
Large-Scale Approximate Intervention Strategies for
Probabilistic Boolean Networks as Models of Gene Regulation

Mehmet Tan Reda Alhajj Faruk Polat

Abstract— Control of Probabilistic Boolean Networks as
models of gene regulation is an important problem; the solution
may help researchers in various different areas. But as generally
applies to control problems, the size of the state space in gene
regulatory networks is too large to be considered for compre-
hensive solution to the problem; this is evident from the work
done in the field, where only very small portions of the whole
genome of an organism could be used in control applications.
The Factored Markov Decision Problem (FMDP) framework
avoids enumerating the whole state space by representing
the probability distribution of state transitions using compact
models like dynamic bayesian networks. In this paper, we
successfully applied FMDP to gene regulatory network control,
and proposed a model minimization method that helps finding
better approximate policies by using existing FMDP solvers.
The results reported on gene expression data demonstrate the
applicability and effectiveness of the proposed approach.

I. INTRODUCTION

Devising control strategies for gene regulatory networks
(GRNs) is important to avoid undesirable gene activity
profiles. A control or intervention strategy for GRN can
be defined as a way to interact with the network in terms
of some actions to reach some pre-defined objective(s).
These interventions (or actions) are usually defined in terms
of (in)activation of certain types of genes or proteins; the
objective is to reach (or avoid) a set of state(s) (or gene
activity profiles). For instance, Gefitinib is a drug used in the
treatment of a type of lung cancer and inhibits (inactivates)
the epidermal growth factor receptor (EGFR) tyrosine kinase
enzyme, which leads to the cease of uncontrolled cell prolif-
eration of malignant cells. Without this inactivation of EGFR,
the cells may continue to divide beyond normal limits.

Probabilistic Boolean Networks (PBNs) is one promis-
ing method to model gene regulations [22], [23]. Finding
intervention strategies has also been studied on PBNs [5],
[19], [18]. Under some assumptions, a PBN can be equiva-
lently represented by a corresponding Markov chain [22];
this brings the opportunity to use the Markov Decision
Problem (MDP) framework for the control problem [1], [8].
The most well-known issue in solving MDP is the curse of
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dimensionality. This refers to the exponential growth of the
state space in terms of the number of variables to represent
the problem. In our case, the variables and states correspond
to genes and gene activity profiles, respectively. Even for
representing gene expression values in the simplest way by
only ON and OFF (Boolean) values as in the case of PBNs,
the size of the state space is proportional to 2N for N genes.

A Factored MDP (denoted FMDP) [4] is a promising
alternative to represent the control problem of GRNs since
GRNs are naturally factorized and the genes correspond to
the factors. In this framework, the structure existing in the
problem is exploited by representing the transition proba-
bilities in terms of factored models like dynamic bayesian
networks (see Section III-B). But for some of the cases,
factored representations also require exponential space [4].

Our contributions in this paper are two-fold. First, we
apply the FMDP framework to PBN control problem. To the
best of our knowledge, these are the first results for large-
scale control in GRN domain. Second, we propose a pre-
processing method for a given PBN based on the influence of
genes on others [22] that minimize the PBN for even further
scalability in approximately solving control problems. The
results presented here are promising steps through genome-
wide solutions for the control problem of GRNs.

The rest of the paper is organized as follows. Section II
discusses PBNs and the influence concept. Section III for-
mally defines the control problem for PBNs and discusses the
existing solutions. Section IV introduces the edge elimination
algorithm for approximate solutions. Section V reports exper-
imental results. Section VI is conclusions and future work.

II. PROBABILISTIC BOOLEAN NETWORKS

Boolean Networks (BNs) [13] represent gene expression
by using only two levels: ON and OFF. The expression level
for a gene gi at time step t+ 1 is related to the expression
level of ki other genes at time t by a boolean function,
f (i)(gi1 , ..., gik ), where genes gi1 to gik are called parents of
gi. So, BN is defined by a set of genes V = (g1, ..., gn) and
a set of boolean functions F = (f (1), ..., f (n)). On the other
hand, PBN is defined by a set of genes V = (g1, ..., gn) and
a set F = (F1, ..., Fn), where each Fi is a set of functions
for gi, Fi = {f (i)

j }j=1,...,li . Each f (i)
j is one of the possible

functions to determine the next state of gi, and li is the
number of such functions. The probability of choosing f (i)

j

in Fi to predict the next state of gi is denoted c(i)j .
Given binary quantized gene expression data, deriving a

PBN model requires finding F and c(i)
j for all i and j. To do

this, a measure of how well a function predicts the value of



a gene is needed. Coefficient Of Determination (COD) [7]
is one such measure. COD compares the prediction perfor-
mance of a function with the best constant estimator in the
absence of other information. Assume that we are given the
parents Pi of gi and a function f (i)

j (Pi) to predict gi. The

COD θij of f (i)
j is defined as follows: θij =

εi−ε(gi,f (i)
j

(Pi))

εi
,

where εi is the error of the best constant estimate of gi
and ε(gi, f

(i)
j (Pi)) is a probabilistic error measure [23].

Given θij values, it is straightforward to define c
(i)
j [23]:

c
(i)
j =

θij∑li

m=1
θim

.

For a given set of parent genes Pi, f
(i)
j can be derived

using various methods. In this paper, we use best-fit ex-
tension paradigm of Lähdesmäki et al. [16]. Briefly, this
method outputs f

(i)
j (Pi) that best predicts gi, where the

error measure is the number of mis-predicted values of gi.
We use publicly available Matlab implementation of Best-Fit
Extension in PBN-Toolbox1.

A. Influence of genes

Given gene gi and its parent genes Pi, Shmulevich et
al. [23], formalized Influence to measure the effect of a
parent on gi. In other words, influence of gi on gj is the
probability that the next state value of gj will change when
we change the value of gi at the current time step. To
formally define the influence of gi on gj , denoted Ii(gj),
first we have to define the influence of a gene wrt a boolean
function f , which is the probability that the output of f will
change if we change gi. Assume that f is defined on the set
of input genes P = (g1, ..., gk). The influence Ij(f) of gj
on f is defined as;

Ij(f) = Pr{f(g1, ..gj−1, 0, gj+1, .., gk)⊕f(g1, ..gj−1, 1, gj+1, .., gk)}
(1)

where ⊕ stands for exclusive OR. Eqn 1 depicts the prob-
ability that f will output a different value if gj is toggled
while the other input variables stay the same. Also note that
Ij(f) = 0 if gj /∈ P .

Given V, F and c
(i)
j of a PBN, Ii(gj) is defined as

follows [23]: Ii(gj) =
∑lj

k=1 Ii(f
(j)
k )c

(j)
k , which is the

weighted sum of all influences of gi on the set Fj .

III. PBN CONTROL

Given a PBN, in addition to simulating the model, inter-
vening the evolution of the PBN for the objective of reaching
or avoiding some predefined set of states from the current
state is an important problem as well. But this should be
done as effective as possible since it incurs some cost. This
defines the control problem in PBNs as: given a set of control
actions and their costs, find a sequence of actions for the
given PBN to achieve the predefined objective(s). Markov
Decision Processes [20] form one of the most widely used
frameworks to formulate control problems in the operations
research and artificial intelligence communities.

1available at: http://personal.systemsbiology.net/ilya/PBN/PBN.htm

A. Markov Decision Problems

A Markov Decision Process is formally defined as a
quadruple (S,A, T,R), where S is the set of states, A is the
set of actions, T is the transition probability function such
that T (s, a, s′) denotes the probability of the next state being
s′ given the current state s and action a, and R is the reward
function that represents the objective of the control process.
A MDP is a Markov Decision Process associated with a
performance criterion. The performance criterion we adapt in
this paper is the infinite horizon discounted reward criterion.
So the objective is to maximize the total discounted reward:∑

t βtRt(s, a), where Rt(s, a) is the immediate reward of
performing action a in state s at time t, and β ∈ (0, 1) is
the discount factor. In this paper, we assume that Rt and β
are independent of t; so we omit t after this point.

Solution to an MDP is called a policy, π; it is a mapping
from states S to actions A. Every π defines a value function
V π from S to real numbers. V π(s) is the total discounted
future reward of choosing an action a according to π in state
s, and following π thereafter. V π can be found iteratively:

V πk+1(s) = R(s, π(s)) + β
∑

s′

T (s, π(s), s′)V πk (s′) (2)

where iteratively applying Eqn 2 is called policy evaluation.
Optimal policy π∗ is the best policy in terms of the

given performance criterion. In our case, it is the policy
that achieves maximum possible infinite horizon discounted
future reward. Value function corresponding to π∗ is the op-
timal value function, V ∗, which can also be found iteratively
using the following Bellman update:

Vk+1(s) = maxa[R(s, a) + β
∑

s′

T (s, a, s′)Vk(s′)] (3)

Given all components of an MDP, Eqn 3 converges to the
unique V ∗ as k →∞. From V ∗, π∗ can be found as:

π∗(s) = argmaxa[R(s, a) + β
∑

s′

T (s, a, s′)V ∗(s′)] (4)

With arbitrary initialization to V0, the algorithm that uses
Eqn 3 to find V ∗ is called value iteration [2]. One simple
stopping criterion for value iteration is:

||Vk+1 − Vk|| ≤
ε(1− β)

2β
(5)

where ||X || = max{|x| : x ∈ X} denotes maximum norm.
Eqn 5 ensures Vk+1 is within ε/2 of V ∗ for any state [20].

Another well-known algorithm for solving an MDP is
the policy iteration algorithm [20]. Instead of starting with
arbitrary V , policy iteration starts with an arbitrary policy π,
and finds V π using Eqn 2. Then for all states s, it searches
for an action a that satisfies the following equation:

V π(s) < R(s, a) + β
∑

s′

T (s, a, s′)V π(s′) (6)

If found, it updates π(s)=a, and repeats the policy evaluation
and update steps until convergence criterion is met.



B. Factored MDPs

A factored MDP (FMDP) [3] is a representation language
for MDPs to exploit the structure of the control problem. In
most problems, T can be represented in terms of a set of
state variables, where in our case these variables correspond
to genes.

As representing T for a MDP requires exponential space
in the number of variables, FMDP proposes to represent T
for each specific action in the form of a dynamic bayesian
network (DBN) [6]. A DBN is composed of variables G =
(g1, g2, ..., gn, g

′
1, g
′
2, ...g

′
n), where the variables with a prime

denote the random variables at the next time step. So, a DBN
represents the relationships between random variables in the
current and next time steps. We denote the set of primed
variables by X ′ and non-primed by X , where G = X ∪X ′.
Each variable g′i has a set of parents Pi, where the value
of g′i depends only on Pi. In this paper, we assume that
Pi ⊂ X , and the variables in X do not have any parents, i.e.,
there are no synchronous dependencies between variables, all
dependencies are between the variables at time step t and the
variables at time step t + 1. This is a common assumption
for modeling GRNs using a DBN.

A DBN associates to each g′i and its parents Pi a con-
ditional probability distribution (CPD). A discrete CPD is
usually represented as a table. But some space can be gained
if CPDs are represented by decision trees in case they have
the same values for different instantiations of the parents [4].

In addition to CPDs, the structure in V and π can also be
exploited to represent them by decision trees. Both value
trees and policy trees have internal nodes labeled with
the variables themselves and edges labeled with the values
(instantiations) of the variables. Leaf nodes of a value tree
have values of the states corresponding to all states that have
the same instantiations of the variables in the path from the
root to the leaf. The same way, leaf nodes of a policy tree
have the actions corresponding to the states that have the
same instantiations of the variables in the path from the root
to the leaf. The reader is referred to [4] for details.

Solving FMDP requires modifying these value and policy
trees at each iteration. Decision-Theoretic Regression [4] is
one of the methods to modify decision tree representations
of value and policy trees; each iteration results in a new
value or policy tree that is closer to the decision tree
representation for V ∗. Structured value and policy iteration
are two algorithms that use decision-theoretic regression to
solve FMDPs [4]. We use the publicly available FMDP
solver, SPUDD2 (“Stochastic Planning using Decision Di-
agrams”) [10]. Instead of using decision trees, SPUDD
uses algebraic decision diagrams (ADD) [21]. The SPUDD
package also includes an approximate FMDP solver, APRI-
CODD (“Approximate Policy Construction using Decision
Diagrams”) [24].

In terms of GRNs, given PBN model derived from some
kind of biological data, actions, and the objective defined
in terms of the reward genes, the PBN control problem

2available at : http://www.computing.dundee.ac.uk/staff/jessehoey/spudd/

can be solved by the following steps: 1) Convert PBN to
DBN; 2) For each action a ∈ A, construct DBNa that
represents probability distribution T (s, a, s′) for all s, s′;
3) Given reward function R and discount factor β, define
FMDP M ; 4) Solve M using SPUDD.

C. PBN to DBN conversion

The probability distribution that a PBN represents can
be equally represented by a corresponding DBN [15]. Let
cpdPi,iv denote the entry in a discrete CPD of a DBN
corresponding to the probability that g′i will take the value
v at time step t + 1, given an instantiation vector Pi of its
parents at time t. Also, let f (i)

j (Pi) == v denote whether
the output of f (i)

j for the input Pi is v or not, i.e., 1 if v,
0 otherwise. Given parameters Fi = {f (i)

1 , f
(i)
2 , ..., f

(i)
li
} and

c
(i)
j for gi in a PBN, cpdPi,iv can be computed as:

cpdPi,iv =

li∑

j=1

(f
(i)
j (Pi) == v)c

(i)
j (7)

Performing these steps for each g∈G of the PBN, a DBN
representing the same probability distribution is constructed.

To find DBNa for each a, some simple updates on CPTs
have to be performed. Since the actions are defined as
interventions (toggling the action gene), to get the CPTs for
DBNagi , for all CPTs in the DBN that have gi as a parent,
rows that differ only in the value of gi are switched.

IV. EDGE ELIMINATION FROM FACTORED
REPRESENTATIONS

Although factored representations help in solving some of
the problems, they still suffer from the curse of dimensional-
ity in the worst case. Fortunately, in most of these cases we
can still reach a reasonable approximate solution by pruning
and/or approximating the value tree. Most of the approximate
methods prune the constructed trees during the process of
solving FMDP. Another possibility in finding an approximate
result is to prune the transition model before solving the
problem. In this section, we elaborate on such a method, but
before that we introduce the concept of edge influence.

A. Edge Influence

Lets start by introducing the basic concepts required to
understand edge influence as in Definition 1. Given a PBN,
influence of a gene gi on gene gj , Ii(gj), can be interpreted
as a measure of the strength of the link between the two
genes. But, Ii(gj) will be zero if gi is not among the parents
of gj . However, this does not mean gi has no influence on gj .

Given a node gi as the root, an “unrolled” PBN is
constructed (as a tree) by expanding each node g at level
t with the parents of g at level t − 1 in the given PBN.
Nodes are expanded unless the unique path from the leaf
node to gi includes a cycle.

Recall that each Ii(gj) corresponds to the effect of the
value of gi at time step t on the value of gj at time step
t + 1, and assume gk is one of the parents of gi. When
we unroll the PBN one time step, we will observe the path



gk → gi → gj . We know that, based on Markovian property,
Ik(gi) is independent of Ii(gj). Therefore, to compute the
influence of gk on gj after two time steps, we simply have
to multiply Ik(gi) and Ii(gj).

Formally, consider a simple path (a path that does not
have any cycles) p = gi1 , gi2 , ..., gik between gi1 and gik
in an unrolled PBN; if we label each edge Egilgil+1

on the
path with Iil(gil+1

), we can define the influence of gi1 on
gik corresponding to path p, denoted I (p)

i1
(gik ), as:

I
(p)
i1

(gik ) =
∏2
l=k Iil−1

(gil).
Note that there can be more than one simple path from

one gene to another in an unrolled PBN. Let P be the set
of all simple paths from gi to gj in an unrolled PBN. We
define all-path influence of gi on gj , denoted I(∗)

i (gj), as:

I
(∗)
i (gj) =

{ ∑
p∈P I

(p)
i (gj) if i 6= j

1 if i = j
(8)

Definition 1 (Edge Influence): Given three genes gi, gj
and gk, Edge Influence (EI) of the edge between gi and gj
on gk is defined as: EIi,j(gk) = Ii(gj)I

(∗)
j (gk).

EI can also be computed on a set of genes, denoted EIS:
EISi,j(S) =

∑
gk∈S EIi,j(gk), which is simply the sum of

influences of an edge on all genes in the given set.
Considering nodes with same label as different nodes,

the unrolled PBN corresponds to a tree. By considering
them as the same node and aggregating them, we find a
graph; then, path search in a tree turns into path search
in a graph. Computing all paths between two nodes in a
graph is a hard problem. It is NP-complete as it includes the
solution of the longest path problem which is known to be
NP-complete [12]. Also, the size of the unrolled PBN tree
can grow exponentially large depending on the structure of
PBN and the number of genes. So, it is better to compute
approximate values for EI . One possible method is to prune
the unrolled PBN tree. Also notice that the unrolled PBN
tree for a given gene only includes relevant genes and edges.
All nodes in a tree have an influence on the given gene, so
the parts of the PBN that are not related to the solution of
the control problem are not expanded and the EI values for
those edges are not computed.

1) Approximate computation of EI: Limiting the size of
the unrolled PBN up to a certain level can give good results.
But a better method is to prune the unrolled PBN if I (∗)

i (gj)
is less than a certain threshold T . As Ii(gj) is actually a
probability value, I (p)

i (gj) for any i, j and p monotonically
decreases with each new level in the unrolled PBN. So, when
we consider that the current all path influence values below
T are not significant then we may stop expanding a node i
further down in case EIi,j(gk) ≤ T , where gk is the root.

After this approximation, we are ready to construct an
approximate algorithm for computing EI values for a given
gene gj which will be the root of the unrolled PBN tree. The
complete process is given in Algorithm 1. It is a recursive
algorithm that actually does a limited depth first traversal
of the unrolled PBN tree, and does not expand node i for
sufficiently small values of I (∗)

i (gj).

Algorithm 1 computeEI(g, p, I
(p)
g (gt), T, gt, pbn,EI)

Input: gene g, path p = gt, pi1 , .., pik , path influence I
(p)
g (gt),

target gene gt, PBN pbn, initial values of EI
Output: ∀gi, gj reachable from gt, EI(gi,gj)(gt)

if g ∈ p then
EIg,pik (gt) = EIg,pik (gt) + Ig(pik ) ∗ I(p)

pik
(gt)

else
if EIg,pik (gt) > T then

for every pg ∈ parents(g) in pbn do
EI = computeEI(pg, {p, g}, Ig(pik ) ∗

I
(p)
pik

(gt), T, gt, pbn,EI)
end for

end if
end if
return EI

B. Edge elimination for approximate solutions of FMDPs

According to Definition 1, the EI value is a measure of
how a certain gene is effected by the changes in values of
other genes. In FMDP, the solution includes genes that have
some effect on the reward genes. So, genes that have no
effect on the reward genes at any time in the future can be
eliminated from FMDP. In a previous study, we proposed
a method to choose and eliminate unimportant genes from
an MDP [26]. However, based on the study described in
this paper, we realized that instead of eliminating a gene
completely, removing some of the unimportant edges from
a DBN in FMDP may produce better results.

Given the set of reward genes Γ of FMDP, EISi,j(Γ)
denotes how each relevant edge in the FMDP influences the
set of reward genes. This influence can be very low and
negligible for some of the edges. This means that edges
with low EIS values can be eliminated from consideration.
So, given a threshold δ, the edges with the smallest EIS
values whose total EIS does not exceed δ are removed.
After an edge is eliminated, we can marginalize out the
eliminated edge from DBN. But based on the conducted
experiments, we realized that maximum likelihood learning
of the parameters of the whole DBN based on data sampled
from the original DBN gives better results.

Algorithm 2 reduceFMDP(EIS(Γ), δ,M,D)

Input: EIS(Γ),δ,FMDP M ,D
Output: FMDP M̂

M̂ = M
Let S be the sorted set of edges Ei,j where EISi,j(Γ) 6= 0
Take the first k edges,Sk , from S such that∑

Ei,j∈Sk EISi,j(Γ) < δ

for all Ei,j ∈ Sk do
Remove edge Ei,j from DBNs for all actions in M̂
Learn maximum likelihood parameters of new DBN from

data D
end for
return M̂

The process in Algorithm 2 reduces a given FMDP M ,
to another possibly sparser FMDP M̂ by applying the
procedure described above. Let π∗ and π̂∗ denote the optimal



policies for M and M̂ , respectively; π̂∗ will depend on fewer
number of variables than π∗ because of the absent edges.
This means that value trees or policy trees will require less
computational resources to store and modify.

V. EXPERIMENTS

The method proposed in this paper is a pre-processing
procedure to obtain a compact FMDP to find an approximate
solution for large state spaces. It can be used to eliminate
“unimportant” edges prior to using any FMDP solver. All
experiments have been performed using a computer with 2.4
GHz Core(2) CPU and 3GB of RAM running Linux.

TABLE I
MUTATED T-CELL ACTIVATION MODEL

Product Predictors
CD45 Input
CD8 Input
TCRlig Input

Ca IP3
Calcin Ca
cCbl 1
CREB Rsk
DAG PLCg(act)
ERK MEK
Fos ERK
Fyn (Lck ∧ CD45) ∨ (TCRbind ∧ CD45)
Gads LAT
Grb2Sos LAT
lKKbeta PKCth
IP3 PLCg(act)
JNK SEK
Jun JNK
LAT 1
Lck PAGCsk ∧ CD8 ∧ CD45

lkB lKKbeta
ltk SLP76
MEK Raf

PAGCsk Fyn ∨ TCRbind
PKCth DAG
PLCg(act) (SLP76 ∧ PLCg(bind)) ∧ (ltk ∨ Rlk)
PLCg(bind) LAT
Raf Ras
Ras Grb2Sos ∨ RasGRPI
RasGRPI PKCth ∧DAG
Rlk Lck
Rsk ERK
SEK PKCth
SLP76 Gads

TCRbind TCRlig ∧ cCbl
TCRphos Fyn ∨ (TCRbind ∧ Lck)

AP1 Jun ∧ Fos
CRE CREB
NFAT Calcin

NFkB lkB

To demonstrate applicability, we performed an experiment
similar to Faryabi et al [8]. They solved a constrained
MDP for the control of mammalian cell-cycle. The boolean
model for the signalling pathway of the mammalian cell-
cycle includes 9 genes. A similar boolean pathway for the
activation of transcription factors (TFs) that activate T-cells
is given in [14]; this model has 40 genes. So, solving this
problem with MDP formalism requires very large resources
as the size of the state space is 240.

Chronic lymphocytic leukemia (CLL) is a type of cancer
that is caused by the uncontrolled proliferation of immuno-
logically immature lymphocytes. ZAP70 is an important gene
in the signaling pathway of T-cell activation [11]. High ZAP-
70 expression is thought to be the indicator of T-cell acti-
vation and prognosis and overall survival for CLL [9], [17].
Similarly, in T-cell activation model of Klamt et al. [14],
if ZAP-70 is overexpressed (it is always ON), then the TFs
that lead to proliferation of T-cells become always active
(ON). So, in the light of these findings, we introduced a
ZAP-70 overexpression mutation to the model given in [14].

ZAP-70 is, therefore, always active (ON) in our mutated
model given in Table I as logical formulae, similar to the
way the mammalian cell-cycle model is given in [8]. This
mutation (according to our model) leads to unlimited T-cell
proliferation; a cancerous state.

The first three genes in Table I are the input variables as
given in [14], and the last four are the output TFs which
activate T-cells. The interpretation of the table is simple; the
next state of the genes in “Product” column is determined
by the present states and logical formulae of the genes in
“Predictors” column. The model can be formulated as a
PBN by considering different instantiations of input genes.
A PBN can also be represented as a set of boolean networks
and a switching probability between these, which selects
the boolean network that will be used to determine next
gene activity profile [18]. The different values of input
genes actually lead to different boolean networks which
can be “merged” into a single PBN with equal switching
probabilities [8].

Having defined the PBN model of T-cell activation, the
control problem here is defined as finding an intervention
strategy that avoids the activation of output TFs. So, the
states that we try to avoid are those where AP1, CRE,
NFAT and NFkB are all active (ON) together. This way, the
unlimited proliferation of T-cells may be stopped. Given one
of the genes as the control gene and a “noop” action, we
tried to find the best control gene and intervention strategy
using the proposed methods.

The problem is too large to solve exactly; so for an approx-
imate solution, we used APRICODD with the size parameter
set to 75. To be able to evaluate the policies, we performed
simulations. We applied each policy in a simulation starting
from a random initial state for 10,000 steps and counted the
number of undesired states (the states where all output TFs
are ON) and number of interventions during the simulation.
The results are reported in Table II; note that not all of
the genes exist as control genes, only those that lead to
good policies in terms of the simulation results. Without any
intervention, the system stays in undesirable states in 9,754
steps out of 10,000. The last value of each column in Table II
is the time elapsed to find the control policy for that control
gene and δ. Times for δ 6= 0 also include the time needed to
sample from the original distribution and to learn parameters
for the new model.

The durations for finding the control policies in Table II
are dominated by the time for sampling and parameter
learning. Solving the FMDP for δ 6= 0 take very short times
(around 0.02 secs each). Another notable property of the
output is that although the durations for δ = 0 take varying
amount of time, durations for δ 6= 0 are almost equal.

Among all other control genes, ERK and MEK are the
most effective ones in terms of both the number of undesired
states and the number of interventions. Number of interven-
tions here is important as it represents the cost associated
with the control policy. ERK and MEK effectively stop
activation of four output TFs with relatively low cost. The
policy for ERK as the control gene is given in Figure 1. It



depends on five genes; when all of them are ON, it intervenes
ERK. Raf/MEK/ERK pathway has been shown to be
important in the development of leukemia [25]. It is also
interesting to note that Raf in this pathway is not as effective
as others; a point that needs further investigation.

TABLE II

T-CELL ACTIVATION CONTROL RESULTS, NUMBER OF UNDESIRED

STATES, NUMBER OF INTERVENTIONS AND TIME IN SECONDS

Control gene δ = 0 δ = 0.05 δ = 0.1 δ = 0.2

Ca 22, 9644, 94.5 17, 9606, 41.7 17, 9669, 41.6 19, 9662, 41.7
Calcin 5, 9642, 173.3 9, 9601, 41.7 10, 9595, 41.6 10, 9553, 41.6
CREB 8, 9596, 161.6 8, 9571, 41.7 5, 9647, 41.7 10, 9618, 41.6
DAG 3248, 3238, 229.9 3243, 3262, 41.7 3259, 3245, 41.7 3246, 3260, 41.7
ERK 18, 4870, 271.5 22, 4874, 41.7 25, 4859, 41.7 19, 4869, 41.7
Fos 6, 9592, 170.1 7, 9572, 41.7 7, 9602, 41.6 12, 9578, 41.7
lKKbeta 15, 9673, 91.2 18, 9644, 41.6 24, 9608, 41.6 27, 9599, 41.9
JNK 19, 9687, 91.7 15, 9640, 41.8 17, 9658, 41.8 15, 9639, 41.7
Jun 8, 9614, 161.3 10, 9660, 41.8 14, 9610, 41.7 16, 9586, 41.7
lkB 5, 9650, 166.6 11, 9591, 41.7 11, 9599, 41.7 8, 9580, 41.6
MEK 23, 4896, 124.2 29, 4890, 41.6 30, 4900, 41.7 20, 4874, 41.7
PKCth 36, 4875, 138.3 30, 4874, 41.7 40, 4874, 41.7 26, 4886, 41.6
PLCg(act) 2461, 2440, 219.3 2455, 2445, 41.7 2464, 2450, 41.7 2456, 2449, 41.7
Raf 3253, 3252, 212.5 3238, 3254, 41.7 3263, 3248, 41.7 3265, 3270, 41.7
Rsk 20, 9655, 88.8 18, 9658, 41.70 2, 9653, 41.7 23, 9620, 41.8

Fig. 1. Policy obtained when ERK is the control gene and δ = 0.2

VI. CONCLUSIONS AND FUTURE WORK

Devising intervention strategies for PBNs is an important
and hard problem. In this paper, we demonstrated an ap-
proach to solve the PBN control problem in the context of
FMDP, which is a well-known framework in the machine
learning community. The first contribution of this paper
is applying the FMDPs method to solve the PBN control
problem for the first time. This may lead to better scalability
in representation and solution of the control problems in
bioinformatics. We also proposed a method to approximately
solve the control problem by eliminating some of the edges
in the model. The results presented show the applicability
and success of the proposed algorithm.

In biology and medicine, in addition to solving the control
problem, it is almost equally important to find an applicable
or simple policy. A complex policy is very hard to apply in
the absence of more “intelligent” drugs. Based on this argu-
ment, it is necessary to find a policy as simple as possible. In
this sense, our proposed method of simplifying the model by
edge elimination can help finding approximate but good and
simple policies. Finally, the current implementation requires
the value of the threshold δ be given by an expert; however,
as one of our targets is to minimize user involvement as much
as possible, we are currently investigating an automated way
for finding δ given an FMDP M ; the preliminary results are
encouraging and even promise a possible improvement in the
overall performance.
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