
  

  

Abstract—Secondary structure prediction is an effective 
approach in deducing the three dimensional structure and 
functions of proteins. Although the multilayer neural network 
is currently used for the prediction, appropriate determination 
of the network size is yet an important factor in improving the 
performance of the network. In this work, two systematic 
approaches for pruning the oversized multilayer perceptron 
neural networks (MLP-NN) are proposed to determine the 
optimum size of the hidden layer. Using the RS126 dataset in 
seven-fold cross-validation, the percentage accuracy of the 
prediction reaches to 75.38.  

I. INTRODUCTION 
ROTEINS are large complex molecules that are made up 
by smaller subunits called amino acids. Chemical 

properties distinguishing the 20 standard amino acids cause 
the protein chains to fold up into specific three dimensional 
(3D) structures defining their particular functions in the cell. 
Secondary structure is the locally ordered structure created 
by hydrogen bonding within the protein backbone [1]. 
Experimental methods, such as X-ray crystallography and 
nuclear magnetic resonance spectroscopy that are used to 
determine the protein structure, are time consuming, labor 
expensive, and not applicable to all proteins [2]. These 
prohibitive costs may increase the gap between the number 
of known protein sequences and the number of known 
structures. Hence, the prediction of a protein structure from 
the amino acids sequence, initiated in late 1970s, is yet an 
important computational goal. 

Computational methods usually perform the prediction of 
the 3D structure with an intermediate step of predicting the 
secondary structure. The early approaches were only based 
on the primary sequence information and they were able to 
predict three secondary structure types with an accuracy of 
less than 60% [3]. The next generation of the methods 
considered the information of neighboring amino acids 
through sliding-window computations [1]. These methods 
use pattern recognition and statistical characteristics based 
on Bayesian inference and decision rules, hidden Markov 
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models, support vector machines, and neural networks [1] 
and they can achieve to a maximum accuracy of about 80% 
[4]. 

Nowadays, using neural networks is a promising approach 
in the secondary structure prediction [5]. Following the 
pioneering work of Qian and Sejnowski [3], many new 
computational techniques involving neural networks for the 
prediction of proteins secondary structure were introduced 
an average prediction accuracy that varies from 70 to 80%. 
In order to improve the prediction accuracy, several studies 
have been applied sophisticated network structures such as 
hierarchical [4], cascade [6], recurrent [7], bidirectional [8], 
and multiple experts networks [9]. Others combined 
additional structural information in the network input with 
the amino acid composition [10], interaction graphs [11], 
tertiary [12] and secondary [13] structure information, 
probabilities of the residues in the protein core or on the 
protein surface [14], multiple sequence alignment profiles 
[15], and position specific score matrices (PSSM) [16]. 

All in all, neural networks have some particular 
difficulties in defining the network architecture and structure 
as well as training algorithms. It is not a priori obvious what 
size of the network is the best. Small networks generalize 
properly, however, they might not be able to fully learn the 
data. On the other hand, the large ones learn slowly and 
prone to be so sensitive to the initial condition and learning 
parameters [17]. 

The main purpose of the present work is determining the 
optimum number of hidden layer nodes in the feed forward 
neural network, using pruning algorithms to eventually 
improve the accuracy of the prediction. The PSSM profiles 
of the RS126 dataset are applied as the input to sequence-to-
structure network. The network with a larger size than that is 
required is initially trained. The optimum size of the hidden 
layer is then defined using two methods. In the first pruning 
method, the redundant nodes are removed based on the 
network training error. In the second method, the correlated 
neurons are unified using Sietsma and Dow approach. After 
this stage, the network output is fed the structure-to-structure 
network as proposed in the profile network from Heidelberg 
(PHD) method [15].  

The organization of the paper is as follows. In Section II, 
the structural change and development of the neural network 
is reviewed. The employed dataset, experimental 
preparation, and evaluation method are described in Section 
III. Section IV explains the proposed pruning algorithms for 
the neural network classifier architecture. The experimental 
results are discussed in Section V, and finally, the 
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conclusions are drawn in section VI.  

II. STRUCTURAL CHANGE AND DEVELOPMENT IN NEURAL 
NETWORKS 

In general, the number of hidden units, or equivalently 
weights, that are needed to produce a reasonable 
approximation to the data is not clear a priori. Guessing an 
appropriate number is the most usual answer but, of course, 
not necessarily the best. Another common solution is to try 
out several network sizes and select the most promising one 
[17]. Neither of these methods is very principled. 
Meanwhile, neurons meiosis, immigration, death and adhere 
may occur in developmental neurobiology that are known as 
progressive changes [18]. In this regard, the dynamical 
connectionist artificial neural networks are developed based 
on processor units and connections removing, pruning and 
growing algorithms [19]. In the growing networks such as 
the meiosis networks, generally, a very small size network is 
trained, and iteratively, the complementary units and weights 
are added. This is accomplished by using the neurons 
weights variances to create hidden nodes dynamically, the 
back propagated error to increase hidden neurons, and 
network training error to modify the neurons weights [17]. 

An alternative technique to the growing networks is to 
start with a relatively large network and then remove 
weights to fulfill optimal network architecture. Exploring the 
less important weights is a difficult issue for which several 
heuristic approaches have been proposed [17]-[19]. Among 
them, skeletonization pruning method nullifies every weight 
and examines the resulting changes in the network training 
error individually [19]. This technique stems from the 
observation of the functional importance variation of the 
units after training. The results are monitored during the 
removal of the unit and its connections to explore whether a 
unit is functionally important. The relevance of a unit can 
then be defined in terms of the difference in the network 
training error. If the error discrepancy is larger than a priori 
set threshold then the unit functionality is useful and it is 
retained, otherwise, the effect of unit is negligible and it is 
removed. 

Considering the omission types of redundant nodes, the 
pruning methods are categorized into two types. Those 
which evaluate the sensibility of the error function to 
truncate the elements with less influence are known as the 
methods of sensibility. They modify the network once the 
training is done, the sensibility is calculated, and based on 
the value of the weights, the redundant nodes are cut away. 
The other pruning type performs the removing after adding a 
penalization term to minimize the function. This 
accommodates the network for choosing efficient solutions 
[17]. 

In addition to the mentioned processes, there exist 
techniques with particular methodologies. Sietsma and Dow 
[20] described an interactive method on which a designer 
inspects a trained network and decides which nodes to 
eliminate. The idea is based on removing the 

noncontributing nodes. If the output of a unit is 
approximately constant for the training patterns, then it is 
acting like an additional bias to all nodes. As a result, 
unification of nodes with highly correlated outputs during 
the training can serve as an alternative approach to prune the 
network. In this paper, the Sietsma removing algorithm is 
applied to reduce the network size as well as, skeletonization 
pruning method. 

III. DATA PREPARATION 

A. Secondary Structure Assignment 
The assignment of the protein secondary structure can be 

performed by three programs, namely the DSSP, STRIDE 
and DEFINE [21]. In this work, the define secondary 
structure of proteins (DSSP) assignment is adopted. 
According to this method the secondary structure of each 
residue classifies into 8 classes, namely H (α-helix), G (310-
helix), I (π-helix), B (isolated β-bridge), E (extended β-
strand), T (hydrogen bonded turn), S (bend), and C (not 
HBEGIT or S). The prediction methods are normally 
assessed for only 3 standard classes associated with α-helix 
(H), β-strands (E), and coils (C). Hence, the 8 classes are 
reduced to 3 [1]. There are four main methods to perform the 
reduction process: 
H {H, G}, E {E}, C {S, T, B, I, C} (I) 
H {H}, E {E}, C {G, S, T, B, I, C} (II) 
H {H, G, I}, E {E, B}, C {S, T, C} (III) 
H {H, G}, E {E, B}, C {S, T, I, C} (IV) 
Here, the method (IV), so-called the critical assessment of 
techniques for protein structure prediction (CASP), is 
adapted. It is considered as the strictest criterion and usually 
results in lower prediction accuracy than the other methods 
[21]. In order to encode the secondary structure classes for 
the classifier, the three units are assumed as binary values 
according to the following allocation  
 
H=[1,0,0]   E=[0,1,0]   C=[0,0,1]. 
 

B. RS126 Dataset 
The RS126 main dataset are applied to develop and test 

the predictor. It contains 126 non-homologous globular 
proteins according to the definition given by Rost and 
Sandar [15]. They applied percentage identity to measure the 
homology and defined non-homologous to signify that no 
two proteins in the dataset share more than 25% sequence 
identity over a length of more than 80% residues [15]. 
Numerous protein secondary structure prediction methods 
are being developed and tested on the RS126 dataset. The 
dataset comprises 24395 amino acids with secondary 
structure extent 32% α–helix, 21% β–strand and 47% coil. 

 

C. Evaluation Method 
With seven-fold cross-validation approximately 1/7 of the 

proteins in the dataset are left out for testing and the rest is 



  

used for training. This procedure is fulfilled cyclically seven 
times and the prediction result is a mean over seven different 
testing sets. In order to avoid the selection of extremely 
biased partitions that may give inauthentic prediction 
accuracy, the RS126 set is partitioned into seven subsets 
with equal size and similar content from each type of the 
secondary structures. Several different random partitions of 
the RS126 set are tested. The partition that distributes the 
three secondary structure types (H, E, and C) most evenly is 
selected finally. 

The percentage of residues predicted correctly in the 
conformational state k is given by 
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where k represents H, E and C regions in the native protein 
structure as determined experimentally, nk is the number of 
correctly predicted residues in the state k, and Nk is the total 
number of residues in the conformational state k in the test 
set. The percentage of the total residues correctly identified 
in the three classes is obtained by 
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where NT is the total number of residues in the proteins set 
and NH, NE, NC indicate the number of correctly classified 
amino acids belonging to the corresponding classes. 

 

D. Position-Specific Score Matrices (PSSM) 
Prediction based on a multiple alignment profile of 

protein sequences instead of a single sequence has long been 
recognized as a way to improve the prediction accuracy [15], 
[16]. There are two kinds of alignment profiles: the multiple 
sequence alignment profiles (MSAP) and the position-
specific score matrices (PSSM). In this paper, the PSSM on 
the RS126 set are utilized. The profile matrix has 20×L 
elements, where L is the length of the target sequence, and 
each element represents the occurrence frequencies of the i-
th amino acid in the j-th position, as expounded in [16]. The 
elements are typically in the range ± 7 and normalized 
between 0 and 1 using the standard logistic function 
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where x is the raw profile matrix value. 

IV. CLASSIFIER ARCHITECTURE 

A. Sequence-to-Structure Network 
The supervised classifier is based on a multilayer 

perceptron (MLP) network with only one hidden layer. It 
associates the primary structure with the secondary one, only 

considering a PSSM profile of single amino acid and its 
neighbors. Through the interactions between the constituent 
amino acids along a protein chain, the residue neighbors 
affect the relevant secondary structure. Thus, using the 
sliding window on the amino acids sequence and feeding the 
classifier are the most common solution to improve the 
prediction accuracy. There are no specific rules to specify 
the length of the window. It has been shown the best choice 
can be found among the odd numbers between 9 and 51 [5]. 

After selecting the neighboring amino acids, the pattern 
vector for the i-th residue is built. It is necessary to identify 
the rows of the PSSM matrix of neighboring amino acids 
and subsequently to lexicographically concatenate them in 
the i-th residue pattern vector. According to the RS126 
dataset the optimum length of window is 13 residues [15], 
[22]. Hence, the network training parameters are adjusted 
similar to Rost and Sander method [15]. As a result, the 
pattern vector is made up of NX =13×20=260 elements. 
Indeed, 13 rows of the PSSM matrix containing 20 elements 
are concatenated. The window slides along the protein chain 
and the patterns are computed for all of the amino acids of 
the sequence. Null rows are considered for the PSSM as long 
as the window is on the head or end of the chain. 

The network output vector representing the 3 secondary 
structure classes is obtained by 
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where X is the network input vector with length NX and 

hj
YXW −  denotes the weight associated with the j-th unit of X 

to the h-th unit of the hidden layer vector Y with length NY. 
The coefficient ih

ZYW −  is the connection weight between the 
h-th unit of hidden layer and the i-th unit of the network 
output. The neurons activation function f is logistic. Bias 
weights 1θ  and 2θ  are added to the input and hidden layers, 
respectively. The desired output is the central residue, 
namely the seventh entry of the input window, class. The 
secondary structure at position t is predicted to be Ci if 

j
t

i
t ZZ >  for all ij ≠ , where },,{ CEHCi ∈ .  
The number of neurons of the hidden layer is an important 

issue in gaining the optimum performance of the classifier. 
A systematic variation of the hidden nodes number has not 
yet been studied. According to the pervious studies, some 
authors tried out several network sizes and selected the size 
that gives the desired accuracy [23]. The number of 
exploited hidden nodes is varying in the range of 30 to 80 
[15], [22], [23]. Thus, an oversized network with NY =100 
nodes in the hidden layer is trained on the seven training 
groups of the dataset.  

The back propagation algorithm is applied to train the 
fully-connected feed-forward network, using both a constant 
learning rate and a momentum term. Training is terminated 
when either the error reduces to less than a priori set 
threshold or the training epochs reach an upper limit. The 



  

threshold value is set 0.1 and the maximum number of 
training epochs is adjusted to 2000 epochs. At each training 
epoch, the samples of the training set are fed in randomly 
changing orders. The training error for the first group of the 
dataset is illustrated in Fig. 1. Specifically, the following 
settings are used: 
• A constant learning rate is 0.05. 
• A momentum parameter is adjusted 0.5.  
• The activation functions are logistic function sigmoid in 

[0, 1]. 
• Every parameter is initialized with small random values 

within [-0.1, 0.1] interval. 
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Fig. 1.  Training and test errors of the oversized network for the first group 
of the input data (A). The error on the test set starts increasing after some 
epochs since the network is overtrained. 

 

B. Pruning Algorithms 
The protein secondary structure prediction is greatly prone 

to overtraining. Fig. 1 demonstrates the overtraining during 
the oversized network training. In the early stage of training 
the error on both training and test sets tends to decrease as 
the network is able to generalize from the examples to the 
underlying classes. However, the error on the test set begins 
to increase after some epochs, whereas the network starts to 
adapt artifacts in the training data. The hidden layer size in 
the MLP networks plays an important role in preventing the 
overtraining. Hence, determining the number of hidden 
nodes with the systematic approaches is proposed.  

The two pruning methods are applied to accomplish the 
best size of the network. The node removing in the first 
pruning algorithm (skeletonization) is based on the network 
relevance to the hidden neurons. The effect of any node on 
the training error is considered via evaluation of the trained 
network with elimination of the relevant node. The total 
error on the training data is calculated by 
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where Zt is the actual output of the i-th residue in training 
data, Dt is the target output vector (the associated class of 
Zt), and P is the number of training patterns. The node is 

retained if the error increases more than the set threshold 
0.01. As a result, the weights with less relevance are 
truncated and the hidden layer is modified. The algorithms 
iterates 100 times for inspecting all of the hidden nodes. 

In the second pruning technique, the noncontributing 
nodes in hidden layer are removed according to Sietsma and 
Dow method [20]. The unit with approximately constant 
output or a mimic output of another unit across the training 
set can be omitted. If the output of a unit is constant, then it 
is acting like an additional bias. Therefore, the average 
output of the unit is added to the bias node after removing. 
The bias weight modification moves the hyper planes place 
in the feature space and changes the classification result. 
Whenever, this approach is applied to prune the network, the 
classification improvement is insignificant. Thus, the 
alternative method that is unification of units with identical 
outputs is employed.  

Two nodes are combined whenever the distance between 
the corresponding outputs is less than the constant threshold 
which is assigned 0.05. The hidden layer establishes two 
connections with the input layer (WX-Y) as well as the output 
layer (WY-Z). Thus, the associated neurons of the 
approximated analogous nodes are correlated and considered 
as a single neuron during the unification. The final weight of 
obtained neuron is substituted by average of the weights. 
The examination is repeated during the pruning to gain 
reduction in the network size. 

The other main advantage of the neural network pruning 
is defining the optimum size of the network. Hence, the 
average of obtained hidden layer sizes on the 7 groups of 
training data from the two employed pruning methods are 
applied for defining the proper classifiers. The secondary 
structure prediction is then tested using two fully-connected 
feed-forward neural networks with two differences sizes. 
The sliding window with length of 13 on amino acids 
sequences is fed into the networks. The networks training 
parameters such as constant learning rate and momentum 
term are adjusted similar to the prior networks. At each 
training epoch, the training patterns are fed into the network 
in randomly changing orders and the training is terminated 
when either the training epochs reach 1000 or the error 
reduces to less than 0.2.  

 

C. Structure-to-Structure Network 
The first network regards the dependency of a residue and 

its secondary structure using ±6 residue neighbors of central 
amino acid in the 13 unit wide window. The consecutive 
secondary structures are correlated, e.g., α-helix consisting 
of at least 3 consecutive patterns [1]. According to the long 
range correlation between the types of secondary structures 
along the protein chain, a second level network is exploited 
to take into account the neighboring effects. The input of the 
networks is fed using a sliding window with length 17. In 
other words, the network acts as a filter that processes the 
output of the first networks to enhance the prediction 
accuracy [15]. Therefore, the one hidden layer network is 



  

trained by the actual first network output Zt in (4), together 
with the 8 neighboring vectors of Zt as the input and Dt as 
the desired output. The constant learning rate and 
momentum term are similar to those of the first network. 
The network is trained using back propagation algorithm. 
The training is terminated at the 1000th epoch. Fig. 2 
presents the training error of the network for the first group 
of the training dataset when the network is fed by the output 
of the oversized network. 
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Fig. 2.  Training error of the structure-to-structure network for the first 
group of the input data (A). 

V. RESULTS AND DISCUSSION 
The secondary structures of the RS126 dataset are 

predicted through 6 diverse neural networks using 7-fold 
cross-validation. The one hidden layer feed-forward neural 
network with 100 nodes in the hidden layer is considered as 
the oversized network (OS-Net). The network maps the 
amino acids sequences to the secondary structures using 
back-propagation training algorithms. Structure-to-structure 
network (SS-Net) is applied to filter the output of the first 
networks. The accuracy of prediction for three secondary 
structure classes (QH, QE, QC) and the total accuracy (Q3), 
referring to (1) and (2), are given in Table I. As expected, 
the accuracy of prediction indicated by Q3 improves using 
the SS-Net by considering the interaction between the 
secondary structures. Particularly, the prediction accuracy of 
the β-strands type (QE) increases considerably, since the long 
range interaction between secondary structures is more 
effective in β-strands than α-helix and coils. 

 
TABLE I 

PREDICTION ACCURACY OF THE OVERSIZED AND STRUCTURE-TO-
STRUCTURE NET 

Type of Net QH QE QC Q3 

OS-Net 74.58 65.51 72.64 71.09 

SS-Net 74.83 66.53 72.76 71.82 

 
Regarding the effect of the each node on the training 

error, the OS-Net is pruned with skeletonization pruning 
method and the units with insignificant influence are 
removed. The algorithm is performed on all networks trained 
by the 7 groups of the dataset {A, B, C, D, E, F, G}. The 

achieved size of the hidden layer for the data groups and the 
prediction accuracy after removing are presented in Table II. 
The OS-Net is also pruned using the second pruning 
algorithm based on the Sietsma and Dow method. The 
correlated weights are adhered and the optimum size of the 
networks is attained. The numbers of hidden nodes for all 
training datasets and the relevant Q3 have been tabulated in 
Table III.  

 
TABLE II 

FIRST PRUNING METHOD FOR THE 7 GROUPS OF THE DATASET 
Data 

Group A B C D E F G 

Num. of 
Nodes  78 85 83 79 85 77 81 

Q3 69.87 78.57 78.06 72.38 77.37 73.93 69.94 

 
TABLE III 

SECOND PRUNING METHOD FOR THE 7 GROUPS OF THE DATASET 
Data 

Group A B C D E F G 

Num. of 
Nodes  70 77 74 71 75 71 73 

Q3        68.93 78.13 78.67 71.94 77.86 73.26 69.2 

 
During network training, the weights are modified based 

on the back-propagation rule in order to decrease the error 
on training patterns. When the network is tested on different 
dataset, it generalizes the training data to the test data. The 
network with excessive nodes in hidden layer may learn 
more details from the training data and the training error 
decreases sufficiently, however, the test error starts 
increasing after some training epochs. The network is not 
able to generalize and the overtraining is accrued. However, 
by pruning the hidden layer the overtraining is avoided. The 
reported prediction accuracies in Table IV demonstrate the 
consequence of removing less important nodes in increasing 
the accuracy. 

 
TABLE IV 

PREDICTION ACCURACY OBTAINED USING THE PRUNING ALGORITHMS 

 Pruning Ave. 
Nodes QH QE QC Q3  Q3   

SS-Net 
Method1 81 75.89 68.75 73.71 74.3 75.24 

Method2 73 75.52 68.89 73.1 73.99 74.76 

 
The SS-Net improves the accuracy whenever it is applied 

after two pruning methods. Using the first pruning method 
the highest Q3 = 74.3% and 75.24% are attained respectively 
from the pruned sequence-to-structure and the structure-to-
structure networks as shown in Fig. 3. 

The optimum size of the hidden layer is defined by 
averaging on the obtained number of hidden nodes for the 7 
groups of the dataset. Finally, 81 and 73 hidden layer nodes 
are obtained respectively for the first and the second pruning 
methods. The two feed-forward neural networks with one 
hidden layer are applied for classification. The first network 
(Net1) with 81 and the second network (Net2) with 73 nodes 
in the hidden layer are trained by the 7 groups of the dataset. 
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Fig. 3.  The prediction accuracy of the six proposed networks; the structure-
to-structure network for the first pruning method achieves the highest 
classification performance. 

 
The outputs of the networks are then optimized using the 

SS-Net with the prior settings. The prediction accuracy of 
three secondary structure types (QH, QE, QC) and the total 
accuracy (Q3) are given in Table V. Considering the final 
accuracy of the designed network (75.38%) the results are 
comparable with Q3 of the well-known predictors such as 
those reported by Jpred (74.8%) [24] and SSpro (78.1%) 
[25]. 

 
TABLE V 

PREDICTION ACCURACY OF USING THE NETWORKS WITH 73 AND 81 NODES 
IN HIDDEN LAYER AND THE STRUCTURE-TO-STRUCTURE NET 

Type of Net QH QE QC Q3 

Net1 71.04 72.84 78.15 74.25 

SS-Net1 71.93 74.47 78.82 75.38 

Net2 71.19 72.76 77.68 73.84 

SS-Net2 72.23 74.19 78.39 75.06 

 

VI. CONCLUSION 
Pruning algorithms were proposed to prevent the 

overtraining problem in the protein secondary structure 
classification by the neural networks approach. Using the 
pruning methods, the optimum size of the neural network is 
defined in a systematic way. The applied removing methods, 
particularly the skeletonization method based on the effect 
of every node on the training error, improve the classifier 
performance in practice. The accuracy of prediction is 
increased using the structure-to-structure network. The 
experimental results reveal that the prediction accuracy 
reaches to a level comparable with the other methods. 
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