
  

  

Abstract—Following the rapid development of gene selection 
methods, several comparison studies have been reported for 
ranking methods on various datasets. In order to reduce bias in 
performance measures, most studies use an evaluation scheme 
based on cross-validation. In this paper we focus on the 
methodology of evaluation itself and address methodological 
problems using three representative algorithms on two public 
datasets. More specifically, the paper discusses the need of an 
independent test-set to reduce bias associated with cross-
validation, the use of case specific considerations for 
generalization, as well as other measures that reflect stability 
and consistency of the result. Such measures reflect the 
influence of the actual dataset distribution on the performance 
of gene selection methods. 

I. INTRODUCTION 
NA microarray technology along with the release of the 
human genome working draft [1] has open a new era in 
the field of prognosis, diagnosis, prevention or even 

discovering the biological mechanisms involved in the 
development of cancer. Many statistically based algorithms 
have been developed to address the specification of a 
characteristic set of genes that can efficiently and effectively 
describe the population dataset. Nevertheless, tested 
algorithms derive different solutions to the same problem, so 
that genomic information can not yet be trusted and used in 
diagnostic or prognostic decision support systems. From a 
statistical point of view, the problem of gene selection 
suffers from the unbalanced sizes of features (genes) and 
available exams (cases), which are generally referred to as 
“curse of dimensionality”. Another problem is the small 
sample random correlation effect, where a small number of 
features can be easily found to be randomly correlated with 
the outcome. Furthermore, the result of any prediction 
algorithm is bounded by the random measurement error on 
patients, due to the low quality of microarray images, where 
each patient may be measured with different (unknown) 
confidence intervals on each gene expression. Thus, there is 
a crucial need to develop an validation platform for data 
mining approaches in this field, so that the information 
conveyed by the “distilled” set of genes, could be trusted 
and used by an expert to search, discover and understand the 
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hidden biological mechanisms involved in the development 
of complex diseases, such as cancer.  

Two general approaches have been proposed for gene 
selection, namely filter and wrapper methods. A 
fundamental difference between these two “philosophies” is 
the way that gene weights are ranked as significant. Filter 
methods focus on intrinsic data characteristics neglecting 
gene interactions, while wrapper methods consider gene 
interactions useful for classification, neglecting intrinsic data 
characteristics [2]. The integration of these two approaches 
has been recently addressed [3], [4] by embedding filter 
criteria in the iterative ranking and elimination of genes 
performed by wrapper techniques. Several comparison 
studies regarding these approaches have addressed the 
evaluation of algorithmic performances on various public 
datasets, based on cross-validation schemes such as [5]. 
Cross-validation, however, has received the criticism of 
introducing bias on the estimated results, not only through 
its internal but also its external application on the dataset [6].  

The aim of this work is to address such issues related to 
the evaluation framework and reveal potential bias sources, 
rather than to the actual comparison of algorithms. In our 
study two evaluation methodologies are explored, one based 
on cross-validation and the other based on a completely 
independent dataset. Through these evaluation schemes, we 
study issues of cross-validation from an overall population 
and a case-specific perspective, aiming to reduce estimation 
bias due to effects of small sample random correlation, bias 
induced by cross-validation re-sampling and uncertainties 
involved in the measurement process. We compare the 
performance measures of three representative algorithms 
from filter, wrapper and integrated approaches, respectively. 
The accuracy measures are presented along with confidence 
intervals on the prediction power of each methodology. 

II. MATERIALS AND METHODS 

A. Methods 
In this section we provide a brief overview of the gene 
selection methods studied. Filter methods are based on a 
direct ranking of genes, where wrapper and/or integrated 
methods employ a classifier in order to assess the 
importance of genes in decision making. The latter class of 
algorithms proceeds on the basis of recursive feature 
elimination (RFE) for the elimination of genes from the 
initial list. In the RFE methodology a classifier is used to 
assign weights to features (genes), which are ranked 
according to the absolute values of the assigned weights. 
Then, the features with the lowest weights are eliminated 
and the process continues recursively. Note that in such an 
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approach feature weights are dynamically updated, so that 
the weight of a feature is adjusted continuously through out 
the iterations.  
Filter Method 

The filter method tested is based on the Fisher’s metric 
(Fisher 1936) for gene ranking. For each gene this metric 
considers its discriminative power by means of: 
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where ( )igσ + , ( )igσ − , ( )igμ+ and ( )igμ− correspond 

to the standard deviation and means of the two classes of 
interest, for the specific gene ig . 

Recusive Feature Elimination with Support Vector Machines (RFE-
SVM) 

This approach [7] employs an SVM classifier [8] for 
assigning gene weights. SVM searches for the best 
separating hyperplane to distinguish between the two classes 
of interest. Towards the solution of this problem, we obtain 
the following expression for the direction vector w : 
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where 1 j Cλ≤ ≤ which is actually an expansion of those 

training samples with non-zero jλ , i.e. the support vectors. 

jλ s correspond to Lagrange multipliers, jy  corresponds to 

the label associated with the sample jx .  
RFE with Fisher’s metric on Support Vectors (RFE-FSV)  

In this approach [4] the learning process is appropriately 
enriched with a filter criterion, which actually yields the 
hybridization between the wrapper and filter approaches.  
More specifically, a variation of the Fisher’s ratio is 
appropriately integrated to the weight vector equation (3) of 
an SVM as follows. Let SVs be the set of support vectors 
and S be the set of indices defined as { }:S k SVs= ∈kx . 

Then based on (3) a new direction vector ′w is defined as 
follows: 
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We also point out that the weighting scheme can be 
expanded using nonlinear kernels in the SVM operation, 
such as polynomials of high degree. In this work we use a 
seven-degree polynomial kernel. 

B. Datasets 
Two datasets are considered in this study, i.e. the 

leukemia and breast cancer (BC) datasets published in [9] 
and [10], respectively. Both datasets consist of a training set 
and an independent test-set. The leukemia dataset consisting 
of 7129 array elements, representing 6817 genes, with the 
training set consists of 38 samples (27 ALL and 11 AML), 

all normalized to a zero mean and standard deviation one, as 
suggested in the original publication [9]. The BC dataset 
contains 24481 genes and 78 samples on the training set, 44 
of which are characterized negative and correspond to 
patients that remain disease-free for a period of at least five 
years, whereas the remaining 34 are characterized positive 
and correspond to patients that developed a relapse within a 
period of five years. 293 genes expressing missing 
information for all 78 patients were removed and the 
remaining 13604 missing values were substituted using 
Expectation Maximization (EM) imputation [12]. An 
advantage of these datasets is their supplement with an 
independent test-set directly derived from the design of the 
experiments. The independent test-set consists of 19 samples 
(7 negative and 12 positive) in the case of breast cancer, 
while it contains 34 samples (20 AML and 14 ALL) in the 
leukaemia dataset. Thus, we can also consider algorithmic 
performance on these data, without mingling with the design 
of the study. In order to reduce random correlation effects 
on the prediction estimates and increase the confidence on 
performance measures, we use multiple random splits for the 
derivation of various training sets by means of 10-fold 
cross-validation. The process of cross-validation has been 
reported to induce bias due to the mixing of samples in the 
training and testing phases [5]. To address this bias on 
domain specific datasets we exploit the truly independent 
test-sets aiming to a more objective evaluation of the 
prediction and generalization abilities of each model. Thus, 
for each run of the CV process we test the performance not 
only on the corresponding portion of data that has been 
assigned for CV testing, but also on the entire independent 
test set. Besides the performance on the overall population, 
we also resort to case specific considerations as to address 
the influence of measurement errors on the estimation of the 
prediction power of each method. All measures are 
presented along with appropriate confidence intervals 
derived from the cross-validation process. 

C. Evaluation Measures 
For the effective evaluation of measures we created the 

so-called performance profile of an algorithm (model), 
which is in fact a table with columns reflecting all patients 
and rows indicating the cross-validation runs. For each run 
(row), the table captures a binary value for each patient 
(column) if this patient is in the test-set of the run. This 
value indicates the prediction success for this patient on the 
specific run. In this form, the average per patient over all 
runs reflects the per-patient accuracy of the algorithm, 
whereas the average per run over all patients reflects its per-
run accuracy. The notation of such accuracy measures is 
specified in the following. 

Let S  be the “performance profile” matrix of m  rows 
and n columns, where m is the number of runs (folds) and 
n the number of patients (samples). Along each row of 
matrix S we define the cardinality CRi of row i  and the 
cardinality CPj of column j  as the number of active entries 



  

(one or zero) within each row and column, respectively. 
Along each row of S we define the mean accuracy per run: 
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which assesses the model’s generalization on the test-set, 
while keeping the training set fixed. Based on multiple split-
sample runs, Michiels et. al. [11] proposed a strategy for the 
estimation of confidence intervals on the true prediction 
power of a method, by means of a percentile on the 
empirical distribution of multiple run estimates. In a similar 
form we employ the sample mean and standard deviation to 
model multiple run estimates and derive measures for the 
mean prediction accuracy and its std (standard deviation) 
over all runs, denoted by the pair (accR, stdR). The standard 
deviation reflects a range of variation for the performance of 
the model, depending on variations of the training set. Thus, 
it forms one measure of stability for that model.  

Alternative to row measures on the performance profile, 
operating on the columns of S  we derive the mean per- 
patient Pj accuracy given by: 
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The mean accuracy accP over all tested samples/patients 
may be used as an index of the prediction power of an 
algorithm for individual cases. Furthermore, the standard 
deviation of the per-patient accuracies over all tested 
samples is a measure of algorithmic stability of the 
prediction of individual patient outcome. As such, small 
standard deviation of the per-patient accuracies of an 
algorithm indicates robustness and generalization abilities of 
the algorithm in changes of the sample distributions. 

Besides performance measures, we also consider a gene 
overlap index over the cross-validation runs in order to 
provide a measure of the robustness of the algorithm in 
selecting the same set of genes under different initialization 
conditions induced through variations of the training set. At 
the end of the cross-validation process for a set size of 
surviving genes, let qi  determines the frequency of selection 
of the ith gene. The average of these frequencies provides 
our index of gene overlap over the different iterations. We 
focus on a fixed number of most frequently selected genes 
and consider the progress of the gene overlap index as the 
size of surviving genes proceeds towards a minimum. 

III. EXPERIMENTAL RESULTS 

The discussed experimental scenarios are evaluated on 
three representative (filter, wrapper and integrated) 
methodologies and the results are presented in Fig. 1 and 
Fig. 2 for the leukemia and BC datasets, respectively. At 
each cross-validation run, the algorithm is tested on the test 
subset of the cross-validation iteration (denoted by “cv”), on 
the independent test-set (denoted by “t”), and on all samples 
(t + cv) available for testing (denoted by “all”). The latter 

case is considered as a more unbiased estimate of 
algorithmic performance, since it involves a large number of 
testing cases, either linked with the distribution of the 
training set(s) or being completely independent. Each figure 
includes three columns of plots, one for each representative 
algorithm tested. Each plot presents average accuracy 
estimates over the cross-validation runs along with stds, 
plotted versus the number of selected genes. The top plot 
presents the accuracy estimate computed from cross-
validation ( ),cv cv

R Racc std , i.e. when testing is performed on 

subsets of cross-validation splits. The middle plot is the 
accuracy estimate ( ),all all

R Racc std  derived from all tested 

samples (testing subsets of cross-validation splits plus the 
independent test-set). As mentioned before, this plot is 
considered as less biased and is used as a “golden standard” 
for comparison. The bottom plot in each column depicts the 
performance measures obtained on a per-case consideration 
of samples in the independent test-set, i.e. ( ),t t

p pacc std . 

Finally, the last (common) plot depicts the gene overlap 
index for the three algorithms at specific cut-off points on 
the number of selected genes (size of gene signature). 
Results from other studies [5],[9] and [10] are also 
superimposed on these figures with appropriate symbols. 
Similar to the comparative study of Michiels et al. [11] some 
of them are outside or in the boundaries of estimation limits. 
Notice the result of the Van’t Veer’s study [10], which is 
outside our limits, in exact agreement to [11]. 
Considering both diseases and all prediction models, we 
observe that the performance over the entire testing set (2nd 
row) is quite different from the result of cross-validation (1st 
row). The bias induced by cross-validation is more 
significant in the case of leukemia, in which it overestimates 
the algorithmic performance. Better proximity to the golden 
standard than cross-validation is achieved by using only the 
independent test set on per patient basis (3rd row). Thus, the 
independent test set appears to have an important role in 
reducing the performance bias. Furthermore, the variance of 
performance results in individual iterations appears to be 
high for the cross-validation scheme, leading to larger std 
intervals. This large variance of potential estimates, which is 
highly affected by the design of random splits, allows for 
and partially explains the over-optimistic results that have 
been reported in the literature [11] using cross-validation. 
Proceeding with the gene overlap index, which has been 
computed based on the frequencies of the 20 most often 
selected genes over the cross-validation iterations, we 
observe that it drops significantly as the size of selected 
genes decreases. Thus, the consistency of algorithms in 
selecting the same genes decreases with the progress of 
iterations, raising concerns that at the stages that we 
consider  (fewer than 100 genes), the selection of some 
genes may be random.The best index is achieved by the 
filter method, indicating good stability in selecting 
consistent gene signatures. 
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(d) Gene overlap index for the 20 most common genes. 

Fig. 1:Leukemia data set 
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(c) Per-patient Accuracies and Standard Deviations from Independent test-set. ( ),t t
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(d) Gene overlap index for the 20 most common genes. 

Fig. 2: breast cancer dataset. 

 



  

This is to be expected due to the fixed ranking scheme 
implemented by this method for all individual genes. On the 
other hand, the consistency of the integrated method is 
higher than that of the SVM for the leukemia dataset, while 
both methods derive almost identical measures on the more 
complex dataset of breast cancer indicating similar 
predisposition to the small sample random correlation effect. 

Attempting an overall comparison based on these results, 
we derive different conclusions on the two datasets. On the 
leukemia dataset the SVM derives the lowest performance 
with high variance (on per-patient trials) and low gene 
overlap index; similar result has been reported in [5]. The 
same method on breast cancer appears to achieve slightly 
better accuracy estimates than the filter method. For large 
size of gene signature the integrated method performs better 
than SVM, but its performance drops with reducing gene 
numbers. These results support the claim that the 
algorithmic performance depends on the distribution of the 
data, so that we cannot in general rank a single  prediction 
model better than any other. 

The results reported refer to average measures over 100 
runs with different training sets, where a different gene 
signature is selected in each run. For the cross-validation 
scheme (first row) we observe large variation of 
performance. Similarly, even for the same size of gene 
signature, there is a large performance variation on a per-
patient consideration. The large confidence intervals on per-
case estimates is a point of caution, raising concern 
regarding the systematic performance of algorithms on new, 
unseen cases, especially for small sizes of gene signatures. 
The performance stability increases (smaller confidence 
intervals) for the outcome estimated on a per-run basis, 
which however may be due to random selection of correctly 
classified patients per iteration. As a concluding remark of 
this work, we stress our belief that at this stage we cannot 
derive safe conclusions without the correlation of statistical 
results with the biological meaning of selected genes. 

I. CONCLUSION 
In this work filter, wrapper and integrated methods are 

tested on two publicly available datasets, namely for breast 
cancer and leukemia. The major difference from other 
comparative studies is that we focus on the performance 
evaluation methodology rather than the algorithmic 
performance itself and reveal issues of bias in the most often 
used process of cross-validation. We believe that these 
issues can become useful for the design of experiments and 
testing scenarios. More specifically, we stress the need for 
an independent test-set for evaluation, as to reduce the bias 
induced by the cross-validation mixing of training with the 
testing samples. Furthermore we address the need for a gene 
overlap index derived for varying training sets, as to ensure 
the consistency of gene selection and consider stability 
measures of the tested algorithms. According to this 
framework, the ranking of methods is not always the same 
depending on the examined dataset, even though RFE-SVM 
has been claimed to outperform filter methods in application 

domains such as colon cancer and leukemia. This position 
on performance variability agrees with the conclusions of 
[5]. A major concern stemming from the discussion of our 
results is that under the current state of performance 
validation methodologies, we cannot derive safe conclusions 
regarding the ranking of algorithms, without correlating 
algorithmic results with the biological meaning of selected 
genes. 
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