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Abstract— Gene-gene and gene-environment interactions
play important roles in the etiology of complex multi-factorial
diseases. With the advancements in genotyping technology, large
genetic association studies based on hundreds of thousands of
single-nucleotide polymorphisms are a popular option for the
study of complex diseases. In this paper we use information
theoretic concepts to develop a novel method for detect-
ing statistical gene-gene and gene-environment interactions in
complex disease models. We explore the effectiveness of our
method with extensive simulations using different gene-gene
interaction models and the rheumatoid arthritis dataset from
Genetic Analysis Workshop-15. The performance of the method
was compared to the well known multi-factor dimensionality
reduction (MDR) and generalized MDR (GMDR) methods. We
demonstrate that our method is capable of analyzing a diverse
range of epidemiological data sets containing evidences for gene-
gene interactions.

I. INTRODUCTION

The risk of developing many common and complex dis-
eases such as cancer, autoimmune disease and cardiovascu-
lar disease involves complex interactions between multiple
genes and several endogenous and exogenous environmental
factors (or covariates). Because of their abundance on the
genome (on average every 100 to 300 bases), the single
nucleotide polymorphisms (SNP) have become major source
of information for detecting statistical gene-gene and gene-
environment interactions underlying the etiology of complex
diseases. The successful detection of critical gene-gene and
gene-environment statistical interactions can provide the sci-
entific basis for many underlying biological interactions, im-
proves the prospects for uncovering potentially undiscovered
genes involved in the disease process and helps to develop
preventative and curative measures for particular genetic
susceptibilities.

Traditional single-locus based disease-SNP association
analysis studies fail to detect all the relevant loci when
observable marginal effects at each locus are small [7]
[9]. Prominent methods for multi-loci disease association
analysis are multi-factor dimensionality reduction (MDR),
generalized MDR (GMDR) and regression based methods
[15][6]. MDR is a non-parametric method [18] that uses
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constructive induction wherein the dimensionality of the
multi-locus genotype is systematically reduced by pooling
into high and low risk groups. The recently proposed GMDR
method employs the generalized linear model framework
for scoring in conjunction with MDR for dimensionality
reduction [14]. GMDR enables inclusion of covariates and
handles both discrete and continuous traits in population-
based study designs. However, despite availability of a more
efficient parallel computing implementation [4], MDR and
its variants, including GMDR, are computationally inten-
sive, especially when more than 10 polymorphisms need to
be evaluated [19]. The regression based methods are also
computationally intensive and model complexity increases
rapidly with the increase in number of loci and also with the
number of possible allelic states at each locus. Also most
regression based methods have been limited to analysis of
two-locus interactions.

Information theoretic methods are among the most promis-
ing approaches for genetic disease association studies and are
versatile and are independent of the underlying genetic mod-
els. But only limited research has been done on leveraging
these strengths for analysis of multi-locus disease association
studies. Several reports have used the Kullback-Leibler diver-
gence and mutual information for genetic analysis. They have
been applied for 2-group comparisons such as those used to
evaluate ancestry informative markers [2][18][20], as multi-
locus linkage disequilibrium (LD) measure to identify tag
SNPs [13] and for analytical visualization [3][5]. Information
theory based statistics have been proposed for genome-wide
data analysis to test for allelic associations [22] and in
identifying and visualizing gene-gene and gene-environment
interactions [5].

Interaction information between variables was researched
upon in diverse areas like physics, information theory, bi-
ology, neuroscience, game theory, law and economics. The
concept was first introduced by McGill in 1954 [16] as a
multivariate generalizations of Shannon’s mutual information
[21] and Han [8] gave rigorous formal definitions of the
concepts of interaction and more recently, Jakulin [10] [11]
studied it extensively from a machine learning perspective
and provided methods for visualizing interactions between
the data attributes. In this paper, we use the interaction
information measure to develop a novel method for detecting
statistical gene-gene and gene-environment interactions in
complex disease models. We critically evaluate the perfor-
mance of the method using extensive simulation studies and
also using the simulated rheumatoid arthritis dataset from
Genetic Analysis Workshop 15 (GAW-15) [1].



II. RELEVANCE AND REDUNDANCY

In this section, we first define the information theoretic
metrics and then describe in details an algorithm that uses
the metrics in detecting gene-gene interactions.

A. Information theoretic measures

Interaction Information. Assume S = {V1; V2; ...; Vn} be
the set of genetic or environmental variables in a given data
set and C be the disease status (phenotype) variable. The
uncertainty of a variable Vi taking values from set Ui is
given by Shannon’s entropy [21] as,

H(Vi) = −
∑

v∈Ui

p(Vi = v)log2p(Vi = v) (1)

The interaction information among the k variables (referred
to as k-way interaction information ,we shall call it KWII)
in set S′ = {V1; V2; ...; Vk}, S′ ⊆ S is the multivariate gen-
eralizations of Shannon’s mutual information. It is defined as
the amount of information (redundancy or synergy) present
in the set of variables, which is not present in any subset of
these variables [10]. For set S′, the KWII can be written
succinctly as an alternating sum over all possible subsets τ
of S′ using the difference operator notation of Han [8]:

KWII(V1; V2; ...; Vk) = −
∑

τ⊆S′
(−1)|S

′|−|τ |
H(τ) (2)

Relevance. The interaction information given by
KWII(S′, C) = KWII(V1;V2; ...;Vk; C) is a
measure of the relevance of the set of variables in set
S′ = {V1;V2; ...; Vk} towards the disease phenotype
variable C (i.e. how well the set explains the disease
phenotype). If variables V1,...,Vk−1 are already known to
be relevant for C, then KWII(S′; C) gives the relevance
of Vk in combination with the others towards C. The
value of KWII(S′; C) can be both positive and negative
where larger positive values indicate stronger interaction
information (hence higher relevance) among the variables
in S′ and C. So we shall use only positive KWII values
as the measure of relevance in our algorithm.

Redundancy. Let S1 ={Vi; ...; Vj} and S2 ={Vt; ...; Vk}
be two sets of variables. Then the mutual information
(MUI) between the variables in sets S1 and S2 is a
measure of the amount of information (i.e. redundancy)
shared between the variables of each set and is given
by MUI(Vi...Vj ;Vt...Vk) = I(Vi...Vj ; Vt...Vk) (note the
placement of the ; indicating that MUI is actually KWII
involving the joints of the variables in S1 and S2). The
mutual information is maximum when the two sets consist of
identical variables so that the redundancy is also maximized.

The Relevance and Redundancy criteria mentioned above
are used together in an iterative search algorithm to select
promising genetic and environmental variables along with
the interactions in which these variables participate.

B. The Relevance-Redundancy Algorithm

The goal of the algorithm is to determine all the non-
redundant and relevant variables and their associated in-
teractions that involve the disease phenotype. Let S =
{V1; V2; ...; Vn} denote the set of all genetic and environ-
mental variables to be searched for interactions and C is
the disease phenotype variable. The algorithm proceeds in
an iterative fashion and in each iteration it examines the
relevancy of each variable for C and also its redundancy with
variables already chosen to be relevant in previous iterations.
Let Li denote the set of variables that participate in one
or more interactions with the phenotype variable that are
relevant by the above definition till the ith iteration, i.e. Li

is the set of relevant variables at iteration i. Let Qi denote
the set of relevant interactions detected till the ith iteration.
Thus L0 ⊂ L1 ⊂ ...Li... and Q0 ⊂ Q1 ⊂ ...Qi.... In the
beginning L0 and Q0 are empty. At iteration 1, L1 and Q1

are updated as,

Vmax = argmax
Vk

{KWII(Vk; C)}, k = 1, 2, ..., n

L1 = L0 ∪ {Vmax} = {Vmax}
Q1 = Q0 ∪ {{Vmax; C)}} (3)

Thus since Q0 is empty, only the relevance of each variable
is determined and is used as the sole criteria to select the
a variable and its associated interactions to be added to
L1 and Q1 respectively. In iteration i > 1, a variable Vk

not already in Li−1 is tested for inclusion in Li. Since the
variable Vk may be interacting with zero or more variables
already in Li−1 and C, the maximum relevance of Vk

in combination with a subset of already selected variables
is determined. At the same time, Vk may be redundant
with zero or more variables already in Li−1; therefore, the
maximum redundancy of Vk in combination with a subset
of already selected variables is determined. The following
equations are used to choose the variable to be included in
Li and update Qi in step i,

Vmax = argmax
Vk

{ max
τ∈Qi−1

KWII(τ ;Vk; C)

− max
γ∈Qi−1

MUI(γ; Vk)}, Vk /∈ Li−1, k = 1, 2, ..., n

Li = Li−1 ∪ {Vmax}
Qi = Qi−1 ∪ { ∪

τ∈Qi−1
{τ ; Vk}} (4)

Thus the variable with the maximum relevance and minimum
redundancy is selected for inclusion. A variable that has high
relevance but high redundancy with some variable(s) already
selected in pervious iterations will be ignored compared to
a variable that has, say, moderate relevance and much lower
redundancy with already selected variable(s). The details of
the algorithm are given below.
Algorithm Relevance-Redundancy Search(S, C, κ)
Input: S(Set of variables), C(phenotype), κ(# of iterations)
Output: Q(Relevant interactions)
1. L ← φ; Q ← {φ}; max relv ← −∞; Vmax ← φ;
2. for each Vk ∈ S do



3. relv ← KWII(Vk;C);
4. if relv ≥ max relv
5. Vmax ← Vk;
6. max relv ← relv;
7. end
8. end
9. L ← {Vmax};Q ← Q∪{{Vmax}};
10. for iter ← 2 to κ do /*each iteration*/
11. /*Qtemp retains interacting combinations and KWII
12. values for the most relevant variable in this iteration*/
13. Qtemp ← φ; max score ← −∞;
14. for each Vk ∈ S\L do /*each new variable*/
15. max relv ← −∞;R ← φ;
16. for each τ ∈ Q do /*max relevance of Vk*/
17. relv ← KWII(Vk; τ ;C);
18. if relv ≥ max relv
19. max relv ← relv;
20. end
21. /*retain 〈combination,relevance〉 pair*/
22. R ← R∪〈{Vk; τ}, relv〉;
23. end
24. if max relv > 0
25. max redncy ← −∞;
26. for each τ ∈ Q do /*max redundancy of Vk*/
27. redncy ← MUI(Vk; τ);
28. if redncy ≥ max redncy
29. max redncy ← redncy;
30. end
31. end
32. score ← max relv −max redncy;
33. if score ≥ max score
34. max score ← score;
35. Vmax ← Vk;
36. Qtemp ← R;
37. end
38. end
39. end
40. /*retain only combinations with KWII > 0*/
41. for each 〈τ, relv〉 ∈ Qtemp do
42. if relv > 0
43. Q ← Q ∪ {τ};
44. end
45. end
46. L ← L ∪ {Vmax};
47. end
48. for each τ ∈ Q do
49. if KWII(τ ;C) is not significant
50. Q ← Q\{τ};
51. end
52. end
53. return Q;

C. Algorithm Description and Computational Complexity

The algorithm takes as input the set of genetic and
environmental variables S, the phenotype variable C, and the
number of iterations κ. The set of informative variable com-
binations and their KWII values is the output (Q). Equation

3 is used to update L (the set of relevant variables) and Q
(the set of associated interactions) with the first informative
variable and its associated interaction in lines 1-9. In each
succeeding iteration, equation 4 is used to select a variable
according to the information theoretic criteria; for each new
variable Vk, lines 15-23 calculates the maximum relevance of
Vk in combination with variables already selected in previous
iterations and lines 25-31 calculates the maximum redun-
dancy of Vk in combination with variables already selected
in previous iterations. The difference of the two quantities is
used as a measure to select the most informative variable in
the current iteration and L and Q are updated with it. Only
the interactions with KWII > 0 are retained in Q in each
iteration. Finally, only the interactions that are statistically
significant are returned as output. Significance of KWII
value of each combination can be easily ascertained using
permutation or bootstrap based methods. We next present
rigorous simulation studies to analyze the effectiveness of
the Relevance-Redundancy algorithm.

III. SIMULATIONS FOR CASE STUDY

A complex case study involving simulated data sets was
used to critically assess the effectiveness of the above
algorithm in correctly identifying the interacting variables
causing the disease. The simulated data consisted of 42
biallelic SNP variables numbered 0-41 and the case-control
phenotype variable C. The SNPs were arranged into six
groups (G1 − G6) with seven SNPs in each group (see
Figure 1). Various levels of linkage disequilibrium (LD)
was simulated between the SNPs in each group. Four SNPs
(denoted S1, S2, S2 and S4), each randomly selected from
SNPs in G1, G2, G5 and G6 respectively were assumed to
be involved in the disease process though models of complex
interaction. The remaining six SNPs in each group were
simulated to be in various levels of LD (r2 values 0.9,0.8 and
0.7) with the the causative SNP of that group. The disease
was modeled to occur using two-locus gene-gene interaction
models between SNPs S1 and S2 (i.e interaction between G1
and G2), and S3 and S4 (i.e interaction between G5 and G6)
that attempt to mimic biological interactions. SNPs in groups
G3 and G4 were not associated with the disease. In an effort
to classify the types of interaction in the case of two biallelic
loci, Li and Reich [12] have enumerated 512 possible two-
locus models and identified a fewer number of non-redundant
two-locus models. We choose two widely used models for
our simulation. Each model specifies the penetrance of the
disease given the genotypes of the two interacting loci. Let
the two loci be denoted by L1 and L2. Let the two alleles
at loci L1 be A and a (genotypes are aa, Aa and AA), and
at loci L2 be B and b (genotypes are bb, Bb and BB). Let
λaa , λAa , λAA be the marginal penetrances at L1 and λbb

, λBb , λBB be the marginal penetrances at L2. Denote the
joint penetrances for each genotype g of the two loci by µg ,
i.e. P (Disease|g) = µg . Then the marginal penetrances at
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Fig. 1. Interaction model for Case Study: Forty-two SNPs in six groups with linkage disequilibrium in each group. The disease causing SNPs are
S1,S2,S3,S4 (black). In each group, two SNPs each are in LD of 0.9 (dark grey),0.8(light grey) and 0.7(white) with the black colored SNP of that group.
The y-axis gives the pairwise mutual information between each SNP and the SNP colored black in that group which increases with increasing LD between
SNP pairs indicating redundancy. We would like to detect only the diseased SNPs (black) from groups G1, G2, G5 and G6.

each locus is given by,

λg1 =
∑

g2∈{bb,Bb,BB}
µg1g2P (g2), g1 ∈ {aa,Aa, AA}

λg2 =
∑

g1∈{aa,Aa,AA}
µg1g2P (g1), g2 ∈ {bb,Bb, BB} (5)

And the overall population prevalence of the disease is given
by,

P (Disease) =
∑

g1∈{aa,Aa,AA},g2∈{bb,Bb,BB}
µg1g2P (g1g2) (6)

The genotype frequencies can be calculated using the allele
frequencies at each loci under Hardy Weinberg equilibrium
assumptions. The two models (Figure 2) are summarized
below. Model 1 is an additive model that has a baseline
penetrance for genotype aabb and it increases in an additive
fashion with each copy of the disease causing allele in the
genotype. Model 2 incorporates a multiplicative interaction
with a baseline value that increases the chance of disease
multiplicatively when at least one disease causing allele from
each locus is present [12]. Given fixed values of the disease
prevalence and the allele frequencies at each locus, for each
model, the marginal effects at each locus are bounded by
some maximum value η and the interaction effects (θ and
α) are solved for by working backwards using the above
equations. The bounds on the marginal effect sizes at each
locus are specified as,

λAA/λAa ≤ η, λAa/λaa ≤ η,

λBB/λBb ≤ η, λBb/λbb ≤ η (7)

From equations 5-7, once the allele frequencies,
P (Disease), and η are known, we can solve for the
interaction effects (θ and α) using iterative numerical
methods such that the bounded marginal effects are
maximized at each locus.

IV. EXPERIMENTAL RESULTS

For the case study, a population of 500,000 individuals
with genotypes in Hardy-Weinberg equilibrium and given

Fig. 2. The disease models used in the case study. Each entry indicates the
disease penetrance given a genotype , e.g. P (Disease|AaBb) = µAabb =
α(1 + θ) for the Multiplicative Model.

Fig. 3. The power of detecting the diseased SNPs S1, S2, S3 and S4
for disease allele frequencies of 0.1 and 0.5 (y-axis) against η (x-axis). The
disease model is either Additive (between diseased SNPs S1, S2 and S3,
S4) or Multiplicative (between diseased SNPs S1, S2 and S3, S4).

allele frequencies was generated and 2000 cases and 2000
controls were randomly selected from the population. The
same disease model (Multiplicative or Additive) was as-
sumed in both the interactions. The disease prevalence was
fixed at 0.1 and the maximum marginal effect size (η)
was varied as 1.2, 1.5 and 2.0. The magnitudes of the
maximum marginal effect sizes were chosen based on known
results about complex diseases and previous works [15]. The
frequencies of the disease alleles were assigned 0.1 and
0.5 in two separate experiments, while the uninformative
SNPs in G3 and G4 had allele frequencies of 0.5. We
conducted 1000 independent simulations for each of the



maximum marginal effect sizes and the two allele frequencies
at the two loci. For each experiment with a given allele
frequency, the significance of the observed KWII values
of each interacting combination output by the algorithm was
determined using strategies similar to that described in [5]:
the null distribution of KWII for each combination was
obtained by calculating it on genotypes simulated with a
marginal effect size of unity at each locus (θ=0) and each
observed KWII was deemed significant if it exceeded the
95th percentile value of the corresponding null distribution.
A one-sided analysis was assumed since we are interested
in variables involved in interactions with KWII > 0 (since
positive values indicate the presence of an interaction).

A. Simulation Results

Figure 3 shows the power of detecting the disease causing
SNPs S1, S2, S3 and S4. A SNP is deemed detected when
it participates in one or more interactions with significant
KWII values output by the method. The number of iter-
ations, κ was set to 6. We observe that for disease allele
frequency of 0.5, our method achieves high power of 85-
88% (Multiplicative model) and 96-100% (Additive model)
at maximum marginal effect size (η) of 1.5 and 75-80%
power at very low η = 1.2. Power decreases with decrease
in allele frequency to 0.1, but is still about 50% for η = 1.2
and increases to about 70% for η = 2.0.

B. Analysis of GAW-15 Data

We further evaluated the performance of the Relevance-
Redundancy method using the data corresponding to problem
3 of the Genetic Analysis Workshop 15 (GAW-15) which
consisted of 100 replicates simulated after the epidemiology
and familial pattern of Rheumatoid Arthritis (RA), a complex
genetic disease in which it is hypothesized that several loci
contribute to disease susceptibility. The data contains: i)
730 microsatellite markers with an average spacing of 5
cM; ii) 9,187 SNPs distributed on the genome to mimic a
10K SNP chip set, and iii) 17,820 SNPs on chromosome
6. In addition RA affectation status (case-control variable),
sex, age, smoking status, AntiCCP (anti-cyclic citrullinated
peptide antibody) measure, IgM (immunoglobulin M) mea-
sure, severity, DR allele from father, DR allele from mother,
age at onset, age at death are included as covariates (i.e.
environmental variables). The data had 8000 samples (3468
cases of RA and 4532 controls). The AntiCCP and IgM
measures were defined for the RA cases only. We have used
the 9187 SNPs distributed on all the chromosomes from the
first of the replicates to evaluate the our method and the
remaining replicates were used to obtain the 95% confidence
intervals for KWII of each combination of variables found
by the algorithm. Three separate analyses were done with the
9187 SNPs and Sex, Age, Smoking status as covariates and
(i) RA status (ii) IgM measure and (iii) AntiCCP measure
as the phenotype variable.Although phase information was
provided, we chose to not include it and treated the data
as unphased genotype data. Age, AntiCCP and IgM being
continuous measures were each discretized by binning into

Fig. 4. The interacting variables detected using the algorithm on GAW-15
RA data using the three phenotypes.The x-axis shows the interaction combi-
nations obtained and the phenotypes are implicit in each combination. The
confidence intervals are shown on the KWII values for each combination.

five intervals of equal width. The number of iterations, κ was
set to 10.

Figure 4 present the results for three analyses using
the algorithm. The interactions in the figures were deemed
significant since their confidence intervals did not span zero
(zero indicates absence of an interaction). We find that our
method detects the SNPs and covariates that were simulated
to have associations with the RA disease. In the figures,
C{chromosome no.} {SNP no.} is used as the naming
convention for the markers. In figure 4A, the combinations
consist of Locus C or DR (both SNPs C6 153), Locus
D (C6 162), Locus F (C11 389) and the environmental
variables Age, Sex and Smoking that had associations with
the RA affection status in the simulated data set [17]. The
simulated data contained pronounced effects of DR and locus
F on RA affection status and IgM levels, respectively, and
this was confirmed by the high interaction values correspond-
ing to the DR locus. Locus D also had a direct effect on RA
risk. Although it had a very low disease allele frequency
(only 0.0083, making minor allele homozygotes very rare),
our information theoretic method detected it successfully.
Figures 4B and 4C show the combinations obtained with
AntiCCP and IgM as phenotype variables, respectively. We
successfully detect Locus C or DR (SNP C6 153) and Locus
E (C18 269) with AntiCCP in figure 4B and the effects of
Locus F (C11 389) and Smoking on IgM in figure 4C using
our method.

C. Comparison with other methods

We compare our method with two well-known methods
for analysis of gene-gene interactions, MDR [18] and GMDR
[14]. Both these methods attempt to explore the interaction
space in a combinatorial fashion and have exponential time
complexity and exploring all possible subsets containing
more than one variable was not possible with 9187 SNP
variables in a reasonable timeframe. So we selected 100
SNPs from among the 9187 SNPs in replication 1 of GAW-
15 data to create a smaller data set that could be analyzed
by all three competing methods and explored upto three
variable combinations. This data set included the covariates
Smoking, Age, and Sex and contained the key informative
loci and the remaining SNPs were selected randomly from
the rest of the 9,187 SNPs. The RA affection status was used



as the phenotype since MDR can handle only case-control
phenotypes.

The MDR analysis detected {C6 153}, {C6 154, Age},
{C6 153, Age, Sex} as associated with RA. Both the SNPs
C6 153 and C6 154 denote the chromosome locus C or
DR. The MDR analysis did not detect Locus D (C6 162)
and Smoking. GMDR requires a priori calculation of co-
variate effects, which are then incorporated into the anal-
ysis. Covariates cannot be analyzed alone. So the GMDR
analysis was performed with Sex, Age and Smoking as
the covariates and RA as trait. The method identified the
following SNP combinations: {C6 153}, {C6 153, C6 162}
and {C6 153, C6 154, C11 389} with Age,Sex and Smoking
where SNPs C6 153, C6 154 both denote the chromosome
6 locus C or DR; C6 162 denotes locus D on chromo-
some 6 and C11 389 denotes locus F on chromosome 11.
The Relevancy-Redundancy method detected all the relevant
combinations: {C6 153}, {Age}, {Sex}, {C6 153,Age},
{C6 162}, {C11 389} and {Smoking}. Note that both MDR
and GMDR detected redundant loci C6 153 and C6 154 both
of which represent locus C or DR (owing to high LD between
them), however, the Relevancy-Redundancy method detected
only one of them (C6 153) and is thus more parsimonious
(i.e avoid detecting redundant variables).

These results demonstrate that our method performs rea-
sonably well compared to existing prominent methods and
are capable of analyzing a diverse range of epidemiological
data sets containing evidences for gene-gene as well as gene-
environment interactions.

V. DISCUSSION

We have presented an information theoretic method and
evaluated its performances using complex simulation strate-
gies that uses two different models of gene-gene statistical
interaction. Detecting genes and environmental factors in-
teracting to increase the susceptibility to disease risk is a
very challenging task due to many reasons, particularly due
to the large size of the data and presence of confounding
factors like linkage disequilibrium, phenocopies and locus
heterogeneity. We have shown that our information theoretic
method has high power in detecting gene-gene interactions
and the method is appealing not only because it is simple
and performed well in the experiments and the GAW-15 data,
but also because it is flexible and can be used when the
genetic and environmental variables have different numbers
of classes or when the phenotype has more than two classes.
This means that SNP and microsatellite markers can be ana-
lyzed together if necessary. Also they are naturally extensible
to study models with more than two loci and environmental
variables.

We have used simulated data modeled after real disease
data. The GAW-15 data set was sufficiently rich and complex
because it was modeled based on a real rheumatoid arthritis
data set and the ground truth is established during the
simulation. For future work, we would like to test our
method on several publicly available SNP data sets and
also using more interaction models, particularly with models

containing complex gene-gene and gene-environment inter-
actions involving 3 or more loci in a manner similar to our
simulations in [5]. We also intend to incorporate additional
biological knowledge e.g. gene expression and biological
pathway information along with the proposed method to
make the search algorithm more biologically oriented.
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