
  

  

Abstract— Recent advances in genotyping technology have 
enabled large studies with data from thousands of subjects to 
contain half a million or more of single nucleotide 
polymorphisms (SNPs) marker per subject. This rapid increase 
in the size of data has generated the need to compress the data 
in order to reduce the storage capacity requirements and the 
memory required at run time to perform analysis on the data. 
The availability of so many markers across the whole genome 
has created opportunities for new methodologies to be 
implemented that take advantage of the relatively high density 
of the markers to perform analyses that take into account the 
Linkage Disequilibrium (LD), an effect where some 
combinations of genetic markers are non-randomly associated. 
Classical techniques for transforming genotypic data into a 
binary format are already in use by several applications 
however we demonstrate in this paper that the traditional 
transformations are not adequate for certain types of analyses 
as some information key to new methodologies of analyses is 
lost. We propose a new protocol for formatting binary 
genotypic data that can be used in all types of analyses while 
still offering a very high compression rate. 

I. INTRODUCTION 
ntil recently in genetic studies, due to limitations in 
genotyping technology, only a small subset of the 
genome could be analyzed. The introduction of 

affordable high throughput genotyping technologies allowed 
the assay of more than half a million loci variants (SNPs) 
per subject across the whole genome. Genetic association 
studies applying such technology have now become 
common as they allow investigation of the majority of 
common loci variants in the genome; such studies are 
typically called genome wide association scans (GWAS). In 
this paper we present a non-lossy format of encoding the 
data in the datasets generated from GWAS to a binary form. 

The substance that encodes the genetic instructions of 
living organisms is Deoxyribonucleic acid (DNA). DNA 
consists of two long units called strands having a shape of a 
double helix [1], [2]. The genetic code is specified by the 
four nucleotide "letters" A (adenine), C (cytosine), T 
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(thymine), and G (guanine). There are multiple different 
types of variations that can occur on the DNA strands, 
however traditionally the genetic analyses seem to focus on 
analyzing Single Nucleotide Polymorphisms (SNPs). SNP 
variation occurs when a single nucleotide, such as an A, 
replaces one of the other three nucleotide letters—C, G, or T 
[3]. For a variation to be considered a SNP it also needs to 
be present in at least 1% of the population.  Due to the 
Linkage Disequilibrium effect (LD), SNPs serve as 
biological markers for pinpointing a region on the genome 
associated with a phenotypic trait even thought the SNP 
itself is not necessarily the variation responsible for the 
association. Rather it’s one or more of the variations that are 
in LD with the SNP that is causing the association.  

The need to reduce the size of the data is owed to the 100 
fold increase in the genotyping capacity available today 
combined with the massive reduction in cost. Today’s 
technology has the ability to analyze datasets up to 550,000 
or even 1 million SNPs per subject with >99% accuracy, at a 
rate of >100 K genotypes per day and at a cost of around 
20–30 cents per genotype [4], [5], [6].  

Traditionally the genetic data in these studies is stored in 
the QTDT format introduced in the program Merlin [7]. 
Input files describe relationships between individuals in a 
dataset, store marker genotypes, disease status and 
quantitative traits and provide information on marker 
locations and allele frequencies.  

There is already a technique for compressing this data by 
utilizing a binary encoding [8]. However, that technique was 
focused at encoding SNPs as markers to be used in analyses 
rather than strand based information. Today as more GWAS 
datasets became available researchers are developing 
innovative new methodologies to analyze them. Some of 
these methodologies are not relying so much on the SNPs as 
markers; rather they look at the sequence of genotyped 
alleles on each strand of DNA separately. The methodology 
used in plink to encode the data looses the information of 
which strand holds each allele’s genotype for heterozygote 
SNPs, therefore making it impossible to run analyses that 
use strand information using the binary input format for 
GWAS. Also, recent technological advances in genotyping 
are enabling the detection of deletion regions. This may 
result in future datasets to incorporate markers in them that 
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may have an allele missing not due to a genotyping error but 
due to a deletion on one of the two strands. The encoding 
format proposed in this paper will offer an efficient lossles 
compression that is also capable of encoding deletions 
separately from errors in genotyping or quality control 
removed markers.  

The structure of the paper is as follows: Section II 
presents the traditional methodology of formatting GWAS 
data as well as the current alternative to compressing the 
data and the format proposed in this paper. Section III offers 
a comparison of the three formats identifying advantages 
and disadvantages of each. Section IV concludes describing 
the situations under which each format is optimal.  

II. METHODS AND MATERIAL 

A.  The Commonly Used Format QTDT Merlin [7] 
The QTDT file format described in Merlin is the one 

traditionally used for this type of data. It’s split into three 
files; Pedigree files contain phenotypes for discrete and 
quantitative traits and marker genotypes for a specific 
number of subjects. They are usually white-space delimited 
files. The first (usually 6) columns contain information 
about the subject (Family ID, Individual ID, Paternal ID, 
Maternal ID, Sex, Phenotype). The combination of the 
information of each subject must be unique. The next 
columns contain biallelic markers; typically SNPs. Marker 
genotypes are encoded as two consecutive integers, one for 
each allele, or using the letters "A", "C", "T" and "G". To 
denote missing alleles a sentinel value is used, typically “0”. 

Map files contain information for each single nucleotide 
polymorphism. They are used to analyze genetic markers 
into the equivalent pedigree file. Each line per marker 
usually contains 3, 4 or 5 columns (chromosome, SNP 
identifier, morgans or centimorgans and base-pair position). 
Each column is separated by white space.  

Dat files describe the pedigree file. They include one row 
per data item in the pedigree file, indicating the data type 
providing a one-word label for each item. 

B. Plink’s Method for Binary Ped Files [8] 
Plink is an excellent, open source program offering a 

comprehensive range of basic large-scale whole genome 
association analysis methodologies. It has been widely 
adopted since high dimensionality GWAS have become 
available as it enables researchers to efficiently analyze 
these large datasets in a computationally efficient manner.   

In plink there is an encoding format for transforming 
QTDT Merlin data into binary formatted files. The approach 
used in the plink method, uses 2 bits for encoding biallelic 
markers with 4 possible states. Plink uses the encoding for 
each genotype given in Table I [8]. 

Testing on plink binary format showed that the exported 
binary file was 15 times smaller than the original file. The 
drawback however is that encoding of the heterozygote 
allele is the same regardless of what strand it’s actually 

derived from. Therefore any analyses that rely on the 
sequence of the alleles on the strand will be missing this 
information.  

One analyses technique that needs the lost information is 
imputation.  Imputation analysis is the practice of 'filling in' 
missing data with plausible values. It is a method for 
uncovering the genetic basis of human disease and it is used 
for inferring genotypes at observed or unobserved SNPs that 
can detect causal variants that have not been directly 
genotyped [9]. It is in essence an in-silico approach to 
discover the probability of the existence of a specific 
genotype for loci that haven’t being directly genotyped but 
are known to be in LD with genotyped markers. 

C. Proposed Method 
Since imputation analyses require knowledge of which 

strand the alleles of heterozygote SNPs exist on, we need to 
encode each allele on each strand separately for all cases. 
There are a minimum of three states each allele can be in, 
these include the two possible nucleotides (commonly 
denoted as A and a) as well as the possibility of missing data 
at that location. The smallest number of bits that can encode 
the 3 states of an allele is 2, however with 2 bits we can 
actually encode a fourth state. In many existing studies this 
may not be used, even though it will have no impact on the 
capacity requirements the databases will have for storage. 
However, we propose that the fourth state is set to denote 
markers that are in deleted regions. This utilizes the extra 
available coding identifying a deleted allele from a missing 
allele due to quality control concerns, or genotyping error.  

An analytical technique that enables the detection of these 
deletions that has started being applied is copy number 
variants (CNV) analyses. It refers to the genetic trait of 
differences in the number of copies of a particular region 
(for example a gene) present in the genome of an individual 
[10], [11]. To perform CNV analyses most algorithms rely 
on raw data from the genotyping platform. CNV algorithms 
are able to detect deletion regions as well as regions that are 
duplicated that may exist in some individual’s strands. 

However it should be clearly noted that CNV incorporates 
more information than just deleted regions. It can also detect 
regions that exist in more than one copy per strand. That 
information is not reflected in the proposed protocol; 
therefore methodologies that use that information would still 
rely on an external file with CNV regions.  

TABLE I 
PLINK BINARY PED FILE ENCODING [8] 

 
Allele On 
Strand + 

Allele On 
Strand - 

Marker Encoding 

A A 00 
A 
a 

a 
A 01 

A a 11 
Missing Data  Missing Data 10 



  

In the proposed format the data are structured as a two 
dimensional vector of alleles. The first dimension’s size is 
equal to the number of strands the subject has. Typically in 
humans all chromosomes have two strands with the 
exception of X and Y chromosomes in males that each have 
1 strand. Even in these cases a second strand can exist listing 
the alleles of the second strand on males as missing. 

Each element in the vector of each strand will encode an 
allele. The allele will be 2 bits long enabling encoding of a 
total of 4 states per allele, missing data, nucleotide 1, 
nucleotide 2 or deleted.  

Table II presents the 4 different states that can be coded 
per allele. The term “Unknown” is used rather than the more 
typical “missing” to denote alleles that it’s unclear what 
their genotypes are or if they are deleted so as not to confuse 
it with the deleted state that defines alleles that do not exist 
on that strand.  

Table III shows how two alleles are encoded and create a 
biallelic allele such as SNPs, while still enabling the 
identification of deleted alleles from missing values if that 
information is available. By comparing two alleles together 
and using the encoding as proposed above the resulted 
encoding is shown in Table III. 

The two strands in each Subject’s vector need to be 
perfectly aligned, that is, the i th element of each vector will 
point to the same Marker’s alleles one for each strand. This 
makes it easy to access information in the way it was 
traditionally accessed. To access the i’th marker’s alleles the 
two bits at position i in each strand will carry a total of 4 
bits, using the encoding column of Table III the genotype of 
Marker i can then be identified.  

III. EXPERIMENTAL RESULTS 
To compare the different formats we will consider the size 

of the resulting files in relation to the original QTDT Merlin 
format, the amount of information lost through the encoding 
of the original QTDT Merlin format and the ability of each 
format to retain different types of information available 
today. Table IV provides a summary of the comparison.  

A. Information Loss 
On one hand loosing information due to encoding is 

undesired; however, if the encoding is used to simply speed 
up analyses and reduce scratch space then it’s not an issue as 
long as the original raw file is kept for future analyses. 
However if an algorithm is developed that needs the 
information of which strand each heterozygote marker’s 
alleles are on , or if there are deletion regions overlapping 
the markers in either strand, then utilizing the encoding 
methodology proposed in this paper will in a single table or 
file, encode all of this information efficiently. Another issue 
is the actual storage of the data for long term use or for 
transferring over the internet. Utilizing a non-lossy approach 
to compressing the data that incorporates all genetic 
information into a single file can reduce the resources 

TABLE II 
PROPOSED ALLELE ENCODING  

 
Allele Encoding 

Unknown 00 
A 01 
a 10 

Deleted 11 
 

TABLE III 
PROPOSED ENCODING FOR BI-ALLELIC MARKERS 

 
Allele 1 Allele 2 Encoding 

Unknown Unknown 0000 
Unknown A 0001 
Unknown a 0010 
Unknown Deleted 0011 

A Unknown 0100 
A A 0101 
A a 0110 
A Deleted 0111 
a Unknown 1000 
a A 1001 
a a 1010 
a Deleted 1011 

Deleted Unknown 1100 
Deleted A 1101 
Deleted a 1110 
Deleted Deleted 1111 

TABLE IV  
COMPARISON OF FILE FORMATS  

 

QTDR Merlin Proposed Protocol Plink ‘s protocol 
Information Loss for bi-allelic markers 

strand location of 
heterozygote alleles 

Aa,aA Used as 
Reference None Missing one of the 

two alleles 
A0, 0A, a0,0a 

Added Information capability 

tri or quad 
allelic markers 

Alleles deleted 
from a specific 

strand 
None 

Size* 
.bed file : 229.6 

MB 
Pedigree File 

3.6 GB 
.fam file : 30 KB Map File 

12.6 MB .bim file : 14.1 MB 
Total:  3.612 

GB 

One binary file 
496 MB 

Total : 243.7 MB 
*Using a dataset containing 1804 subjects with 532578 

SNPs per subject.



  

required. 

B. Added Information Capability  
In this paper we focused on bi-allelic markers as they are 

the ones that current high throughput genotyping 
technologies are able to genotype. However it should be 
noted that the format of QTDT Markers enables encoding of 
tri or quad allelic markers as well since each allele is 
encoded as an ASCII character. Neither plink’s binary ped 
file nor the format proposed could handle tri or quad allelic 
markers. Large datasets with tri-allelic markers are not 
existing today (to the best of our knowledge) while 
information on deleted markers is available through CNV 
analyses and other methodologies available to the various 
genotyping platforms. Therefore tri-allelic and quad allelic 
markers were ignored in this encoding until high throughput 
genotyping technologies make these data available. A new 
protocol could then be easily generated for supporting this 
analysis. 

C. Size of Encoded Data 
The compression rate can easily be estimated since both 

encodings are deterministic, however we also provide as an 
example an actual test we performed using an average 
dataset size of 1806 subjects and 532,579 markers. The 
plink binary ped file was able to compress the file to 1/15th 
of it’s original size while the proposed method compressed 
the file to exactly double the size of that achieving just 
1/7.5th of the original size. However, both compressions 
produce enough of a compression to overcome the issue of 
the large data since the data can now fit on the average 
computer’s physical memory (RAM) as today’s typical 
computer has at least 1 GB. 

IV. CONCLUSION 
The proposed format encodes genotypic data into a binary 

form in order to compress it and at the same time preserve 
all the information relating to the bi-allelic markers and the 
strand location of each allele. However it does double in size 
the resulting datasets from existing encoding methodologies 
that are lossy, but loose information only necessary to 
certain type of analytical approaches. The analytical 
approaches that would benefit from the proposed format of 
encoding are primarily the ones that take into account the 
strand on which heterozygote alleles are based on, the 
existence of the marker on just one of two possible strands, 
identifying if the second wasn’t available due to genotyping 
errors or a deletion over the marker on that strand. Due to 
the need to use 2 bits per allele for encoding while only 
needing 3 states for each allele we were left with an 
available fourth state. We propose that the fourth state it is 
used to denote markers that are deleted as this information is 
becoming commonly available from genotyping platforms 
available already; however, future researchers may choose 
to use the fourth state to code a different state an allele can 
be in. Also in cases where compression of the data in a non-

lossy way for storage, backup or data transfer is used, the 
methodology proposed would be ideal. 
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