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Abstract— The classification of multiple cancer types based
on the gene expression profiles is a challenging task. Support
Vector Machines (SVM) have been applied to this aim but they
rely on Euclidean distances that fail to reflect accurately the
proximities among sample profiles.

In this paper, we incorporate in the classical ν-SVM algo-
rithm a linear combination of non-Euclidean dissimilarities.
The weights of the combination are learnt in a HRKHS
(Hyper Reproducing Kernel Hilbert Space) using an efficient
Semidefinite Programming algorithm. This approach allow us
to incorporate a smoothing term that penalizes the complexity
of the family of distances and avoids overfitting.

The experimental results suggest that the method proposed
helps to reduce significantly the misclassification errors in
several human cancer problems.

I. INTRODUCTION
DNA Microarray technology provide us a way to monitor

the expression levels of thousands of genes simultaneously
across a collection of related samples. This technology has
been applied particularly to the prediction of different types
of human cancer with encouraging results [20]. Support
Vector Machines (SVM) [17] are powerful machine learning
techniques that have been applied to the classification of
cancer samples [6]. However, the categorization of different
cancer types remains a difficult problem for classical SVM
algorithms. In particular, the SVM is based on Euclidean
distances that fail to reflect accurately the proximities among
the sample profiles [3], [11]. Besides, non-Euclidean dissi-
milarities provide complementary information that should be
considered in order to reduce the misclassification errors [1].

In this paper, we introduce a method to learn a linear
combination of non Euclidean dissimilarities that reflect
better the proximities among the sample profiles. The dissi-
milarity is embedded in a feature space using the Empirical
Kernel Map [16]. Next, we apply a family of non-linear
transformations to this kernel of dissimilarities using the
hyperkernel formalism. Each non-linear transformation gives
rise to a non-Euclidean dissimilarity. After that, learning
the dissimilarity is equivalent to optimize the weights of
the linear combination of kernels. Several approaches have
been proposed to this aim. In [2], [10] the kernel is learnt
optimizing an error function that maximizes the alignment
between the input kernel and an idealized kernel. However,
this error function is not related to the misclassification error
and is prone to overfitting. To avoid this problem, [13] learns
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the kernel by optimizing an error function derived from the
Statistical Learning Theory. This approach includes a term to
penalize the complexity of the family of kernels considered.
This algorithm is not able to incorporate infinite families
of kernels and does not overcome the overfitting of the
data. Therefore, in this paper the combination of distances
is learnt in a HRKHS (Hyper Reproducing Kernel Hilbert
Space) following the approach of hyperkernels proposed in
[18]. This formalism exhibits a strong theoretical foundation
and is less sensitive to overfitting. Moreover, it allow us to
work with infinite families of distances. The algorithm has
been applied to the prediction of different kinds of human
cancer with remarkable results. This paper is organized as
follows: Section II introduces the distances used to measure
the similarities in gene expression data . Section III presents
the method proposed to combine the distances. Section IV il-
lustrates the performance of the algorithm in the challenging
problem of gene expression data analysis. Finally, Section V
gets conclusions.

II. DISTANCES FOR GENE EXPRESSION DATA
ANALYSIS

An important step in the design of a classifier is the choice
of a proper dissimilarity that reflects the proximities among
the objects. However, the choice of a good dissimilarity is
not an easy task. Each measure reflects different features
of the data and the classifiers induced by the dissimilarities
misclassify frequently a different set of patterns. Therefore,
different dissimilarities provide complementary information.
In this paper, we have considered an infinite family of
dissimilarities.
Finally, the dissimilarities have been transformed using the
inverse multiquadratic kernel [15] because this transforma-
tion helps to discover certain properties of the underlying
structure of the data [7], [14].

A. Empirical Kernel Map

Now we introduce the Empirical Kernel Map that allow
us to incorporate non-Euclidean dissimilarities into the SVM
algorithm using the kernel trick [15], [14].

Let d: X × X → R be a dissimilarity [14] and R =
{p1, . . . , pn} a subset of representatives drawn from the
training set. Define the mapping φ : F → Rn as:

φ(z) = D(z,R) = [d(z, p1), d(z, p2), . . . , d(z, pn)] (1)

This mapping defines a dissimilarity space where feature i
is given by d(., pi).



The set of representatives R determines the dimensionality
of the feature space. The choice of R is equivalent to select
a subset of features in the dissimilarity space. Due to the
small number of training samples in our application, we have
considered the whole sample as a representative set [14].

III. LEARNING A LINEAR COMBINATION OF
DISSIMILARITIES

In order to incorporate a potentially infinite family of
non Euclidean dissimilarities into the SVM, we follow the
approach of Hyperkernels developed by [18]. To this aim,
a given distance such as χ2 is embedded in a RKHS via
the Empirical Kernel Map [14]. Next, this dissimilarity is
non-linearly transformed to a feature space and a regularized
quality functional is introduced that incorporates a l2-penalty
over the complexity of the family of distances considered.
The solution to this regularized quality functional is searched
in a Hyper Reproducing Kernel Hilbert Space. This allows
to minimize the quality functional using a SDP approach.

A. Multi-class ν-Support Vector Machines

Support Vector Machines [17] are powerful classifiers
that are able to deal with high dimensional and noisy data
keeping a high generalization ability. They have been widely
applied in cancer classification using gene expression profiles
[20], [19]. In this paper, we will focus on the ν-Support
Vector Machines (SVM). The ν-SVM is a reparametrization
of the classical C-SVM [15] that allows to interpret the
regularization parameter in terms of the number of support
vectors and margin errors. This property helps to control the
complexity of the approximating functions in an intuitive
way. This feature is desirable for the application we are
dealing with because the sample size is frequently small and
the resulting classifiers are prone to overfitting.

Let {(xi, yi)}ni=1 be the training set codified in Rd. We
assume that each xi belongs to one of the two classes labeled
by yi ∈ {−1, 1}. The SVM algorithm looks for the linear
hyperplane f(x; w) = wTx + b that maximizes the margin
γ = 2/‖w‖2. γ determines the generalization ability of the
SVM. The slack variables ξi allow to consider classification
errors and are defined as: ξi = max{0, 1− yif(xi)}.
For the ν-SVM, the hyperplane that minimizes the prediction
error is obtained solving the following optimization problem
[17]:

min
w,{ξi},ρ

1
2
‖w‖2 − νρ+

1
m

∑
i

ξi (2)

s. t. yi(< w,xi > +b) ≥ ρ− ξi i = 1, . . . ,m
ξi ≥ 0, ρ ≥ 0 i = 1, . . . ,m

where ν is an upper bound on the fraction of margin
errors and a lower bound on the number of support vectors.
Therefore, this parameter controls the complexity of the
approximating functions.
The optimization problem can be solved efficiently in the
dual space and the discriminant function can be expressed
exclusively in terms of scalar products,

f(x) =
∑
αi>0

αiyi〈x,xi〉+ b (3)

where αi are the Lagrange multipliers in the dual optimiza-
tion problem. The ν-SVM algorithm can be easily extended
to the non-linear case substituting the scalar products by a
Mercer kernel [17]. Besides, non-Euclidean dissimilarities
can be incorporated into the ν-SVM via the kernel of
dissimilarities.

Finally, several approaches have been proposed in the
literature to extend the SVM to deal with multiple classes.
In this paper, we have followed the one-against-one (OVO)
strategy. Let k be the number of classes, in this approach
k(k − 1)/2 binary classifiers are trained and the appropiate
class is found by a voting scheme. This strategy compares
favorably with more sophisticated methods and it is more
efficient computationally than the one-against-rest (OVR)
approach [21].

B. Learning the Kernel in a HRKHS

First, we define a Reproducing Kernel Hilbert Space. Let
X be a nonempty set and H be a Hilbert space of functions
f : X → R. Let 〈·, ·〉 be a dot product in H which induces
a norm as ‖f‖ =

√
〈f, f〉. H is called a RKHS if there is a

function k : X × X with the following properties:
• k has the reproducing property 〈f, k(x, ·)〉 = f(x) for

all f ∈ H, x ∈ X
• k spans H, i.e. H = span{k(x, ·)|x ∈ X}, where X is

the completion of the set X.
Next, we introduce the Hyper Reproducing Kernel Hilbert

Space. Let X be a nonempty set and X = X × X be the
Cartesian product. Let H be the Hilbert space of functions
k : X → R with a dot product 〈·, ·〉 and a norm ‖k‖ =√

(〈k, k〉). H is a Hyper Reproducing Kernel Hilbert Space
if there is a hyperkernel k : X ×X → R with the following
properties:
• k has the reproducing property 〈k, k(x, ·)〉 = k(x) for

all k ∈ H
• k spans H = span{k(x, ·)|x ∈ X}
• k(x, y, s, t) = k(y, x, s, t) for all x, y, s, t ∈ X .

Let Xtrain = {x1, x2, . . . , xm} and Ytrain =
{y1, y2, . . . , yn} be a finite sample of training patterns
where yi ∈ {−1,+1}. Let K be a family of semidefinite
positive kernels. Our goal is to learn a kernel k ∈ K that
minimizes the following empirical quality functional :

Qemp(f,Xtrain, Ytrain) =
1
m

m∑
i=1

l(xi, yi, f(xi)) +
λ

2
‖f‖2H

(4)
By virtue of the representer theorem [17], we know that
equation (4) can be written as a kernel expansion:

Qemp = min
α, k

[
1
m

m∑
i=1

l(xi, yi, [Kα]i) +
λ

2
αTKα

]
(5)

However, if the family of kernels K is complex enough it is
possible to find a kernel that achieves zero error overfitting



the data. To avoid this problem, we introduce a penalty term
in a HRKHS:

Qreg(k,X, Y ) = Qemp(k,X, Y ) +
λQ
2
‖k‖2H (6)

The following theorem allows us to write the solution to the
minimization of this regularized quality functional as a linear
combination of hyperkernels in a HRKHS.

Theorem 1 (Representer theorem for Hyper-RKHS): Let
X, Y be the combined training and test set, then each
minimizer k ∈ H of the regularized quality functional
Qreg(k,X, Y ) admits a representation of the form:

k(x, x′) =
m∑

i,j=1

βijk((xi, xj), (x, x′)) (7)

for all x, x’ ∈ X , where βij ∈ R, for each 1 ≤ i, j ≤ m.
However, we are only interested in solutions that give rise

to positive semidefinite kernels. The following condition over
the hyperkernels [18] allow us to guarantee that the solution
is a positive semidefinite kernel.

Property 1: Given a hyperkernel k with elements such
that for any fixed x ∈ X , the function k(xp, xq) =
k(x, (xp, xq)), with xp,xq ∈ X , is a positive semidefinite
kernel, and βij ≥ 0 for all i, j = 1, . . . ,m, then the kernel

k(xp, xq) =
m∑

i,j=1

βijk(xi, xj , xp, xq) (8)

is positive semidefinite.
Now, we detail how to incorporate a potentially infinite

family of non-Euclidean dissimilarities via a hyperkernel. Let
k be a kernel of dissimilarities. The hyperkernel is defined
as follows [18]:

k(x, x′) =
∞∑
i=0

ci(k(x)k(x′))i (9)

where ci ≥ 0 and i = 0, . . . ,∞. In this case, the non-linear
transformation to feature space is infinite dimensional.
Particularly, we are considering all powers of the original
kernels which is equivalent to transform non-linearly the
original dissimilarities. As we have mentioned in section II,
non linear transformations of a given dissimilarity provide
complementary information of the data.

It can be easily shown that k is a valid hyperkernel pro-
vided that the kernels considered are pointwise positive. The
Inverse Multiquadratic kernel satisfy this condition. Next,
we derive the hyperkernel expression for the multiquadratic
kernels.

Proposition 1 (Harmonic Hyperkernel): Suppose k is a
kernel with range [0, 1] and ci = (1 − λh)λih, i ∈ N,
0 < λh < 1. Then, computing the infinite sum, we have
the following expression for the harmonic hyperkernel:

k(x, x′) = (1−λh)
∞∑
i=0

(λhk(x)k(x′))i =
1− λh

1− λhk(x)k(x′)
,

(10)

λh is a regularization term that controls the complexity of
the resulting kernel. Particularly, larger values for λh give
more weight to strongly non-linear kernels.

Considering the inverse multiquadratic kernel(
k(x, x′) = 1/

√
‖x− x′‖2 + c2

)
in equation (10),

we get the inverse multiquadratic hyperkernel:

k(x, x′) =
1− λh

1− λh((‖x− x′‖2 + c2)(‖x′′ − x′′′‖2 + c2))−1/2

(11)

C. Multi-class ν-SVM in a HRKHS

In this section, we detail how to learn the kernel for
a ν-Support Vector Machine in a HRKHS. First, we will
introduce the optimization problem and next, we will
explain shortly how to solve it using a SDP approach.

We start some notation that is used in the ν-SVM
algorithm. For p,q,r ∈ Rn, n ∈ N let r = p ◦ q
be defined as element by element multiplication,
ri = pi × qi. The pseudo-inverse of a matrix K is
denoted by K†. Define the hyperkernel Gram matrix
K by Kijpq = k((xi, xj), (xp, xq)), the kernel matrix
K = reshape(Kβ)(reshaping an m2 by 1 vector, Kβ,
to an m × m matrix), Y = diag(y) (a matrix with y on
the diagonal and zero otherwise), G(β) = Y KY (the
dependence on β is made explicit) and 1 a vector of ones.

The ν-SVM considered in this paper uses an l1 soft
margin, where l(xi, yi, f(xi)) = max(0, 1 − yif(xi)). Let
ξi be the slack variables that allow for errors in the training
set. Substituting in equation (6) Qemp by the one optimized
by ν-SVM (2) the regularized quality functional in a HRKHS
can be written as:

min
k∈H

min
w∈Hk

1
m

m∑
i=1

ξi +
1
2
‖w‖2H − νρ+

λQ
2
‖k‖2H

subject to yif(xi) ≥ ρ− ξi (12)
ξi ≥ 0 i = 1, . . . ,m

where ν is the regularization parameter that achieves a
balance between training error and the complexity of the
approximating functions and λQ is a parameter that penalizes
the complexity of the family of kernels considered. The
minimization of the previous equation leads to the following
SDP optimization problem [18].

min
β,γ,η,ξ,χ

1
2
t1 − χν +

1
m
ξT1 +

λQ
2
t2 (13)

subject to χ ≥ 0, η ≥ 0, ξ ≥ 0, β ≥ 0 (14)

‖K
1
2 β‖ ≤ t2, 1Tβ = 1 (15)[

G(β) z
zT t1

]
� 0 (16)

where z = γy + χ1 + η − ξ
The value of α which optimizes the corresponding



TABLE I
EMPIRICAL RESULTS FOR THE ν-SVM USING A LINEAR COMBINATION OF NON EUCLIDEAN DISSIMILARITIES IN A HRKHS. THE ν-SVM BASED ON

THE BEST DISTANCE AND THE CLASSICAL ν-SVM HAVE BEEN TAKEN AS A REFERENCE.

Technique Breast B DLBCL C DLBCL D
ν-SVM (Coordinates) 10.20% 6.89% 12.96%
ν-SVM (Best Distance) 8.6% 6.89% 14.81%
Infinite family of distances 6% 5.33% 16%

Lagrange function is G(β)†z, and the classification
function, f = sign(K(α ◦ y) − boffset), is given by
f = sign(KG(β)†(y ◦ z) − γ). K is the hyperkernel
defined in section III-B which represents the combination
of dissimilarities considered.

Now, as we mentioned in section III-A, the algorithm
proposed can be easily extended to deal with multiple classes
via a one-against-one approach (OVO).

IV. EXPERIMENTAL RESULTS

In this section, the method proposed is applied to the iden-
tification of several cancer human samples using microarray
gene expression data.

Three benchmark gene expression datasets have been
considered. The first problem consists of 98 samples of
Breast Cancer generated using a two channel microarray.
The second and third datasets we address consist of 58
and a129 samples from Diffuse large B cell lymphoma with
survival data. The technology applied to obtain all datasets
was Affymetrix [20]. The problems addressed in this paper,
consider multiple tumor classes which is a more difficult
problem than just the identification of cancer samples. It is
expected that the information required to solve this kind of
problems will be larger.

Due to the large number of genes, samples are codified
in a high dimensional and noisy space. Therefore, the non-
linear transformations of the dissimilarities are affected by
the ’curse of dimensionality’ and the correlation among them
becomes large [11]. To avoid this problem and to increase
the diversity among the non-linear transformations, we have
reduced aggressively the number of genes using the standard
F-statistics [8].
All the datasets have been standarized because this transfor-
mation help to reduce the misclassification errors for all the
methods proposed.
The ν, λh and λQ are regularization parameters and they
have been set up by ten fold-crossvalidation [12]. Similarly,
the base kernel parameters have been set up by cross-
validation. For each dataset, the optimal value of the pa-
rameters and the number of genes have been chosen using a
greed search strategy.
In order to reduce the computational burden, we have
approximated the hyperkernel matrix using the incomplete
Cholesky factorization method [5].

Table I compares the proposed algorithms with ν-SVM
based on the best distance and the classical ν-SVM. Our
approach considers an infinite family of distances obtained

by transforming non linearly the base dissimilarities to fea-
ture space. This has been done using a hyperkernel defined
in the space of kernels itself (see section III-B). Before
computing the kernel of dissimilarities, all the distances have
been transformed using the multiquadratic kernel introduced
in section II. From the analysis of table I, the following
conclusions can be drawn:

• The best distance depends on the dataset considered.
• The combination of non-Euclidean dissimilarities help

to improve significantly the SVM based on the best
dissimilarity particularly for the two first datasets.

• Our algorithm improves the SVM based on coordinates.
We also report that working directly from a dissimilarity
matrix helps to reduce the misclassification errors.
The experimental results suggest that the non-linear
transformations of the dissimilarities help to discover
certain features of the data. Besides, the regularization
parameter λQ avoids the choice of too complex kernels
and the overfitting of the data.

Finally, notice that our algorithm allow us to work with
applications in with only a dissimilarity is defined.

V. CONCLUSIONS

In this paper, we propose a method to incorporate in the
multiclass ν-SVM algorithm a linear combination of non-
Euclidean dissimilarities . The family of distances is learnt in
a HRKHS (Hyper Reproducing Kernel Hilbert Space) using
an efficient Semidefinite Programming approach. A penalty
term has been added to avoid the overfitting of the data. The
algorithm has been applied to the classification of complex
cancer human samples.

The experimental results suggest that the method proposed
improves significantly the misclassification error of the ν-
SVM based on the best distance and the classical ν-SVM
based on coordinates.
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[3] S. Drãghici, Data Analysis Tools for DNA Microarrays. New York:
Chapman & Hall/CRC Press, 2003.

[4] S. Dudoit and J. Fridlyand and T. Speed, ”Comparison of discrimi-
nation methods for the classification of tumors using gene expression
data”, Journal of the American Statistical Association, vol. 97, pp.
77-87, 2002.



[5] S. Fine and K. Scheinberg, ”Efficient SVM training using low-rank
kernel representations”, Journal of Machine Learning Research, 2,
243-264,2001.

[6] T. Furey and N. Cristianini and N. Duffy and D. Bednarski and M.
Schummer and D. Haussler, ”Support vector machine classification
and validation of cancer tissue samples using microarray expression
data”, Bioinformatics, vol. 16, no. 10, pp. 906-914, 2000.

[7] W. Gang and E. Y. Chang and N. Panda, ”Formulating Distance
Functions via the Kernel Trick”, In Proc. of the11th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Chicago, Illlinois, USA, August, 2005.

[8] R. Gentleman and V. Carey and W. Huber and R. Irizarry and S.
Dudoit, Bioinformatics and Computational Biology Solutions Using R
and Bioconductor. Berlin: Springer Verlag, 2006.

[9] I. Guyon and J. Weston and S. Barnhill and V. Vapnik, ”Gene selection
for cancer classification using support vector machines”, Machine
Learning, vol. 46, pp. 389-422, 2002.

[10] J. Kandola and J. Shawe-Taylor and N. Cristianini, ”Optimizing kernel
alignment over combinations of kernels”, NeuroCOLT, Technical
Report, 2002.
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