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Abstract— MicroRNAs (miRNAs) are single-stranded RNA 
molecules of about 20–23 nucleotides length found in a wide 
variety of organisms. MiRNAs regulate gene expression, by 
interacting with target mRNAs at specific sites in order to induce 
cleavage of the message or inhibit translation. Predicting or 
verifying mRNA targets of specific miRNAs is a difficult process 
of great importance. GOmir is a novel stand-alone application 
consisting of two separate tools: JTarget and TAGGO. JTarget 
integrates miRNA target prediction and functional analysis by 
combining the predicted target genes from TargetScan, 
miRanda, RNAhybrid and PicTar computational tools and also 
providing a full gene description and functional analysis for each 
target gene. On the other hand, TAGGO application is designed 
to automatically group gene ontology annotations, taking 
advantage of the Gene Ontology (GO), in order to extract the 
main attributes of sets of proteins. GOmir represents a new tool 
incorporating two separate Java applications integrated into one 
stand-alone Java application.  GOmir (by using up to four 
different databases) introduces, for the first time, miRNA 
predicted targets accompanied by (a) full gene description, (b) 
functional analysis and (c) detailed gene ontology clustering. 
Additionally a reverse search initiated by a potential target can 
also be conducted.  GOmir can freely be downloaded from 
http://bioacademy.gr/bioinformatics/projects/GOmir. 
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I. INTRODUCTION 
MicroRNAS (miRNAs) are 20- to 23- nucleotide long 

single stranded RNAs that post-transcriptionally regulate gene 
expression [1, 2]. MiRNAs act as  translation inhibitors of 
mRNA into protein and promote mRNA degradation. In this 
way, miRNAs play important role in various cell processes 
such as proliferation, differentiation, apoptosis, development, 
cancer and various other diseases [1, 2] and thus represent 
potential targets for therapeutic applications. 

The biogenesis of miRNAs is a complicated process 
involving two different cellular compartments [3]. First, in the 
nucleus, a primary miRNA (pri-miRNA) is transcribed from 
the genomic DNA by RNA polymerase II. The size of this 
primary product varies from 100- to 1000- nucleotides in 
length. Then, the pri-miRNA is truncated by Drosha and 
DGCR8 to form a hairpin loop precursor called pre-miRNA 
[3]. The 60-70 nucleotide long pre-miRNA is loaded to 
Exportin 8 and Ran-GTP in order to be exported into the 
cytoplasm. A mature miRNA (20-23 nucleotides) is then 
released by the RNAse III endonuclease complex including 
Dicer and trans-activator RNA (tar)-binding protein TRBP [3]. 
The mature miRNA then inhibits translation of a miRNA into 
a protein by imperfect base pairing to one or more mRNA 
sequences [1, 4]. The identification of human miRNAs and 
their respective targets is of great importance and involves 
both computational and experimental approaches. Prediction 
servers such as TargetScan [5], miRanda [6], RNAhybrid [7] 
and PicTar [8] give information for the miRNA-target 
interactions. Recent reports have described correlated 
computational expression of miRNA and their target mRNAs 
and proteins giving a detailed functional description of the 
latest [4, 9]. Herein, we describe GOmir, a new stand-alone 
application for human miRNAs target prediction and ontology 
clustering, consisting of two different components, JTarget 
and TAGGO. JTarget combines the data from four different 
databases (TargetScan, miRanda, RNAhybrid and PicTar), 
whereas TAGGO gives detailed assignments from Gene 
Ontology (GO) resources to gene products. TAGGO uses one 
of the most reliable biological ontologies, the Gene Ontology, 
the main goal of which is to provide a well structured, 
precisely defined and controlled vocabulary for describing the 
roles of genes and gene products in any organism. Thus, 
GOmir serves as a reliable tool for miRNA target prediction 
and more interestingly provides assignments from GO 
resources for these gene products, exploring in this way the 
functional aspects of miRNAs in more detail. 



 

 

II. METHODS 
We will describe the design and implementation of both 

tools JTarget and TAGGO. 

A. JTarget  

1)   Data Acquisition 
Data derived from human miRNA target predicting tools, 

such as TargetScan, miRanda, RNAhybrid and PicTar were 
used. The TargetScan database was obtained from the 
TargetScan website (the 4.2 release of April 2008, 
http://www.targetscan.org/). Concerning the miRanda tool, the 
latest up-to-date data were downloaded from miRBase web 
site (http://microrna.sanger.ac.uk/index.shtml). Similarly, the 
data from RNAhybrid database were retrieved from the 
mirnamap website (http://mirnamap.mbc.nctu.edu.tw/). 
Finally, the PicTar data were obtained from the UCSC 
genome browser database (http://genome.ucsc.edu/). The 
database files were treated, in order to obtain only the human 
target genes. For gene description and functional analyses, 
three database files were downloaded from the DAVID 
Bioinformatics database 
(http://david.abcc.ncifcrf.gov/home.jsp), in order to 
implement the “Find gene description” and “Find gene 
function” applications and correlate in this way each gene 
product with a description and a function analysis, 
respectively.  

2)  Data Integration 
The database files from the four miRNA target prediction 

tools were truncated to the human related information, in 
order to have the minimum size and all the human miRNAs 
were paired with the respective targets. The TargetScan 
database file contains miRNA families, instead of individual 
miRNAs. Therefore, the miRNA families file corresponding 
to the respective miRNAs was downloaded as well. Different 
gene ID systems (Refseq ID, Gene symbol, Ensembl ID) are 
used among different databases. In order to correlate the data 
among different data sets the NCBI website 
(http://www.ncbi.nlm.nih.gov/) and the DAVID 
Bioinformatics Database 
(http://david.abcc.ncifcrf.gov/home.jsp) were used. The 
downloaded files, from the DAVID database for the “Find 
genes description” and “Find genes functions” procedures, 
contained pairs of DAVID ID number/ genes symbol, DAVID 
ID number/ genes description and DAVID ID number/ genes 
functions and were minimized to the human related 
information. 

For the functionality and performance of the application we 
decided to create a database with all the necessary files, which 
were described above. We used SQLite, a software library that 
implemented a self-contained, serverless, zero-configuration, 
transactional SQL database engine and is ideal for internal 
databases used for distributable, stand-alone application 
(http://www.sqlite.org/). We imported the information from 
our data files in a SQLite database file, necessary for JTarget 

functionality and is downloaded along with the entire 
application installation package.  

3)  Functionality and implementation 
JTarget main goal is to find the target genes of a given 

miRNA derived from 1 to 5 databases and compare any 
possible combination of the results from these databases. The 
available databases are TargetScan, miRanda, RNAhybrid, 
PicTar-4way and PicTar-5way. Following the insertion of a 
specific miRNA name, 3 possible scenarios are given. The 
user can obtain the resulted target genes from: (a) only one 
database, (b) 2 or more databases or (c) all combined 
databases. The miRNA target genes search within a single 
database is implemented by executing a “SELECT microRNA, 
target FROM database_name WHERE 
microRNA=microRNA_name” sql query into the database. 
The common targets from several database tools are found by 
performing inner joins among the results from the respective 
“SELECT” statements.  

JTarget comprises some more functionalities besides the 
miRNA common target genes prediction. After target gene 
selection for a given miRNA, the user can search for a 
description of these target genes or for their functions. These 
two options are implemented by executing “SELECT” queries 
into the entire database in order to correlate each gene with a 
description and/or functions, respectively. In addition, it is 
possible to perform a reverse search. The user may enter a 
gene symbol (e.g. STAG2 for STROMAL ANTIGEN 2) and 
obtain the common miRNAs of the selected databases for the 
given gene. 

Finally, the JTarget tool is connected to the TAGGO 
through a button named “TAGGO”, which enables the 
clustering of the genes. A temporary file is constructed from 
the output file from a miRNA target search, and then used to 
the TAGGO tool.  

B. TAGGO  
Gene Ontology (GO) is divided into three ontology aspects 

which yield information common to all living organisms. 
Molecular Function (MF) and Cellular Component (CC) 
aspects answer the questions of what a gene product does and 
where its active form can be found, whereas the Biological 
Process (BP) aspect clarifies the biological objective of a gene 
product. Each ontology aspect is structured as a Direct 
Acyclic Graph (DAG), a graph with no cyclic paths (no loops) 
with its nodes representing the ontology terms (and their 
intrinsic properties) and its edges the relations between nodes. 
Each GO term has a unique identifier which is used as a 
database cross-reference in the collaborating databases [10]. 
Each gene product-GO term pair is followed by an Evidence 
Code (EC) which indicates how an annotation to a particular 
term is supported. There are fourteen different ECs. The 
higher the specificity of a term, the lower its level inside the 
ontology hierarchy is, and vice versa. Proteins are often 
annotated with terms of medium or low level in ontology. 
This provides a huge amount of information that is misleading 
when the aim is to pin-point the main characteristics and 
functions of a protein or a protein set. To obtain a more global 



 

view of the attributes of a protein or a protein set, a way to 
assign more general terms to proteins, is needed. Finding 
more general categories for the function and localization of a 
protein is equivalent of tracking the most general terms of GO 
which are relevant to its annotated GO terms, as more generic 
terms (those high in the ontology) mainly serve as abstractions 
which demonstrate the broader role of their children.  

1)  Algorithm 
TAGGO implements general terms in the GO DAG 

structure and automatically produces biologically meaningful 
results. A method to estimate the specificity of a term is the 
evaluation of its Information Content (IC). In Algorithmic 
Information Theory, the information content of an individual 
object is a measure of the degree of difficulty to define or 
describe that object [11]. In other words, high information 
content implies more intense effort to process an object. In 
biological terms, the higher the information content of a GO 
term, the more specific this term is and vice versa. 

To confine this theoretical definition into a mathematical 
formula, it is necessary to consider that the times a term 
occurs denote how general this term is. It is not even 
necessary to encounter the term itself but any of its children: 
According to the True Path Rule, a rule imposed in order to 
ensure the validity of GO entries, the pathway from a child 
term to its top-level parent(s) must always be true [10]. In 
other words, a term holds all the attributes of its ancestors and 
can be considered one of them. 

Measurement of the degree of specificity of a term is 
complicated by the fact that the local density of GO terms and 
the length of branches vary. Furthermore, “leaves” should 
contain the same IC, as they provide the most detailed 
descriptions [12].  

Formalistically: 
( )p c , the probability of a term, is defined as the 

frequency of encountering this term: 
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( )normalIC c
, the Normalised Information Content of a 

term, ranges from 0 (root) to 1 (leaf). 

2)  Functionality 
The main input file of TAGGO is a list of proteins that is 

experimentally produced by e.g. a large scale analysis. 
SwissProt accession number, gene symbol or International 
Protein Index (IPI) can be used to identify each protein. To 
load the GO structure, a GO file is used as input. OBO v.1.0, 
OBO v.1.2, GO (which is deprecated), OBO-XML or RDF 
formats are supported. To map gene products to GO terms, the 
organism of origin must be selected. That triggers the program 
to load the corresponding to the selected species GO 
annotation (GOA) file. Each GOA entry provides information 
about the database which contributes to this annotation, the 
date of the annotation, the object which is annotated, its 
synonym, its type (e.g. gene, transcript, protein), its assigned 
GO term, the ontology, where this term belongs to and 
evidence about the credibility of this annotation. Users are 
strongly advised to use the latest GO and GOA files which 
can be downloaded from the GO FTP site 
(ftp://ftp.geneontology.org/pub/go/). To increase versatility 
and robustness, the user has the opportunity to exclude GOA 
entries supported by less reliable Evidence Codes (ECs). Thus, 
the output file may only hold the GO annotations of the input 
proteins supported by well established methods. To exclude 
very generic terms from the classification, non-desired terms 
can be specified and normalised information content threshold 
for the three aspects can be set (default values are 4% or 0.04). 
Finally, the directory, where the results will be stored is 
chosen and all data are submitted. 

When the program starts running, a file which contains the 
GO terms of each protein for all three aspects, is created. Then, 
the protein dataset is categorised into general GO terms, as 
follows: all parents of each term are found (considering all 
possible pathways to the root) and sorted according to 
ascending information content. The most general term which 
does not belong to the non-desired terms of the corresponding 
aspect is considered a category, unless all of the ten most 
general parents belong to the user-specified non-desired terms; 
in that case, the term is classified as “NO ENTRY” category. 
The proteins with their assigned GO categories are gathered 
and duplicated categories for a given protein are removed. The 
output is visualised in pie and bar charts which show the 



 

percentage of each GO category on the given protein dataset, 
in all GO aspects. Moreover, Venn lists for all aspects are 
created to indicate the overlaps of GO categories for the given 
protein dataset. These lists can be imported in VennMaster [14] 
to create Venn diagrams. These three types of output indicate 
how many proteins share a common GO category. 

C. GOmir  GUI implementation and prerequisites  
Both tools were developed in Java Programming Language. 

We used the widget toolkit for Java, Swing, in order to 
develop the graphical user interface. As far as the JTarget 
database implementation is concerned, we selected the SQLite 
SQL database engine, which does not need any server to be 
installed and is very compact. In addition, Spring Framework 
and JFreeChart library were used for the implementation of 
TAGGO chart functionality. GOmir can be installed in any 
Microsoft Windows operation system with Java Runtime 
Engine 1.5.0 (JRE 5.0) (http://www.java.com/) pre installed.  

III. USER INTERFACE 
JTarget contains text fields, buttons and one central text 

area for the interaction with the user (Figure I).  To find the 
target genes of a miRNA from a single database, the “Search 
by miRNA” option has to be selected and a miRNA name (e.g. 
miR-21) should be given. Then, a database (e.g. TargetScan) 
should be marked and the results are presented in the central 
text area by clicking the “Find Targets” button. The common 
results from 2 or more databases can be obtained by marking 
the desirable databases and clicking the “Compare database 
results” button. The available databases are: TargetScan, 
miRanda, RNAhybrid, PicTar-4way and PicTar-5way. In this 
study, for the first time, the RNAhybrid database sets were 
introduced in a computational program. 

To obtain the common target genes results for a given 
miRNA from all the databases (TargetScan, miRanda, 
RNAhybrid and PicTar-4way), only the “Compare All” button 
should be clicked without the necessity to select any databases 
(Figure II). The databases, that give no results for a given 
miRNA, are excluded from the procedure and the common 
target genes from the remaining databases are provided.  

The JTarget includes datasets from PicTar 4-way and the 5-
way databases. Both databases contain target prediction for all 
human miRNAs based on conservation in mammals. The 
PicTar 4-way includes human, mouse, rat, dog species 
datasets, whereas the 5-way includes also and chicken species 
datasets. However, the insertion of PicTar 5-way reduces the 
common target genes results to a significant degree. Therefore, 
we decided to exclude this database from the calculation of 
the common target genes at the “Compare All” procedure.  
The number of the predicted targets by searching one or more 
databases for miR-21, miR-31, miR-221 and miR-222 is 
shown in TABLE I.   

 
Figure I: JTarget main menu. 

 
 

 
Figure II: The target genes of miR-21 as given by the procedure “Compare 
All” (4 databases).  

 
 
 
 

 

TABLE I 
NUMBER OF COMMON TARGETS FOUND FOR SEVERAL miRNAS FROM 1, 2, 

 4 OR 5 DATABASES 

miRNAs TargetScan 
TargetScan 

and miRanda 
Compare All 

(4) 
Five 

databases 
miR-21 186 44 12 6 
miR-31 192 20 7 0 
miR-221 251 49 11 5 
miR-222 251 40 10 7 

 



 

The results can be saved either before the search is 
accomplished, by filling the “Enter the output file” text field, 
or by choosing “Save Text” after the completion of the search.     

Afterwards, the user may find the descriptions of the target 
genes results just by clicking the “Find genes description” 
button. Each gene followed by its description is presented in 
the text area. In addition, the functions of each target gene can 
be found when the “Find genes functions” is clicked.  The 
information about the genes description and functions is 
obtained by the DAVID Bionformatics database. In Table II 
the descriptions of the common genes from 4 databases 
predicted for the miR-21 are described.  
 

In TABLE III the functions of the common target genes 
predicted by the JTarget “Find genes functions” procedure for 
miR-21 from all 5 databases are shown. The blank cells next 
to certain genes mean that these genes are not contained in 
DAVID’s gene function database. 

 

Once a search is completed, a gene ontology clustering may 
be performed by clicking the “TAGGO” button. A temporary 
file is created from the output file of a JTarget search and is 
then used as an input file for TAGGO search. TAGGO 
interface consists of 5 steps (Figure III).  First, the user has to 
provide the path of the input file containing the proteins. 
When TAGGO is initiated through JTarget, the first step of 
TAGGO is done automatically, as the input file is provided 
directly by JTarget. The second step consists of the selection 
of the gene ontology file and its format. At the third step, the 
user is asked to choose the organism for which the clustering 
is going to be performed. Afterwards, the user may select the 
Evidence Codes to be included during the annotation process 
(all of them are included by default), may exclude some non-
desired terms or may set a normalised information content 
threshold for the three aspects. The fifth step is to provide the 
program with an output directory. The output of the whole 
process is a directory called “Results”, which includes the 
charts for the visualization of the output, three Venn lists for 
each GO aspect and some text files with information about the 
process and its results. For example, according to TAGGO 
results for the common target genes for miR-21 from 
TargetScan and miRanda, the most dense GO term for 
Cellular Component GO aspect is GO:0005562 which 
corresponds to intracellular (Figure IV) and for Molecular 
Function GO aspect is GO:0005488 which corresponds 
binding functions, respectively (Figure V).  

 
Figure III: TAGGO  main menu 

 

TABLE II 
DESCRIPTION OF THE COMMON TARGET GENES OF mir-21 

FROM 4 DATABASES 
Gene  Description 

BOLL BOL, BOULE-LIKE (DROSOPHILA) 
BRD1 BROMODOMAIN CONTAINING 1 
C4orf16 CHROMOSOME 4 OPEN READING 

FRAME 16 
CHD7 CHROMODOMAIN HELICASE DNA 

BINDING PROTEIN 7 
CNTFR CILIARY NEUROTROPHIC FACTOR 

RECEPTOR 
NFIB NUCLEAR FACTOR I/B 
NTF3 NEUROTROPHIN 3 
PCBP1 POLY(RC) BINDING PROTEIN 1 
RASA1 RAS P21 PROTEIN ACTIVATOR 

(GTPASE ACTIVATING PROTEIN RAS 
P21) 

STAG2 STROMAL ANTIGEN 2 
TGFBI TRANSFORMING GROWTH FACTOR, 

BETA-INDUCED, 68KDA 
TRPM7 TRANSIENT RECEPTOR POTENTIAL 

CATION CHANNEL, SUBFAMILY M, 
MEMBER 7 

 

TABLE III 

FUNCTIONS OF THE COMMON TARGET GENES OF MIR-21 
FROM 5 DATABASES 

Gene  Function 

NFIB NFIB is capable of activating transcription 
and replication. 

C4orf16  
RASA1 RASA1 is an inhibitory regulator of the 

Ras-cyclic AMP pathway. 
STAG2 STAG2 is a component of cohesin complex, 

required for the cohesion of sister 
chromatids after DNA replication.  

NTF3 NTF3 promotes the survival of visceral and 
proprioceptive sensory neurons. 

CHD7  
 



 

 
Figure IV:  Subcellular destribution of the common target genes for miR-21 
as derived from TargetScan and miRanda datasets. 

 
Figure V: Functional classification of  the common target genes for miR-21 as 
derived from TargetScan and miRanda datasets. 

A reverse search is possible to be performed in JTarget, 
using the “Search by gene” option, in order to find the 
complementary miRNAs for the given gene. Searches for 
common miRNAs from 2 to 5 databases are available as well.   

IV. CONCLUSIONS 
GOmir, is a novel stand-alone application designed to 

elucidate the human miRNA interactions with the respective 
targets by using the data sets retrieved by four different 
computationally miRNA prediction databases, increasing in 
this way the validity of the results. In this study, RNAhybrid 
database was inserted for the first time in a computational tool 
that combines the results from different miRNA databases. 
The validity of the computational predicted targets is 
confirmed by recent experimental studies for certain miRNAs. 
For example, GOmir indicated NFI-A as possible target for 
miR-223 comparing 4 out of 4 databases (Sanger, TargetScan, 
RNAhybrid and PicTar-4way). Further experimental studies 
by Fazi et al. confirmed this prediction and showed that miR-
223 plays a crucial role during granulopoiesis by 
downregulating NFI-A [15]. GOmir provides a detailed gene 

description of the predicted targets accompanied by a function 
analysis. A reverse search initiated by a potential target can 
also be performed to find the predicted interacting miRNAs. 
In a second next step, a detailed gene ontology clustering, 
including all the respective graphic charts and diagrams for 
the predicted targets are provided by the TAGGO module of 
GOmir. In this way, any group of human miRNAs and 
respective targets can be analysed with functional and 
ontology information provided, easily, in a short period of 
time and without using a web-based interface. 
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