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Abstract— Most of the proposed clustering approaches are
heuristic in nature. As a result, it is difficult to interpret
the obtained clustering outcomes from a statistical standpoint.
Mixture model-based clustering has received much attention
from the gene expression community due to its sound statistical
background and its flexibility in data modeling. However,
current clustering algorithms following the model-based frame-
work suffer from two serious drawbacks. First, the performance
of these algorithms critically depends on the starting values for
their iterative clustering procedures. And second, they are not
capable of working directly with very high dimensional data
sets whose dimension might be up to thousands. We propose
a novel normalized Expectation-Maximization (EM) algorithm
to tackle the two challenges. The normalized EM is stable even
with random initializations for its EM iterative procedure. Its
stability is demonstrated through the performance comparison
with other related clustering algorithms such as the unnormal-
ized EM (The conventional EM algorithm for Gaussian mixture
model-based clustering) and spherical k-means. Furthermore,
the normalized EM is the first mixture model-based clustering
algorithm that is shown to be stable when working directly
with very high dimensional microarray data sets in the sample
clustering problem, where the number of genes is much larger
than the number of samples. Besides, an interesting property
of the convergence speed of the normalized EM with respect
to the squared radius of the hypersphere in its corresponding
statistical model is uncovered.

I. INTRODUCTION

Microarrays is a technological breakthrough in molecular
biology, allowing the simultaneous expression measurements
of thousands of genes during some biological process [1],
[2], [3]. Based on this technology, various microarray exper-
iments have been conducted to give valuable insights into
biological processes of organisms, e.g the study of yeast
genome [4], [5], [6] and the investigation of human genes
[7], [8], [9]. These studies have posed great challenges to
elucidate the hidden information given the availability of the
genomic-scale data. Applications of microarrays range from
the analysis of differentially expressed genes under various
conditions to the modeling of gene regulatory networks. One
of the main interests in the study of microarray data is to
identify naturally occurring groups of genes with similar
expression patterns or samples of the same molecular sub-
types. Clustering is a basic exploratory tool for investigation
of these problems. A variety of clustering methods have
been proposed in the microarray literature to analyze the
genomic data, including hierarchical clustering [8], [10],
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[11], self-organizing maps (SOM) [12], k-means and its
variants [13], [14], [15], graph-based methods [16], [17] and
mixture model-based clustering [18], [19], [20], to name a
few.

Mixture model-based clustering offers a coherent prob-
abilistic framework for cluster analysis. This approach is
based on the assumption that the data points in each cluster
are generated by some underlying probability distribution.
The performance of model-based clustering greatly depends
on the distributional assumption of the underlying parametric
models. The most widely-used statistical model for this
clustering approach is the mixture of Gaussian distributions.
Usually parameters of the model are estimated using the EM
algorithm [21]. A serious drawback of Gaussian mixture
model-based clustering is that its clustering performance
might be heavily affected by the choice of starting values for
the EM iterations. Another drawback of the unnormalized
EM is its limited capability of working directly with very
high dimensional data sets of which dimension is much larger
than the number of data points. Usually dimension reduction
techniques such as principal component analysis [22] must
be pre-applied to resolve this curse of high dimensionality,
e.g. McLachlan et al [18] have to resort to a feature selection
technique and factor analysis to reduce the dimension of the
data before proceeding to the unnormalized EM clustering.
A crucial limitation of this approach is that the dimension
reduction process may result in the information loss to the
original data, e.g. the inherent cluster structure in the original
data may not be preserved.

In order to overcome the above-mentioned shortcomings
of the popular Gaussian mixture model-based clustering (the
unnormalized EM), we propose a novel normalized EM
algorithm for clustering gene expression data, in which data
points to be clustered are normalized to lie on the surface of
a hypersphere. The proposed approach also follows mixture
model-based framework but the clustering of the data is
performed on a fixed hypersphere. The normalized EM
clustering works stably even with very high dimensional
microarray data sets, which make use of thousands of genes.
Besides, the projection of the data on a hypersphere is
shown to eliminate the intrinsic scattering characteristic of
the data, thus making the normalized EM work more stably
in comparison with the unnormalized EM.

Of particular relevance to our work are the spherical
k-means algorithm [23], clustering using von-mises Fisher
distributions [24] and clustering in a unit hypersphere using
the inverse projection of multivariate normal distributions
[25]. Spherical k-means is similar to k-means in nature



except that its clustering of the data is performed in a unit
hypersphere. Like k-means, spherical k-means is fast for
high dimensional gene expression data sets. However, the
clustering outcomes of spherical k-means on the same data
set may be significantly different due to the sensitivity of
the algorithm to its starting values. In [24] Banerjee et al
propose a method to estimate the concentration parameter
of the von Mises-Fisher distribution, a statistical distribution
for spherical data, and apply it for clustering various types
of data including yeast cell cycle gene expression data. An
important point to note here is that the clustering approach
has difficulty of working on data sets with dimensions up
to thousands as it involves the computation of extremely
large exponentials. In [25] a new clustering approach is
proposed to allow a more flexible description of clusters.
However, this approach is not capable of working well with
the sample clustering problem where the number of data
points is much smaller than the dimension of the data due
to either the over-fitting problem or the near singularity of
the estimated covariance matrices in its EM iterations. The
underlying distribution in our statistical model can be seen
as a simplified variant of the von-mises Fisher distribution
or of the distribution presented in [25]. Interestingly it is
the parsimony that makes our normalized EM work well
with very high dimensional microarray data. The normalized
EM is stable even with random initializations for its iterative
clustering procedure.

To demonstrate the stability and the capability of working
with very high dimensional data of the normalized EM, we
analyze the algorithm using several microarray data sets and
compare the obtained results with the ones produced by
the unnormalized EM, spherical k-means as well as other
related clustering algorithms. Also a detailed analysis of the
convergence speed of the normalized EM with respect to the
squared radius of the fixed hypersphere is provided, and an
interesting result is exposed.

The remaining of this paper is organized as follows.
Section II introduces the statistical model of the proposed
method and the derivations of the normalized EM algorithm.
In section III, the normalized EM is analyzed in detail, and
its effectiveness is illustrated using three real microarray data
sets. Finally, section IV summarizes the main contributions
of this work and briefly discusses possible research direc-
tions.

For convenience, some notational conventions used in this
paper are provided: n is the number of data points or samples
to be clustered; p is the dimension of data points or the
number of genes; µ is the squared radius of the hypersphere;
K is the number of clusters in a data set; {Xh}K

h=1 is a K-
cluster partition of the data; 〈.〉 is the inner product of two
vectors; ‖.‖ is the Euclidean norm.

II. THE NORMALIZED EM ALGORITHM

A microarray data set is commonly represented by the
matrix Gn×p = [x1, x2, ...xn], where xj ∈ Rp is the
gene expression profile of sample j. Typically the number
of genes is much larger than the number of experiments

(samples). Our primary goal is to group tumor samples into
different molecular subtypes. Specifically, we have to classify
the set of samples into K groups X1,X2, ...,XK such that
the samples in the same cluster should have similar gene
expression profiles and gene expression patterns of samples
in different clusters are as much dissimilar as possible.

We now introduce a new normalized EM algorithm for
tumor clustering using gene expression data. First, data
points are normalized so that they lie on a hypersphere
with predefined radius and then the clustering of the data
is performed on this hypersphere only. The statistical model
for the normalized EM clustering is described in detail as
follows:

First, gene expression profiles xi are normalized so that
they belong to the manifold Sµ = {x : ‖x‖2 = µ, x ∈ Rp}
for some µ > 0. In other words, the data points are processed
by

xi ← √
µ

xi

‖xi‖ , i = 1, 2, ..., n (1)

Then these normalized xi’s are treated as samples drawn
from a mixture of K exponential distributions

p(x|Θ) = γµ

K∑

h=1

πhe−‖x−µh‖2 (2)

where Θ = (π1, µ1, ..., πk, µk), in which the πh, µh are
mixing proportions and directional mean vectors respectively
satisfying the following conditions:

K∑

h=1

πh = 1, πh ≥ 0, ‖µh‖2 = µ, h = 1, 2, ..., K (3)

and γµ is the normalizing constant

γµ =
1∫

x∈Sµ

e−‖x−µh‖2dx

. (4)

Assuming that the data vectors are independent and identi-
cally distributed with distribution p, then the data likelihood
function is

L(Θ|X ) = p(X|Θ) =
n∏

i=1

p(xi|Θ) =
n∏

i=1

(γµ

K∑

h=1

πhe−‖x−µh‖2).

(5)
The maximum likelihood estimation problem is:

max
Θ
{L(Θ|X ) : (3)}. (6)

Maximizing the likelihood function (6) is very difficult,
thus we employ the EM algorithm to find a local maximizer
of the likelihood function ([21]).

Given the current estimate Θ(`) at the `th iteration (` ≥ 0)
of the EM iterative procedure, for each h = 1, 2, ..., K, the



posterior probability p(h|xi, Θ(`)) that xi is generated by the
hth component of the mixture density is defined by

p(h|xi,Θ(`)) =
p(h|Θ(`))p(xi|h,Θ(`))

p(xi|Θ(`))

=
π

(`)
h e2〈xi,µ

(`)
h
〉

K∑

h′=1

π
(`)
h′ e2〈xi,µ

(`)
h′ 〉

. (7)

The expectation of the marginal log-likelihood function
for the observed data over the given posterior distribution is:

E[
n∑

i=1

log(γµπhe−‖xi−µh‖2)]

=
n∑

i=1

E[log(γµπhe−‖xi−µh‖2)]

=
n∑

i=1

K∑

h=1

[log(γµπhe−‖xi−µh‖2)]p(h|xi, Θ(`))

=
n∑

i=1

K∑

h=1

(log πh − ‖xi − µh‖2)p(h|xi,Θ(`)) + n log γµ

=
n∑

i=1

K∑

h=1

(log πh − 2µ + 2〈xi, µh〉)p(h|xi, Θ(`))+

+n log γµ

=
K∑

h=1

n∑

i=1

(log πh + 2〈xi, µh〉)p(h|xi, Θ(`))− 2nKµ+

+n log γµ. (8)

The maximization step for the normalized EM algorithm is:

max
Θ
{

K∑

h=1

n∑

i=1

(log πh + 2〈xi, µh〉)p(h|xi,Θ(`))−
−2nKµ + n log γµ : (3)}

= max
Θ
{

K∑

h=1

n∑

i=1

(log πh)p(h|xi, Θ(`))+

+2
K∑

h=1

n∑

i=1

〈xi, µh〉p(h|xi, Θ(`)) : (3)} − 2nKµ+

+n log γµ

= max
{πh}K

h=1

{
K∑

h=1

n∑

i=1

(log πh)p(h|xi,Θ(`)) :
K∑

h=1

πh = 1,

, πh ≥ 0, h = 1, 2, .., K}+
+2

K∑

h=1

max
µh

{
n∑

i=1

〈xi, µh〉p(h|xi, Θ(`)) : ‖µh‖2 = µ}−
−2nKµ + n log γµ (9)

Solving (9), we obtain the following iterative procedure
of the normalized EM:

π
(`+1)
h =

1
n

n∑

i=1

p(h|xi, Θ(`))

=
1
n

n∑

i=1

π
(`)
h e2〈xi,µ

(`)
h
〉

K∑

h′=1

πh′e
2〈xi,µ

(`)
h′ 〉

(10)

ν
(`+1)
h =

n∑

i=1

xip(h|xi,Θ(`))

µ
(`+1)
h =

√
µν

(`+1)
h

‖ν(`+1)
h ‖

. (11)

The optimal parameter estimate Θopt is obtained when
the difference between two observed data log-likelihoods
corresponding to two successive iterations is less than a
given tolerance threshold. Finally, each data point is assigned
to the component with the maximum estimated posterior
probability, i.e. a data point xi is assigned to component
h or cluster Xh if h = arg max

h′
p(h′|xi,Θopt).

III. EXPERIMENTAL RESULTS

The stability and the capability of working directly with
high dimensional gene expression data sets of the normalized
EM clustering algorithm are demonstrated to three microar-
ray data sets: (1) acute leukemia [26]), (2) colon ([7]), and (3)
pediatric acute leukemia [27]. These data sets are popular in
the microarray literature. We make attempts to offer illustra-
tions using experimental data sets of significant differences in
dimension, the number of samples, the number of underlying
clusters and tumor type. We assess the clustering results of
the normalized EM on these gene expression data sets with
different values of the parameter µ and compare the obtained
results with the ones produced by the unnormalized EM
clustering (The EM algorithm for Gaussian mixture model-
based clustering), spherical k-means and some other related
clustering algorithms. It should be noted that the analysis
is only provided for the values of µ in the range from
0 to 350. For µ bigger than 350 the iterative procedure
of the normalized EM involves the difficulty of very large
exponential computations.

In this section, the analysis of the convergence speed of
the normalized EM is also presented to give a rough idea of
which appropriate values of µ should be chosen to maximize
the cluster quality of the normalized EM. The convergence
speed of the normalized EM algorithm here is measured
through the average number of iterations till the algorithm
converges to an optimal solution. For each value of µ, the
normalized EM is run several times and the average of the
number of iterations of those runs is taken as the convergence
speed corresponding with that value of µ.

Additionally, to better characterize the behavior of cluster-
ing algorithms for the first two data sets, a cutoff of twenty-
five percent of the number of misclassified samples out of all
samples is set to determine the distinction between “good”
clusterings and “poor” ones, that is, a clustering is good if
the number of misclassified samples out of all samples is
less than twenty-five percent or poor otherwise.



Acute Leukemia Data
This data set was originally produced and analyzed by

Golub et al [26]. The data set utilized here consists of 38
samples × 5000 genes. These 38 samples are supposed to be
categorized into three classes corresponding to three subtypes
of leukemias: ALL-B, ALL-T and AML.

Table I shows the clustering results of the normalized EM
on this data set. The normalized EM worked stably with µ in
the range from 15 to 350 even with random initializations. It
can be seen that within the range of µ where the normalized
EM worked well, the number of misclassified samples were
around two. The normalized EM worked best, typically only
one misclassified sample, for 17 ≤ µ ≤ 25. The statistics of
convergence speed summarized in Table I and Figure 1 show
that the “best” values of µ as just mentioned above occur
right after the ones corresponding to the dramatic decrease
in the average number of iterations.

TABLE I
CLUSTERING RESULTS OF THE NORMALIZED EM ALGORITHM ON THE

ACUTE LEUKEMIA DATA SET (ENCLOSED IN PARENTHESES ARE THE

NUMBER OF TIMES OBSERVING THE CORRESPONDING RESULTS AMONG

20 RUNS).

µ Average
number of
iterations

Average number of
misclassified

samples

Minimum
number of

misclassified
samples

Good Poor
15 48 3(20) (0) 3(20)
17 41.3 1(20) (0) 1(20)
20 28.1 1(20) (0) 1(20)
25 25.2 1(19) 15(1) 1(19)
30 18.8 2.2(18) 14(2) 1(6)
40 13.2 2.4(19) 16(1) 1(6)
50 12.9 2.7(16) 14(4) 1(4)
70 11.9 2.7(18) 13(2) 1(4)
90 11.7 2.4(18) 14.5(2) 1(4)
120 8.7 1.8(17) 16(3) 1(7)
150 10.1 2.3(16) 13.5(4) 1(4)
200 9.8 2.3(16) 15.8(4) 1(1)
250 9.0 2.1(15) 14(5) 0(3);1(2)
300 9.3 2.4(15) 13.4(5) 1(4)
350 8.7 2.2(14) 15.7(6) 1(4)

Fig. 1. Convergence speed of the normalized EM on acute leukemia data
set.

We next analyze the unnormalized EM clustering on this

data set. As the algorithm is unable to work with high
dimensional data sets, data reduction techniques must be
pre-applied to reduce the dimension of the data. Principal
component analysis (PCA) was utilized to reduce the di-
mension of the data set from 5000 genes to only a few
gene components q. Table II represents the clusterings of
the unnormalized EM on the reduced data set with random
initializations. The results tell us that the unnormalized
EM might critically depend on the initial values for its
own iterative procedure. For a fair comparison, clustering

TABLE II
CLUSTERING RESULTS OF THE UNNORMALIZED EM ON THE REDUCED

ACUTE LEUKEMIA DATA SET (ENCLOSED IN PARENTHESES ARE THE

NUMBER OF TIMES OBSERVING THE CORRESPONDING RESULTS AMONG

10 RUNS).

Number of
principal

components

Average number of
misclassified samples

Minimum
number of

misclassified
samples

Good Poor
3 6(10) (0) 6(10)
4 7.8(6) 17.75(4) 6(2)
5 7(5) 15.6(5) 5(1)
6 6.25(4) 14.5(6) 3(1)
7 5(1) 15.78(9) 5(1)
8 7(3) 15(7) 6(1)

performance of the normalized EM on the reduced data set
of 38 q-dimensional samples is also provided (See Table III).
Overall we realized that the normalized EM gave better

TABLE III
CLUSTERING RESULTS OF THE NORMALIZED EM ON THE REDUCED

ACUTE LEUKEMIA DATA SET (ENCLOSED IN PARENTHESES ARE THE

NUMBER OF TIMES OBSERVING THE CORRESPONDING RESULTS AMONG

10 RUNS).

Number of
principal

components

Average number of
misclassified samples

Minimum
number of

misclassified
samples

Good Poor
3 2(10) (0) 2(10)
4 2.3(8) 14.5(2) 2(7)
5 3(9) 17(1) 3(9)
6 3.6(7) 14(3) 3(6)
7 3.3(10) (0) 3(9)
8 3.7(9) 15(1) 3(3)

TABLE IV
CLUSTERING RESULTS OF SPHERICAL k-MEANS ON THE ACUTE

LEUKEMIA DATA SET (20 RUNS WERE PERFORMED).

Cluster
quality

Average number of
misclassified samples

Number of times
observing the

corresponding results
Good 2.93 14
Poor 14.7 6
Best 0 1

clustering results compared to the combination of PCA and
the unnormalized EM. Furthermore, even for the reduced



data set, the normalized EM has been proven to work more
stably as well.

Table IV represents clustering results of spherical k-
means. We find that spherical k-means was stable on this
acute leukemia data set. However, with the values of µ,
e.g. from 17 to 25, where the normalized EM worked best,
spherical k-means was not comparable to the normalized EM
in term of cluster quality.

Colon Data
This data set consists of 62 samples × 2000 genes. Those

62 samples are supposed to be categorized into two classes:
tumor colon tissue samples and normal ones. The 2000
human genes in this data set are those with the highest
minimal intensities across samples, which were selected
among the total of 6500 genes in the original data set
introduced by [7], who produced and also performed cluster
analysis on this colon data.

TABLE V
CLUSTERING RESULTS OF THE NORMALIZED EM ON THE SMALL COLON

DATA SET (ENCLOSED IN PARENTHESES ARE THE NUMBER OF TIMES

OBSERVING THE CORRESPONDING RESULTS AMONG 20 RUNS).

µ Average
number of
iterations

Average number of
misclassified

samples

Mininum
number of

misclassified
samples

Good Poor
15 40.1 9(15) 24(5) 9(15)
20 22.9 7(17) 23(3) 7(17)
30 17.2 7(16) 24(4) 7(16)
33 16.0 6(16) 24(4) 6(16)
40 14.4 6(16) 24(4) 6(16)
70 13.4 6(17) 24(3) 6(17)
100 11.5 6(15) 25.2(5) 6(15)
150 10.8 6(15) 26.8(5) 6(15)
200 9.1 6(14) 25.2(6) 6(14)
250 10.9 6(14) 25.9(6) 6(14)
300 9.2 6(13) 24.6(7) 6(13)
350 11.0 7.43(14) 24.3(6) 6(9)

With the values of µ in the range from 50 to 350,
the normalized EM was able to produce the results with
only 6 misclassified samples, which matched the results
produced using supervised classification, e.g by [28]. The
6 misclassified samples here are the three tumor samples
(T30, T33, T36) and the other three normal (n8, n34, n36).
Note that the samples here were labeled following [7]. In
their work, Alon et al also reported their clusterings of this
data set with 8 misclassified samples, three normal to tumor
class (n8, n12, n34) and five tumor to normal class (T2,
T30, T33, T36, T37). It was observed that five among the 8
misclassified samples were misclassified by the normalized
EM.

To clearly demonstrate the power of the normalized EM
clustering algorithm, we offer the analysis on the small data
set of 62 samples × 500 genes (Genes were selected from the
data set of 62 samples × 2000 genes using t-statistics given
known class labels). Table V shows the detailed performance
of the normalized EM on the small colon data set. As can

be seen, the normalized EM worked stably when µ was in
the range from 20 to 350 with usually only 6 misclassified
samples. Also similarly as for the acute leukemia data, from
Table V and Figure 2 the values of µ where the normalized
EM worked best (µ ≥ 33) follow right after the ones
corresponding to the steepest drop in the average number
of iterations.

TABLE VI
CLUSTERING RESULTS OF THE UNNORMALIZED EM ON THE REDUCED

COLON DATA SET (ENCLOSED IN PARENTHESES ARE THE NUMBER OF

TIMES OBSERVING THE CORRESPONDING RESULTS AMONG 10 RUNS).

Number
of

principal
compo-
nents

Average number of
misclassified samples

Minimum number of
misclassified samples

Good Poor
3 (0) 27.5(10) 25(1)
4 (0) 22.4(10) 18(2)
5 (0) 23.9(10)) 17(2)
6 (0) 24.3(10) 16(1)
7 (0) 24.8(10) 16(1)
8 (0) 25(10) 21(1)

TABLE VII
CLUSTERING RESULTS OF SPHERICAL k-MEANS ON THE COLON DATA

SET.

Cluster
quality

Average number of
misclassified samples

Number of times
observing the result

among 20 runs
Good 8.1 15
Poor 26.2 5
Best 6 4

Fig. 2. Convergence speed of the normalized EM on the reduced colon
data set

As we already know, the unnormalized EM algorithm
for Gaussian mixture model-based clustering is not capable
of dealing with the situation where the number of data
points is smaller than the dimension of the data, we had
to resort to PCA in order to reduce the data set of 62
samples × 500 genes to the one of 62 samples × q principal
components. The clustering results of the unnormalized EM
on the reduced data set of dimension q are shown in Table



VI. As can be observed, the normalized EM with the support
of PCA here failed to detect the distinction between tumor
and normal tissues in the colon data. The main reason is that
PCA was unable to preserve the inherent cluster structure of
the data.

On the other hand, spherical k-means was able to produce
good clusterings on the data set of 62 samples × 500 genes
but still not as stable as the normalized EM in recovering
cluster structure of the data (Tables V and VII).

Pediatric Acute Leukemia Data

TABLE IX
VI VALUES PRODUCED BY THE UNNORMALIZED EM COUPLED WITH

THE SUPPORT OF PCA ON THE PEDIATRIC ACUTE LEUKEMIA DATA SET

(10 RUNS WERE PERFORMED FOR EACH VALUE OF q)

q 3 4 5 6 7 8 9
Average VI 2.42 2.09 2.35 2.28 2.11 2.08 2.2

Fig. 3. Convergence speed of the normalized EM on pediatric acute
leukemia data set

TABLE X
VI VALUES PRODUCED BY THE NORMALIZED EM ON THE REDUCED

PEDIATRIC LEUKEMIA DATA SET

q 3 4 5 6 7 8 9
Average VI 2.14 2.01 2.06 2.01 1.92 1.77 1.78

The original data set consists of 327 samples × 12625
genes and were described and analyzed in [27]. These
327 samples are supposed to be categorized into 7 classes
corresponding to 7 leukemia subtypes: BCR-ABL, E2A-
PBX1, Hyperdip50, MLL, T-ALL, TEL-AML1 and the other
subtypes.

For the purpose of clear analysis, we only took a small
subset of the original data, where the relevant genes were
selected using feature correlation selection (CFS) as shown
publicly at http://www.stjuderesearch.org/data/ALL1. This
small data set only consists of 327 samples × 345 genes.
Our analysis and comparison were carried out for the small
data set.

To assess the quality of clustering results, the variation of
information (VI), which is an information theoretic measure

introduced by [29], was utilized. VI is an external index
designed to assess the agreement between two partitions
of the data, the real clustering C = {Xh}K

h=1 and the one
induced from predefined class labels C∗ = {X ∗h}K

h=1. This
index is interpreted as the sum of the amount of information
left on C given C∗ and the amount of uncertainty about C∗
given the presence of C. The smaller the value of VI, the
better the clustering. In our comparisons, both the partitions
had the same number of clusters.

Table VIII shows the clustering results of the normalized
EM on the pediatric acute leukemia data set. As shown,
values of VI are smallest when µ is around 50 and Figure
3 indicates that these values of µ are right after the ones
corresponding a notable decrease in the average number of
iterations.

Based on the information from Tables VIII and IX, the
normalized EM gave better clustering performance compared
to the combination of PCA and the unnormalized EM. We
also performed clustering on the reduced data set of q-
dimensional samples obtained after applying PCA on the data
set of 327 samples × 345 genes. As can be seen from Table
X, the normalized EM gave smaller corresponding average
VI values for each of the selected number of principal
components q on the reduced data set.

We next analyze the results produced by spherical k-means
clustering on the pediatric acute leukemia data set of 327
samples × 345 genes. Given the results presented in Tables
VIII and XI, we find that with the values of µ where the
normalized EM worked best, e.g. µ = 50, it consistently
produced smaller values of VI compared to spherical k-
means.

In the current work on this small data set of 327 samples
× 345 genes [30], the authors utilized average linkage
hierarchical clustering to group samples. We again applied
the average linkage procedure using Pearson correlation
to measure similarity between samples on this pediatric
leukemia data set and the value of VI we got is 2.17, bigger
than all of the average VI values produced by the normalized
EM as shown in Table VIII.

IV. CONCLUSIONS AND FUTURE WORKS

We have introduced, described and analyzed a new nor-
malized EM algorithm for tumor clustering using gene
expression data. It has been demonstrated that the normalized
EM algorithm is stable with very high dimensional data
sets even with random initializations. Additionally, a detailed
analysis of the convergence speed of the normalized EM
with respect to different values of µ has also been provided,
and from the analysis an interesting relationship between the
convergence speed of the algorithm with the values of µ at
which the normalized EM works best has been presented.

It is left for future works to include unsupervised feature
selection methods into our framework so that our approach is
able to work with microarray data sets where many noisy or
irrelevant genes for clustering are present. Also we will apply
this statistical framework to investigate the gene clustering
problem.



TABLE VIII
VI VALUES PRODUCED BY THE NORMALIZED EM ON THE PEDIATRIC ACUTE LEUKEMIA DATA (10 RUNS WERE PERFORMED FOR EACH VALUE OF µ).

µ 30 40 50 100 150 200 250 300 350
Average VI 1.46 1.37 1.32 1.39 1.43 1.49 1.54 1.45 1.46

Average number
of iterations 118.9 82.6 79.1 56.3 59.7 67.1 44.2 55.4 41.5

TABLE XI
CLUSTERING RESULTS OF SPHERICAL k-MEANS ON THE PEDIATRIC ACUTE LEUKEMIA DATA SET (20 RUNS WERE PERFORMED).

VI
1.64 1.42 1.78 1.88 1.41 1.6 1.13 1.73 1.64 1.64
1.64 1.42 1.78 1.88 1.41 1.6 1.13 1.73 1.64 1.64

Average VI 1.59
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