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Abstract—Microarrays have become popular devices used
to elucidate changes of cell status. Following microarray ex-
periments, technicians would like to verify their observations
and changes of cell status occurring because of stimuli dur-
ing experiments. Currently, we validate analyses of several
or hundreds of samples using clustering and visualization.
However, comparison is not an easy task because knowledge
of data analysis is required and hundreds of clusters might be
produced.
This study presents GOMA, a web-based expression enrich-

ment checking server using Gene Ontology (GO). By putting
sets of gene names and expressions into the server, which GO
categories’ genes are enriched can be verified immediately, and
changes of cell status can be detected. The server presents a
graphical GO structure association of their terms to ease the
checking scheme. We evaluate that our web server enables us to
recognize functions associated with changes of gene expression
and to elucidate effects of different stimuli. The experimental
results shows that our web server detects aldo-keto reductase
activity under sorbitol supplemental condition from yeast ex-
pression data automatically, and our server visualizes the func-
tional changes between sorbitol condition and stationary phase.
GOMA is available online at http://goma.sel.is.ocha.ac.jp/ .

I. INTRODUCTION

Microarrays have become widely used to observe tran-
scriptional changes. Recently, new sequencing techniques
also give us a gene expression profile. A common analytical
flow of the expression data is first clustering and then
associating clusters with GO terms or pathways. Web sites
and tools for analyses of microarray data such as DAVID [1]
and GO::TermFinder [2] have been proposed to ease the
search for relations among them.
In the microarray test, because most of the experimental

process is done by machine, experimenters would like to
verify their experiments and changes of gene expressions
by stimulus. However, it is not easy because skill at finding
clusters associating GO terms differ from doing experiments.
Most technicians and experimenters are not familiar with
analyses of large amounts of data.
To assist experimenters in checking gene expression

changes promptly, we propose a web server called Gene
Ontology Manipulating Array results server (GOMA). 1 Fig.
1 presents an overview of the GOMA system. GOMA ac-
cepts one sample containing thousands of genes’ expressions.
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Data can be input from a web browser. GOMA holds Gene
Ontology data on a MySQL database server. Its data are
distributed by the Gene Ontology Consortium [3]. Then
GOMA extracts statistically significant GO terms from the
inputs; it shows the top N significant terms and their p-
values. The terms might have direct parent-child connections.
Therefore, GOMA displays relations of the GO terms. It is
difficult and verbose to show all the terms because about
25,000 GO terms exist. For that reason, GOMA selects
around the top N terms. The results have links to a Gene
Ontology site.
The problems of constructing this site are:

1) extraction of significant terms, and
2) visualization of the terms.

We rank the significant terms using the Mann-Whitney
U , a widely used statistical index. The computations are
independent from the method to observe gene expression. We
introduce an accurate calculation of the index, which allow us
to compute p-value over 25,000 GO terms with about 6,000
genes within 20 seconds. We also present that the index can
elucidate effects of different stimuli. GO forms a directed
acyclic graph (DAG) structure, which is a graph having no
cycle. Generic drawing method might arrange the the top
N GO terms as mutually distant. Furthermore, computation
of the arrangement having minimum number of crossings
is NP-hard problem. We show the DAG graph of selected
GO terms with the restriction that the top N terms locate in
the middle. We propose a graph arrangement method that is
suitable for a web server.
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Fig. 1. Overview of the GOMA Web Server
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Section II describes related work. In Section III, we
introduce the efficient ranking of statistically significant
terms. Section IV describes visualization of enriched terms
with a DAG structure. We demonstrate our GOMA web site
and demonstrate the efficiency of our statistical model and
visualization. We conclude this report in Section VI.

II. RELATED WORK

Various tools [4] to use GO have been proposed. A
useful application of GO is to interpret microarray data.
For that purpose, several web sites and programs such as
DAVID [1] and GO::TermFinder [2] have been proposed.
However, all such programs require a set of genes. The
set is often generated by clustering of gene expressions. In
contrast, our web site can be used without cluster analysis.
For single sample analysis, gene set enrichment analysis has
been proposed [5]. This method requires much computational
time to compute a rigorous p-value of a subset of genes. It
is unsuitable for use as a web-based tool.

DAVID and servers using GO::TermFinder show us the
Gene Ontology structure of significantly associated terms.
Actually, DAVID describes GO as a tree structure. GO forms
a DAG, which might have many parents of each term; there-
fore duplicate branches might be described. Some methods
described in previous reports such as GO::TermFinder [2]
and AmiGO [3] draw a DAG structure to avoid the problem.
The software programs use a generic graph layout method.
Therefore, they might generate a confusing structure to
interpret GO terms. For example, significantly associated
terms with the user input genes might be shown as mutually
distant. Therefore, GOMA arranges GO terms under the
restriction that the positions of statistically significant terms
be central in a graph.

III. RANKING ENRICHMENT TERMS

In this section, we rank statistically significant Gene
Ontology (GO) terms from the data, and show the enriched
terms from user input gene expression values as observed
using microarrays.
Fig. 2 shows an example of selection of enriched GO

terms. In Fig. 2(A), each rounded square and edge respec-
tively signify a GO term and a parent-child relationship
between terms. Every GO term is associated with genes;
term II is associated with genes D, F, and G, whereas term
III is related to genes B, E, and F. Genes associated with
term T are also associated with ascendants of T . Therefore,
term I is connected to genes B, D, E, F, and G, which is
a union of genes associated with terms II and III. Fig. 2(B)
represents associations between a term and expressions. Each
circle denotes expression values. Term II is associated with
genes D, F, and G; the genes are shown as gray.
In the comparison of terms II and III, term II is more

significantly related than term III in the experiment because
all genes associated with term II have high expression values,
although genes associated with term III include both high and
low expression genes. Representation by quantities of the
significance enable us to compute the statistical significance
of terms and to rank terms according to the values.
Various indexes to measure enrichment of a set of genes

have been proposed. Most indexes require much computing
time, and are therefore unsuitable for use on a web site. The
web site requires computation in constant time and returns
results as soon as possible. We here use Mann-Whitney U
(Wilcoxon’s rank sum test), which is a well known statistical
measure. The measure depends only on ranks of values.
For that reason, the computations are independent from the
method to observe gene expression. We introduce statistical
index U to find GO term enrichment; we also propose a
technique to compute the value quickly to use it on the web
site. We show that the U is sufficiently sensitive to detect
whether the user’s expression has significant changes through
the case study in Section V.
The formula for Mann-Whitney U is:

1) Arrange all expressions which are user-input and as-
sociated with GO into a single ranked series.

2) Add up the ranks for the genes associated with a GO
term. We define the genes and their sum respectively
as G and r.

3) U = r − |G| × (|G| + 1)/2
From this U , we can compute p-value.
GO contains about 25,000 terms. We must compute this U

for all terms. In each calculation, the most time-consuming
part is ordering expressions into a single ranked series.
However, the orders over all the GO terms are the same
because the total gene set used in the computation is the
same. This observation enables us to reduce the computing
time.
For example, Fig. 2(B) contains gene expressions of two

different terms. All user input gene expressions are sorted.
The lowest gene is “A”, whereas the highest is “G”. We add



numbers to genes according to their rank: “A” is first and
“G” is seventh. The order is the same between terms II and
III. For that reason, we must sort the expressions only once.
For term II, associated genes are ranked 4th, 6th, and 7th.
Then, U = 4+6+7−3×4/2 = 11 and its p-value is 0.114.
For term III, U = 7 and its p-value is 0.857. Therefore, term
II is more significant than term III. These calculations enable
us to rank GO terms by sorting the data once.
We choose GO terms that have the N lowest p-values.

Here, N is a user specified value. In fact, GOMA shows
the terms in the graph layout as well as those in the HTML
table. In the next section, we discuss the graph visualization
of the GO terms.

IV. VISUALIZATION OF ENRICHED TERMS

Graph visualization of the top (lowest) N GO terms makes
it easy to understand changes that occur within cells. The
GO term viewers in DAVID [1] and GO::TermFinder [2]
use tree structure visualization by HTML and GO’s DAG
structure using generic graph drawing method, respectively.
Nodes having more than one parent appear more than once
in a tree when drawing a DAG structure as a tree. Generic
graph drawing method and GraphViz [6], which is widely
used graph visualization software, might arrange the top N
GO terms as mutually distant. Furthermore, when the number
of terms to display is large, it is difficult to identify the
parent-child relations.
These software programs subsume that the input genes

are mutually related very closely; therefore, the visualizing
terms are close to each other on the DAG structure. On
the other hand, significantly changed top N terms might
contain several different biological functions. This possibility
prompts us to devise a method for visualizing GO terms even
if the distance between the GO terms on DAG is great.
We herein introduce a visualization method that retains

parent-child term relations and enables us to identify the top
N terms easily.

A. Term Selection and Layered Assignment

We first select terms to display and then draw a layered
layout [7] that requires the following two steps: (1) Layered
assignment and (2) Crossing reduction.
The top N terms might be located in various branches in

GO’s DAG structure. We first find a common ascendant a of
the top N terms to display all the relations between the top
N terms. We then extract all terms on all paths between the
a and top N terms. We define TD as all displayed terms:

TD = {t′ | term on path from a to t ∈ T }.

We next assign a layer of t ∈ TD for a layered drawing.
Let Ld be a set of terms in d-th layer. We assign the layer
of term t according to the longest path from a to t to avoid
the up-arrow. For example, if the length of the longest path
from a to t is three, t is assigned to layer L3.

B. Crossing Reduction

In spite of the use of layered assignments, the positions
of the top N terms might be mutually distant, or it might
be difficult to understand parent-child relations by crossings
of lines between terms. We therefore reduce crossings under
the restriction that all top N terms locate in the middle of
the graph.
We first arrange terms at regular intervals in each layer.

We divide the draw width into n + 1 equal parts and locate
terms between the neighbor parts when layer Ld contains n
terms. Both sides are margins. Fig. 3(A) portrays an example
of initial positions. Rounded squares and arrows respectively
denote a term and a parent-child relation. In this figure, seven
terms are described as t1, . . . , t9. L1 contains {t2, t3}. Gray
rounded squares denote the top N terms.
Let t be a term. We define children(t) and parents(t) as

children and parent terms of t, respectively. For example, in
Fig. 3(A), children(t3) = {t6, t7}. Let us define the term
position x(t). Assume that term t exists in Ld, we assign a
count from the left to x(t). In the running example, x(t2) = 0
and x(t6) = 2. We define

avg(T ) =
1
|T |

∑

t∈T

x(t),

where T is a set of terms. In addition, avg(T ) calculates the
average position of terms in T .
Let us move the top N terms in the middle of each layer.

We move the top N term in layer Ld using the following
procedure. Let TN be the set of top N terms.
1) Select term t ∈ TN ∩ Ld.
2) Select term t′ ∈ Ld randomly.
3) If |x(t′)− avg(Ld)| < |x(t)− avg(Ld)|, exchange the
position between t and t′.

For example, let us move t4 in Fig. 3(A) belonging to the
top N terms and locating the left end in L2. Presume that
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Fig. 3. Ordering Terms for Visualization of Top N-terms. Gray boxes
denote the top N -terms.



we select t6 from L2. Here, t6 is closer to the middle than
t4; therefore, we exchange t4 with t6. Fig. 3(B) shows the
status after moving. We perform this procedure 100 times
for each layer.
We next reduce the number of crosses. Although various

crossing reduction methods have been proposed, most meth-
ods might take much time because the problem to compute
its optimal solution is NP-hard [7]. Most of GO’s DAG
structure is not complicated; that is, only some terms have
multiple parents. Furthermore, we have two restrictions. We
must compute in constant time to show the result on a
web browser. Moreover, the top N terms are fixed close
to the middle. Most methods make it difficult to handle the
restrictions.
We scan from the root to leaves four times to arrange

positions of terms under the restrictions. During the first
two times, we exchange the positions of the top N terms;
during the next two times, we exchange the positions of terms
excepting the top N terms.
In first and third scannings, we reduce the number of edge

crossings between each term and its children terms.
1) select two terms t1 and t2 (x(t1) < x(t2)) randomly
from Ld ∩ TN (at the first sweep), or Ld − TN (at the
third sweep).

2) if t1 or t2 has no children, go to step 1 and re-select
new terms.

3) if avg(children(t1)) > avg(children(t2)), then ex-
change positions between t1 and t2.

Let d be the height of the DAG to display. We do this
procedure from L0 to Ld−2. We repeat this selection 100
times for each layer. In this procedure, we check the average
positions of terms and exchange their positions if the order
of terms is not equal to the average position order of their
children.
For example, in Fig. 3(B), we try to exchange the

position of t2 with t3. children(t2) = {t4, t5, t7} and
children(t3) = {t6, t7}. Then, avg(children(t2)) =
2 and avg(children(t3)) = 1.5. From this result,
avg(children(t2)) > avg(children(t3)), while x(t2) <
x(t3). Therefore, we exchange the position of t2 with t3
(Fig. 3(C)).
In the second and fourth scannings, we reduce the number

of edge crossings between each term and its parent terms. We
do this procedure from L1 to Ld−1, and repeat the selection
100 times for each layer.
1) select two terms t1 and t2 (x(t1) < x(t2)) randomly
from Ld ∩ TN (at the second sweep), or Ld − TN (at
the fourth sweep).

2) if avg(parents(t1)) > avg(parents(t2)), exchange
positions between t1 and t2.

Presume that t5 and t7 are selected as exchange candidates in
Fig. 3(C). parents(t5) = {t2} and parents(t7) = {t2, t3}.
avg(parents(t5)) = 1 and avg(parents(t7)) = 0.5; then
we exchange the position of t5 with t7.
Using these four sweeps, we reduce the number of cross-

ings under the restriction that the topN terms are close to the
middle and that the number of exchanges of nods is constant.

In the visualization on the web, we show two different
views: a thumbnail view and a whole view. The thumbnail
view shown in Fig. 4 represents overview of the DAG
structure. Using the thumbnail view, we can recognize the
changes of statistically significant terms without checking
details of the terms. The whole view displayed in Figs. 5
and 6 shows us the complete DAG structure and term names
associated with the top N terms. We describe three different
DAG structures according to three categories of GO.

V. CASE STUDY

In this section, we show the usefulness of our GOMA for
checking experimental results. In our site, a user can put ex-
pression data into an input area on the GOMA website. The
inputs are expected to contain sets of gene and expression
values. After input, the data and selection of your species,
only a single click of the submit button is necessary. In the
test described below, we use the gene expression profile of
yeast [8] and input 6,152 genes with their expressions under
one condition.

A. Sorbitol Supplemental Condition

Presume that we have observed expressions of yeasts
grown after 2h under a sorbitol supplemented condition.
After inputting the gene expression profile and pressing
the submit button, DAG structures are visible in Fig. 4,
consisting of three different GO categories.
Three graphs shown in Fig. 4 are associated respectively

with GO term categories: “Molecular Function”, “Biological
Process” and “Cellular Component”. Each rounded square
shows the term and the orange rectangle shows the top 10
terms. All top 10 terms are located close to the middle in
this figure.
From the left-most graph representing Molecular Function,

we recognize that top 10 terms are divided into two branches.
To see its details, by clicking the figure, you will see Fig. 5
with a table including details of GO terms (HTML version
of Table I). Duplicate branches would be described for the
left branch if we describe this graph in a tree structure. The
width of the figure might be larger if we draw the same DAG
using generic method.
Table I shows details of the top 10 terms in biological

processes. This table contains ranks of terms, GO term
ids, the term names, p-values calculated using the Mann-
Whitney test, and quantities of user input genes associated
with the terms. The input expression profile is under a
sorbitol condition. Yeast converts sugars into cellular energy
and thereby produces ethanol. In this process, aldo-keto
reductions are required. In this table, aldo-keto reductase
activity is ranked 4th. This result shows to the experimenters
that this observation would be successful.
To verify whether our index, Mann-Whitney U, is sen-

sitive for re-experimentation, we compute our index from
expression values of yeast under sorbitol conditions after 45
min. The results are depicted in Table II. In the comparison
with terms enriched in 2h, aldo-keto reductase activity is also
ranked 6th. This verifies to us that important cell changes



Fig. 4. Thumbnail view for yeast grown after 2h under a sorbitol supplemental condition

Fig. 5. Graph of top 10 molecular function terms with yeast
expressions grown after 2h under sorbitol supplemental conditions
(Details are in Table I)

Fig. 6. Graph of top 10 molecular function terms with yeast
expressions observed at the stationary phase

TABLE I

TOP 10 MOLECULAR FUNCTION TERMS WITH YEAST EXPRESSION GROWN AFTER 2H UNDER SORBITOL SUPPLEMENTAL CONDITIONS

Rank GO ID Term Name p-value Num of Genes
1 GO:0004386 helicase activity 9.56e-07 69
2 GO:0016740 transferase activity 2.92e-06 520
3 GO:0016757 transferase activity, transferring glycosyl groups 1.24e-04 81
4 GO:0004033 aldo-keto reductase activity 1.74e-04 8
5 GO:0003964 RNA-directed DNA polymerase activity 2.10e-04 21
6 GO:0015077 monovalent inorganic cation transmembrane transporter activity 5.59e-04 48
7 GO:0003678 DNA helicase activity 5.75e-04 25
8 GO:0016758 transferase activity, transferring hexosyl groups 8.09e-04 64
9 GO:0015078 hydrogen ion transmembrane transporter activity 1.32e-03 43
10 GO:0016884 carbon-nitrogen ligase activity, with glutamine as amido-N-donor 1.54e-03 8



TABLE II

TOP 10 TERMS GROWN AFTER 45 MIN UNDER SORBITOL SUPPLEMENTAL CONDITIONS

Rank GO ID Term Name p-value Num of Genes
1 GO:0003676 nucleic acid binding 4.56e-10 407
2 GO:0008233 peptidase activity 6.12e-09 108
3 GO:0004386 helicase activity 6.75e-08 69
4 GO:0003677 DNA binding 1.86e-06 206
5 GO:0005488 binding 2.40e-06 842
6 GO:0004033 aldo-keto reductase activity 2.55e-06 8
7 GO:0003964 RNA-directed DNA polymerase activity 6.49e-06 21
8 GO:0034062 RNA polymerase activity 8.93e-06 32
9 GO:0003899 DNA-directed RNA polymerase activity 8.93e-06 32
10 GO:0016491 oxidoreductase activity 1.08e-05 215

TABLE III

TOP 10 TERMS OF THE STATIONARY PHASE

Rank GO ID Term Name p-value Num of Genes
1 GO:0003735 structural constituent of ribosome 3.22e-54 187
2 GO:0005198 structural molecule activity 4.95e-47 288
3 GO:0016491 oxidoreductase activity 3.81e-22 215
4 GO:0005488 binding 1.96e-15 842
5 GO:0003676 nucleic acid binding 9.20e-14 407
6 GO:0008135 translation factor activity, nucleic acid binding 2.48e-13 42
7 GO:0003743 translation initiation factor activity 4.09e-12 28
8 GO:0045182 translation regulator activity 3.43e-11 50
9 GO:0034062 RNA polymerase activity 5.34e-11 32
10 GO:0003899 DNA-directed RNA polymerase activity 5.34e-11 32

according to growth conditions would be detected using our
method. On the other hand, gene regulations are activated
in the 45 min sample, whereas transmembrane activities are
repressed. This might be caused by differences of populations
of cell cycle periods.

B. Stationary Phase

Next, we demonstrate GOMA with different gene expres-
sions. We input expression values of yeast collected at time
zero status after 8 h growth.
Fig. 6 shows a GO graph of the top 10 terms for the

stationary phase. Comparison of the two figures, Fig. 5 and
Fig. 6, shows that the two graphs present different structures.
Especially, Fig. 5 depicts two children at the root node,
whereas Fig. 6 portrays four children.
The top 10 terms are described in Table III. No common

terms exist between Table I and Table III. This result verifies
to us that top 10 terms affect cell status changes.

VI. CONCLUSION

Herein, we proposed a web server that enables us to
check functional changes quickly from expression profiles.
Although most web servers computing enrichment of Gene
Ontology require a set of genes calculated by clustering anal-
ysis, most technicians and experimenters are unfamiliar for
the statistical task. To overcome the problem, we introduce a
new web server, GOMA, which requires only a set of gene
names and expression profiles with no statistical analysis.
GOMA detect the changes of molecular process of sorbitol
supplemental condition automatically. Therefore, we believe
GOMA to be an important contribution in the annotation
pipeline.

Our future work is to add more user-friendly features to
this web site. One is ready comparison of the GO tree and
tables among microarrays. Currently, GOMA accepts only
one sample. We would like to extend this feature to multiple
samples. Another task is enrichment of the links to associate
other databases such as KEGG [9] and reactome.org [10].
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