
  

  

Abstract — If we consider the regulatory networks used in 
systems biology (especially in neural and genetic networks), we 
observe certain regularities in their architecture, namely the 
occurrence of interaction motifs, i.e. of oriented sub-graphs 
relating their elements with the same interaction schemes. We 
propose here to describe some of these motifs we can consider 
as universal because they are often met in the regulatory 
networks architecture, and to study their main robustness 
properties (called also structural stability), i.e. their ability to 
keep after topological or dynamical perturbations, their 
essential asymptotic features, as their attractors number, shape 
and behaviour, like their periodicity.  

I. INTRODUCTION 
HE regulatory networks (neural, genetic, ...) are widely 
used in systems biology and they present some 
remarkable regularities in their architecture, namely 

similar values for both architectural (like the connectivity 
coefficient) or dynamic (like the number of fixed 
configurations related to the square root of their size) 
features or occurrence of same interaction motifs, i.e. 
oriented sub-graphs relating their elements (neurons, 
genes,...) into the same interaction schemes.  

 These similarities cause identical dynamical behaviours, 
like periodic attractors, due for example to the same internal 
motif imposing its periodicity to the global network. The 
interaction matrix W of a regulatory network is the oriented 
incident matrix of the interaction graph of the network. It 
can be either estimated from the observation of co-
occurrence of neural or genic activities (which allows to 
calculate the empirical auto-correlation matrix of activities) 
or calculated from the discrete or continuous Jacobian 
matrix J of a mathematical model proposed for describing 
the biological mechanisms underlying the regulation 
process. In particular, W and J are sharing the same 
associated interaction graph and W can be considered as the 
signed version of J. W is then similar to the synaptic weights 
matrix, which rules the relationships between neurons in a 
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neural network. The general coefficient wik of such a matrix 
W is equal to + 1 (resp. –1, 0) if the gene (or the neuron: in 
the sequel, we will choose both genetic and neuronal 
examples) Gk activates (resp. inhibits, does not influence) 
the gene Gi, the state xi of the gene Gi being equal to +1 
(resp. 0), if it is (resp. is not) expressed. In the case of small 
regulatory genetic networks (called operons), the knowledge 
of W permits to make explicit all possible stationary 
behaviours (fixed or cyclic configurations of expression 
states) of any organism having the corresponding genome. 
    State change of Gi between t and t+1 obeys a threshold 
rule: xi(t+1)=H(∑k=1,nwikxk(t)-θi) or x(t+1)=H(Wx(t)-θ), 
where H is the sign step function (H(y)=1, if y>0 and 
H(y)=0, if y≤0) and the θi’s are threshold values. When t is 
increasing, the genes states reach a set of configurations 
(fixed or cyclic) called attractor of the genetic network 
dynamics and do not change any more. It is in general of a 
great biological interest to determine the interaction matrices 
having characteristic properties like i) a minimal number of 
non zero coefficients for a given set of attractors or ii) a 
minimal number P(W) of positive loops (i.e. paths on the 
interaction graph coming from a gene and returning to it 
after an even number of negative interactions, symbolized 
by negative edges), controlling the number A(W) of 
attractors  [1-11].  

 The connectivity coefficient K(W) = I/n, is the ratio 
between the number I of interactions and the number n of 
genes (the dimension of W is n.n), and the mean inhibition 
coefficient H(W) = R/I, is the ratio between the number of 
inhibitions (or repressions) R and I. K(W) is in general 
between 1.5 and 3 and H(W) between 1/3 and 2/3, both in 
neural and genetic regulatory networks. The number of 
connex components (i.e. with a path between each pair of 
nodes) containing positive loops, denoted C(W), verifies the 
following conjectures: 2P(W)≥F(W)≥2C(W) and F(W)=O(n1/2), 
where F(W) is the number of fixed configurations, the total 
number of attractors being of greater order of magnitude, 
due to the presence of numerous limit cycles [12, 13]. 

 In the case of large regulatory networks now frequently 
studied [14], their study needs in general an approach using 
huge simulations (e.g. for showing the existence of phase 
transitions, like in [15, 16]), hence we will focus here on the 
extraction of characteristic sub-networks with common 
features called motifs, from the whole regulatory network 
and we will try to deduce some general rules coming from 
the systematic study of the asymptotic dynamical behaviour 
of such motifs.  
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II. MATERIAL AND METHODS 
The methods used in this paper are similar to those 

introduced in [11], i.e. systematic simulations of all genetic 
networks made of 2 or 3 genes, but we are entering here 
more in the details of their dynamical behavior in the case of 
a universal motif, we called regulon [17-21], made of only 
one positive and one negative loop and met at different 
regulation levels in particular the physiologic one [22-24] at 
which we will end our present study. For that purpose, we 
have developed an integrated software for designing 
networks of various nature (neuronal, regulatory, metabolic, 
social,...), allowing the simulations of these different kinds 
of networks and their analysis, and giving notably the global 
activity of the network and the shape of the attractors and of 
the attraction basins for all the networks corresponding to a 
given structure. The software is constructed around a core 
which is independent of the nature of the network. This core 
includes a list of nodes and links. The latter are themselves 
composing structures that can act as buffers during the 
information transfer as it is the case for the electric 
depolarising waves that propagate along the axons. This is 
useful for imposing delays in the information propagation as 
a physical representation of distances between nodes. The 
core also includes an update scheduling plan that allows 
assigning different priorities in the update of some parts of 
the network. Finally, the software uses a graphical interface 
for creating and parametrizing the networks and for 
launching simulations and following the running process. 
We used this tool so as to study the effect of stochasticity 
and of synchronicity on the robustness of our networks. 
Stochasticity takes place in two components of the network. 
First, it is applied within the vertices in the form of a 
temperature parameter, notably in the Boltzmann equation 
that describes the update of the target nodes. This represents 
the manner the connexions make sometimes errors, or in the 
extreme case behave independently of their entries. 
Moreover, we allow the single nodes to stochastically switch 
within the panel of states they can take. Single nodes in a 
certain state can indeed change to another state given a 
transition law. This law can be purely random but we 
preferred using a particle diffusion model. A certain 
diffusivity constant set can be then assigned to each node so 
as to describe the probabilities of transition between the 
possible reachable states of the node. This kind of 
simulation can be performed on any regulatory network. 

III. DESCRIPTION OF THE INTERACTION MOTIFS 
In many regulatory networks like the interaction graph 

which rules the spatial stripes morphogenesis in Drosophila 
melanogaster [25], we can extract motifs like the mixed 
forward inhibition/activation one, called incoherent feed-
forward loop in [26]. 
 

These frequent motifs are given in Figure 1: incoherent 
feed-forward loop (1), triple negative loop (2), 3-switch (3), 
negative (4) and positive (5) regulons. We can remark that 
they are pauci-genic (at most 5 genes) and located in the 

core [11] of the networks from which they have been 
extracted. We will in the following give general statements 
available for such pauci-genic motifs and study more 
precisely the dynamical behaviour of the negative and 
positive regulons. 

 
 

 Fig. 1. Motifs extracted from regulatory networks 

IV. DYNAMICS OF THE MOTIFS 

A. Standard Updating Methods 
Let us suppose that the network is made of n vertices 

whose dynamical rule of state transition is of the Hopfield 
type, i.e. if xi(t) denotes the state (1 if the node i is activated, 
and 0 elsewhere), we have: xi(t+1) = H(Σj=1,..,nwi,jxi(t) – θi), 
where H denotes the Heaviside function (H(y) = 1, if y > 0; 
H(y) = 0, elsewhere), the wi,j's are the interaction weights 
(with wi,j < 0, if j inactivates i; wi,j > 0, if j activates i and wi,j 
= 0, if j has no influence on i) and θi is a threshold. Based on 
this updating rule, we can define four types of updating 
methods: 
- sequential iterations, where the states of the nodes are 
sequentially updated, 
- parallel iteration, where the states of all the nodes are 
synchronously updated, 
- block-sequential iterations, where the nodes are grouped 
into ordered blocks (one node can be in only one block). 
The blocks are sequentially updated, and inside a block 
nodes are synchronously updated, 
- block-parallel iterations, where blocks are parallelly 
updated, and inside a block nodes are sequentially updated. 

We can notice that sequential, parallel and block-parallel 
iterations (if the smallest blocks are waiting to be re-iterated 
that largest ones be updated) are particular cases of block-
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sequential iterations. The general parallel iterations in which 
each block has its own timing is not considered here.   

The state of the entire network is considered only after all 
nodes have been updated. The dynamics of the network, and 
especially its attractors depend on the updating method. For 
the 3-switch (case 3 of Figure 1) for example where all wi,j's 
are negative (supposed in the following equal to -1, all 
thresholds being equal to 0), we have: 
- for the sequential iterations, the system has only 2 fixed 
configurations, with state 1 (resp. 0) at the first visited node 
and state 0 (resp. 1) at the other nodes, these values 
depending on the chosen sequential updating order. Such a 
system having only fixed configurations is potential in the 
sense of [21], because the discrete velocity of the dynamics 
is equal to the gradient of a Lyapunov function (it is for 
example the case in a n-switch when the interaction weights  
are symmetrical) 
- for the parallel iterations, we have a cycle of order 2 (made 
of the full 0 and full 1 configurations), and 6 fixed 
configurations (the same fixed points as in sequential 
update). Such a system is the equivalent of a Hamiltonian 
continuous dynamical system without attraction basins, and 
is called Hamiltonian network.  
- for the block-sequential iterations, we have the same fixed 
configurations as in sequential iterations. From this 
particular network 3-switch, we conjecture that the cyclic 
behaviour of a network of size 3 can appear when the 
updating method goes from sequential to the parallel 
iterations and not in the inverse way. The statistics done on 
the whole set of the 188968 networks of size 3 [11] show 
that this conjecture is almost everywhere true, but it fails for 
0.3 % of them. Certain other observations can be 
generalized:  
Lemma 1 When a cycle occurs in the dynamics of a block, 
then the whole network dynamics has only cycles as 
attractors. Reciprocally, if the global network dynamics has 
a cycle, there is necessary at least one block having at least a 
cycle as attractor.  
Lemma 2 If the global network dynamics has a cycle of 
length m, then m ≤ Πi∈C mi, where C is the set of the blocks 
having at least a cycle as attractor, mi being the maximal 
length of cycles of the ith block of C. 

The proof of the 2 Lemmas above is obvious. The 
statistical behaviours observed for the size 3 networks need 
an exhaustive simulation of their dynamics; we are 
interested here in size 3 networks having some common 
dynamical features: for certain updating methods, they have 
both fixed configurations and at least one limit cycle, the 
limit cycles disappearing completely for other iteration rules, 
where there are only fixed configurations. Among the 
188968 possible networks of size 3, only 34947 (18,5%) 
have this dynamical behaviour. If we try to understand how 
the limit cycles are disappearing when we change iteration 
method, we observe that frequently this disappearance 
occurs when we go from the parallel iteration to the 
sequential one. As mentioned previously sequential and 
parallel iterations are particular cases of block-sequential 
iterations. We define a hierarchy of block-sequential 

iterations. An iteration mode A is a child in this hierarchy of 
an iteration mode B (B is then the "parent" of A), if A has 
one block more than B and if we can obtain B by bringing 
together 2 consecutive blocks of A. The parallel iteration is 
the root of the hierarchy while sequential modes are the tips. 
We can then study the way in which the limit cycles may 
occur or disappear at a given level of the hierarchy. We 
observe in the simulations three different possible 
behaviours: 
- networks with limit cycles disappearing when going down 
in the hierarchy from the root to the tips ("Down" 
behaviour) 
- networks with limit cycles disappearing when going up in 
the hierarchy from the tips to the root ("Up" behaviour) 
- networks that are not corresponding to any previous 
behaviour, for which the limit cycles occur and disappear 
inside the hierarchy without clear rule ("None" behaviour). 

     Fig. 2. Graph of the positive regulon with the corresponding W and θ.  
 
Among the 34947 simulated networks of size 3 having limit 
cycles and fixed points for some iterations modes and only 
fixed points for others, the dispatching follows the 
repartition below: 

Down None Up Total 
21729 13110 108 34947 

62,18% 37,51% 0,31% 100% 
This repartition confirms that there is practically no network 
(only 0.31 %) for which the cycles are present in the 
sequential updating modes and disappear in the synchronous 
one. A general result for Boolean networks has been 
recently  proved in [27]: a limit cycle for parallel iteration is 
never limit cycle for any sequential one. 

B. Another Way to Update the State of the Network 
From a biological point of view the main issue of the 

updating methods presented in the previous part is that we 
consider the state of the network as updated only after all 
the states of the entire set of nodes have been updated. 
Practically, if we observe in experiments the expression of 
genes evolving in time, how can we know when the 
expression of all genes has been updated? For this reason 
we introduce another way to update the state of the network. 
Updating method given in IVA remain the same, but now 
we  



  

 
 
Fig. 3. Iteration graphs for the positive regulon of Figure 2: A) corresponds 
to the standard way of updating for the parallel (left) and sequential 
iterations (centre and right) and B) to the new way of updating (left to right 
same as in A). Transitions that have been added in the new way of updating 
are represented with dotted lines. 
 
consider the state of the network after updating each block 
of nodes (each node in the case of sequential iterations). It is 
obvious that for the parallel iteration there is no change. For 
the other updating methods, there are k-1 (where k is the 
number of blocks ; k=n for sequential iterations) new 
network's states between two consecutive states of the 
standard updating methods. With this new way to update the 
state of the network, the last result of part 3A is no longer 
true. Let us take the example of positive and negative 
regulons introduced in Figure 1. Graphs of thess motifs are 
shown in Figures 2 and 4 with the corresponding interaction 
matrix W and threshold vector θ. With the standard 
updating way, there is a limit cycle of length 4 in the 
parallel iteration and a limit cycle of length 2 in both 
sequential iterations. But with this new way of updating the 
network's state, the regulon reaches the same limit cycle of 
length 4 whatever the iteration mode is and then there is a 
limit cycle C for the parallel iteration that is also a limit 
cycle C for the sequential iterations (Figures 3 and 5). This 
last limit cycle is called "sub-harmonic" and is only due to 
the internal timing of the sequential iterations. In general, 
these artefactual limit cycles can appear for any block-
sequential iteration; they are experimentally observable and 
must be taken into account until a deeper knowledge permits 
to elucidate the co-expression mode. An interesting open 
question concerns the experimental tests to perform in order 
to detect this sub-harmonicity. 

       
      
Fig. 4. Graph of the negative regulon with the corresponding W and θ. 

V. ROBUSTNESS TO GLOBAL STATISTICAL TOPOLOGY 
PERTURBATIONS 

Certain perturbations can globally affect or not the 
dynamical behaviour of the regulatory networks. For 
example, an environmental noise can both change the 
number of nodes synchronously updated in a block or the 
network topology by keeping or cancelling certain vertices 
or edges of the network. By simulating two very simple toy 
networks, the game of life and the cardio-respiratory 
coupling, we will study in the following how and where act 
such perturbations. The program developed tor this study 
gives notably the global activity of the network and can 
return the shape of the attractors and of the attraction basins 
for all the networks corresponding to a given structure. The 
software is constructed around a core which is independent 
of the nature of the network. This core includes a list of 
nodes and links. The latter are themselves composing 
structures that can act as buffers during the information 

transfer as it is the case for the electric depolarising waves 
that propagate along the axons. 

 
 

Fig. 5. Iteration graphs for the negative regulon of the Figure 4 (same 
description as in Figure 3). 

 
 This is useful for imposing delays in the information 

propagation as a physical representation of distances 
between nodes. The core also includes an update scheduling 
plan that allows assigning different priorities in the update 
of some parts of the network. Finally, the software uses a 
graphical interface for creating and parametrizing the 
networks and for launching simulations and following the 
running process. We used this tool so as to study the effect 
of stochasticity and of synchronicity on the robustness of 
our networks. Stochasticity takes place in two components 
of the network. First, it is applied within the vertices in the 
form of a temperature parameter, notably in the Boltzmann 
equation that describes the update of the target nodes. This 
represents the manner the connexions make sometimes 
errors, or in the extreme case behave independently of their 
entries. Moreover, we allow the single nodes to 
stochastically switch within the panel of states they can take. 
Single nodes in a certain state can indeed change to another 
state given a transition law. This law can be purely random 
but we preferred using a particle diffusion model. A certain 
diffusivity constant set can be then assigned to each node so 
as to describe the probabilities of transition between the 



  

possible reachable states of the node. This kind of 
simulation can be performed on any regulatory network. 

A. A first Toy Model, the Game of Life 
    The game of life is a very famous cellular automaton 
devised in [28] and proved to be computation universal [29]. 
In [30], the game of life is implemented in a 2D cellular 
automata run on a regular subset of Z2 where the 
neighbourhood of each cell is the Moore one (i.e. the 8 
nearest neighbours). It has been shown in [31] that the role 
of this type of boundary conditions was important 
concerning the dynamical behaviour of the game of life. 
Here, we consider a finite grid of Z2. At each time step t, the 
following effects occur: (i) any living cell with fewer than 2 
living neighbours dies, as if by loneliness, (ii) any living cell 
with more than 3 living neighbours dies, as if by 
overcrowding, (iii) any living cell with 2 or 3 living 
neighbours lives and (iv) any dead cell with exactly 3 
neighbours comes to life. The game of life is shown to be 
unstable against synchrony variation obtained by 
introducing the probability α for a vertex to be updated at 
any time t as shown in Figure 6, which highlights a 
labyrinthic structure (not realistic concerning its "living" 
character) when the synchrony rate α decreases. However, it 
is possible to increase the robustness to asynchrony of the 
game of life by perturbing the topology of the network. The 
choice made here is to balance the instability due to an 
updating property, the decrease of the synchrony rate, with a 
structural property, which is here the definitive removal of a 
percentage β of edges. This process is of great biological 
interest because the aim of this work is to know how an 
already structurally perturbed system reacts against 
synchrony variations. 
 

Fig. 6. Simulation of the evolution of the game of life, for different  
synchrony rates: α = 1.0 (left), α = 0.75 (centre) and α= 0.5 (right). 

 
Fig. 7. Simulation of the increasing of the robustness to asynchrony of the 
game of life by perturbing, when the synchrony rate is α = 0.5, the topology 
with different probabilities of edge cancelling: β = 0 (left), β = 0.05 (centre) 
and β = 0.1 (right). 
 

Let G = (V,E) be the oriented graph of interactions: (v,v') 
is an edge of E, if and only if v' is in the Moore 
neighbourhood of v. The perturbed graph G' = (V,E') is 
obtained by executing the following procedure: for each cell 
v in V, for any cell v' in the Moore neighbourhood of v, the 
edge (v,v') is removed with the probability β. This 
probability is called the probability of edge cancelling or the 
missing-link rate. The results of this study can be seen in the 
Figure 7, which shows that the increase of the missing-link 
rate makes the game of life stable against the decrease of the 
synchrony rate, for which it is non robust (cf. Figure 6). The 
behaviour of the game of life keeps its normal properties 
when the synchrony decreases, and its configurations do not 
enter in a labyrinthic phase. We can easily link this study 
with the genetic regulatory networks because, if we want to 
render cellular automata closer to real biological networks, it 
is necessary to break their regularity by perturbing edges in 
their interaction graph.    

B. A second Toy Model, the Coupling between the Bulbar 
Cardiac and Respiratory Regulatory Systems 
The functional coupling existing between heart and lungs 

is a well known example of coupled oscillators. Both organs 
possess indeed their own activity. The heart beats at about 1 
Hz due to the self-stimulation of some of its specialized 
cells, those of the sinusal node (or S). These self-rhythmic 
cells emit periodically action potentials that are transmitted 
from their origin, the sinusal node, to all the cells by the 
intermediate of the His fascicle that terminates with Purkinje 
fibres. Then the electric depolarization is transmitted from a 
muscular cell to another muscular cell throughout the whole 
heart muscle. Moreover, a group of self-excitable neurons 
present in the cephalo-rachidian bulb, called 
cardiomodulator neurons (or C), exerts a control on the 
rhythmic activity of the sinusal node. Inversely, when firing, 
the sinusal node cells repress C. In an idealised manner, this 
can be modelized in the form of an anharmonic oscillator 
such as a van der Pol system as described in [32, 33]. We 
have shown in [23, 24] that such systems are Liénard 
systems and that they can be decomposed into their 
Hamiltonian and potential parts. In the same manner, this 
can be also done for describing the inspiratory-expiratory 
cycle of the lungs that has a period of about 4 s (frequency 
0.25 Hz). The inspiratory neurons (I) fire from a self-
excitable vegetative bulbar center synchronously with the 
phrenic nerve. On the contrary, the expiratory neurons (E) 
fire during the silence of the phrenic nerve. E is activated by 
I (via the pleural stretch receptors) and E inhibits I (through 
intra-bulbar connections). The set of coupled van der Pol 
equations below describes well this dynamical behaviour. 
We have: dx/dt=y, dy/dt=-x+ε(1-x²)y for the respiratory 
system, where x represents the activity of neurons E and y 
the activity of neurons I, and ε is the anharmonic parameter 
(toy model of the respiratory oscillator). We also have: 
dz/dt=w, dw/dt=-z+η(1-z²)w+k(y)y for the cardiac system, 
where z represents the activity of neurons S and w the 
activity of neurons C, η is the anharmonic parameter and 
k(y) is the coupling intensity parameter between the 
inspiratory neurons I and the cardiomodulator C. Both 
organs have their own rhythm but they are also coupled 
directionally: C is coupled to the activity of the lungs 
(inspiratory neurons) via bulbar connections. 
 This allows the bulbar vegetative control system to adapt 
to the effort: first the breathing is entrained by a muscular 
activity and secondarily entrains the heart. Such a capacity 
of adaptation disappears in degenerative diseases like 
Parkinson or diabetes. Two kinds of dysfunctions can be 
studied with our coupled oscillators : those that affect the 
coupling k(y) between the two oscillators and those that 
affect the periodicity of the heart. During myocardial 
infarction and ischemia, local cell deaths in the heart tissue 
can occur causing local loss of the electric signal initiated in 
the sinusal node and the His fascicle. This manifests in the 
form of spiral cardiac reentries and ventricular fibrillation 
[34]. Nevertheless, the forcing induced by the vegetative 



  

control of the respiratory system can correct in a limited 
manner this arrhythmia. As a consequence, a loss of the 
entrainment of the heart beating period by the respiratory 
system avoids any recuperation of an acceptable periodicity 
in case of heart arrhythmias. These  behaviours are 
illustrated with two coupled van der Pol systems in the 
Figure 8 below. The vegetative control of the cardio-
respiratory system can also be described by a more simple 
scheme where both cardiac and respiratory systems are 
represented by a Hopfield-like network whose neurons have 
Boolean states (1 if the neuron is active and 0 if the neuron 
is silent). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Temporal series obtained by simulating 2 van der Pol systems 
coupled on their self-excitable nodes, whose activity is followed, the first 
one for the respiratory system (neurons I in black) and the other for the 
cardiac system (C neurons in grey), in 4 cases: a) when the 2 van der Pol 
systems are uncoupled and regular (top left); b) uncoupled with addition of 
noise to S neurons (top right); c) coupled together and regular (bottom left); 
d) coupled with addition of noise (bottom right). Parameters are ε=10, η=1, 
with k(y)=0 when systems are uncoupled and k(y)=8 when coupled. 
 
 
 
 
 
 
 
Fig. 9. Structure of a single negative regulon (left) with its two nodes, N0 
the self-excitable one and N1. On the right are shown two regulons coupled 
between their respective self-excitable nodes I and C by a directional edge 
with a coupling intensity k(y). In this toy model, the first regulon represents 
the vegetative control of the respiratory system with its inspiratory (I) and 
expiratory (E) neurons ; the second one describes the vegetative control of 
the cardiac oscillator with the cardiomodulator bulbar node (C) regulating 
the activity of the peripheral sinusal node (S). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 10 Temporal series from simulations of two Hopfield networks 
(negative regulons) coupled between their self-excitable nodes. As on 
Figure 8, we follow the activity of the 2 nodes (neurons I in black and C in 
grey), in 4 cases : regulons are uncoupled and regular (top left) ; uncoupled 
with addition of noise to S neurons (top right); coupled together and regular 
(bottom left); coupled with addition of noise (bottom right). 

 
Two regulons (with S and C as sinusal node and cardio-

modulator node, and I and E as inspiratory and expiratory 
nodes) are coupled between the inspiratory node of 
respiratory system and the cardiomodulator (Figure 9 right). 
Each negative regulon (Figure 9 left) is composed of two 
nodes N0 as I (resp. C) and N1 as E (resp. S), where the 
nodes N0 (I or C) are the self-regulated nodes. 
 

The stochastic transition rule used is: 
   P(xi(t+1)=1⏐xk(t), k∈Vi) = exp(H(t))/(1+exp(H(t))), where 
H(t) = (∑k=1,nwikxk(t)-θi)/T and Vi is the neighbourhood of i, 
with: 
 
Interaction matrix W 

Node N0 N1 

N0 -1 -1 

N1 1 0 
Node thresholds θ 

Node Threshold 

N0 -1,5 

N1 0 
 
Between the nodes N0 (I and C) of the two regulons we 
have an interaction with positive weight called k(y). Then 
our network is composed of 2 oscillators connected by a 
positive interaction. The frequency of the cardiac system is 
faster than that of the respiratory system. In the Hopfield 
network this can be clearly expressed by using a specific 
update schedule. The simplest one is block sequential. It is 
made of 9 blocks B0, B1, ...., B8. Those blocks are ordered 
as follow and allow obtaining frequencies of oscillations 2 
to 4 times faster (depending on their contents, here 3 times) 
for the cardiac system than for the respiratory system :  
 
Update 
Block 

B0 B1 B2 B3 B4 B5 B6 B7 B8 

Node 
Content 

I, E, 
C,S 

I, E,
C,S 

I, E,
C,S 

C,S C,S C,S C,S C,S C,S 

 
We show here that it is easy to obtain the same kind of 

behaviour than with differential equations, but only with 

a b 



  

boolean dynamics. Introducing stochasticity on the cardiac 
sinusal node allows simulating a heart arrhythmia, and we 
also verify that by reducing or removing the coupling 
between I and C nodes we loose the period entrainment and 
then a corrective functionality in case of heart arrhythmia. 
This is illustrated in Figure 10. We first suppose the 2 
oscillators as independent. We clearly observe that the 
beating frequency of the heart regulon is 3 times faster than 
the breathing frequency. When a coupling is added (k(y)=5), 
the respiratory system rhythm forces the cardiac system to 
enter in resonance with itself. Then we suppose the heart as 
sick, so we introduce an important noise on the heart system 
regulon. To perform this we use a stochastic updating rule in 
node N0 (C) and N1 (S) with a temperature equal to 1.5. As 
previously we observe the two following subcases: if the 
systems are uncoupled, heart beatings are no longer regular 
even if breathing is healthy. However, when coupled 
(k(y)=5), despite the fact that there is an important noise in 
heart beating, the respiratory system allows maintaining a 
periodic oscillation on the targeted regulon by forcing it (the 
cardiac system). Here, the robustness is obtained by 
imposing a strong activity of regulation on the noisy part of 
the network. 

VI. CONCLUSION 
We have shown in this paper that a complex regulatory 

network contains in general characteristic sub-networks 
called motifs selected by the evolution to fulfill precise 
functions [35-46] and whose dynamics is easer to be 
simulated or theoretically predicted than the global one. If 
these motifs have a periodic behaviour, they impose their 
periodicity to the global network dynamics. This behaviour 
can be robust or not and we have given some indications 
about two types of robustness, one related to changes in 
motifs architecture due to a local deterministic perturbation 
(like a gene knock-out or a micro-RNA action vanishing the 
expression of a repressor protein, whose cancelling restores 
the repressed node in the network) and the other related to 
statistical topology perturbations due for example to an 
environmental noise. Both types of perturbations can cause 
the disappearance or the conservation of dynamical patterns 
like limit cycles and we have given some indications on the 
way to reach robust dynamical behaviours. General 
statements are very difficult to be theoretically proven, but 
certain statistical regularities can be shown by simulation. 
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