/yeast.html
3http://dip.doe-mbi.ucla.edu/

We produce diverse clusterings on this dataset by using
random subspacing [10], where each clustering is generated
on 50% of the original feature set. In addition to encouraging
diversity, this also facilitates the discovery of patterns that
are only correlated under certain subsets of conditions.
Unlike the other two views, the protein interaction dataset
has a relation-based representation (i.e. there is no original
feature space). To capture indirect relations between pairs of
proteins, we apply the neighbourhood-based Czekanowski-
Dice similarity measure previously used in [1] to cluster PPI
data. We then applied the kernelised version of the k-means
algorithm [20] to the resulting similarity matrix, with random
sub-sampling as described for the text data, and the number
of clusters chosen from k ∈ [15, 25].

C. Cluster Validation Measures

To quantitatively validate the final clustering produced
by PICA, yeast ORFs were first labelled with functional
categories from the MIPS (Munich Information on Pro-
tein Sequences)4 database [17]. We then employed two
commonly-used validation measures to assess the accuracy
of the individual clusters produced by PICA with respect to
the annotated categories:

• P-value: The statistical significance of discovering each
functional module is given in terms of P-values, calcu-
lated based on the binomial approximation of the hyper-
geometric distribution [7]. To provide an approximate
cut-off level for differentiating between significant and
insignificant clusters, we use a value of 10−4 as pro-
posed in [22]. As in their study, we report -Log(P -
value) for improved readability within tables.

• Functional enrichment: We also measure the enrichment
or precision of each cluster, which is defined as the
fraction of genes in a given cluster that pertain to a
specific MIPS category [22].

4http://mips.gsf.de/genre/proj/yeast/



TABLE I
CLUSTER VALIDATION SCORES FOR MOST SIGNIFICANT CATEGORIES IDENTIFIED BY PICA, COMPARED TO THOSE FOUND IN INDIVIDUAL VIEWS.

Cluster Functional category Category -Log(P -value) Functional enrichment
size PICA mRNA Text PPI PICA mRNA Text PPI

G32 20.09 Transport routes 713 176 07 143 16 0.67 0.23 0.63 0.34
G35 11.02 RNA synthesis 604 172 09 140 18 0.70 0.22 0.67 0.30
G20 10.01 DNA processing 517 159 11 138 09 0.78 0.22 0.73 0.15
G42 10.03 Cell cycle 648 140 13 117 24 0.71 0.27 0.65 0.37
G05 12.01 Ribosome biogenesis 310 133 70 142 22 0.65 0.41 0.53 0.26
G53 01.06 Lipid, fatty acid metabolism 286 128 05 50 08 0.49 0.12 0.25 0.16
G40 43.01 Fungal. cell type differentiation 451 119 04 71 10 0.47 0.12 0.42 0.20
G19 20.01 Transported compounds 594 118 09 62 27 0.57 0.25 0.42 0.40
G28 14.13 Protein/peptide degradation 256 110 06 55 20 0.59 0.13 0.31 0.23
G58 11.04 RNA processing 399 106 57 106 42 0.50 0.35 0.49 0.41
G40 40.01 Cell growth / morphogenesis 238 91 05 54 09 0.32 0.10 0.28 0.13
G27 42.16 Mitochondrion 170 90 60 88 17 0.21 0.36 0.19 0.20
G40 30.01 Cellular signalling 199 84 04 51 07 0.28 0.10 0.23 0.07
G50 01.01 Amino acid metabolism 244 83 48 59 03 0.21 0.28 0.19 0.09
G40 42.04 Cytoskeleton/structural proteins 252 82 05 77 11 0.31 0.10 0.37 0.15
G50 01.05 C-compound & carb. metabolism 507 81 08 66 03 0.30 0.11 0.32 0.11
G40 34.11 Cell. sensing to external stimulus 284 73 14 47 06 0.30 0.24 0.27 0.12
G32 14.04 Protein targeting, sorting, transloc. 281 57 05 53 06 0.26 0.11 0.30 0.13
G52 42.01 Cell wall 213 52 05 37 02 0.29 0.11 0.20 0.06
G46 20.03 Transport facilities 195 51 04 35 14 0.23 0.08 0.17 0.17

Listed above are the 20 most significant categories identified by the global model produced by PICA. Significance is measured by -Log(P -values),
calculated with respect to the second level MIPS functional categories. Functional enrichment scores are also provided for each category. The highest
values for each category and validation measure are in highlighted in bold.

D. Quantitative Evaluation of PICA

The global model G produced by PICA consisted of 59
clusters, covering 5906 of the 6427 ORFs present in the
union of the three views. Of the 1880 ORFs that were absent
from at least one view, 1373 of these were assigned to at least
one cluster – ORFs did not need to be present in all views
to be included in the model. It is worth noting that, although
the base clusterings were all non-overlapping, considerable
overlap exists between the final clusters in G. Specifically,
on average each ORF was assigned to 2.1 clusters, and 4813
ORFs from the total set of 6427 were assigned to more than
one cluster. This reflects the actual potential for ORFs to
belong to more than one functional module.

As baselines for comparison in our experiments, we eval-
uate the mean performance of the base clusterings generated
separately by k-means on each of the three views: mRNA,
text, and PPI. Figure 2 illustrates the most significant cluster-
class combinations (in terms of -Log(P -value)) uncovered
by the global model, for the top level MIPS categories.
Corresponding mean scores for the baseline techniques are
also presented. It is apparent that, on average, fifteen of the
seventeen MIPS top level categories were better represented
by the global model than in the clusterings produced in
the individual views alone. A similar trend (thirteen from
seventeen categories) was also observed upon examining the
corresponding functional enrichment values at this level. The
most competitive single view is the model built upon the
curated literature. This is perhaps unsurprising given the
extent and quality of the text corpus used in this study. These
model comparisons are now examined at a greater resolution
via the more functionally informative MIPS second level
categories.

From the global model produced by PICA on the three

data views, 65 of the 98 MIPS second level categories
were identified with a P -value of at least 10−4. Table I
lists the twenty most significant second level categories
identified by PICA, arranged in descending order by -Log(P -
value). Functional enrichment scores for these clusters are
provided on the right-hand side of the table. For the purpose
of comparison, validation scores for the base clusterings
generated on each view are also presented.

We observe that PICA performs better in terms of P -
values on eighteen out of twenty categories, and achieves
higher functional enrichment for fifteen out of twenty. Again
we see that the model built on the text view alone is the most
competitive. The only instance in which the global model
is less significant is in the case of ribosome biosynthesis
(12.01). This may be partially explained by the fact the
ribosome is the organelle most widely studied and best
described in the literature. However, the relevant cluster
uncovered by the global model has a higher functional
enrichment, suggesting that PICA uncovers a smaller, more
concise model for this category. Other values most supportive
of PICA include those for clusters G53 and G28, representing
categories 01.06 and 14.13 respectively. These global clusters
are considerably more significant, in terms of both P -value
and functional enrichment, than those produced for these
categories on any of the individual views.

E. Modelling of Unique Patterns
There are seventeen significant patterns (i.e. P < 10−4),

corresponding to second level MIPS categories, that appear
in the global model, despite being represented in only one of
the views. Of these, fifteen are present in the global model
with a higher significance than in the relevant single view.
For example, the global cluster associated with the MIPS
category of detoxification (32.07) appears only in the text



data (P = 10−30). This is perhaps unsurprising as neither
PPI nor the gene expression data were produced under toxic
experimental conditions. Furthermore, PICA retrieves a more
significant global cluster (P = 10−38) for this functional
category.

Another category, that of the cell wall (42.01), appears
predominantly within the text view (P = 10−37), to a lesser
extent in the expression data (P = 10−5), and is effectively
absent from the PPI data. It has been previously shown that
this functional class displays low connectivity in protein-
protein networks [16]. Despite this, a more significant cluster
(P = 10−52) is recovered in the global model produced
by PICA. In general, non-essential ORFs and their protein
products are less likely to form inter-connected structures in
PPI data [14].

V. CONCLUSION

In this paper, we have presented a new approach for
simultaneously exploring patterns present in connected het-
erogeneous data sources, which is motivated by the concept
of clustering in parallel universes [3]. To the best of our
knowledge, this work represents the first application of this
concept within the domain of bioinformatics. The proposed
PICA algorithm, which involves the parallel aggregation of
collections of clusterings generated on each of the views, was
empirically evaluated on three real-world datasets pertaining
to Saccharomyces cerevisiae. The evaluations show that the
algorithm allows us to effectively integrate the information
provided by these datasets, resulting in a global model for
the domain that uncovers meaningful patterns correspond-
ing to functional groupings. In this respect, the algorithm
proved considerably more effective than standard partitional
clustering algorithms applied to the individual views.

In our evaluation we remarked that the clusterings gen-
erated on the text data proved considerably more informa-
tive than those produced on the other two data types. We
suggest that superior base clustering techniques applied to
the gene expression and PPI views respectively may yield a
global model that supports more “mixing” between views.
In addition, we would like to consider extending the PICA
framework to include the integration of “soft” clusterings,
such as those produced by fuzzy clustering and matrix
decomposition algorithms.
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