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Abstract – There have been a number of techniques developed 
for the prediction of protein structural classes, however, they 
show various degrees of accuracies over different assessment 
procedures and, in particular, the role of sequence-driven-
features (SDF) not rigorously investigated.  Therefore, the aim 
of this study is to carry out the largest comprehensive and 
consistent investigation on approximately 1500 protein 
sequence-driven-features that form 65 subsets in order to 
develop a robust predictive model and identify how well these 
feature(s) are at predicting protein structural classes.  For 
evaluation of the features, two high quality 40% (or less) 
homology datasets that contain over 7000 protein sequences 
were extracted from proteomic databases.  As a predictive 
technique, an optimum K-Nearest Neighbour Classifier, 
namely multiple-K-NN (MKNN) was developed, which not only 
records MKNN results, but also a predictive accuracy for each 
K nearest neighbourhood for K=1 to 11.  In order to make the 
analyses consistent, three different cross-validation test 
procedures, 10-fold, leave-one-out and independent set, were 
used for all data sets and methods implemented.  Over 5000 
individual predictive results obtained, no firm consensus found 
on which features are highly associated with protein structural 
classes.  However, interestingly, the best subsets of the features 
are found to be traditional AAC (48.62%) for 10-fold and 
(50.09%) for LOO, and dipeptide composition (85.91%) for 
independent set.  The results appear to suggest that the AAC 
features are one of the best two subsets over 65 different 
subsets.  Interestingly, in particular, with pseudo-amino-acid 
composition (PseAAC), unlike other research results presented 
in the literature, this investigation finds that there is no 
statistical improvement obtained from the sequence-order 
effect aspect (lamda) of PseAAC, which averaged 39.15%.  The 
results also suggest that most of its predictive power comes 
from the AAC part that averaged at 46.84%, and the overall 
average predictive accuracy for PseAAC is 47.86%.  This 
information appears to suggest that this feature set, which is 
claimed to better capture sequence order, yields almost no 
improvement and can be considered a redundant and noisy 
feature set.  It should be noted that overall outcome of this 
comprehensive study sheds light not only in structural class 
prediction, but also other proteomic studies. 

I. INTRODUCTION 
ROTEIN prediction is one of the most difficult and 
important fields within proteomics, mainly because the 

thousands of conformational changes in a protein makes it 
difficult to predict how it will fold into its secondary or 
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tertiary structure.  Computational biology has a huge impact 
in this field because of relatively inexpensive computational 
power that has enabled vast amounts of data to be analysed 
relatively quickly. 

A protein is a biological molecule that carries out a 
specific function within the body, knowing and 
incorporating the structural class information can (1) 
improve prediction accuracy of secondary and tertiary 
structure prediction [1-4] and more significantly, (2) to 
bridge the gap between verified and unverified protein 
structures.  The number of unverified protein structures is 
over 6 million [Release 39.0 of 22-July-2008 
UniProtKB/TrEMBL] very different from how many have 
been verified, as of 12-August-2008 there are 52402 
structures in Protein Data Bank (PDB).  Levitt and Chothia 
[4] developed the standard for protein structural classes used 
in this study, which consists of four main types of protein 
structural classes: - 

1. All-Alpha (α) - proteins with only small amount of 
strands 

2. All-Beta (β) - proteins with only small amount of 
helices 

3. Alpha / Beta (α / β) - proteins that include both 
helices and strands and where strands are mostly 
parallel 

4. Alpha + Beta (α + β) - proteins with both helices and 
strands and where strands are mostly anti-parallel 

 
There is substantial progress in protein structural class 

prediction [5-19], some of these studies use selected 
sequence features i.e. amino acid composition (AAC) only, 
which  may not include crucial physiochemical properties 
and/or using poor quality datasets with low number of 
sequences at higher homology and all combined with 
inconsistent methodologies to arrive at often boosted results.  
The approach this project is taking, which is unique within 
the field, is to use approximately 1500 protein features 
extracted from the web server ProFEAT [20] as it is more of 
an interest to examine how additional and combination of 
features predict protein structural classes.  Analysing these 
features using the predictive model multiple-k-nearest 
neighbourhood (MKNN) classifier and finally gathering 
results with three-test procedures.  With the abovementioned 
approach, the projected outcomes are (1) identifying which 
of these sequence-driven-features is good at predicting 
protein structural classes and (2) a study that has used a 
consistent and comprehensive methodology throughout. 
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II. MATERIALS AND METHODS 
Based on a comprehensive experimental investigation this 

paper aims to address factors related to datasets, sequence 
representation and statistical test procedures.  

A. Datasets 
Two datasets are used, first dataset 1189 obtained from 

[21] is chosen because of it’s prior use in [21-23], the 
protein sequences are based on Structural Classification of 
Proteins (SCOP) version 1.67 February 2005 and homology 
is at 40%, it is considered to be a standard and benched 
marked dataset [11], using standard datasets ensures 
consistency in the wider field for future research and more 
importantly to keep in line with past studies. Second dataset 
is named astral40 and is constructed using the latest astral 
database tool release version 1.71 July 2007 [24], this was 
selected for it’s easy access to a large set of proteins. The 
sample sizes of these datasets are not too low and it includes 
only high quality low-homologous proteins.  A recent use of 
a similar astral dataset in a past study is version 1.63 [25], it 
is ideal as it contains a large amount of protein sequences at 
the chosen homology rate of 40%. 

June 2006 saw a release of a new sequence-driven-feature 
named pseudo-amino-acid-composition (PseAAC) to 
ProFEAT web server [20], to analyse PseAAC, protein 
sequences length needed to be a minimum of 30 or more 
residues long.  A bespoke programming function checked 
for sequences that had less than 30 residues and removed 
them from the datasets.  At time of construction, no 
sequences with less than 30 residues were included in 
astral40 due to prior knowledge of the new sequence-driven-
feature.   

The final set of sequences for 1189 dataset is 223 all-α, 
292 all-β, 331 α/β and 240 α+β and for astral40 dataset is 
1446 all-α, 1728 all-β, 2065 α/β and 1850 α+β. 

B. Sequence representation 
1) Prediction based on sequence-driven-features: 

Sequence-driven-features are highly useful for 
distinguishing and representing proteins of different 
structural classes, function and interactions profiles, which 
is essential for the successful application of statistical 
learning methods in predicting different aspects of proteins.  
It is important to know which of these features predict 
proteins and more so, the features that are not so good, from 
this, we can see which features play an important role and 
are highly useful for distinguishing protein structural 
classes. 
2) Extraction of sequence-driven-features 

Protein Features (ProFEAT) [20] is a web server for 
computing commonly used structural and physicochemical 
features of proteins and peptides from amino acid 
sequences.  It computes eight feature groups composed of 11 
sub-features that include 53 descriptors and 1497 descriptor 
values.  The computed feature groups include (1) amino acid 

composition, (2) dipeptide composition, (3) normalized-
moreau–broto autocorrelation, (4) moran autocorrelation, (5) 
geary auto-correlation, (6) composition, transition and 
distribution (7) sequence-order and (8) PseAAC.  Sequences 
from our datasets inputted in to the web server with the 
output result being a set of numerical vectors, which then 
applied to a statistical model for evaluation. 

C. Predictive models 
1) Multiple-K-Nearest Neighbourhood (MKNN) 

MKNN calculates the predictive accuracy for each k-
model and multiple models that yielded highest accuracy, 
multiple models is the result of combining strongest k-
models; which is achieved by removing lower predicted k-
models and re-analysing using highest resulted k-models, 
this investigation used eleven models.  The method that 
determines which k-models selected is on a voting 
technique.  M-KNN can analyse predictive accuracy results 
using each of the cross-validation test procedures i.e. 10-
fold, LOO and independent set.  KNN aspect of the 
algorithm tries to classify new patterns into their class 
membership by comparing features of unknown new 
patterns with features of known patterns, which already been 
classified.  It is particularly useful in situations when 
distributions of the patterns and categories are unknown – 
such as protein structural classes [26]. 

D. Statistical test procedures 
1) 10-fold 

Each dataset divided into 10 folds i.e. 10% sequences per 
fold, MKNN repeated 11 times (as 11 models are used) and 
each time, one fold is testing data and the remaining nine 
folds are training data, this, being the main advantage for 
this test procedure – for speed.  The disadvantage is the 
algorithm has to run k-times, hence, the larger datasets took 
considerable time to analyse, for example on the largest size 
dataset against all features [7052*1497] matrix, took eight 
hours to complete, however, it’s relatively quicker running 
analysis on smaller datasets. 
2) Leave-one-out (jack-knife) 

Also known as jack-knife, during the process, both testing 
and training datasets are open and a protein will in turn 
move from training to testing, is analysed and then moved 
back to training.  This is computationally demanding and 
resourceful technique, analysis time goes over eight hours 
on a smaller [5155*400] matrix (the same time on a 
[7052*1497] with 10-fold).  Because of this process, the 
only advantage is that it applies thorough testing to each 
protein sample. 
3) Independent set 

Independent test procedure uses two separate datasets, 
testing and training, these contain only unique protein 
sequences; this means there are no two identical protein 
sequences between each dataset.  This test procedure gives 
higher results when training samples are larger than testing 
dataset.  The construction of independent datasets involved 



  

applying the Euclidean distance function, which loops 
between two matrices (i.e. testing and training datasets) and 
calculates the distance between each data point, if it comes 
out to zero it means a duplicate protein data is found, the 
protein code is established and located within the ProFEAT 
data and removed. 

III. RESULTS AND DISCUSSION 
This section will primarily focus on which features ranked 

in the top and bottom 10 per test procedure, as around 390 
analyses took place, which resulted in thousands of 
individual results.  Top 10 results for dataset 1189 and 
astral40 across each test procedure are in table I and II, 
respectively. 

A. Assessment of 10-fold test procedure 
Figure 1 shows a graphical view of how spread out the 

data values is for each dataset; column numbers 1-2 relate to 
each dataset 1189 and astral40 respectively.   

Dataset 1189 results do not have extreme high or low 
values; the results are quite consistent and compact 
throughout all the features.  Astral40 dataset results have a 
lower median value and generally seem more robust, this 
could be the result of using larger quantity of protein 
sequences. 

 
1) Top 10 features 

AAC is ranked 1st with the highest rate at 48.62% using 
1189 dataset, which is not consistent using astral40 dataset 
as it’s AAC ranked 3rd at 39.35%.  AAC and dipeptide 
composition ranks 3rd and 5th with astral40, in simplistic 
form, both of those features are quite similar and more likely 
to appear closer using astral40 than 1189 dataset, because of 
the dataset size.  Dipeptide composition does not appear 
using 1189 dataset, which is representative in larger 
datasets.  Interestingly the results of analysing all features 
ranked 1st using astral40 at 41.76% and ranked 5th at 42.47% 
with 1189 dataset, very little difference in accuracy, but big 
difference in rank, this strongly shows that there are features 
that reduce predictive accuracy.  PseAAC results, looking at 
both datasets, the AAC part of PseAAC ranks higher than 
PseAAC as a whole feature group, this illustrates that the 
lamda part has no improvement to PseAAC feature group.  

Secondary structure sub-feature from the composition 
feature group ranked 9th and 7th at 39.42% and 35.73% with 
1189 and astral40 respectively. 
2) Bottom 10-features 

The bottom 10 features varied in order between the two 
datasets.  The range of values between the bottom 10 are 
smaller with astral40 than 1189, 0.7% and 2.9% 
respectively, consequently, larger datasets produces results 
that are more robust.  Most of the features ranked are sub-
features from the autocorrelation feature groups.  Common 
features between the datasets are, polarizability, relative 
mutability and, free energy in water, these are weaker 
features that (1) bring down the overall results when 
analysing using all features and (2) poor at individually 
predicting protein structural classes.  Lamda aspect to 
PseAAC ranks 36th at 34.99% in comparative terms it is 
better than 35 other features, however, it still shows it does 
not have any statistical improvement. 

B. Assessment of leave-one-out (loo) test procedure 
Figure 2 shows 1189 is more compact and contains less 

extreme values indicating consistent range of results across 
all features.  Astral40 has a longer range of lower values 
than 1189 indicating that again dataset size has a control on 
predictive accuracies.  Overall, the results are slightly higher 
than 10-fold, however there are some variations in selected 
features. 

 
1) Top 10 features 

Highest predicted feature using 1189 dataset is AAC at 
50.09%, which further enforces AAC as a strong feature; 
however, it does not infer anything new.  AAC part to 
PseAAC ranks 2nd and PseAAC 3rd using 1189 dataset, 
however, PseAAC ranks 1st at 46.20% and lamda aspect of 
PseAAC ranks 9th at 37.37% using astral40, even though it 
appears in the top 10 features, it shows that majority of the 
power for PseAAC comes from AAC part and not so much 
from lamda.  AAC aspect of PseAAC and AAC are ranked 
3rd and 4th at 41.92% and 41.84% respectively using 
astral40, shows both have similar strength.  Secondary 
structure sub-feature from composition feature group ranks 
9th using 1189 dataset. 
2) Bottom 10-features 

Bottom 10 features are largely from autocorrelation 

 
Figure. 2.  Boxplot for test procedure 
 

 
Figure. 1.  Boxplot for 10-fold test procedure 
 



  

feature groups.  Sub-features common between the two 
datasets are, free energy in water, relative mutability & 
steric parameter, which are all from the three different 
autocorrelation feature groups, here is a clear indication that 
these features are not so good at predicting protein structural 
classes using this test procedure.  Sub features of 
composition, transition and distribution appear within the 
bottom 10 features quite highly, however, when combined 
together as a feature group and analysed it appears in the top 
10. 

C. Assessment of independent test procedure 
Figure 3 column numbers 1-2 relates to each dataset 

1189vAstral40 and Astral40v1189 respectively.  Dataset 
1189vAstral40 is based on 1189 as the training set, results 
acquired are consistent per feature, i.e. there is not a vast 
difference between lowest and highest extreme values.  
However, dataset Astral40v1189, astral40 is the training set, 
achieves higher values, this is because the training dataset 
has trained the algorithm with more samples than to test 
with, thus, able to predict the testing dataset far better. 

 
1) Top 10 features 

PseAAC as a whole feature group ranks 1st and 5th at 
47.58% and 63.17% than the AAC aspect of PseAAC, 
which ranks 3rd and 6th at 42.77% and 60.04%, using 
1189vAstral40 and Astral40v1189 respectively.  
Conventional AAC ranks lower at 2nd and 7th at 43.09% and 
59.58%, more importantly lamda aspect of PseAAC ranks 
6th and 11th at 39.68% and 51.75%, 1189vAstral40 and 
Astral40v1189 respectively, proving further PseAAC power 
comes from the AAC part not lamda of PseAAC.  
Independent test procedures selected fewer sub-features, 
hydrophobicity scale, relative mutability and residue 
accessibility surface area in tripeptide.  Overall, majority 
selected features form the main feature group’s such as 
dipeptide composition and all three autocorrelation groups. 
2) Bottom 10 features 

Majority of features are from composition, transition and 
distribution feature groups and sub-features from sequence-
order-coupling number feature group, which is quite 
interesting as it shows a consistent selection of weaker 
features across both datasets.  The results for the well-
trained dataset Astral40v1189 is relatively lower and similar 

to 1189vAstral40, nothing above 30%, so, not only 
consistent feature selection but very similar range of 
accuracies. 

D. Assessment of the sequence-driven-features 
Each statistical test procedure and dataset claim different 

sets of features are better or worse, therefore, relying on one 
single method may mislead in precisely identifying features, 
below is a summary of each feature groups: - 
1) All features 

Analysing all the available features with certain test 
procedures has a negative outcome because it includes the 
less predictive ones; in particular, it reduces the result when 
used with independent test procedure, however, 10-fold and 
LOO test procedures have better accuracies.  It yielded 
better results than other single feature groups, however, it is 
more useful to look at which feature(s) or sub feature 
primarily make up the result. 
2) Amino acid composition 

AAC is consistent and important feature to appear in the 
top 10, the highest achieved is 59.48% with the independent 
test procedure using Astral40v1189 dataset, the lowest result 
obtained is 39.35% with 10-fold and Astral40 dataset, it’s 
likely that dataset 1189 is picked carefully to represent 
protein structural classes, as its accuracies compared to 
astral40 are higher.  However, astral40 is overall more 
representative being the latest release and largest dataset of 
protein samples. 
3) Dipeptide composition 

Dipeptide composition is very similar to AAC in terms of 
its physiochemical properties; however, with 10-fold it was 
one of the weaker features appearing bottom 10 using 1189 
but appeared once in the top 10 using Astral40v1189 
dataset. 
4) Normalized moreau-borto autocorrelation 

Using astral40 and 10-fold test procedure produced the 
lowest set of results for this feature group.  Astral40 with 
LOO produced the lowest result for the sub-feature free 
energy in water, with independent test procedure using 
Astral40v1189 dataset worked well with this feature group. 
5) Moran autocorrelation 

Second autocorrelation feature best-suited independent 
test procedure, it was not a strong predictor for 10-fold using 
astral40 dataset, excluding sub-feature free energy in water 
which achieved the best result for this feature group. 
6) Geary autocorrelation 

The third autocorrelation feature group suited 
independent test procedure, not so well for 10-fold or LOO, 
most of its sub features appeared in the bottom 10 
consistently. 
7) Composition, Transition & Distribution 

This is a strong feature group for all datasets using 10-
fold and LOO assessment; in particular, the sub-feature 
secondary structure, which appeared in the top 10 
consistently across 10-fold test procedure, however, this 
feature, achieves low results with independent test 

 
Figure. 3.  Boxplot for independent test procedure 
 



  

procedure. 
8) Sequence Order 

Sequence-order feature group is the strongest across 10-
fold and LOO test procedures, almost all its sub features 
appear using 1189 dataset.  Results between sequence-order 
whole feature group, its sub features and sequence-order-
coupling number are the same across all three test-
procedures and datasets.  Sub feature sequence-order-
coupling number alone is better than using the whole feature 
group of sequence-order.  Looking more closely, sub feature 
quasi-sequence-order-descriptors achieves majority of the 
highest results.  Majority of representation appears in sub 
features. 
9) Pseudo amino acid composition 

PseAAC is a popular feature group used to predict protein 
structural classes and other aspects in other studies; it uses a 
weighted AAC combined with extra sequence-order 
information, which AAC alone does not contain, thus, 
supposedly to be better than conventional AAC.  This study 
splits the feature group into two sub-features (1) AAC part 
of PseAAC and (2) lamda (sequence-order-information 
part), the reason was to analyse the separate parts to find out 
(1) where the predictive power comes from and (2) how well 
the lamda part predicts.  The results are attention grabbing, 
AAC part of PseAAC did achieve higher result consistently 
using 10-fold and LOO than using the whole PseAAC 
feature group, as for the independent test procedure, the 
results were lower.  The lamda aspect consistently came out 
lower than both PseAAC and conventional AAC, indicating 
lamda part of PseAAC has minimal (often statistically 
insignificant) influence on the accuracy and the feature 
group power comes from weighted AAC, this being a 
significant finding in the investigation. 

E. Additional analyses on combination of features 
Analysing combination of feature groups allows further 

investigation into which features groups when combined are 
better or worse at predicting protein structural classes than 
using individual feature groups.  These are the five 
combination analyses: - 

1. AAC + PseAAC 
Across 10-fold/LOO, 1189 achieves slightly higher 

results at 48.81% and 50.09%, respectively; however, this is 
to do with analysing two sets of AAC compositions (1) the 
conventional AAC and (2) the AAC part of PseAAC, thus, 
the results higher because of that. 

• AAC + Dipeptide composition 
Little improvement made with independent test procedure 

using 1189vAstral40 by 2% over dipeptide feature group, no 
big improvements with 10-fold or LOO.  AAC + Dipeptide 
composition was not as promising as expected, published 
results using various methods averaged 79% a lot higher 
than this investigation result which is between 35% - 45%, 
however, the published results used a low homology dataset 
with just 204 sequences. 

• Dipeptide composition + PseAAC 
Using independent dataset 1189vAstral40 does not 

achieve any higher results than individual feature groups, 
across 10-fold/LOO test procedure results were not 
improved expect for astral40/10-fold at 41.83%, increased 
by 7.51%.  Compared to the overall results using dipeptide 
composition alone, the accuracies ranged between 27-37%, 
it confirms that the dipeptide composition is not a very 
strong feature to use. 

• AAC + Dipeptide composition + PseAAC 
Better improvement over dipeptide composition by 7% 

with independent test procedure using 1189vAstral40 
smaller increase over AAC and PseAAC, indicating smaller 
testing datasets work better with this combination at 
47.82%.  10-fold and LOO using 1189 dataset achieved 
lower results. 

• AAC + Sequence-order 
10-fold/LOO test procedures produced higher results, 

using astral40, same for the independent test procedure 
when 1189 is the training dataset; results are lower with 
astral40 dataset as testing. 

F. Cross-validation test procedures 
10-fold cross validation is less computationally 

demanding test procedure, e.g. between 10-25mins 
processing time per sub feature using 1189 dataset, whereas 
LOO would take between one to four hours to complete a 
single sub feature from the same dataset, there was no 
substantial improvements to the results using LOO over 10-
fold.  With independent test procedure, when the training 
dataset is astral40 the results achieved are the highest across 
majority of the features, due to the extensive training with 
7000 protein sequences, when the smaller 1189 dataset is 
used majority of results obtained are mid-ranged across all 
the results. 

IV. CONCLUSIONS 
Computational prediction of protein structural classes is 

vastly complex, thus, carrying uncertain results.  The 
success of this investigation largely returned positive 
outcomes, (1) AAC is still the best feature to represent 
protein structural classes, (2) many individual sub-features 
have little minimal increase on predictive accuracies and (3) 
combination of datasets and test procedures influence the 
rank of features.  It is a challenging problem to draw a single 
and concise conclusion when results are varied.  Overall, 
there is no firm consensus which other feature-sets or sub-
features are distinct at predicting protein structural classes.  
Highlighting the important finding from this study is the 
lamda part of PseAAC does not add any statistical value to 
PseAAC results; the power of this feature group comes from 
the weighted AAC part of PseAAC, as discussed early and 
hence should not be used blindly and requires further 
investigation, which is under way. 



  

TABLE I 
TOP 10 FEATURES ACROSS EACH TEST PROCEDURE FOR 1189 

Feature 10-fold Feature LOO Feature Independent

1 48.62% 1 50.09% 8 47.58% 
8.1 47.97% 8.1 49.17% 1 43.09% 
8 47.23% 8 48.62% 8.1 42.77% 
6a 46.41% 6a 45.42% 6a 40.97% 
All 42.47% All 43.41% 2 40.82% 
6 40.54% 7b 41.30% 8.2 39.68% 
7b 40.40% 7b.2 40.48% 3 39.50% 
7b.2 39.80% 6 40.11% 3.1 38.38% 
6a.6 39.42% 6a.6 39.84% 4 38.16% 
6b 39.32% 7 39.10% 3.8 38.08% 

Key (# of features):- All=All features(1497), 1=AAC(20), 2=Dipeptide 
composition(400), 3=Normalized Moreau-Borto Autocorrelation(240), 
3.1=Hydrophobicity scale(30), 3.8=Relative mutability(30), 4=Moran 
Autocorrelation(240), 6=Composition, Transition & Distribution(147), 
6a=Composition(21), 6a.6=Secondary structure(3), 6b=Transition(21), 
7=Sequence Order(160), 7b=Quasi-sequence-order descriptors(100), 
7b.2=Based on normalized Granthan chemical distance(50), 8=Pseudo 
amino acid composition(50), 8.1=AAC part of PseAAC(20), 8.2=Lamda 
part of AAC(30) 
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TABLE II 
TOP 10 FEATURES ACROSS EACH TEST PROCEDURE FOR ASTRAL40 

Feature 10-fold Feature LOO Feature Independent

All 41.76% 8 46.20% 2 85.91% 
6a 39.92% All 44.72% 4 75.51% 
1 39.35% 8.1 41.92% 5 73.02% 
8.1 39.15% 1 41.84% 3 68.23% 
2 36.98% 6a 41.09% 8 63.17% 
8.2 35.95% 2 38.67% 8.1 60.04% 
6a.6 35.73% 4.1 37.61% 1 59.48% 
6 34.93% 3 37.40% 5.1 52.67% 
6a.7 34.72% 8.2 37.37% 3.1 52.12% 
8 34.37% 6 37.06% 4.5 51.93% 

Key (# of features):- All=All features(1497), 1=AAC(20), 2=Dipeptide 
composition(400), 3=Normalized Moreau-Borto Autocorrelation(240), 
3.1=Hydrophobicity scale(30), 3.8=Relative mutability(30), 4=Moran 
Autocorrelation(240), 4.1=Hydrophobicity scale(30), 4.5=Residue 
accessibility surface area in Tripeptide(30), 5=Geary autocorrelation(240), 
5.1=Hydrophobicity scale(30), 6=Composition, Transition & 
Distribution(147), 6a=Composition(21), 6a.6=Secondary structure(3), 
6a.7=Solvent accessibility(3), 6b=Transition(21), 7=Sequence Order(160), 
7b=Quasi-sequence-order descriptors(100), 7b.2=Based on normalized 
Granthan chemical distance(50), 8=Pseudo amino acid composition(50), 
8.1=AAC part of PseAAC(20), 8.2=Lamda part of AAC(30) 
 


