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Abstract— Information on secondary structures of amino acid
residues in proteins provides valuable clues for the prediction of
their 3-D structure and function. Although numerous computa-
tional techniques have been applied to predict protein secondary
structure (PSS), only limited studies have dealt with discovery
of logic rules underlying the prediction itself. Such rules
offer interesting links between the prediction model and the
underlying biology. In addition, they enhance interpretability
of PSS prediction by providing a degree of transparency to
the predicting model usually regarded as a black-box. In this
paper, we explore the generation and use of C4.5 decision trees
to extract relevant rules from PSS predictions modeled with
two-stage support vector machines (TS-SVM). Our approach
has produced sizable sets of comprehensible, and often in-
terpretable, rules underlying the PSS predictions. Moreover,
many of the rules seem to be strongly supported by biological
evidence. Further, our approach resulted in good prediction
accuracy, few and usually compact rules, and rules that are
generally of higher confidence levels than those generated by
other rule extraction techniques. The proposed rules were
derived and tested on the RS126 dataset of 126 nonhomologous
globular proteins.

I. INTRODUCTION

One of the major goals of bioinformatics is to predict
three-dimensional (3-D) structure of a protein from its amino
acid sequence. Information of a protein’s structure provides
valuable clues to the functions of a protein, vital for many as-
pects of living organism such as those of enzymes, hormones,
and structural material, etc. It also helps in designing of new
drugs for combating disease. Unfortunately, protein structure
prediction problem is a combinatorial optimization problem,
which so far has eluded an effective solution because of the
exponential number of potential solutions. One of the current
approaches is to first predict protein secondary structure
(PSS) assuming a linear representation of the full knowledge
of the 3-D structure, and the use of it to predict the 3-D
structure [1]. The goal of secondary structure prediction is
to assign a pattern of residues in amino acid sequences to
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a class of protein secondary structure elements; often as an
α-helix (α), β-strand (β) or coil (ζ, the remaining type).

Many computational techniques have been proposed in the
literature to solve the PSS prediction problem. The statistical
methods are mostly based on the likelihood of each amino
acid being one of three types of secondary structures [2],
[3]. Neural networks use residues in a local neighborhood
as inputs and find an arbitrary non-linear mapping [5-8].
The Bayesian approach provides a framework to account
for non-local interactions among amino acid residues [4],
where the inferences are based on the generalized probability
distributions incorporating prior probabilities of segments
of secondary structure elements. The consensus approaches
combine different classifiers in parallel to achieve a single
superior predictor [9], [10]. Cuff and Barton employed a
majority voting scheme to combine predictions from different
techniques [9]. More complex approaches for combining
different methods based on neural networks and linear dis-
crimination [10] have also been studied. Support Vector
Machines (SVM) have been applied to PSS prediction, in
combination with several binary classifiers [11], [12].

The accuracy of the single stage approaches to PSS
prediction is insufficient. Rost and Sander proposed the PHD
approach using Multi-Layer Perceptrons (MLP) in cascade,
with the second stage MLP improved the accuracy of the
prediction by capturing the contextual relations among the
secondary structures from the output of the first stage [5].
We proposed a two-stage SVM (TS-SVM) for the prediction
of PSS [13], of relative solvent accessibility [14], and of
accessible surface area of amino acids [15], which receives
inputs from PSI-BLAST profiles. These techniques are able
to incorporate useful information from multiple sequence
alignments or PSI-BLAST profiles and contextual informa-
tion among secondary structures in the prediction scheme.

Despite the success of many computational approaches,
not much research has been done to find what patterns of
amino acid lead to the prediction of PSS. Recently, Heet
al. proposed a rule-extraction method for PSS prediction by
combining SVM and decision trees [16]. The method uses
one-stage of binary SVM, which is unable to capture contex-
tual relationships among the secondary structures and cannot
assign directly a pattern of amino acid sequences to a class of
protein secondary structure outputs with sufficient accuracy.
To alleviate this shortcoming, we propose combining the PSS
predictions from the two-stage SVM (TS-SVM) with C4.5
decision trees to extract useful rules for PSS prediction. This
not only increases the accuracy of prediction by decision
trees or SVM followed by decision trees, but it also renders



a set of rules of PSS prediction, which are more confident and
more evident biologically as compared to rules reported so
far. These rules describe amino acid patterns that are likely to
produce specific secondary structures in a particular context.

The input to the TS-SVM is based on the position-specific
scoring matrices generated by PSI-BLAST profiles of the
input amino acid sequence. We use the output of TS-SVM
to generate rules for PSS prediction by C4.5 decision trees.
We extracted two sets of rules for PSS prediction, based on
whether the prediction is purely on amino acid patterns, or
uses structural types of residues in the vicinity of predicted
output. Furthermore, the rules extracted by our method were
more confident and supported by evidences from biological
literature than any rules reported so far. Our method resulted
in an improvement of 2.5% as compared to the best results on
the RS126 dataset of 126 nonhomologous globular proteins
[5], achieved previously by a rule extraction method.

II. M ETHODS

A. Two-stage SVM

Let r = (r1, r2, . . . , rn) denote the given amino acid
sequence whereri ∈ ΩR andΩR is the set of 20 amino acid
residues, andt = (t1, t2, . . . tn) denote the corresponding
secondary structure sequence whereti ∈ ΩT and the set of
secondary structures,ΩT = {α, β, ζ}; n is the length of the
sequence. The prediction of PSS sequence is the problem
of finding the optimal mapping from the space ofΩR to
the space ofΩT . Let vi be the 21-dimensional feature
vector representing the residueri where 20 units are the
values from raw matrices of PSI-BLAST profiles ranging
from [0, 1] and the remaining unit is used for padding to
indicate an overlapping end of the sequence [8]. Letri =
(vi−h1

, . . . ,vi, . . . ,vi+h1
) be the input pattern to the multi-

class SVM at sitei of the sequence whereh1 denotes the
width of a symmetric neighbourhood window of residues on
one side. TS-SVM uses two multi-class SVMs in cascade for
the prediction of protein features from amino acid sequences
[13-15]. We use a multi-class SVM proposed by Crammer
and Singer for both stages [17].

The first-stage constructs three discriminant functions for
three secondary structures by solving the single optimization
problem:
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The above optimization is simplified by solving the
following quadratic programming problem [17]:
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whereK1(ri, rj) = φ1(ri)φ1(rj) denotes the kernel function
andwk

1 =
∑N

j=1 αk
j φ1(rj). The input vectors, derived from

a window of2h1 +1 amino acid residues, are transformed to
a higher dimensional space via the kernel functionK1. Once
the optimal parametersαk

j are obtained, the discriminant
function of structurek, fk

1 for an input vectorri is given
by

fk
1 (ri) =

N
∑

j=1

αk
jK1(ri, rj) = wk

1φ1(ri). (3)

The second stage uses another SVM to predict PSS from
the output of the first stage SVM to enhance prediction accu-
racy by capturing the contextual dependences of secondary
structures, for example,β-strands span over at least three
residues andα-helices composed of at least four residues
[5], [13].

The input to the second SVM at sitei is obtained from a
neighbourhood,d1

i = (d1k
i−h2

, . . . , d1k
i , . . . , d1k

i+h2
: k ∈ ΩT )

where d1k
i = 1/(1 + e−fk

1
(ri)) and h2 is the size of the

neighbourhood on one side. The logistic sigmoid function
is selected to normalize the inputs to the second stage to
[0,1]. The input patterns to the second stage are converted
to a higher dimensional space by using a mappingφ2 and
a kernel function:K2(d

1
i ,d

1
j) = φ2(d

1
i )φ2(d

1
j ). The outputs

in the higher dimensional space are linearly combined by
a weight vectorwk

2 to obtain the final prediction. The
vector wk

2 is obtained by solving the following convex
quadratic programming problem, over all secondary structure
sequences predicted by the first stage in the training stage
[17]. The secondary structural typêti at site i of input
sequence is estimated by

t̂i = arg max
k∈ΩT

fk
2 (d1

i ) (4)

wherefk
2 (d1

i ) = wk
2φ2(d

1
i ) is the discriminant function at

the second stage given by as in Eq. (3).

B. Decision Trees

SVMs perform well compared to other statistical or
machine learning techniques in predicting protein features
[15], [16] because of their generalization capabilities. Nev-
ertheless, SVMs yield a black box model and provide no
biologically meaningful prediction rules [16]. Decision trees,
on the other hand, are capable of explicitly describing the
nature of prediction since they capture rules as prevailing
regularities governing the prediction process. Prediction rules
offer useful guidance for wet-lab experiments and a basis



for advanced inference of biological features correlated to
specific structures.

Decision tree learning provides a means of approximat-
ing discrete-valued target functions, in which the learned
function is represented by a decision tree. In order to
improve human comprehensibility, learned decision trees
are re-represented as sets of if-then rules. We use C4.5
decision trees at the output of TS-SVM to generate rules
for PSS prediction. C4.5 was chosen because it has shown
to give more accurate rules in many applications including
bioinformatics problems, for example generating automatic
rules for protein annotation, mining protein sequences in
SWISS-PROT, and PSS prediction [16]. It uses the gain
ratio criterion based on the information theory to select the
attribute at the root of the tree and produces suboptimal trees
by learning heuristically from input [18]. The important rules
are generated by first creating a decision tree on a training
set, and then pruning the tree by replacing a whole of subtree
with a leaf node if a decision rule establishes a greater
expected error rate in the subtree than that in the single leaf.
Rule sets are then derived from writing a rule for each path
in the decision tree from the root to a leaf. The leaf-hand
side is easily built from the label of the nodes and the labels
of the arcs.

Let the training set of exemplars for C4.5 decision tree be
Γ2

train = {(aj , tj) : j = 1, . . . , N} where the input at sitej
is aj = (d2k

j−h2
, . . . , d2k

j+h2
,vj−h1

, . . . ,vj+h1
) and tj is the

desired secondary structure whered2k
j = 1/(1 + e−fk

2
(d1

j)).
The rules are then tested with the same data set for evaluation
of the performance of the algorithm.

III. E XPERIMENTS AND RESULTS

The present approach was implemented using position-
specific scoring matrices generated by PSI-BLAST as inputs
and tested on benchmark datasets with seven-fold cross-
validation. The results were compared with other prediction
methods and with other results extracting amino acid patterns
leading to the prediction.

A. Dataset

The set of 126 nonhomologous globular protein chains,
used in the experiment of Rost and Sander [5] and referred
to as the RS126 set, was used to evaluate the accuracy
of the predictors. The dataset contained 23349 residues
with 32% α-helix, 23% β-strand, and 45% coil. Many
current generation secondary structure prediction methods
have been developed and tested on this dataset. The RS126
set is available athttp://www.compbio.dundee.ac.uk/∼www-
jpred/data/pred res/126 set.html.

B. Implementation

The multi-class SVM method was implemented using
BSVM library which is known to show fast convergence
for large optimization problems [20]. The Gaussian kernel
K(x,y) = e−σ‖x−y‖2

showed superior performance over
the linear and polynomial kernels for predicting protein
secondary structure [13], relative solvent accessibility[14],

TABLE I

GENERATED RULES AND ACCURACIES OF DIFFERENT TYPE FOR

RULE-BASED CLASSIFIERS ONRS126DATASET.

Validation C4.5 SVM + C4.5 TS-SVM + C4.5

Run Accuracy Rules Accuracy Rules Accuracy Rules

1 56.6 148 72.4 91 74.4 45

2 59.0 159 75.2 79 76.9 41

3 58.4 169 74.2 79 74.6 61

4 57.5 166 72.2 75 73.3 49

5 58.9 163 73.1 78 73.7 45

6 61.6 159 76.0 100 78.2 52

7 58.5 167 72.9 79 73.6 53

Average 58.6 161 73.7 83 75.0 49

accessible surface areas of amino acids [15], and gene clas-
sification [19]. The sensitivity parameterγ and the Gaussian
kernel parameterσ were determined by using the grid-
search method [20]. Grid-search provides useful parameter
estimates for multi-class SVM in a relatively short time. The
parameters of the Gaussian kernel and TS-MSVM, asσ1 =
0.0625, σ2 = 0.0156 and γ1 = γ2 = 0.5, and the neigh-
borhood windowh1 = 7, andh2 = 3 were experimentally
determined for optimal performance. We implemented the
decision tree C4.5 by using Weka software [21]. For C4.5,
the confidence factor of 60%was chosen, and an appropriate
value for the minimum number of instances per leaf within
[1, 60] was selected based on cross-validation results.

C. Prediction Accuracies

We usedQ3 accuracy to measure the percentages of
correctly predicted residues of three types of secondary
structures [9]:

Q3 =

∑

t∈ΩT
ηt

∑

t∈ΩT
νt

× 100 (5)

whereηt is the number of correctly predicted residues and
νt is the total number of residues observed of secondary
structure typet. We also used a rule’s confidence to indicate
its accuracy verified on the whole dataset. The confidences
Cα, Cβ , andCζ represent the percentages of correctly pre-
dicted residues of each type of secondary structure. The
occurrence of an amino acid pattern is the frequency of
presence the amino acid pattern in the training dataset.

The performance of secondary structure prediction on
the RS126 dataset of 126 proteins using TS-MSVM and
C4.5 is shown in Table I. The combination of TS-SVM
and C4.5 predicted PSS with the highest average accuracy
(75.0%) in comparison to C4.5 alone (58.6%), and to the
combination of SVM with C4.5 (73.7%). As shown in Table
I, the combination of TS-SVM and C4.5 decision trees tends
to generate fewer rules but also yields higher accuracy of
prediction even with a smaller number of rules.

Table II shows an improvement of 2.5% in prediction
accuracy of our approach compared to the method of He



TABLE II

COMPARISON OF PERFORMANCES OF COMBININGTS-SVM WITH C4.5

WITH OTHER METHODS FORPSSPREDICTION ONRS126DATASET.

Method Cα Cβ Cζ Accuracy(%)

Binary SVM + C4.5 [16] 72.8 79.6 69.3 ∼72.5

SVM + C4.5 76.3 67.7 74.2 73.7

TS-SVM + C4.5 77.9 69.3 75.3 75.0

et al. produced on RS126 by combining single-stage binary
SVM with C4.5. Futhermore, on the RS126 set, accuracy
Q3 after combining TS-MSVM with C4.5 approach on the
PSI-BLAST profiles was significantly higher than the results
produced by NNSSP (72.7%) [3], PREDATOR (70.3%) [22],
DSC (71.1%) [23], the refined neural network (71.3%) [6],
Jpred (74.8%) [9], PHD (70.8%) [5], and binary SVM
(71.2%) [11].

D. Extracted Rules

Logical rules from amino acid sequences were decoded
using the SVM-predicted output values [16]. We classified
the rules into two categories, types I and II, based on whether
TS-SVM already predicted the specific secondary structure.
The rules are shown in Tables III and IV. The bold amino
acid indicates the position of the secondary structure. The
symbol ’x’ indicates that a ’do not care’ condition for the
amino acid in that site.

The occurrences of such regularities and the confidence
of the rules are given in second and third column of the
tables, respectively. The co-occurrences of such patternswith
a specific secondary structure were the basis of prediction of
PSS in GOR methods [2]. As can be seen from all the tables,
the presented method resulted in more accurate predictions
than those based on linear associations in the GOR method.
This is because of the complex non-linear mapping provided
by TS-SVM and extraction of relevant rules transforming
patterns of amino acids to secondary structures. To show the
usefulness and biological relevance of the rules, we interpret
some of the rules derived by bringing evidences from the
literature.

1) Type I Rules: Type I rules extracted by the presented
method are shown in Table III. Listed are the rules with con-
fidence above 60%, indicating amino acid patterns leading to
the prediction of specific protein secondary structures. The
first two rules indicate that the method predicts anα-helix
when patternsLxxM and VxAL are present, with 66.7%
and 60.0% confidence, respectively. As seen, Leucine (L,
Leu) and Methionine (M, Met) are present at three sites
downstream of the site. Amino acids L and M are non-
polar R group (hydrophobic) and tend to formα-helix, and
their presence at three sites downstream proves to be helix-
stabilizing.

It has been previously reported that L-L, L-V, L-I, F-M,
and L-M pairs at the local site and occurs commonly three
and four sites downstream inα-helices and contribute to

TABLE III

TYPE I RULES EXTRACTED INPSSPREDICTION.

Prediction Rule Occurrence Confidence

α 1 LxxM 43.4 66.7

2 VxAL 39.1 60.0

3 DVxLG 34.2 100

4 SVxVG 39.4 100

β 5 WVxIG 43.1 100

6 RxVxI 32.7 100

7 TVTV 44.6 100

8 TCIV 45.1 66.7

9 AVP 49.2 100

ζ 10 KxxxxCxxxxxxL 44.1 78.4

11 MxP 55.8 72.2

12 DxY 50.1 65.2

protein’s structural stability [24]. Experimental and theoret-
ical studies on natural and synthetic peptides and proteins
indicate that individual side chains differ in their potential
of helix-forming. Four aliphatic side chains occur in the
standard complement of amino acids: L and A are helix
stabilizing whereas V and I are weakly destabilizing helices
[25]. From position-specific amino acid preferences inα-
helices [26], there is a peak preference for hydrophobic
amino acids L and V in positions N4 (N-cap + 4) and C3
(C-cap - 3) and M in position C4 (C-cap - 4). Helix boundary
residues (the first and last helical residues) are called N-cap
and C-cap at the N- and C-terminus, respectively. Positions
N4 and C4 are underneath the polypeptide chain leading the
helix, and also usually on its interior face as the chain at
each end must connect to the rest of the protein [26].

As seen from Table III, patternsDVxLG, SVxVG,
WVxIG, RxVxI, and TVTV, predict β-strands with 100%
confidence. Rule 3 shows that if Aspartic acid (D, Asp)
is present at a site and Valine (V, Val), Leucine (L, Leu),
and Glycine (G, Gly) at one, three, four sites downstream,
respectively, then the secondary structure at the site will
be a β-strand. This rule suggests that negatively charged
(hydrophilic) amino acid D at the local site and non-polar R
group (hydrophobic) amino acids V, L, and G downstream,
prove to be sheet stabilizing. Colloc’h and Cohen focused
their attention on the conformational and structural properties
of residues that initiate or terminate aβ-strand [27] and are
referred to asβ-breakers because of their role in breaking
the regular geometric structure of the strand. They found
a preference for D, T, and R as the N-terminalβ-breaker
and G and S as the C-terminalβ-breaker. Interestingly, our
previous work found that hydrophobic amino acids V and I
strongly tend to beβ-strand [13]. Moreover, in rules 7 and
8 in Table III, the weakly hydrophilic amino acid T is two
sites upstream, the non-polar R group (hydrophobic) amino
acid V is one site upstream, then another non-polar R group
(hydrophobic) amino acids I or weakly hydrophilic amino
acid T is the local site, and finally another hydrophobic
amino acid V. If this forms a sheet, then the two hydrophobic



amino acids C and V moves in the same direction (possibly
into the core of the protein), and the hydrophilic amino acid
T could then face the solvent [16].

As seen in rule 9 in Table III, pattern AVP predicts a coil
with 100% confidence. Amino acid Proline (P, Pro) invari-
ably shows a high frequency of occurrence at neighboring
positions of all coil sites. Given the unique structural feature
of amino acid P where its side-chain is bonded to the main-
chain N atom, the conformation of the polypeptide backbone
is often perturbed by the presence of amino acid P and,
therefore, is induced to form coils in proteins [28]. The rule
12 in Table III shows that if Aspartic acid (D, Asp) is present
at a site with Tyrosine (Y, Tyr) two sites downstream, then
a coil is predicted with with 65.2% confidence. The amino
acid D in negatively charged R group (hydrophilic) and Y in
aromatic R group (hydrophobic) tend to create coil, spanning
over at least three adjacent residues [13], and making the
likelihood of a presence of the secondary structure stronger.
Crasto and Feng found that amino acid D has a moderate
preference for coil conformation and the coil propensitiesof
amino acids Y and P have significant variations in coils of
different sizes [28]. Also, charged amino acids D and K have
lower frequencies of occurrence in the interior than in the
surface coils.

2) Type II Rules: Table IV lists type II rules or the amino
acid patterns that enhance the prediction of a secondary
structure by C4.5 if the presence of the secondary structure
is already known by TS-SVM prediction. The decision tree
predicts anα-helix with 100% confidence for pattens GxxY,
MxxS, GxxP, DxxxxxxY, and PxNx if TS-SVM predicts the
site to be anα-helix. The accuracy of prediction ofα-helices
by TS-SVM stands at 73.1%. Therefore, the above rule can
be given a different interpretation: when the above amino
acid patterns appear, then the surrounding patterns of amino
acid makes the confidence of prediction to be 100%.

For illustration, consider rule 21 in Table IV, which
indicates that if hydrophilic amino acid Serine (S, Ser) is
at one site upstream, Proline (P, Pro) is present at the local
site, Aspartic acid (D, Asp) is at two sites downstream,
and TS-SVM predicts the local site to be anα-helix, then
the pattern SPxD is present with 89.3% confidence. In this
pattern, hydrophilic amino acid S followed the hydrophobic
amino acid P and another hydrophilic amino acid D at
two sites downstream prove to be helix stabilizing if the
amino acid P forms anα-helix. From position-specific amino
acid preferences inα-helices [26], the N-cap position is
dominated by amino acid S. This is because when amino
acid S does occur inα-helix, its OH often forms a second
H bond to a backbone CO on the previous helical turn. The
preference distribution for amino acid P indicated that amino
acid P in the first turn are almost exclusively in the N1
position (the first residue after the N-cap) [26]. This rule
concurs with the findings of Richardson et al. that amino
acid P prefers to be a helix-initiator than a helix-breaker [26].
Also, there is a peak of preference for hydrophilic amino
acid D in positions N2 and N3 (the second and third residue
after the N-cap). Moreover, results in Table IV indicate that

TABLE IV

TYPE II RULES EXTRACTED INPSSPREDICTION.

Prediction Rule Occurrence Confidence

13 GxxY 45.9 100

14 MxxS 51.7 100

15 GxxP 39.2 100

16 DxxxxxxY 49.7 100

17 PxNx 48.2 100

α 18 KxGxxI 45.7 95.9

19 DP 47.3 93.3

20 DxN 51.1 91.7

21 SPxD 44.3 89.3

22 SxxxK 51.0 83.3

23 NxxxxP 45.7 77.8

24 GxxxxxK 43.9 100

25 TxxxxxR 44.7 100

26 xxPxxxxR 42.8 100

27 xGN 42.1 100

28 GxxxF 41.0 100

29 AxxMxxx 42.2 100

30 AxxMxxxG 47.1 93.3

β 31 IxE 46.8 91.7

32 ExY 42.0 89.3

33 HxxxN 54.0 86.1

34 xxxxMxR 41.6 85.7

35 LxxxxA 44.0 85.3

36 xxxxxxC 54.5 83.5

37 AxxxxYx 45.2 83.3

38 xxxxM 52.6 82.9

39 GP 76.6 93.7

40 xSV 58.1 84.7

41 xxxT 67.1 84.3

42 SxI 58.9 83.3

43 xRxxxxxxI 54.6 82.4

ζ 44 xxD 68.1 82.3

45 GxxxxxxxxxG 54.1 81.7

46 IxxM 56.9 81.1

47 MxxY 59.8 80.0

48 xxxxG 60.9 78.6

49 LxxxxxC 55.8 75.0

the presence of the amino acids with the known secondary
structure type at the local site improves the confidence of the
secondary structure prediction.

IV. D ISCUSSION

Following the predictions made by TS-SVM approach,
we used C4.5 decision trees to generate prediction rules for
PSS prediction. As manifested by experiments, we were able
to extract two types of rules, which previous literature and
physiochemical properties of amino acids seem to support.
The number of rules derived was relatively small and they
showed higher confidence levels compared to those derived
by other approaches. To generate a set of prevailing rules
that can also be interpreted, we used empirically preset



confidence threshold of 60%. The rules were divided into two
types based on whether the secondary structures predicted by
TS-SVM were already included in the prediction rule.

Most rules extracted by the presented approach have
significant and meaningful biological interpretation. As seen,
the presence of specific amino acids improves the confidence
of the secondary structure prediction. This could be inter-
preted as the confidences of the existence of a secondary
structure pattern due to the presence of a particular amino
acid pattern in the neighbourhood. The inspection of the
prediction rules has offered interesting new insights into
stabilizingα-helix, β-strand, and coil structures. Our results
concur with the findings of Lyu et al. that amino acid L (Leu)
tend to be helix stabilizing [25]. The preferences for amino
acids T (Thr), R (Arg), and G (Gly) inβ-strand prediction
rules indicate their role in breaking the regular structureof
the strands [27]. The rules of prediction of coils confirm that
the most influential amino acids (the affecters) in coils are
P (Pro) and G (Gly) [28]. The analysis of the prediction
rules also shows that the neighbouring residues could have
a profound effect on the preference of certain amino acids
adoptingα-helix, β-strand, and coil structures. These rules
could be useful for guiding biological experiments aimed
at satisfying the sequence conditions to produce a certain
protein structure. Furthermore, we will apply our method toa
much larger dataset for investigations that link the prediction
model with the underlying biology.
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