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Abstract— With the increasing number of protein structures
in Protein Data Bank(PDB) efficient and accurate algorithms
similar to local alignment of sequences (BLAST) are neces-
sary to classify newly discovered structures into appropriate
super families and also to identify structural motifs. Several
structural alignment algorithms have been proposed in the
literature (DALI, CE, PSIST, TM-Align, etc.). Most of these
algorithms perform a global structural alignment between
pairs of structures and provide normalized scores which can
help in classification of the structures. However they don’t
address the problem of identification of structural motifs. In
this paper we present efficient algorithms for local structural
alignment based on a new idea of using Variable Length
Alignment Fragment Pairs (VLAFPs) in contrast to Constant
Length Alignment Fragment Pairs (CLAFPs) used by all the
existing algorithms such as CE, TM-Align, DALI and PSIST.
Our VLAFP algorithm is independent of the scoring schemes
used to score the CLAFPs and can work with any scoring
scheme like the TM-Score. We also introduce two new scoring
schemes based on center of gravity of the atoms. Experiment
results indicate that using VLAFPs can improve both the
quality of local structural alignment and also accuracy of the
classification. Using our VLAFP algorithm together with our
new scoring schemes we could acheive an average super family
accuracy of 84% and a class accuracy of 87% on structures
with very less sequence homology.

I. INTRODUCTION

A protein is characterized by both the amino-acid sequence

and the 3-D structure of the underlying atoms. Although

it is a common practice of the biologists to use sequence

similarity among different proteins to identify any conserved

regions during the evolution, it has been proven that the 3-D

structures of the proteins are conserved more fundamentally

than the sequence during the evolution. Even though two

given proteins may not exhibit much of a sequence homology

the structural similarity between them might account for

similar properties. Proteins with a similar structure might

have similar properties [15]. This is the motivation behind

the study of the structural alignment problem in a manner

similar to that of the sequence alignment problem [5].

Structural Alignment problem has received immense atten-

tion in the past few decades especially with the increasing

number of tertiary structures available in the Protein Data

Bank (PDB) [1]. Given two proteins P1 and P2, the problem

of structural alignment is to find a highly similar substructure
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Ssub between P1 and P2. The number of known protein

structures has drastically increased from 10,000 in year

1999 to 45,000 in year 2007. This makes manual structural

alignment almost impossible and hence we need algorithms

that can yield almost similar accuracy as manual alignment

and are very fast.

Almost all of the existing algorithms perform structural

alignment based on the backbone of the protein. For any two

given proteins these algorithms try to find the correspondence

between the Cα atoms on the backbone along with the

transformation matrices R (rotational) and T (translational)

that will transform one protein to the other minimizing the

inter-atomic distance between the corresponding Cα atoms

(see e.g., [3], [9], [7], [10], and [8]). All these algorithms

share a common flavor which consists of two major steps.

The first step consists of identifying small structurally similar

regions between the two protein back bones. These are

known as Alignment Fragment Pairs (AFPs). In the next

step a subset of these AFPs is identified which essentially

forms the alignment between the two structures. In all these

algorithms the AFPs are identified by sliding a window of

constant size along the backbone of the protein. However

we feel that using a constant size window in identifying

the AFPs is too restrictive especially when we want to

improve the accuracy of structural classification. In this

paper we add an extra degree of freedom in the form of

Variable Length Alignment Fragment Pairs (VLAFPs) and

present a generalized algorithmic framework for structral

alignment. Our framework is independent of the scoring

schemes used to score the AFP’s. Another important fact

is that all the existing algorithms only consider the global

structural alignment between the two proteins P1 and P2

rather than the local alignment. Local structural alignment

can be very effective in the identification of structural motifs.

Our contributions in this paper are three fold. Firstly

we introduce a new idea of using VLAFPs in structural

alignment; secondly we provide new scoring schemes based

on Center of Gravity to identify structurally similar AFPs;

and finally we address the problem of identifying structural

motifs with our algorithm.

The organization of the paper is as follows. In Sec-

tion II we define the Local structural alignment problem.

In Section III we introduce our VLAFP framework. In

Section IV we show how we can use Center of Gravity

based scores to identify highly structurally similar AFPs.

Section VI describes how we can classify the proteins based

on the VLAFP framework and the Center of Gravity scoring

scheme. Section V describes how the VLAFP framework can



aid in the identification of structural motifs.

II. PROBLEM DEFINITION OF LOCAL STRUCTURAL

ALIGNMENT

INPUT: Input are two protein structures P1 =
(a1,1, a1,2, a1,3, . . .) and P2 = (b1,1, b1,2, b1,3, . . .) where

ai,j represents the jth atom of the ith residue of P1 and

bp,q represents the qth atom in the pth residue of P2. In

fact, ai,j and bp,q have information about the location of the

corresponding atoms. For instance, ai,j = (Xj , Yj , Zj) and

bp,q = (Xq, Yq, Zq).

OUTPUT: Define the correspondence between P1 and P2

as C1,2 = ((ap,q, br,s), (am,n, bk,l), . . .), i.e., specify which

atom of P1 corresponds to which atom of P2. The local

structural alignment problem is to find a correspondence

(C1,2) between P1 and P2 along with a rotation matrix R

and a translation matrix T such that when we apply R and

T to one set of coordinates (ap,q, am,n, . . .) we end up with

the other set (br,s, bk,l, . . .). The optimization version of this

problem is to find a correspondence C1,2 such that |C1,2| is

maximal.

III. VARIABLE LENGTH ALIGNMENT FRAGMENT PAIR

(VLAFP) ALGORITHM

The existing algorithms for Structural Alignment share a

common flavor which consists of two major steps. The first

step consists of identifying small structurally similar regions

between the two protein back bones. These are known as

Alignment Fragment Pairs (AFPs) and in the next step a

subset of these AFP’s is identified. This subset forms the

alignment between the two structures. The following sections

will give a brief overview of these steps and the details about

our Variable Length Alignment Fragment Pair Algorithm.

A. Alignment Fragment Pairs

AFPs in the first step of the existing algorithms are

identified by sliding a window W of constant size along the

protein backbones. Let B1 = c1
α1c

1
α2 . . . c1

αn be the backbone

of protein P1 and similarly let B2 = c2
α1c

2
α2 . . . c2

αm be the

backbone of protein P2. The backbones B1 and B2 are now

transformed into two sequences W1 = w1
1w

1
2 . . . w1

n−k+1

and W2 = w2
1w

2
2 . . . w2

m−k+1 where k is the size of the

window W and w1
i = c1

αic
1
α(i+1) . . . c1

α(i+k−1), w2
j =

c2
αjc

2
α(j+1) . . . c2

α(j+k−1). The Alignment Fragment Pairs are

defined as AFP(i,j) = (w1
i , w2

j ) and each of these AFPs

is associated with a normalized cost function COST(i,j) ∈
[0, 1]. If COST(p,q) ≤ ǫ (for some appropriate threshold

value ǫ) then it indicates that the structure of the c − α

atoms in windows w1
p and w2

q have very similar structures.

In contrast if COST(p,q) > ǫ then the AFP at (p, q) is

not structurally similar. A careful analysis of the algorithms

CE [10], DALI [9], TM-Align [22] and PSIST [3] reveals that

these algorithms only differ on the cost functions associated

with the AFPs. For example DALI and CE use a pairwise

c − α distance matrix to compute COST(i,j). CE also

combines some extra statistical information into the cost

function. PSIST uses the bond angle information among

the c − α atoms within each window. TM-Align uses TM-

Score [21] as its cost function.

All the existing algorithms work with constant size AFPs.

Using constant size AFPs is too restrictive in the identifica-

tion of good local alignments among the backbones of the

proteins especially in the presence of noise in estimating the

coordinates of c−α atoms during X-Ray crystallography. For

example, consider an AFP at (i, j) of constant size k. Let

COST(p,q) > ǫ. The cost of the same AFP at (i, j) with a

different size k+γ may be under the threshold of ǫ. Another

good example for the need of VLAFPs is the presence of

variable length secondary structure elements which consists

of helices and sheets. An important fact to note is that these

secondary structure elements are not always of the same size

(in terms of the residues). It is possible that a helix structure

may consist of 8 residues in one structure and may consist of

12 residues in other structure. Therefore, the use of constant

size AFPs may not yield a good alignment. For example if

we assume that the size of any AFP is fixed to be 8 then a

helix structure of 12 residues could be matched only partially

either at the start of the helix or at the 4th position thus

making the local alignment only partial. However if we allow

the AFPs to take variable length such that 2 ≤ |W | ≤ 8
then we can clearly produce an alignment of size 4 + 8
and could match the 12 residue helix exactly. To address

such drawbacks with constant size AFPs, we present a much

general idea of Variable Length Alignment Fragment Pairs

(VLAFPs). The extra degree of freedom is added in the form

of an extra variable into the VLAFP cost function which is

defined as follows.

V COST (i, j, q) =







Cost of aligning a fragment of size ’q’

at position ’i’ in P1 and at

position ’j’ in P2

V COST (i, j, q) ∈ [0, 1] Normalized VLAFP Cost

k1 ≤ q ≤ k2 Range of the VLAFP variable ’q’

Our core non-iterative dynamic programming framework is

independent of any V COST function. In the later sections

we introduce a new V COST function based on Center of

Gravity.

B. Finding the optimal local alignments based on the VLAFP

Cost function

With the definition of the VLAFP cost function in the

previous section we now describe our dynamic programming

framework for finding the local structural alignments among

the structures. The aim of this dynamic programming formu-

lation is to find the longest contiguous sequence of VLAFPs

such that the cost of each VLAFP is under the threshold ǫ.

Details of the dynamic programming formulation follow. We

define the dynamic programming subproblem in the form of

V LCS. Variables i and j refer to the indices of the residues

in the protein backbones of corresponding proteins.

V LCS(i, j) =







Longest contiguous sequence of VLAFP’s

in the backbones of P1 and P2 ending at

the ith and jth residues, respectively



In our algorithm we need a two step initialization. Since the

minimum length of the VLAFP is k1, pairs of the kind (i, j)
with i < k1 and j < k1 are not of interest.

V LCS(i, j) = 0
1 ≤ (i, j) ≤ k1 − 1

In the second initialization step we consider the first k1

residues from protein P1 and check if we can align these

residues to any part of the protein P2 based on the cost

function V COST as follows. This initialization is similar to

the standard sequence alignment initialization.

V LCS(k1, j) =

{

k1 IF V COST (k1, j) ≤ ǫ

0 ELSE

1 ≤ j ≤ |P2|

The core dynamic programming computation is based on the

following equations.

QLCS(i, j, q) =























q + V LCS(i− q, j − q)
IF V COST (i, j, q) ≤ ǫ

0
ELSE

k1 + 1 ≤ i ≤ |P1|,
k1 + 1 ≤ j ≤ |P2|

V LCS(i, j) =

{

max {QLCS(i, j, q)}
k1 ≤ q ≤ k2

k1 + 1 ≤ i ≤ |P1|,
k1 ≤ j ≤ |P2|

Final Answer Required =







max {V LCS(i, j)}
1 ≤ i ≤ |P1|,
1 ≤ j ≤ |P2|

After the end of the computation we end up with the length

of the longest contiguous sequence of VLAFPs such that

the cost of each VLAFP is within a threshold ǫ. Along with

this we can also compute the exact position in P1 and P2

where this sequence starts. So our VLAFP framework has

two major steps to compute the local structural alignment as

follows.

• Compute the V COST (i, j, q) function on the back-

bones of the proteins.

• Compute local structural alignment, which is equivalent

to finding a contiguous sequence of VLAFPs in P1

and P2 such that the cost of each VLAFP is under a

threshold ǫ.

A pseudocode of the core dynamic programming

frame work is illustrated in Algorithm 1. A complete

implementation of this algorithm can be found at

http://trinity.engr.uconn.edu/˜vamsik/

VAFP_ALGO.

Clearly, V COST (i, j, q) should be such that it takes a

value close to 0 for highly structurally similar AFPs and a

value close to 1 for structurally dissimilar AFPs. In the next

sections we introduce a new V COST function based on the

Center of Gravity that has these desired properties.

Algorithm 1: Core VLAFP Algorithm to compute local

structural alignments

INPUT : VCOST,|P1|,|P2|
OUTPUT: Length of optimal local alignment and its

location

Initialize VLCS

MaxLen = 0
for i = k1 to |P1| do

for j = k1 to |P2| do
CurrentMax = 0
for q = k1 to k2 do

if V COST (i, j, q) ≤ ǫ then
if

V LCS(i− q, j − q) + q > CurrentMax

then
CurrentMax = V LCS(i−q, j−q)+q

end

end

end

V CLS(i, j) = CurrentMax

if CurrentMax > MaxLen then
MaxLen = CurrentMax

StartPosition1 = i− CurrentMax + 1
StartPosition2 = j − CurrentMax + 1

end

end

end

return (MaxLen,StartPosition1,StartPosition2)

IV. STRUCTURAL ALIGNMENT BASED ON CENTER OF

GRAVITY: SACG

One of the ideas that we propose in this paper is that

of using the sorted distances from the Center of Gravity to

identify AFPs. One of the advantages of using the Center

of Gravity is that we can perform structural alignment not

only at the c − α level but also including the side chains.

Our main goal is to use the algorithms in this section

to identify highly structurally similar AFPs and build a

V COST function and then apply the VLAFP algorithm to

compute the local structural alignment. Before presenting the

details, we provide a summary of how exactly the structure

of any protein is described in the PDB file format [1].

A. Description of protein structure in PDB format

The PDB file for a protein structure is a text description

of the 3D-coordinates of the atoms/residues in the protein.

The file consists of a linear list Lpdb of atoms that are a

part of the protein and the corresponding 3-D coordinates

of each atom. Lpdb = (a1,1, a1,2, a1,3, . . ., ai,j . . .), where

ai,j is the jth atom in residue i. It is noteworthy that the

list Lpdb is partially ordered with respect to the residue

numbers, i.e., ap,q < am,n ⇐⇒ (p < m). Although

there is an ordering among the residues, the atoms within

a reside may not follow any order. If L1
pdb and L2

pdb

are two PDB structure instances of the same protein, the

ordering of the atoms within each residue may be different



(though the residues themselves will be in the same order).

As an example the atoms in the 1st residue of L1
pdb

may be ordered as (a1,2, a1,1, a1,5, a1,4, a1,3, . . .) but the

atoms in the same residue of L2
pdb may be ordered as

(a1,5, a1,1, a1,2, a1,4, a1,3, . . .). This variation is mainly due

to different frames of reference during X-ray crystallogra-

phy. The variation of the ordering of the atoms within the

same residue makes structural alignment algorithms which

consider the sidechain conformations non-trivial. In the next

sections we will see how our algorithms overcome this or-

dering issue when side-chain conformations are considered.

B. Related work

The problem of checking if two point sets (in 2D or 3D)

are rigidly transformable from one to the other is a well

studied problem in Computational Geometry. This problem

is known as Geometric Congruence. Several algorithms for

exact geometric congruence were given in [16], [17], [18],

and [20]. All of these algorithms solve the exact geomet-

ric congruence in O(n log n) time. There is also a much

general version of the geometric congruence known as the

ǫ-congruence. In this version, we are required to determine

if two given point sets of the same cardinality are rigidly

transformable from one to the other within a tolerance of ǫ.

The ǫ-congruence problem can be solved in time O(n8) de-

terministically (see e.g., [18]). The problem of ǫ-congruence

is closely related to the substructure identification problem

but a run time of O(n8) may not be practical. In the

literature of structural alignment of proteins several iterative

dynamic programming based algorithms have been proposed

(see e.g., [8] and [19]). However there are several issues

on the convergence of these algorithms. In these algorithms

the correspondence between the atoms is changed in every

iteration and hence it is possible for these algorithms to never

converge to an optimal solution. In our algorithm we first

find the sub structures that are highly similar and we will

not change this correspondence throughout the algorithm and

finally use the VLAFP framework in Section III to find the

longest common substructure among the protein structures.

C. Center of Gravity based algorithm

If P1 and P2 are two given proteins with n residues each, a

simple algorithm to find the correspondence between P1 and

P2 will take O(n!) time. The key idea behind our structural

alignment algorithm based on Center of Gravity is based on

the following theorem.

Theorem 1: Given two 3-D pointsets S1 and S2 each of

size n, with S1 = {(x1
1, y

1
1, z

1
1), (x

1
2, y

1
2, z

1
2), . . .} and

S2 = {(x2
1, y

2
1, z

2
1), (x

2
2, y

2
2, z

2
2), . . .}, we can check if

S1 is a rigid transformation of S2 in O(n log n) time and

O(n) space.

This directly follows from the Atkinson’s algorithm (exact

geometric congruence) (see [16]). The proof is based on

a very simple fact that the relative position (from any of

the points in the point set) of the center of gravity of a

set of 3-D points remains unchanged when these 3-D points

are transformed by any rigid transformation. The Center of

Gravity (CG) for a 3-D point set is defined as follows.

S1 = {(x1, y1, z1), (x2, y2, z2), . . .};

XCG =

∑n

i=1 xi

n
;YCG =

∑n

i=1 yi

n
;ZCG =

∑n

i=1 zi

n
.

If the relative position of the CG with respect to any of

the points in the point set changes due to a transforma-

tion then the transformation is not rigid. We use this fact

and compute the Euclidean distance of each point from

(XCG, YCG, ZCG). Let this distance for the ith point be di
cg.

di
cg =

√

(XCG − xi)2 + (YCG − yi)2 + (ZCG − zi)2.

Once we compute di
cg we sort these distances and create a

distance vector V1
cg for the point set S1. Similarly we create

a vector V2
cg for S2 and compare if V1

cg and V2
cg are the

same. If the distance vectors are the same we find the convex

hulls of the point sets and check if the hulls are the same.

This can be done in O(n log n) time and hence the entire

algorithm runs in O(n log n) time.

Theorem1 readily yields an algorithm for structural align-

ment. Although in Theorem1 we mentioned that we also

need to find the convex hulls and check if the hull are same,

in practice just using the sorted distance vectors from the

center of gravity seems to be sufficient.

D. Extending Theorem 1 for atomic coordinates in protein

structure

Algorithm based on Theorem 1(see previous section) re-

turns true if there exists an exact rigid transformation (R, T )

which when applied to the point set S1 will give S2 or vice-

versa. But in the context of protein structures where there is

a considerable noise while measuring the coordinates during

X-Ray crystallography, exact rigid transformations may not

be meaningful. We need an algorithm that can take the

coordinates of the protein sub-structures and determine if one

sub-structure can be approximately transformed into another

sub-structure using some rigid transformation. Keeping this

in mind we extend the exact version of the algorithm based

on Theorem 1. We define weighted distance (Wi,j) between

two sorted vectors Vi and Vj (each of length n) as follows.

Wi,j =
n

∑

k=1

(n− k) ∗
√

(Vi[k]− Vj [k])2

We also define an approximation threshold ǫ, whose value

is proportional to n. The typical value of ǫ is 1.8 for

n = 20. We have determined the value of ǫ from several

experimental runs of our program. Algorithm 2 incorporates

these definitions and it can detect if two given atomic

coordinate sets (from protein structures) P1 and P2 can be

approximately transformed from one to the other, with an

error of ǫ. Algorithm 2 is much faster and simpler than the

O(n8) algorithm of [18]. As our experimental data indicate,

the accuracy of Algorithm 2 is very good. Algorithm 2 can

be very effective in checking if two sets of atoms have the

same structure but our main intention is to compute the local



structural alignment among the protein backbones. This is

where we seek the help of our VLAFP framework presented

in Section III. We use Algorithm 2 to build a cost function

V COST (i, j, q) and apply the VLAFP algorithm on top of

this cost function thus obtaining the required local structural

alignment. Section IV-E gives more details on building this

cost function.

Algorithm 2: algorithm to check if atomic coordinates

P1 and P2 are approximately transformable

INPUT : Pointsets P1 and P2; ǫ

OUTPUT: True if P1 can be transformed (approx) to

P2

(X1, Y 1, Z1) = COMPUTE CG(P1);

(X2, Y 2, Z2) = COMPUTE CG(P2);

for i← 1 to n do

V 1[i] =
√

(X1 − x1
i)2 + (Y 1 − y1

i)
2 + (Z1 − z1

i)2;

V 2[i] =
√

(X2 − x2
i)2 + (Y 2 − y2

i)
2 + (Z2 − z2

i)2;

end

SORT(V 1);

SORT(V 2);

W1,2 =
∑n

k=1(n− k) ∗
√

(V 1[k]− V 2[k])2 ;

if W1,2 ≤ ǫ then
return true;

else
return false;

end

E. Building VCOST(i,j,q) function based on Center of Grav-

ity

We define VCOST(i, j, q) for a fragment pair of length q

at indices i and j in the protein backbones of P1 and P2 as

follows. Let W1q
i = {a1

i , a
1
i+1, . . . , a

1
i+q−1} be the atoms in

the fragment corresponding to protein P1 at index i in the

backbone. Similarly we can define W2q
j corresponding to

protein P2. The pair (W1q
i ,W2q

j) is an AFP of size q. Let

(CG1x, CG1y, CG1z) be the center of gravity for the set

of atoms in W1q
i and (CG2x, CG2y, CG2z) be the center

of gravity for the set of atoms in W2q
j . The cost function

VCOST(i, j, q) is defined as follows.

d1
k = (x1

k−CG1x)2+(y1
k−CG1y)2+(z1

k−CG1z)
2, 1 ≤ k ≤ q

d2
k = (x2

k−CG1x)2+(y2
k−CG1y)2+(z2

k−CG1z)
2, 1 ≤ k ≤ q

V 1 = Sorted distance vector of d1
k, 1 ≤ k ≤ q

V 2 = Sorted distance vector of d2
k, 1 ≤ k ≤ q

DAFP (i, j, q) =

q
∑

k=1

(V 1[k]− V 2[k])2

V COST (i, j, q) =
DAFP (i, j, q)

√

DAFP (i, j, q)2 + q2

1C2N

1COT

Fig. 1. Local structural alignment between 1C2N and 1COT using our
SACG algorithm

1ITI

1HIJ

Fig. 2. Local structural alignment between 1HIJ and IITI using our SACG
algorithm

Once we have the normalized cost function VCOST we

can then apply the VLAFP dynamic programming frame-

work (see Algorithm 1) to compute the local structural

alignment. Figure 1 illustrates the outcome of the VLAFP

local alignment between 1C2N and 1COT pdb structures

based on the Center of Gravity VCOST function. Also

Figure 2 displays the local alignment between 1HIJ and IITI.

The local alignments are marked in red. We refer to the

combination of the Center of Gravity based VCOST function

with VLAFP framework as Structural Alignment based on

Center of Gravity (SACG).

V. USING ALGORITHM 2 TO FIND STRUCTURAL MOTIFS

Finding structural patterns among the protein structures

is of immense interest for biologists who often look for

structural patterns including the side-chain conformations

[14]. None of the existing algorithms addresses this issue of



2H4V 2NV5

1LAR1C86 2GJT

Fig. 3. Tyrosine phosphorylated substrates (XYXNX motifs) identifed by
Algorithm 2 in 1C86, 1LAR, 2H4V, 2GJT, and 2NV5

identifying structurally similar patterns including the side-

chain conformations. Biologists often want to search for a

part of the protein structure (sub-structure) in the existing

proteins in the PDB. Finding similar sub-structures including

the side chains is a much difficult problem because of the

ordering of the atoms on the side chains is not necessarily

fixed. The ordering of side chain atoms in the pdb file for

the same structure can vary from experiment to experiment.

Our algorithms to identify similar sub-structures can easily

address this ordering issue since we use the sorted distances

from the center of gravity as a signature to identify the sub-

structure. The problem with different ordering of the atoms

will not affect our algorithm. Algorithm 2 can be readily

used to identify structural motifs including the side chains.

Biologists can supply the list of 3D co-ordinates of the atoms

(in any order) to Algorithm 2. The algorithm then creates a

sorted distance vector (dsig) for that set of 3D co-ordinates

and search the entire PDB database to identify the regions

which have signatures similar to dsig . All the regions that

have a signature close to dsig can be potential structural

motifs. Figure 3 shows the real substructures (Tyrosine phos-

phorylated substrates [14]) found by Algorithm 2. We have

got these regions by taking a subset of atomic coordinates

from a known YXN motif and searched the entire PDB

database for regions having a signature similar to the atoms

in YXN motif and identified the regions in 1C86, 1LAR,

2H4V, 2GJT and 2NV5 as shown in Figure 3.

VI. USING SACG ALGORITHM FOR CLASSIFICATION OF

NEW PROTEIN STRUCTURES

An important problem in structural alignment is to ac-

curately predict protein structures from the PDB that are

close to a newly discovered protein structure Pnew. This

can be easily addressed by computing all the pairwise local

structural alignments between the new protein Pnew and

existing proteins in the PDB database, and ranking all of

the alignments according to length of the local structural

alignment and the normalized costs. We have used our

VLAFP framework to perform the local structural alignments

Algorithm Correct Correct Top-K Accuracy Accuracy
(SF) (Class) (SF) (Class)

PSIST 120 129 K=20 68.18% 73.29%

CG ALGO 148 153 K=20 84.09% 86.93%

TABLE I

ACCURACY COMPARISION BETWEEN PSIST AND SACG

and ranked the proteins based on length (number of residues)

and the cost(V COST ) of the aligment.

VII. CONCLUSION

In this paper we have introduced a new idea of using Vari-

able Length Alignment Fragment Pairs in performing local

structural alignment among the proteins. We also showed

how to use the VLAFP framework to classify proteins and

search for structural motifs. In addition, we have introduced

a new scoring function based on Center of Gravity. Experi-

mental results indicate that using the VLAFP framework can

produce better local structural alignments compared to using

constant size AFPs.

VIII. EXPERIMENTAL RESULTS

We provide two sets of experimental data. The first

set covers all the experimental data related to the clas-

sification accuracy of SACG Algorithm and the sec-

ond set contains the experimental data related to struc-

tural motif search. The algorithm was implemented in C

and the entire source code and all datasets/results can

be downloaded from http://trinity.engr.uconn.

edu/˜vamsik/VAFP_ALGO/. The program was run on a

1GB (RAM), 1.3GHZ intel processor linux machine.

IX. ACCURACY RESULTS

Our dataset is the same standard dataset used by PSIST [3]

and other algorithms like ProgRESS and geometric hashing.

Please see [3] for additional details of the dataset. The dataset

consisted of 181 superfamilies and each of the superfamilies

has atleast 10 protein structures. The proteins are chosen in

such a way that there is less than 30% of sequence homology

between any two proteins from the same superfamily. The

superfamilies are based on SCOP [2] classification. So our

database consists of around 2000 proteins. The query sample

is a sample of 176 proteins selected randomly from these

2000 proteins. PSIST used the same sample size. Once

the sample is selected we run our algorithm (SACG) and

PSIST and classify the results based on the most frequently

occuring superfamily and class in the top-20 ranked proteins.

The results indicate that our algorithm achieves an average

accuracy of 84.09% (super family) and 86.93 %(class). See

Table I for additional details. Table II shows the results of

the top ranked proteins for query protein 1c2n using our

algorithm.



Classfication Length cost pdb SF Class

*c* 44 24.128731 pdb1mbj- 46689 46456

*c* 34 21.989410 pdb2bby- 46785 46456

*c* 40 26.387238 pdb1jtb- 47699 46456

*c* 46 31.961258 pdb1hsn- 47095 46456

*c* 36 25.842737 pdb1nhm- 47095 46456

*c* 32 23.051079 pdb1mbe- 46689 46456

37 26.797998 pdb2cjo- 54292 53931

*c* 35 25.395412 pdb1uxd- 47413 46456

*c* 36 26.392666 pdb1aab- 47095 46456

*c* 39 28.690279 pdb1mbk- 46689 46456

40 29.537001 pdb1eot- 54117 53931

*c* 37 27.860340 pdb1etd- 46785 46456

*c* 46 35.429729 pdb1nhn- 47095 46456

47 36.750553 pdb1e09-A 55961 53931

*c* 47 38.046467 pdb2new- 48695 46456

45 36.703476 pdb1bt7- 50494 48724

*c* 50 41.156513 pdb1gjt-A 46997 46456

32 26.897558 pdb4ull- 50203 48724

*c* 37 31.491304 pdb1a2i- 48695 46456

*c* 47 40.159309 pdb1wjd-B 46919 46456

*c* 47 40.571198 pdb1wjd-A 46919 46456

+ve class classification (46456) occurs 16 times, FALSE sf classification

TABLE II

TOP SCORED PROTEINS QUERY 1C2N SF(46626) CL(46456) WITH SACG

Protein Region(start-end)

1LAR Atom 383 to 425

2GJT Atom 427 to 472

2NV5 Atom 430 to 470

2H4V Atom 440 to 486

TABLE III

REGIONS HAVING TYROSINE PHOSPHORYLATED SUBSTRATE FOUND BY

ALGORITHM 2

A. Experimental results in searching for structural motifs

Now we illustrate practical results in identifying a

functional structural motif (Tyrosine phosphorylated

substrate) in some of the PDB structures. We started with

1C86 that has a functional motif between atoms (348

and 392) (please refer to the PDB file of protein 1C86).

We make the atom list from 348 to 392 in 1C86 as S1

and apply our Algorithm 2. We found out that 1LAR,

2GJT, 2NV5 and 2H4V (see Table III) have highly similar

substructures (Tyrosine phosphorylated substrate) to the one

in 1C86 between atoms 348 and 392. Please see the table

below for the actual locations of this in the PDB files.

Please refer to Figure 3 for 3D-Visualization of these sub

structures. Also, more structurally similar regions to the

substructure in 1C86 in several PDB structures can be found

at http://www.engr.uconn.edu/˜vkk06001/

StructuralAlignment/results_1C86001.txt.

filter.0719.txt.
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